1
|
Flores-Valle A, Vishniakou I, Seelig JD. Dynamics of glia and neurons regulate homeostatic rest, sleep and feeding behavior in Drosophila. Nat Neurosci 2025; 28:1226-1240. [PMID: 40259071 DOI: 10.1038/s41593-025-01942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/19/2025] [Indexed: 04/23/2025]
Abstract
Homeostatic processes, including sleep, are critical for brain function. Here we identify astrocyte-like glia (or astrocytes, AL) and ensheathing glia (EG), the two major classes of glia that arborize inside the brain, as brain-wide, locally acting homeostats for the short, naturally occurring rest and sleep bouts of Drosophila, and show that a subset of neurons in the fan-shaped body encodes feeding homeostasis. We show that the metabolic gas carbon dioxide, changes in pH and behavioral activity all induce long-lasting calcium responses in EG and AL, and that calcium levels in both glia types show circadian modulation. The homeostatic dynamics of these glia can be modeled based on behavior. Additionally, local optogenetic activation of AL or EG is sufficient to induce rest. Together, these results suggest that glial calcium levels are homeostatic controllers of metabolic activity, thus establishing a link between metabolism, rest and sleep.
Collapse
Affiliation(s)
- Andres Flores-Valle
- Max Planck Institute for Neurobiology of Behavior - caesar (MPINB), Bonn, Germany.
| | - Ivan Vishniakou
- Max Planck Institute for Neurobiology of Behavior - caesar (MPINB), Bonn, Germany
| | - Johannes D Seelig
- Max Planck Institute for Neurobiology of Behavior - caesar (MPINB), Bonn, Germany.
| |
Collapse
|
2
|
Anding A, Ren B, Padmashri R, Burkovetskaya M, Dunaevsky A. Activity of human-specific Interlaminar Astrocytes in a Chimeric Mouse Model of Fragile X Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640426. [PMID: 40060700 PMCID: PMC11888414 DOI: 10.1101/2025.02.26.640426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Astrocytes, a subtype of glial cells, have multiple roles in regulating neuronal development and homeostasis. In addition to the typical mammalian astrocytes, in the primate cortex interlaminar astrocytes are located in the superficial layer and project long processes traversing multiple layers of the cerebral cortex. Previously, we described a human stem cell based chimeric mouse model where interlaminar astrocytes develop. Here, we utilized this model to study the calcium signaling properties of interlaminar astrocytes. To determine how interlaminar astrocytes could contribute to neurodevelopmental disorders, we generated a chimeric mouse model for Fragile X syndrome. We report that FXS interlaminar astrocytes exhibit hyperexcitable calcium signaling and are associated with dendritic spines with increased turnover rate.
Collapse
|
3
|
Ahmadlou M, Shirazi MY, Zhang P, Rogers ILM, Dziubek J, Young M, Hofer SB. A subcortical switchboard for perseverative, exploratory and disengaged states. Nature 2025; 641:151-161. [PMID: 40044848 PMCID: PMC12043504 DOI: 10.1038/s41586-025-08672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/17/2025] [Indexed: 04/13/2025]
Abstract
To survive in dynamic environments with uncertain resources, animals must adapt their behaviour flexibly, choosing strategies such as persevering with a current choice, exploring alternatives or disengaging altogether. Previous studies have mainly investigated how forebrain regions represent choice costs and values as well as optimal strategies during such decisions1-5. However, the neural mechanisms by which the brain implements alternative behavioural strategies such as persevering, exploring or disengaging remain poorly understood. Here we identify a neural hub that is critical for flexible switching between behavioural strategies, the median raphe nucleus (MRN). Using cell-type-specific optogenetic manipulations, fibre photometry and circuit tracing in mice performing diverse instinctive and learnt behaviours, we found that the main cell types of the MRN-GABAergic (γ-aminobutyric acid-expressing), glutamatergic (VGluT2+) and serotonergic neurons-have complementary functions and regulate perseverance, exploration and disengagement, respectively. Suppression of MRN GABAergic neurons-for instance, through inhibitory input from lateral hypothalamus, which conveys strong positive valence to the MRN-leads to perseverative behaviour. By contrast, activation of MRN VGluT2+ neurons drives exploration. Activity of serotonergic MRN neurons is necessary for general task engagement. Input from the lateral habenula that conveys negative valence suppresses serotonergic MRN neurons, leading to disengagement. These findings establish the MRN as a central behavioural switchboard that is uniquely positioned to flexibly control behavioural strategies. These circuits thus may also have an important role in the aetiology of major mental pathologies such as depressive or obsessive-compulsive disorders.
Collapse
Affiliation(s)
- Mehran Ahmadlou
- Sainsbury Wellcome Centre, University College London, London, UK.
| | | | - Pan Zhang
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Isaac L M Rogers
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Julia Dziubek
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Margaret Young
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Sonja B Hofer
- Sainsbury Wellcome Centre, University College London, London, UK.
| |
Collapse
|
4
|
Chen C, Masotti M, Shepard N, Promes V, Tombesi G, Arango D, Manzoni C, Greggio E, Hilfiker S, Kozorovitskiy Y, Parisiadou L. LRRK2 mediates haloperidol-induced changes in indirect pathway striatal projection neurons. Mol Psychiatry 2025:10.1038/s41380-025-03030-z. [PMID: 40269187 DOI: 10.1038/s41380-025-03030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025]
Abstract
Haloperidol is used to manage psychotic symptoms in several neurological disorders through mechanisms that involve antagonism of dopamine D2 receptors that are highly expressed in the striatum. Significant side effects of haloperidol, known as extrapyramidal symptoms, lead to motor deficits similar to those seen in Parkinson's disease and present a major challenge in clinical settings. The underlying molecular mechanisms responsible for these side effects remain poorly understood. Parkinson's disease-associated leucine-rich repeat kinase 2 (LRRK2) has an essential role in striatal physiology and a known link to dopamine D2 receptor signaling. Here, we systematically explore convergent signaling of haloperidol and LRRK2 through pharmacological or genetic inhibition of LRRK2 kinase, as well as knock-in mouse models expressing pathogenic mutant LRRK2 with increased kinase activity. Behavioral assays show that LRRK2 kinase inhibition ameliorates haloperidol-induced motor changes in mice. A combination of electrophysiological and anatomical approaches reveals that LRRK2 kinase inhibition interferes with haloperidol-induced changes, specifically in striatal neurons of the indirect pathway. Proteomic studies and targeted intracellular pathway analyses demonstrate that haloperidol induces a similar pattern of intracellular signaling as increased LRRK2 kinase activity. Our study suggests that LRRK2 kinase plays a key role in striatal dopamine D2 receptor signaling underlying the undesirable motor side effects of haloperidol. This work opens up new therapeutic avenues for dopamine-related disorders, such as psychosis, also furthering our understanding of Parkinson's disease pathophysiology.
Collapse
Affiliation(s)
- Chuyu Chen
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Meghan Masotti
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Nathaniel Shepard
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Vanessa Promes
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Giulia Tombesi
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Daniel Arango
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | | | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
| | - Sabine Hilfiker
- Department of Anesthesiology, Rutgers, New Jersey Medical School, Newark, NJ, USA
| | | | - Loukia Parisiadou
- Department of Pharmacology, Northwestern University, Chicago, IL, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
5
|
Rhee JY, Echavarría C, Soucy E, Greenwood J, Masís JA, Cox DD. Neural correlates of visual object recognition in rats. Cell Rep 2025; 44:115461. [PMID: 40153435 DOI: 10.1016/j.celrep.2025.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 03/30/2025] Open
Abstract
Invariant object recognition-the ability to recognize objects across size, rotation, or context-is fundamental for making sense of a dynamic visual world. Though traditionally studied in primates, emerging evidence suggests rodents recognize objects across a range of identity-preserving transformations. We demonstrate that rats robustly perform visual object recognition and explore a neural pathway that may underlie this capacity by developing a pipeline from high-throughput behavior training to cellular resolution imaging in awake, head-fixed animals. Leveraging our optical approach, we systematically profile neurons in primary and higher-order visual areas and their spatial organization. We find that rat visual cortex exhibits several features similar to those observed in the primate ventral stream but also marked deviations, suggesting species-specific differences in how brains solve visual object recognition. This work reinforces the sophisticated visual abilities of rats and offers the technical foundation to use them as a powerful model for mechanistic perception.
Collapse
Affiliation(s)
- Juliana Y Rhee
- The Rockefeller University, New York, NY 10065, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - César Echavarría
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Edward Soucy
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Joel Greenwood
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Kavli Center for Neurotechnology, Yale University, New Haven, CT 06510, USA
| | - Javier A Masís
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - David D Cox
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; IBM Research, Cambridge, MA 02142, USA
| |
Collapse
|
6
|
McNally MA, Lau LA, Granak S, Hike D, Liu X, Yu X, Donahue RA, Chibnik LB, Ortiz JV, Che A, Chavez-Valdez R, Northington FJ, Staley KJ. Ongoing loss of viable neurons for weeks after mild hypoxia-ischaemia. Brain Commun 2025; 7:fcaf153. [PMID: 40297712 PMCID: PMC12034461 DOI: 10.1093/braincomms/fcaf153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/25/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Mild hypoxic-ischaemic encephalopathy is common in neonates, and there are no evidence-based therapies. By school age, 30-40% of those patients experience adverse neurodevelopmental outcomes. The nature and progression of mild injury is poorly understood. We studied the evolution of mild perinatal brain injury using longitudinal two-photon imaging of transgenic fluorescent calcium-sensitive and insensitive proteins to provide a novel readout of neuronal viability and activity at cellular resolution in vitro and in vivo. In vitro, perinatal organotypic hippocampal cultures underwent 15-20 min of oxygen-glucose deprivation. In vivo, mild hypoxia-ischaemia was completed at post-natal day 10 with carotid ligation and 15 min of hypoxia (FiO2, 0.08). Consistent with a mild injury, minimal immediate neuronal death was seen in vitro or in vivo, and there was no volumetric evidence of injury by ex vivo MRI 2.5 weeks after injury (n = 3 pups/group). However, in both the hippocampus and neocortex, these mild injuries resulted in delayed and progressive neuronal loss by the second week after injury compared to controls; measured by fluorophore quenching (n = 6 slices/group in vitro, P < 0.001; n = 8 pups/group in vivo, P < 0.01). Mild hypoxia-ischaemia transiently suppressed cortical network calcium activity in vivo for over 2 h after injury (versus sham, n = 13 pups/group; P < 0.01). No post-injury seizures were seen. By 24 h, network activity fully recovered, and there was no disruption in the development of normal cortical activity for 11 days (n = 8 pups/group). The participation in network activity of individual neurons destined to die in vivo was indistinguishable from those that survived up to 4 days post-injury (n = 8 pups/group). Despite a lack of significant immediate neuronal death and only transient disruptions of network activity, mild perinatal brain injury resulted in a delayed and progressive increase of neuronal death in the hippocampus and neocortex. Neurons that died late were functioning normally for days after injury, suggesting a new pathophysiology of neuronal death after mild injury. Critically, the neurons destined to die late demonstrated multiple biomarkers of viability long after mild injury, suggesting their later death may be modified with neuroprotective interventions.
Collapse
Affiliation(s)
- Melanie A McNally
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lauren A Lau
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | - Simon Granak
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | - David Hike
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02129, USA
| | - Xiaochen Liu
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02129, USA
| | - Xin Yu
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02129, USA
| | - Rachel A Donahue
- Department of Medicine, Biostatics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lori B Chibnik
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - John V Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alicia Che
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Raul Chavez-Valdez
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Frances J Northington
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kevin J Staley
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
7
|
Kunchur NN, Poole JJA, Levine J, Hackett TL, Thornhill R, Mostaço-Guidolin LB. Classification of collagen remodeling in asthma using second-harmonic generation imaging, supervised machine learning and texture-based analysis. FRONTIERS IN BIOINFORMATICS 2025; 5:1539936. [PMID: 40313867 PMCID: PMC12043662 DOI: 10.3389/fbinf.2025.1539936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/19/2025] [Indexed: 05/03/2025] Open
Abstract
Airway remodeling is present in all stages of asthma severity and has been linked to reduced lung function, airway hyperresponsiveness and increased deposition of fibrillar collagens. Traditional histological staining methods used to visualize the fibrotic response are poorly suited to capture the morphological traits of extracellular matrix (ECM) proteins in their native state, hindering our understanding of disease pathology. Conversely, second harmonic generation (SHG), provides label-free, high-resolution visualization of fibrillar collagen; a primary ECM protein contributing to the loss of asthmatic lung elasticity. From a cohort of 13 human lung donors, SHG-imaged collagen belonging to non-asthmatic (control) and asthmatic donors was evaluated through a custom textural classification pipeline. Integrated with supervised machine learning, the pipeline enables the precise quantification and characterization of collagen, delineating amongst control and remodeled airways. Collagen distribution is quantified and characterized using 80 textural features belonging to the Gray Level Cooccurrence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), Gray Level Run Length Matrix (GLRLM), Gray Level Dependence Matrix (GLDM) and Neighboring Gray Tone Difference Matrix (NGTDM). To denote an accurate subset of features reflective of fibrillar collagen formation; filter, wrapper, embedded and novel statistical methods were applied as feature refinement. Textural feature subsets of high predictor importance trained a support vector machine model, achieving an AUC-ROC of 94% ± 0.0001 in the classification of remodeled airway collagen vs. control lung tissue. Combined with detailed texture analysis and supervised ML, we demonstrate that morphological variation amongst remodeled SHG-imaged collagen in lung tissue can be successfully characterized.
Collapse
Affiliation(s)
- Natasha N. Kunchur
- Department of Systems and Computer Engineering at Carleton University, Ottawa, ON, Canada
| | - Joshua J. A. Poole
- Department of Systems and Computer Engineering at Carleton University, Ottawa, ON, Canada
| | - Jesse Levine
- Department of Systems and Computer Engineering at Carleton University, Ottawa, ON, Canada
| | - Tillie-Louise Hackett
- Anesthesiology, Pharmacology and Therapeutics Department at the University of British Columbia, Medical Sciences, Vancouver, BC, Canada
| | - Rebecca Thornhill
- Department of Radiology, Radiation Oncology, and Medical Physics at the University of Ottawa, Ottawa, ON, Canada
- Department of Medical Imaging at the Ottawa Hospital, Ottawa, ON, Canada
| | | |
Collapse
|
8
|
Heiser H, Kiessler F, Roggenbach A, Ibanez V, Wieckhorst M, Helmchen F, Gjorgjieva J, Wahl AS. Brain-wide microstrokes affect the stability of memory circuits in the hippocampus. Nat Commun 2025; 16:3462. [PMID: 40216776 PMCID: PMC11992252 DOI: 10.1038/s41467-025-58688-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Cognitive deficits affect over 70% of stroke survivors, yet the mechanisms by which multiple small ischemic events contribute to cognitive decline remain poorly understood. In this study, we employed chronic two-photon calcium imaging to longitudinally track the fate of individual neurons in the hippocampus of mice navigating a virtual reality environment, both before and after inducing brain-wide microstrokes. Our findings reveal that, under normal conditions, hippocampal neurons exhibit varying degrees of stability in their spatial memory coding. However, microstrokes disrupted this functional network architecture, leading to cognitive impairments. Notably, the preservation of stable coding place cells, along with the stability, precision, and persistence of the hippocampal network, was strongly predictive of cognitive outcomes. Mice with more synchronously active place cells near important locations demonstrated recovery from cognitive impairment. This study uncovers critical cellular responses and network alterations following brain injury, providing a foundation for novel therapeutic strategies preventing cognitive decline.
Collapse
Affiliation(s)
- Hendrik Heiser
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Filippo Kiessler
- School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354, Freising, Germany
| | - Adrian Roggenbach
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Victor Ibanez
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Martin Wieckhorst
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
| | - Julijana Gjorgjieva
- School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354, Freising, Germany
| | - Anna-Sophia Wahl
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377, Munich, Germany.
- Department of Neuroanatomy, Institute of Anatomy, Ludwigs-Maximilians-University, Pettikoferstrasse 11, 80336, Munich, Germany.
| |
Collapse
|
9
|
Shao LX, Liao C, Davoudian PA, Savalia NK, Jiang Q, Wojtasiewicz C, Tan D, Nothnagel JD, Liu RJ, Woodburn SC, Bilash OM, Kim H, Che A, Kwan AC. Psilocybin's lasting action requires pyramidal cell types and 5-HT 2A receptors. Nature 2025:10.1038/s41586-025-08813-6. [PMID: 40175553 DOI: 10.1038/s41586-025-08813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/19/2025] [Indexed: 04/04/2025]
Abstract
Psilocybin is a serotonergic psychedelic with therapeutic potential for treating mental illnesses1-4. At the cellular level, psychedelics induce structural neural plasticity5,6, exemplified by the drug-evoked growth and remodelling of dendritic spines in cortical pyramidal cells7-9. A key question is how these cellular modifications map onto cell-type-specific circuits to produce the psychedelics' behavioural actions10. Here we use in vivo optical imaging, chemogenetic perturbation and cell-type-specific electrophysiology to investigate the impact of psilocybin on the two main types of pyramidal cells in the mouse medial frontal cortex. We find that a single dose of psilocybin increases the density of dendritic spines in both the subcortical-projecting, pyramidal tract (PT) and intratelencephalic (IT) cell types. Behaviourally, silencing the PT neurons eliminates psilocybin's ability to ameliorate stress-related phenotypes, whereas silencing IT neurons has no detectable effect. In PT neurons only, psilocybin boosts synaptic calcium transients and elevates firing rates acutely after administration. Targeted knockout of 5-HT2A receptors abolishes psilocybin's effects on stress-related behaviour and structural plasticity. Collectively, these results identify that a pyramidal cell type and the 5-HT2A receptor in the medial frontal cortex have essential roles in psilocybin's long-term drug action.
Collapse
Affiliation(s)
- Ling-Xiao Shao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Clara Liao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Pasha A Davoudian
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Neil K Savalia
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Quan Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Diran Tan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jack D Nothnagel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Rong-Jian Liu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel C Woodburn
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Olesia M Bilash
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Hail Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Alicia Che
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Alex C Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Sun W, Winnubst J, Natrajan M, Lai C, Kajikawa K, Bast A, Michaelos M, Gattoni R, Stringer C, Flickinger D, Fitzgerald JE, Spruston N. Learning produces an orthogonalized state machine in the hippocampus. Nature 2025; 640:165-175. [PMID: 39939774 PMCID: PMC11964937 DOI: 10.1038/s41586-024-08548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/18/2024] [Indexed: 02/14/2025]
Abstract
Cognitive maps confer animals with flexible intelligence by representing spatial, temporal and abstract relationships that can be used to shape thought, planning and behaviour. Cognitive maps have been observed in the hippocampus1, but their algorithmic form and learning mechanisms remain obscure. Here we used large-scale, longitudinal two-photon calcium imaging to record activity from thousands of neurons in the CA1 region of the hippocampus while mice learned to efficiently collect rewards from two subtly different linear tracks in virtual reality. Throughout learning, both animal behaviour and hippocampal neural activity progressed through multiple stages, gradually revealing improved task representation that mirrored improved behavioural efficiency. The learning process involved progressive decorrelations in initially similar hippocampal neural activity within and across tracks, ultimately resulting in orthogonalized representations resembling a state machine capturing the inherent structure of the task. This decorrelation process was driven by individual neurons acquiring task-state-specific responses (that is, 'state cells'). Although various standard artificial neural networks did not naturally capture these dynamics, the clone-structured causal graph, a hidden Markov model variant, uniquely reproduced both the final orthogonalized states and the learning trajectory seen in animals. The observed cellular and population dynamics constrain the mechanisms underlying cognitive map formation in the hippocampus, pointing to hidden state inference as a fundamental computational principle, with implications for both biological and artificial intelligence.
Collapse
Affiliation(s)
- Weinan Sun
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| | - Johan Winnubst
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Maanasa Natrajan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Chongxi Lai
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Koichiro Kajikawa
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Arco Bast
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Michalis Michaelos
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Rachel Gattoni
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Carsen Stringer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Daniel Flickinger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - James E Fitzgerald
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Nelson Spruston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
11
|
Moros FV, Amiet D, Meister RM, von Faber-Castell A, Wyss M, Saab AS, Zbinden P, Weber B, Ravotto L. A low-cost FPGA-based approach for pile-up corrected high-speed in vivo FLIM imaging. NEUROPHOTONICS 2025; 12:025009. [PMID: 40331236 PMCID: PMC12052397 DOI: 10.1117/1.nph.12.2.025009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
Significance Intensity-based two-photon microscopy is a cornerstone of neuroscience research but lacks the ability to measure concentrations, a pivotal task for longitudinal studies and quantitative comparisons. Fluorescence lifetime imaging (FLIM) based on time-correlated single photon counting (TCSPC) can overcome those limits but suffers from "pile-up" distortions at high photon count rates, severely limiting acquisition speed. Aim We introduce the "laser period blind time" (LPBT) method to correct pile-up distortions in photon counting electronics, enabling reliable low-cost TCSPC-FLIM at high count rates. Approach Using a realistic simulation of the TCSPC data collection, we evaluated the LPBT method's performance in silico. The correction was then implemented on low-cost hardware based on a field programable gate array and validated using in vitro, ex vivo, and in vivo measurements. Results The LBPT approach achieves < 3 % error in lifetime measurements at count rates more than 10 times higher than traditional limits, allowing robust FLIM imaging of subsecond metabolite dynamics with subcellular resolution. Conclusions We enable high-precision, cost-effective FLIM imaging at acquisition speeds comparable with state-of-the-art commercial systems, facilitating the adoption of FLIM in neuroscience and other fields of research needing robust quantitative live imaging solutions.
Collapse
Affiliation(s)
- Felipe Velasquez Moros
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
- University and ETH Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| | - Dorian Amiet
- OST – Eastern Switzerland University of Applied Sciences, IMES Institute for Microelectronics, Embedded Systems and Sensorics, Rapperswil, Switzerland
| | - Rachel M. Meister
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
- University and ETH Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| | - Alexandra von Faber-Castell
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
- University and ETH Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| | - Matthias Wyss
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
- University and ETH Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| | - Aiman S. Saab
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
- University and ETH Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| | - Paul Zbinden
- OST – Eastern Switzerland University of Applied Sciences, IMES Institute for Microelectronics, Embedded Systems and Sensorics, Rapperswil, Switzerland
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
- University and ETH Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| | - Luca Ravotto
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
- University and ETH Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Petshow S, Coblentz A, Hamilton AM, Sarkar D, Anisimova M, Flores JC, Zito K. Activity-dependent regulation of Cdc42 by Ephexin5 drives synapse growth and stabilization. SCIENCE ADVANCES 2025; 11:eadp5782. [PMID: 40138406 PMCID: PMC11939064 DOI: 10.1126/sciadv.adp5782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025]
Abstract
Synaptic Rho guanosine triphosphatase (GTPase) guanine nucleotide exchange factors (RhoGEFs) play vital roles in regulating the activity-dependent neuronal plasticity that is critical for learning. Ephexin5, a RhoGEF implicated in the etiology of Alzheimer's disease and Angelman syndrome, was originally reported in neurons as a RhoA-specific GEF that negatively regulates spine synapse density. Here, we show that Ephexin5 activates both RhoA and Cdc42 in the brain. Furthermore, using live imaging of GTPase biosensors, we demonstrate that Ephexin5 regulates activity-dependent Cdc42, but not RhoA, signaling at single synapses. The selectivity of Ephexin5 for Cdc42 activation is regulated by tyrosine phosphorylation, which is regulated by neuronal activity. Last, in contrast to Ephexin5's role in negatively regulating synapse density, we show that, downstream of neuronal activity, Ephexin5 positively regulates synaptic growth and stabilization. Our results support a model in which plasticity-inducing neuronal activity regulates Ephexin5 tyrosine phosphorylation, driving Ephexin5-mediated activation of Cdc42 and the spine structural growth and stabilization vital for learning.
Collapse
Affiliation(s)
- Samuel Petshow
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Azariah Coblentz
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Andrew M. Hamilton
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Dipannita Sarkar
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Margarita Anisimova
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Juan C. Flores
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| |
Collapse
|
13
|
Balla E, Nabbefeld G, Wiesbrock C, Linde J, Graff S, Musall S, Kampa BM. Broadband visual stimuli improve neuronal representation and sensory perception. Nat Commun 2025; 16:2957. [PMID: 40140355 PMCID: PMC11947450 DOI: 10.1038/s41467-025-58003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Natural scenes consist of complex feature distributions that shape neural responses and perception. However, in contrast to single features like stimulus orientations, the impact of broadband feature distributions remains unclear. We, therefore, presented visual stimuli with parametrically-controlled bandwidths of orientations and spatial frequencies to awake mice while recording neural activity in their primary visual cortex (V1). Increasing orientation but not spatial frequency bandwidth strongly increased the number and response amplitude of V1 neurons. This effect was not explained by single-cell orientation tuning but rather a broadband-specific relief from center-surround suppression. Moreover, neurons in deeper V1 and the superior colliculus responded much stronger to broadband stimuli, especially when mixing orientations and spatial frequencies. Lastly, broadband stimuli increased the separability of neural responses and improved the performance of mice in a visual discrimination task. Our results show that surround modulation increases neural responses to complex natural feature distributions to enhance sensory perception.
Collapse
Affiliation(s)
- Elisabeta Balla
- Systems Neurophysiology, Department of Neurobiology, RWTH Aachen University, Aachen, Germany
- JARA BRAIN Institute of Neuroscience and Medicine (INM-10), Forschungszentrum Jülich, Jülich, Germany
- Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany
| | - Gerion Nabbefeld
- Systems Neurophysiology, Department of Neurobiology, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany
| | - Christopher Wiesbrock
- Systems Neurophysiology, Department of Neurobiology, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany
| | - Jenice Linde
- Systems Neurophysiology, Department of Neurobiology, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany
| | - Severin Graff
- Systems Neurophysiology, Department of Neurobiology, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany
- Institute of Biological Information Processing, Department for Bioelectronics, Forschungszentrum Jülich, Jülich, Germany
| | - Simon Musall
- Systems Neurophysiology, Department of Neurobiology, RWTH Aachen University, Aachen, Germany.
- Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany.
- Institute of Biological Information Processing, Department for Bioelectronics, Forschungszentrum Jülich, Jülich, Germany.
- Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany.
| | - Björn M Kampa
- Systems Neurophysiology, Department of Neurobiology, RWTH Aachen University, Aachen, Germany.
- JARA BRAIN Institute of Neuroscience and Medicine (INM-10), Forschungszentrum Jülich, Jülich, Germany.
- Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
14
|
Hu B, Temiz NZ, Chou CN, Rupprecht P, Meissner-Bernard C, Titze B, Chung S, Friedrich RW. Representational learning by optimization of neural manifolds in an olfactory memory network. RESEARCH SQUARE 2025:rs.3.rs-6155477. [PMID: 40195987 PMCID: PMC11975023 DOI: 10.21203/rs.3.rs-6155477/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Cognitive brain functions rely on experience-dependent internal representations of relevant information. Such representations are organized by attractor dynamics or other mechanisms that constrain population activity onto "neural manifolds". Quantitative analyses of representational manifolds are complicated by their potentially complex geometry, particularly in the absence of attractor states. Here we trained juvenile and adult zebrafish in an odor discrimination task and measured neuronal population activity to analyze representations of behaviorally relevant odors in telencephalic area pDp, the homolog of piriform cortex. No obvious signatures of attractor dynamics were detected. However, olfactory discrimination training selectively enhanced the separation of neural manifolds representing task-relevant odors from other representations, consistent with predictions of autoassociative network models endowed with precise synaptic balance. Analytical approaches using the framework of manifold capacity revealed multiple geometrical modifications of representational manifolds that supported the classification of task-relevant sensory information. Manifold capacity predicted odor discrimination across individuals better than other descriptors of population activity, indicating a close link between manifold geometry and behavior. Hence, pDp and possibly related recurrent networks store information in the geometry of representational manifolds, resulting in joint sensory and semantic maps that may support distributed learning processes.
Collapse
Affiliation(s)
- Bo Hu
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| | - Nesibe Z. Temiz
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| | - Chi-Ning Chou
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA
| | - Peter Rupprecht
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
- Neuroscience Center Zurich, 8057 Zurich, Switzerland
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Claire Meissner-Bernard
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
| | - Benjamin Titze
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
| | - SueYeon Chung
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Rainer W. Friedrich
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| |
Collapse
|
15
|
Meissner-Bernard C, Jenkins B, Rupprecht P, Bouldoires EA, Zenke F, Friedrich RW, Frank T. Computational functions of precisely balanced neuronal microcircuits in an olfactory memory network. Cell Rep 2025; 44:115330. [PMID: 39985769 DOI: 10.1016/j.celrep.2025.115330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/12/2024] [Accepted: 01/28/2025] [Indexed: 02/24/2025] Open
Abstract
Models of balanced autoassociative memory networks predict that specific inhibition is critical to store information in connectivity. To explore these predictions, we characterized and manipulated different subtypes of fast-spiking interneurons in the posterior telencephalic area Dp (pDp) of adult zebrafish, the homolog of the piriform cortex. Modeling of recurrent networks with assemblies showed that a precise balance of excitation and inhibition is important to prevent not only excessive firing rates ("runaway activity") but also the stochastic occurrence of high pattern correlations ("runaway correlations"). Consistent with model predictions, runaway correlations emerged in pDp when synaptic balance was perturbed by optogenetic manipulations of feedback inhibition but not feedforward inhibition. Runaway correlations were driven by sparse subsets of strongly active neurons rather than by a general broadening of tuning curves. These results are consistent with balanced neuronal assemblies in pDp and reveal novel computational functions of inhibitory microcircuits in an autoassociative network.
Collapse
Affiliation(s)
- Claire Meissner-Bernard
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
| | - Bethan Jenkins
- University of Göttingen, Faculty of Biology and Psychology, 37073 Göttingen, Germany; Olfactory Memory and Behavior Group, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Institute for Multidisciplinary Sciences, Grisebachstraße 5, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany; Göttingen Campus Institute for Dynamics of Biological Networks, 37073 Göttingen, Germany; Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Peter Rupprecht
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland; Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Neuroscience Center Zurich, University of Zurich, 8006 Zürich, Switzerland
| | - Estelle Arn Bouldoires
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
| | - Friedemann Zenke
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Rainer W Friedrich
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland.
| | - Thomas Frank
- University of Göttingen, Faculty of Biology and Psychology, 37073 Göttingen, Germany; Olfactory Memory and Behavior Group, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Institute for Multidisciplinary Sciences, Grisebachstraße 5, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany; Göttingen Campus Institute for Dynamics of Biological Networks, 37073 Göttingen, Germany; Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
16
|
Vandal M, Institoris A, Reveret L, Korin B, Gunn C, Hirai S, Jiang Y, Lee S, Lee J, Bourassa P, Mishra RC, Peringod G, Arellano F, Belzil C, Tremblay C, Hashem M, Gorzo K, Elias E, Yao J, Meilandt B, Foreman O, Roose-Girma M, Shin S, Muruve D, Nicola W, Körbelin J, Dunn JF, Chen W, Park SK, Braun AP, Bennett DA, Gordon GRJ, Calon F, Shaw AS, Nguyen MD. Loss of endothelial CD2AP causes sex-dependent cerebrovascular dysfunction. Neuron 2025; 113:876-895.e11. [PMID: 39892386 DOI: 10.1016/j.neuron.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 08/27/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
Polymorphisms in CD2-associated protein (CD2AP) predispose to Alzheimer's disease (AD), but the underlying mechanisms remain unknown. Here, we show that loss of CD2AP in cerebral blood vessels is associated with cognitive decline in AD subjects and that genetic downregulation of CD2AP in brain vascular endothelial cells impairs memory function in male mice. Animals with reduced brain endothelial CD2AP display altered blood flow regulation at rest and during neurovascular coupling, defects in mural cell activity, and an abnormal vascular sex-dependent response to Aβ. Antagonizing endothelin-1 receptor A signaling partly rescues the vascular impairments, but only in male mice. Treatment of CD2AP mutant mice with reelin glycoprotein that mitigates the effects of CD2AP loss function via ApoER2 increases resting cerebral blood flow and even protects male mice against the noxious effect of Aβ. Thus, endothelial CD2AP plays critical roles in cerebrovascular functions and represents a novel target for sex-specific treatment in AD.
Collapse
Affiliation(s)
- Milène Vandal
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Adam Institoris
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Louise Reveret
- Faculté de pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Ben Korin
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Colin Gunn
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Sotaro Hirai
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Yulan Jiang
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Sukyoung Lee
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Jiyeon Lee
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Philippe Bourassa
- Faculté de pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Ramesh C Mishra
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Govind Peringod
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Faye Arellano
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Camille Belzil
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Cyntia Tremblay
- Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Mada Hashem
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Kelsea Gorzo
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Esteban Elias
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Jinjing Yao
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Bill Meilandt
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Oded Foreman
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Meron Roose-Girma
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Steven Shin
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Daniel Muruve
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Wilten Nicola
- Departments of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Jeff F Dunn
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada; Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Wayne Chen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Sang-Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Andrew P Braun
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - David A Bennett
- Rush Alzheimer's disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Grant R J Gordon
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada.
| | - Andrey S Shaw
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA.
| | - Minh Dang Nguyen
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada.
| |
Collapse
|
17
|
Itkis DG, Brooks FP, Davis HC, Hotter R, Wong-Campos JD, Qi Y, Jia BZ, Howell M, Xiong M, Hayward RF, Lee BH, Wang Y, Perelman RT, Cohen AE. Luminos: open-source software for bidirectional microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.22.639658. [PMID: 40060643 PMCID: PMC11888241 DOI: 10.1101/2025.02.22.639658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Bidirectional microscopy (BDM) combines simultaneous targeted optical perturbation and imaging of biophysical or biochemical signals (e.g. membrane voltage, Ca2+, or signaling molecules). A core challenge in BDM is precise spatial and temporal alignment of stimulation, imaging, and other experimental parameters. Here we present Luminos, an open-source MATLAB library for modular and precisely synchronized control of BDM experiments. The system supports hardware-triggered synchronization across stimulation, recording, and imaging channels with microsecond accuracy. Source code and documentation for Luminos are available online at https://www.luminosmicroscopy.com and https://github.com/adamcohenlab/luminos-microscopy. This library will facilitate development of bidirectional microscopy methods across the biological sciences.
Collapse
Affiliation(s)
- Daniel G Itkis
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138
| | - F Phil Brooks
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138
| | - Hunter C Davis
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138
| | - Raphael Hotter
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138
| | - J David Wong-Campos
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138
| | - Yitong Qi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138
| | - Bill Z Jia
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138
| | - Madeleine Howell
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138
| | - Marley Xiong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138
| | - Rebecca Frank Hayward
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138
| | - Byung Hun Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138
| | - Yangdong Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138
| | - Rebecca T Perelman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138
| |
Collapse
|
18
|
Failor SW, Carandini M, Harris KD. Visual experience orthogonalizes visual cortical stimulus responses via population code transformation. Cell Rep 2025; 44:115235. [PMID: 39888718 DOI: 10.1016/j.celrep.2025.115235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/26/2024] [Accepted: 01/06/2025] [Indexed: 02/02/2025] Open
Abstract
Sensory and behavioral experience can alter visual cortical stimulus coding, but the precise form of this plasticity is unclear. We measured orientation tuning in 4,000-neuron populations of mouse V1 before and after training on a visuomotor task. Changes to single-cell tuning curves appeared complex, including development of asymmetries and of multiple peaks. Nevertheless, these complex tuning curve transformations can be explained by a simple equation: a convex transformation suppressing responses to task stimuli specifically in cells responding at intermediate levels. The strength of the transformation varies across trials, suggesting a dynamic circuit mechanism rather than static synaptic plasticity. The transformation results in sparsening and orthogonalization of population codes for task stimuli. It cannot improve the performance of an optimal stimulus decoder, which is already perfect even for naive codes, but it improves the performance of a suboptimal decoder model with inductive bias as might be found in downstream readout circuits.
Collapse
Affiliation(s)
- Samuel W Failor
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.
| |
Collapse
|
19
|
Goltstein PM, Laubender D, Bonhoeffer T, Hübener M. A column-like organization for ocular dominance in mouse visual cortex. Nat Commun 2025; 16:1926. [PMID: 40000624 PMCID: PMC11861588 DOI: 10.1038/s41467-025-56780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The columnar organization of response properties is a fundamental feature of the mammalian visual cortex. However, columns have not been observed universally across all mammalian species. Here, we report the discovery of clusters of ipsilateral eye preferring neurons in layer 4 of the mouse primary visual cortex. These clusters extend into layer 2/3 and upper layer 5, forming a column-like pattern for ocular dominance. Our observation of such structures in this minute cortical area sets a new boundary condition for models explaining the emergence of functional organizations in the neocortex.
Collapse
Affiliation(s)
| | - David Laubender
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Tobias Bonhoeffer
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Mark Hübener
- Max Planck Institute for Biological Intelligence, Martinsried, Germany.
| |
Collapse
|
20
|
Biswas S, Emond MR, Philip GS, Jontes JD. Canalization of circuit assembly by δ-protocadherins in the zebrafish optic tectum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635523. [PMID: 39975130 PMCID: PMC11838265 DOI: 10.1101/2025.01.29.635523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Neurons are precisely and reproducibly assembled into complex networks during development. How genes collaborate to guide this assembly remains an enduring mystery. In humans, large numbers of genes have been implicated in neurodevelopmental disorders that are characterized by variable and overlapping phenotypes. The complexity of the brain, the large number of genes involved and the heterogeneity of the disorders makes understanding the relationships between genes, development and neural function challenging. Waddington suggested the concept of canalization to describe the role of genes in shaping developmental trajectories that lead to precise outcomes1. Here, we show that members of the δ-protocadherin family of homophilic adhesion molecules, Protocadherin-19 and Protocadherin-17, contribute to developmental canalization of visual circuit assembly in the zebrafish. We provided oriented visual stimuli to zebrafish larvae and performed in vivo 2-photon calcium imaging in the optic tectum. The latent dynamics resulting from the population activity were confined to a conserved manifold. Among different wild type larvae, these dynamics were remarkably similar, allowing quantitative comparisons within and among genotypes. In both Protocadherin-19 and Protocadherin-17 mutants, the latent dynamics diverged from wild type. Importantly, these deviations could be averaged away, suggesting that the loss of these adhesion molecules leads to stochastic phenotypic variability and introduced disruptions of circuit organization that varied among individual mutants. These results provide a specific, quantitative example of canalization in the development of a vertebrate neural circuit, and suggest a framework for understanding the observed variability in complex brain disorders.
Collapse
Affiliation(s)
- Sayantanee Biswas
- Department of Biological Chemistry and Pharmacology Ohio State University Wexner College of Medicine Columbus, OH 43210
| | - Michelle R. Emond
- Department of Biological Chemistry and Pharmacology Ohio State University Wexner College of Medicine Columbus, OH 43210
| | - Grace S. Philip
- Department of Biological Chemistry and Pharmacology Ohio State University Wexner College of Medicine Columbus, OH 43210
| | - James D. Jontes
- Department of Biological Chemistry and Pharmacology Ohio State University Wexner College of Medicine Columbus, OH 43210
| |
Collapse
|
21
|
Chou CYC, Droogers WJ, Lalanne T, Fineberg E, Klimenko T, Owens H, Sjöström PJ. Postsynaptic spiking determines anti-Hebbian LTD in visual cortex basket cells. Front Synaptic Neurosci 2025; 17:1548563. [PMID: 40040787 PMCID: PMC11872923 DOI: 10.3389/fnsyn.2025.1548563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025] Open
Abstract
Long-term plasticity at pyramidal cell to basket cell (PC → BC) synapses is important for the functioning of cortical microcircuits. It is well known that at neocortical PC → PC synapses, dendritic calcium (Ca2+) dynamics signal coincident pre-and postsynaptic spiking which in turn triggers long-term potentiation (LTP). However, the link between dendritic Ca2+ dynamics and long-term plasticity at PC → BC synapses of primary visual cortex (V1) is not as well known. Here, we explored if PC → BC synaptic plasticity in developing V1 is sensitive to postsynaptic spiking. Two-photon (2P) Ca2+ imaging revealed that action potentials (APs) in dendrites of V1 layer-5 (L5) BCs back-propagated decrementally but actively to the location of PC → BC putative synaptic contacts. Pairing excitatory inputs with postsynaptic APs elicited dendritic Ca2+ supralinearities for pre-before-postsynaptic but not post-before-presynaptic temporal ordering, suggesting that APs could impact synaptic plasticity. In agreement, extracellular stimulation as well as high-throughput 2P optogenetic mapping of plasticity both revealed that pre-before-postsynaptic but not post-before-presynaptic pairing resulted in anti-Hebbian long-term depression (LTD). Our results demonstrate that V1 BC dendritic Ca2+ nonlinearities and synaptic plasticity at PC → BC connections are both sensitive to somatic spiking.
Collapse
Affiliation(s)
- Christina Y. C. Chou
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Wouter J. Droogers
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Txomin Lalanne
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
- EphyX Neuroscience, Bordeaux, France
| | - Eric Fineberg
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Tal Klimenko
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Hannah Owens
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - P. Jesper Sjöström
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
22
|
Schottdorf M, Rich PD, Diamanti EM, Lin A, Tafazoli S, Nieh EH, Thiberge SY. TWINKLE: An open-source two-photon microscope for teaching and research. PLoS One 2025; 20:e0318924. [PMID: 39946384 PMCID: PMC11824991 DOI: 10.1371/journal.pone.0318924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Many laboratories use two-photon microscopy through commercial suppliers, or homemade designs of considerable complexity. The integrated nature of these systems complicates customization, troubleshooting, and training on the principles of two-photon microscopy. Here, we present "Twinkle": a microscope for Two-photon Imaging in Neuroscience, and Kit for Learning and Education. It is a fully open, high performing and easy-to-set-up microscope that can effectively be used for both education and research. The instrument features a >1 mm field of view, using a modern objective with 3 mm working distance and 2 inch diameter optics combined with GaAsP photomultiplier tubes to maximize the fluorescence signal. We document our experiences using this system as a teaching tool in several two week long workshops, exemplify scientific use cases, and conclude with a broader note on the place of our work in the growing space of open scientific instrumentation.
Collapse
Affiliation(s)
- Manuel Schottdorf
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States of America
- Psychological and Brain Sciences, University of Delaware, Newark, DE, United States of America
| | - P. Dylan Rich
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States of America
| | - E. Mika Diamanti
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States of America
| | - Albert Lin
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States of America
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ, United States of America
| | - Sina Tafazoli
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States of America
| | - Edward H. Nieh
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States of America
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, United States of America
| | - Stephan Y. Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States of America
- Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, United States of America
| |
Collapse
|
23
|
Trägenap S, Whitney DE, Fitzpatrick D, Kaschube M. The developmental emergence of reliable cortical representations. Nat Neurosci 2025; 28:394-405. [PMID: 39905211 DOI: 10.1038/s41593-024-01857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/20/2024] [Indexed: 02/06/2025]
Abstract
The fundamental structure of cortical networks arises early in development before the onset of sensory experience. However, how endogenously generated networks respond to the onset of sensory experience and how they form mature sensory representations with experience remain unclear. In this study, we examined this 'nature-nurture transform' at the single-trial level using chronic in vivo calcium imaging in ferret visual cortex. At eye opening, visual stimulation evokes robust patterns of modular cortical network activity that are highly variable within and across trials, severely limiting stimulus discriminability. These initial stimulus-evoked modular patterns are distinct from spontaneous network activity patterns present before and at the time of eye opening. Within a week of normal visual experience, cortical networks develop low-dimensional, highly reliable stimulus representations that correspond with reorganized patterns of spontaneous activity. Using a computational model, we propose that reliable visual representations derive from the alignment of feedforward and recurrent cortical networks shaped by novel patterns of visually driven activity.
Collapse
Affiliation(s)
- Sigrid Trägenap
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt, Germany
- International Max Planck Research School for Neural Circuits, Frankfurt, Germany
- Department of Physics, Goethe University Frankfurt, Frankfurt, Germany
| | - David E Whitney
- Department of Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - David Fitzpatrick
- Department of Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
| | - Matthias Kaschube
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt, Germany.
- Department of Computer Science and Mathematics, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
24
|
Isaacson M, Chang H, Berkowitz L, Zirkel R, Park Y, Hu D, Ellwood I, Schaffer CB. MouseGoggles: an immersive virtual reality headset for mouse neuroscience and behavior. Nat Methods 2025; 22:380-385. [PMID: 39668209 PMCID: PMC11810773 DOI: 10.1038/s41592-024-02540-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/24/2024] [Indexed: 12/14/2024]
Abstract
Small-animal virtual reality (VR) systems have become invaluable tools in neuroscience for studying complex behavior during head-fixed neural recording, but they lag behind commercial human VR systems in terms of miniaturization, immersivity and advanced features such as eye tracking. Here we present MouseGoggles, a miniature VR headset for head-fixed mice that delivers independent, binocular visual stimulation over a wide field of view while enabling eye tracking and pupillometry in VR. Neural recordings in the visual cortex validate the quality of image presentation, while hippocampal recordings, associative reward learning and innate fear responses to virtual looming stimuli demonstrate an immersive VR experience. Our open-source system's simplicity and compact size will enable the broader adoption of VR methods in neuroscience.
Collapse
Affiliation(s)
- Matthew Isaacson
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| | - Hongyu Chang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Laura Berkowitz
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Rick Zirkel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Yusol Park
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Danyu Hu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ian Ellwood
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Chris B Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
25
|
Dipoppa M, Nogueira R, Bugeon S, Friedman Y, Reddy CB, Harris KD, Ringach DL, Miller KD, Carandini M, Fusi S. Adaptation shapes the representational geometry in mouse V1 to efficiently encode the environment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.11.628035. [PMID: 39896460 PMCID: PMC11785004 DOI: 10.1101/2024.12.11.628035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Sensory adaptation dynamically changes neural responses as a function of previous stimuli, profoundly impacting perception. The response changes induced by adaptation have been characterized in detail in individual neurons and at the population level after averaging across trials. However, it is not clear how adaptation modifies the aspects of the representations that relate more directly to the ability to perceive stimuli, such as their geometry and the noise structure in individual trials. To address this question, we recorded from a population of neurons in the mouse visual cortex and presented one stimulus (an oriented grating) more frequently than the others. We then analyzed these data in terms of representational geometry and studied the ability of a linear decoder to discriminate between similar visual stimuli based on the single-trial population responses. Surprisingly, the discriminability of stimuli near the adaptor increased, even though the responses of individual neurons to these stimuli decreased. Similar changes were observed in artificial neural networks trained to reconstruct the visual stimulus under metabolic constraints. We conclude that the paradoxical effects of adaptation are consistent with the efficient coding framework, allowing the brain to improve the representation of frequent stimuli while limiting the associated metabolic cost.
Collapse
Affiliation(s)
- Mario Dipoppa
- Department of Neurobiology, University of California, Los Angeles, CA, USA
- Center for Theoretical Neuroscience, Zuckerman Institute for Brain Mind and Behavior, Columbia University, NY, USA
- Institute of Neurology, University College London, UK
| | - Ramon Nogueira
- Center for Theoretical Neuroscience, Zuckerman Institute for Brain Mind and Behavior, Columbia University, NY, USA
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | | | - Yoni Friedman
- Center for Theoretical Neuroscience, Zuckerman Institute for Brain Mind and Behavior, Columbia University, NY, USA
- Massachusetts Institute of Technology, MA, USA
| | | | | | - Dario L. Ringach
- Department of Neurobiology, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Kenneth D. Miller
- Center for Theoretical Neuroscience, Zuckerman Institute for Brain Mind and Behavior, Columbia University, NY, USA
- Kavli Institute for Brain Science, Columbia University, NY, USA
| | | | - Stefano Fusi
- Center for Theoretical Neuroscience, Zuckerman Institute for Brain Mind and Behavior, Columbia University, NY, USA
- Kavli Institute for Brain Science, Columbia University, NY, USA
| |
Collapse
|
26
|
Locantore J, Liu Y, White J, Wallace JB, Beron C, Kraft E, Sabatini B, Wallace M. Mixed representations of choice direction and outcome by GABA/glutamate cotransmitting neurons in the entopeduncular nucleus. eLife 2025; 13:RP100488. [PMID: 39835778 PMCID: PMC11750137 DOI: 10.7554/elife.100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
The basal ganglia (BG) are an evolutionarily conserved and phylogenetically old set of sub-cortical nuclei that guide action selection, evaluation, and reinforcement. The entopeduncular nucleus (EP) is a major BG output nucleus that contains a population of GABA/glutamate cotransmitting neurons (EPSst+) that specifically target the lateral habenula (LHb) and whose function in behavior remains mysterious. Here, we use a probabilistic switching task that requires an animal to maintain flexible relationships between action selection and evaluation to examine when and how GABA/glutamate cotransmitting neurons contribute to behavior. We find that EPSst+ neurons are strongly engaged during this task and show bidirectional changes in activity during the choice and outcome periods of a trial. We then tested the effects of either permanently blocking cotransmission or modifying the GABA/glutamate ratio on behavior in well-trained animals. Neither manipulation produced detectable changes in behavior despite significant changes in synaptic transmission in the LHb, demonstrating that the outputs of these neurons are not required for ongoing action-outcome updating in a probabilistic switching task.
Collapse
Affiliation(s)
- Julianna Locantore
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of MedicineBostonUnited States
| | - Yijun Liu
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of MedicineBostonUnited States
| | - Jesse White
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of MedicineBostonUnited States
| | - Janet Berrios Wallace
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Celia Beron
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Emily Kraft
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of MedicineBostonUnited States
| | - Bernardo Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Michael Wallace
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of MedicineBostonUnited States
| |
Collapse
|
27
|
Flores JC, Sarkar D, Zito K. A synapse-specific refractory period for plasticity at individual dendritic spines. Proc Natl Acad Sci U S A 2025; 122:e2410433122. [PMID: 39772745 PMCID: PMC11745398 DOI: 10.1073/pnas.2410433122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
How newly formed memories are preserved while brain plasticity is ongoing has been a source of debate. One idea is that synapses which experienced recent plasticity become resistant to further plasticity, a type of metaplasticity often referred to as saturation. Here, we probe the local dendritic mechanisms that limit plasticity at recently potentiated synapses. We show that recently potentiated individual synapses exhibit a synapse-specific refractory period for further potentiation. We further found that the refractory period is associated with reduced postsynaptic CaMKII signaling; however, stronger synaptic activation fully restored CaMKII signaling but only partially restored the ability for further plasticity. Importantly, the refractory period is released after one hour, a timing that coincides with the enrichment of several postsynaptic proteins to preplasticity levels. Notably, increasing the level of the postsynaptic scaffolding protein, PSD95, but not of PSD93, overcomes the refractory period. Our results support a model in which potentiation at a single synapse is sufficient to initiate a synapse-specific refractory period that persists until key postsynaptic proteins regain their steady-state synaptic levels.
Collapse
Affiliation(s)
- Juan C. Flores
- Center for Neuroscience, University of California, Davis, CA95618
| | - Dipannita Sarkar
- Center for Neuroscience, University of California, Davis, CA95618
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, CA95618
| |
Collapse
|
28
|
Schottdorf M, Rich PD, Diamanti EM, Lin A, Tafazoli S, Nieh EH, Thiberge SY. TWINKLE: An open-source two-photon microscope for teaching and research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.23.612766. [PMID: 39386506 PMCID: PMC11463478 DOI: 10.1101/2024.09.23.612766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Many laboratories use two-photon microscopy through commercial suppliers, or homemade designs of considerable complexity. The integrated nature of these systems complicates customization, troubleshooting, and training on the principles of two-photon microscopy. Here, we present "Twinkle": a microscope for Two-photon Imaging in Neuroscience, and Kit for Learning and Education. It is a fully open, high performing and easy-to-set-up microscope that can effectively be used for both education and research. The instrument features a > 1 mm field of view, using a modern objective with 3 mm working distance and 2 inch diameter optics combined with GaAsP photomultiplier tubes to maximize the fluorescence signal. We document our experiences using this system as a teaching tool in several two week long workshops, exemplify scientific use cases, and conclude with a broader note on the place of our work in the growing space of open scientific instrumentation.
Collapse
Affiliation(s)
- Manuel Schottdorf
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - P. Dylan Rich
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - E. Mika Diamanti
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Albert Lin
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ, USA
| | - Sina Tafazoli
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Edward H. Nieh
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Stephan Y. Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA
| |
Collapse
|
29
|
Livezey JA, Sachdeva PS, Dougherty ME, Summers MT, Bouchard KE. The geometry of correlated variability leads to highly suboptimal discriminative sensory coding. J Neurophysiol 2025; 133:124-141. [PMID: 39503586 DOI: 10.1152/jn.00313.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 01/11/2025] Open
Abstract
The brain represents the world through the activity of neural populations; however, whether the computational goal of sensory coding is to support discrimination of sensory stimuli or to generate an internal model of the sensory world is unclear. Correlated variability across a neural population (noise correlations) is commonly observed experimentally, and many studies demonstrate that correlated variability improves discriminative sensory coding compared to a null model with no correlations. However, such results do not address whether correlated variability is optimal for discriminative sensory coding. If the computational goal of sensory coding is discriminative, than correlated variability should be optimized to support that goal. We assessed optimality of noise correlations for discriminative sensory coding in diverse datasets by developing two novel null models, each with a biological interpretation. Across datasets, we found that correlated variability in neural populations leads to highly suboptimal discriminative sensory coding according to both null models. Furthermore, biological constraints prevent many subsets of the neural populations from achieving optimality, and subselecting based on biological criteria leaves red discriminative coding performance suboptimal. Finally, we show that optimal subpopulations are exponentially small as the population size grows. Together, these results demonstrate that the geometry of correlated variability leads to highly suboptimal discriminative sensory coding.NEW & NOTEWORTHY The brain represents the world through the activity of neural populations that exhibit correlated variability. We assessed optimality of correlated variability for discriminative sensory coding in diverse datasets by developing two novel null models. Across datasets, correlated variability in neural populations leads to highly suboptimal discriminative sensory coding according to both null models. Biological constraints prevent the neural populations from achieving optimality. Together, these results demonstrate that the geometry of correlated variability leads to highly suboptimal discriminative sensory coding.
Collapse
Affiliation(s)
- Jesse A Livezey
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States
- Redwood Center for Theoretical Neuroscience, University of California, Berkeley, California, United States
| | - Pratik S Sachdeva
- Department of Physics, University of California, Berkeley, California, United States
| | - Maximilian E Dougherty
- Department of Neurology, University of California, San Francisco, California, United States
| | - Mathew T Summers
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States
| | - Kristofer E Bouchard
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States
- Redwood Center for Theoretical Neuroscience, University of California, Berkeley, California, United States
- Scientific Data Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States
| |
Collapse
|
30
|
Stringer C, Zhong L, Syeda A, Du F, Kesa M, Pachitariu M. Rastermap: a discovery method for neural population recordings. Nat Neurosci 2025; 28:201-212. [PMID: 39414974 PMCID: PMC11706777 DOI: 10.1038/s41593-024-01783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
Neurophysiology has long progressed through exploratory experiments and chance discoveries. Anecdotes abound of researchers listening to spikes in real time and noticing patterns of activity related to ongoing stimuli or behaviors. With the advent of large-scale recordings, such close observation of data has become difficult. To find patterns in large-scale neural data, we developed 'Rastermap', a visualization method that displays neurons as a raster plot after sorting them along a one-dimensional axis based on their activity patterns. We benchmarked Rastermap on realistic simulations and then used it to explore recordings of tens of thousands of neurons from mouse cortex during spontaneous, stimulus-evoked and task-evoked epochs. We also applied Rastermap to whole-brain zebrafish recordings; to wide-field imaging data; to electrophysiological recordings in rat hippocampus, monkey frontal cortex and various cortical and subcortical regions in mice; and to artificial neural networks. Finally, we illustrate high-dimensional scenarios where Rastermap and similar algorithms cannot be used effectively.
Collapse
Affiliation(s)
- Carsen Stringer
- Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, USA.
| | - Lin Zhong
- Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, USA
| | - Atika Syeda
- Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, USA
| | - Fengtong Du
- Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, USA
| | - Maria Kesa
- Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, USA
| | - Marius Pachitariu
- Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, USA.
| |
Collapse
|
31
|
Fulopova B, Bennett W, Canty AJ. Repetitive transcranial magnetic stimulation increases synaptic plasticity of cortical axons in the APP/PS1 amyloidosis mouse model. NEUROPHOTONICS 2025; 12:S14613. [PMID: 40438149 PMCID: PMC12119023 DOI: 10.1117/1.nph.12.s1.s14613] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/19/2025] [Accepted: 05/02/2025] [Indexed: 06/01/2025]
Abstract
Significance Growing evidence highlights the therapeutic potential of repetitive transcranial magnetic stimulation (rTMS) in diseases causing dementias such as Alzheimer's disease (AD). However, individual responses to rTMS are variable, and its underlying neural mechanisms are not fully understood. Aim As synaptic dysfunction is one of the key mechanisms associated with cognitive deficits in dementia, we investigated the effect of rTMS on cortical synapses using an APP/PS1 amyloidosis mouse model of AD crossed with fluorescent reporters linked to the Thy-1 promoter. Approach Using in vivo two-photon imaging, we characterized the plasticity of excitatory terminaux (TB) and en passant (EPB) axonal boutons at 48-h intervals for 8 days on either side of a single session of rTMS. Results We found both types of axonal boutons preserved the overall number of their synaptic outputs in wild type (WT) and APP/PS1 groups, pre- and post-stimulation. Both synapse types also showed a significantly reduced dynamic fraction in APP/PS1 compared with WT axons pre-stimulation. Following stimulation, the TB, but not EPB, dynamic fraction increased in both WT and APP/PS1 groups. Conclusions This suggests possible mechanisms of rTMS action that are cell type-specific and, together with previous findings of improved functional performance, present a potential clinical avenue for rTMS in the management of AD.
Collapse
Affiliation(s)
- Barbora Fulopova
- The University of Queensland, The Queensland Brain Institute, St. Lucia, Queensland, Australia
| | - William Bennett
- University of Tasmania, Wicking Dementia Research and Education Centre, Hobart, Tasmania, Australia
| | - Alison J. Canty
- University of Tasmania, Wicking Dementia Research and Education Centre, Hobart, Tasmania, Australia
| |
Collapse
|
32
|
Crisford A, Cook H, Bourdakos K, Venkateswaran S, Dunlop D, Oreffo ROC, Mahajan S. Harnessing Raman spectroscopy and multimodal imaging of cartilage for osteoarthritis diagnosis. Sci Rep 2024; 14:31466. [PMID: 39733214 PMCID: PMC11682361 DOI: 10.1038/s41598-024-83155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
Osteoarthritis (OA) is a complex disease of cartilage characterised by joint pain, functional limitation, and reduced quality of life with affected joint movement leading to pain and limited mobility. Current methods to diagnose OA are predominantly limited to X-ray, MRI and invasive joint fluid analysis, all of which lack chemical or molecular specificity and are limited to detection of the disease at later stages. A rapid minimally invasive and non-destructive approach to disease diagnosis is a critical unmet need. Label-free techniques such as Raman Spectroscopy (RS), Coherent anti-Stokes Raman scattering (CARS), Second Harmonic Generation (SHG) and Two Photon Fluorescence (TPF) are increasingly being used to characterise cartilage tissue. However, current studies are based on whole tissue analysis and do not consider the different and structurally distinct layers in cartilage. In this work, we use Raman spectroscopy to obtain signatures from the superficial (top) and deep (bottom) layer of healthy and osteoarthritic cartilage samples from 64 patients (19 control and 45 OA). Spectra were acquired both in the 'fingerprint' region from 700 to 1720 cm- 1 and high-frequency stretching region from 2500 to 3300 cm- 1. Principal component and linear discriminant analysis was used to identify the peaks that contributed significantly to classification accuracy of the different samples. The most pronounced differences were observed at the proline (855 cm- 1 and 921 cm- 1) and hydroxyproline (877 cm- 1 and 938 cm- 1), sulphated glycosaminoglycan (sGAG) (1064 cm- 1 and 1380 cm- 1) frequencies for both control and OA as well as the 1245 cm- 1 and 1272 cm- 1, 1320 cm- 1 and 1345 cm- 1, 1451 cm- 1 collagen modes were altered in OA samples, consistent with expected collagen structural changes. Classification accuracy based on Raman fingerprint spectral analysis of superficial and deep layer cartilage for controls was found to be 97% and 93% on using individual/all spectra and, 100% and 95% on using mean spectra per patient, respectively. OA diseased cartilage was classified with an accuracy of 88% and 84% for individual/all spectra, and 96% and 95% for mean spectra per patient based on analysis of the superficial and the deep layers, respectively. Raman spectra from the C-H stretching region (2500-3300 cm- 1) resulted in high classification accuracy for identification of different layers and OA diseased cartilage but low accuracy for controls. Differential changes in superficial and deep layer cartilage signatures were observed with age (under 60 and over 60 years), in contrast, less significant differences were observed with gender. Prominent chemical changes in the different layers of cartilage were preliminarily imaged using CARS, SHG and TPF. Cell clustering was observed in OA together with differences in pericellular matrix and collagen structure in the superficial and the deep layers correlating with the Raman spectral analysis. The current study demonstrates the potential of Raman Spectroscopy and multimodal imaging to interrogate cartilage tissue and provides insight into the chemical and structural composition of its different layers with significant implications for OA diagnosis for an increasing aging demographic.
Collapse
Affiliation(s)
- Anna Crisford
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK.
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Hiroki Cook
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK
| | - Konstantinos Bourdakos
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK
| | | | - Douglas Dunlop
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Richard O C Oreffo
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Sumeet Mahajan
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
33
|
McNally MA, Lau LA, Granak S, Hike D, Liu X, Yu X, Donahue RA, Chibnik LB, Ortiz JV, Che A, Northington F, Staley K. Ongoing loss of viable neurons for weeks after mild perinatal hypoxia-ischemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629457. [PMID: 39763962 PMCID: PMC11702593 DOI: 10.1101/2024.12.19.629457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Mild hypoxic-ischemic encephalopathy is common in neonates with no evidence-based therapies, and 30-40% of patients experience adverse outcomes. The nature and progression of mild injury is poorly understood. Thus, we studied the evolution of mild perinatal brain injury using longitudinal two-photon imaging of transgenic fluorescent proteins as a novel readout of neuronal viability and activity at cellular resolution. In vitro, perinatal murine organotypic hippocampal cultures underwent 15-20 minutes of oxygen-glucose deprivation. In vivo, mild hypoxia-ischemia was completed in post-natal day 10 mouse pups of both sexes with carotid ligation and 15 minutes of hypoxia. Consistent with a mild injury, minimal immediate neuronal death was seen and there was no volumetric evidence of injury by ex vivo MRI 2.5 weeks after injury. In both the hippocampus and neocortex, these mild injuries resulted in a significantly delayed and progressive neuronal loss in the second week after injury, measured by fluorophore quenching. Mild hypoxia-ischemia transiently suppressed cortical network activity followed by normal maturation. No post-injury seizures were seen. The participation in network activity of individual neurons destined to die was indistinguishable from those that survived for 4 days post-injury. In conclusion, our results showed that mild perinatal brain injury resulted in a prolonged increase of neuronal death. Neurons that died late were functioning normally for days after injury, suggesting a new pathophysiology of neuronal death. Critically, the neurons destined to die late demonstrated multiple biomarkers of viability long after mild injury, suggesting their later death may be modified with neuroprotective interventions. SIGNIFICANCE STATEMENT Neonatal encephalopathy due to peripartum hypoxia-ischemia (HI) is a major cause of neonatal mortality and morbidity worldwide. Of these infants, most are categorized as having mild HI. Infants with mild HI have significant long-term disabilities. There are currently no evidence-based therapies, largely because the progression and pathophysiology of mild injury is poorly understood. We have identified, for the first time, that mild perinatal HI results in a delayed and prolonged increase in neuronal death. The cortical and hippocampal neurons that die over a week after injury participate normally in neural network activity and exhibit robust viability for many days after injury, indicating a novel pathophysiology of neuronal death. Clinically, these data suggest an extended therapeutic window for mild perinatal HI.
Collapse
|
34
|
Gou T, Matulis CA, Clark DA. Adaptation to visual sparsity enhances responses to isolated stimuli. Curr Biol 2024; 34:5697-5713.e8. [PMID: 39577424 PMCID: PMC11834764 DOI: 10.1016/j.cub.2024.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 11/24/2024]
Abstract
Sensory systems adapt their response properties to the statistics of their inputs. For instance, visual systems adapt to low-order statistics like mean and variance to encode stimuli efficiently or to facilitate specific downstream computations. However, it remains unclear how other statistical features affect sensory adaptation. Here, we explore how Drosophila's visual motion circuits adapt to stimulus sparsity, a measure of the signal's intermittency not captured by low-order statistics alone. Early visual neurons in both ON and OFF pathways alter their responses dramatically with stimulus sparsity, responding positively to both light and dark sparse stimuli but linearly to dense stimuli. These changes extend to downstream ON and OFF direction-selective neurons, which are activated by sparse stimuli of both polarities but respond with opposite signs to light and dark regions of dense stimuli. Thus, sparse stimuli activate both ON and OFF pathways, recruiting a larger fraction of the circuit and potentially enhancing the salience of isolated stimuli. Overall, our results reveal visual response properties that increase the fraction of the circuit responding to sparse, isolated stimuli.
Collapse
Affiliation(s)
- Tong Gou
- Department of Electrical Engineering, Yale University, New Haven, CT 06511, USA
| | | | - Damon A Clark
- Department of Physics, Yale University, New Haven, CT 06511, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA; Quantitative Biology Institute, Yale University, New Haven, CT 06511, USA; Wu Tsai Institute, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
35
|
Conway M, Oncul M, Allen K, Zhang Z, Johnston J. Perceptual constancy for an odor is acquired through changes in primary sensory neurons. SCIENCE ADVANCES 2024; 10:eado9205. [PMID: 39661686 PMCID: PMC11633753 DOI: 10.1126/sciadv.ado9205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
The ability to consistently recognize an object despite variable sensory input is termed perceptual constancy. This ability is not innate; rather, it develops with experience early in life. We show that, when mice are naïve to an odor object, perceptual constancy is absent across increasing concentrations. The perceptual change coincides with a rapid reduction in activity from a single olfactory receptor channel that is most sensitive to the odor. This drop in activity is not a property of circuit interactions within the olfactory bulb; instead, it is due to a sensitivity mismatch of olfactory receptor neurons within the nose. We show that, after forming an association of this odor with food, the sensitivity of the receptor channel is matched to the odor object, preventing transmission failure and promoting perceptual stability. These data show that plasticity of the primary sensory organ enables learning of perceptual constancy.
Collapse
Affiliation(s)
- Mark Conway
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Merve Oncul
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kate Allen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Zongqian Zhang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Jamie Johnston
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
36
|
Ducote AL, Voglewede RL, Mostany R. Dendritic Spines of Layer 5 Pyramidal Neurons of the Aging Somatosensory Cortex Exhibit Reduced Volumetric Remodeling. J Neurosci 2024; 44:e1378242024. [PMID: 39448263 PMCID: PMC11638818 DOI: 10.1523/jneurosci.1378-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Impairments in synaptic dynamics and stability are observed both in neurodegenerative disorders and in the healthy aging cortex, which exhibits elevated dendritic spine turnover and decreased long-term stability of excitatory connections at baseline, as well as an altered response to plasticity induction. In addition to the discrete gain and loss of synapses, spines also change in size and strength both during learning and in the absence of neural activity, and synaptic volume has been associated with stability and incorporation into memory traces. Furthermore, intrinsic dynamics, an apparently stochastic component of spine volume changes, may serve as a homeostatic mechanism to prevent stabilization of superfluous connections. However, the effects of age on modulation of synaptic weights remain unknown. Using two-photon excitation (2PE) microscopy of spines during chemical plasticity induction in vitro and analyzing longitudinal in vivo 2PE images after a plasticity-inducing manipulation, we characterize the effects of age on volumetric changes of spines of the apical tuft of layer 5 pyramidal neurons of mouse primary somatosensory cortex. Aged mice exhibit decreased volumetric volatility and delayed rearrangement of synaptic weights of persistent connections, as well as greater susceptibility to spine shrinkage in response to chemical long-term depression. These results suggest a deficit in the aging brain's ability to fine-tune synaptic weights to properly incorporate and retain novel memories. This research provides the first evidence of alterations in spine volumetric dynamics in healthy aging and may support a model of impaired processing and learning in the aged somatosensory system.
Collapse
Affiliation(s)
- Alexis Lionel Ducote
- Neuroscience Program, Tulane University School of Science and Engineering, New Orleans, Louisiana 70118
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana 70118
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, 70112
| | - Rebecca Lynn Voglewede
- Neuroscience Program, Tulane University School of Science and Engineering, New Orleans, Louisiana 70118
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana 70118
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, 70112
| | - Ricardo Mostany
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana 70118
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, 70112
| |
Collapse
|
37
|
Gobbo D, Rieder P, Fang LP, Buttigieg E, Schablowski M, Damo E, Bosche N, Dallorto E, May P, Bai X, Kirchhoff F, Scheller A. Genetic Downregulation of GABA B Receptors from Oligodendrocyte Precursor Cells Protects Against Demyelination in the Mouse Spinal Cord. Cells 2024; 13:2014. [PMID: 39682762 PMCID: PMC11640606 DOI: 10.3390/cells13232014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
GABAergic signaling and GABAB receptors play crucial roles in regulating the physiology of oligodendrocyte-lineage cells, including their proliferation, differentiation, and myelination. Therefore, they are promising targets for studying how spinal oligodendrocyte precursor cells (OPCs) respond to injuries and neurodegenerative diseases like multiple sclerosis. Taking advantage of the temporally controlled and cell-specific genetic downregulation of GABAB receptors from OPCs, our investigation addresses their specific influence on OPC behavior in the gray and white matter of the mouse spinal cord. Our results show that, while GABAB receptors do not significantly alter spinal cord myelination under physiological conditions, they distinctly regulate the OPC differentiation and Ca2+ signaling. In addition, we investigate the impact of OPC-GABAB receptors in two models of toxic demyelination, namely, the cuprizone and the lysolecithin models. The genetic downregulation of OPC-GABAB receptors protects against demyelination and oligodendrocyte loss. Additionally, we observe the enhanced resilience to cuprizone-induced pathological alterations in OPC Ca2+ signaling. Our results provide valuable insights into the potential therapeutic implications of manipulating GABAB receptors in spinal cord OPCs and deepen our understanding of the interplay between GABAergic signaling and spinal cord OPCs, providing a basis for future research.
Collapse
Affiliation(s)
- Davide Gobbo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Phillip Rieder
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Li-Pao Fang
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Emeline Buttigieg
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
- Institut des Neurosciences de la Timone (INT), Aix-Marseille Université, CNRS UMR7289, 13005 Marseille, France
| | - Moritz Schablowski
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Elisa Damo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Nathalie Bosche
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Eleonora Dallorto
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Pascal May
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Xianshu Bai
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, 66421 Homburg, Germany
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, 66421 Homburg, Germany
- Chengdu Center for Gender-Specific Biology and Medicine (CGBM Chengdu), Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anja Scheller
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, 66421 Homburg, Germany
| |
Collapse
|
38
|
Sorrell E, Wilson DE, Rule ME, Yang H, Forni F, Harvey CD, O'Leary T. An optical brain-machine interface reveals a causal role of posterior parietal cortex in goal-directed navigation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626034. [PMID: 39651231 PMCID: PMC11623660 DOI: 10.1101/2024.11.29.626034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Cortical circuits contain diverse sensory, motor, and cognitive signals, and form densely recurrent networks. This creates challenges for identifying causal relationships between neural populations and behavior. We developed a calcium imaging-based brain-machine interface (BMI) to study the role of posterior parietal cortex (PPC) in controlling navigation in virtual reality. By training a decoder to estimate navigational heading and velocity from PPC activity during virtual navigation, we discovered that mice could immediately navigate toward goal locations when control was switched to BMI. No learning or adaptation was observed during BMI, indicating that naturally occurring PPC activity patterns are sufficient to drive navigational trajectories in real time. During successful BMI trials, decoded trajectories decoupled from the mouse's physical movements, suggesting that PPC activity relates to intended trajectories. Our work demonstrates a role for PPC in navigation and offers a BMI approach for investigating causal links between neural activity and behavior.
Collapse
|
39
|
Ryu H, Nam K, Lee BE, Jeong Y, Lee S, Kim J, Hyun YM, Kim JI, Park JH. The sperm hook as a functional adaptation for migration and self-organized behavior. eLife 2024; 13:RP96582. [PMID: 39576678 PMCID: PMC11584178 DOI: 10.7554/elife.96582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.
Collapse
Affiliation(s)
- Heungjin Ryu
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Department of Social Informatics, Kyoto University, Kyoto, Japan
| | - Kibum Nam
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Byeong Eun Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Yundon Jeong
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Seunghun Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jeongmo Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Ick Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jung-Hoon Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
40
|
Hu B, Temiz NZ, Chou CN, Rupprecht P, Meissner-Bernard C, Titze B, Chung S, Friedrich RW. Representational learning by optimization of neural manifolds in an olfactory memory network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.17.623906. [PMID: 39605658 PMCID: PMC11601331 DOI: 10.1101/2024.11.17.623906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Higher brain functions depend on experience-dependent representations of relevant information that may be organized by attractor dynamics or by geometrical modifications of continuous "neural manifolds". To explore these scenarios we analyzed odor-evoked activity in telencephalic area pDp of juvenile and adult zebrafish, the homolog of piriform cortex. No obvious signatures of attractor dynamics were detected. Rather, olfactory discrimination training selectively enhanced the separation of neural manifolds representing task-relevant odors from other representations, consistent with predictions of autoassociative network models endowed with precise synaptic balance. Analytical approaches using the framework of manifold capacity revealed multiple geometrical modifications of representational manifolds that supported the classification of task-relevant sensory information. Manifold capacity predicted odor discrimination across individuals, indicating a close link between manifold geometry and behavior. Hence, pDp and possibly related recurrent networks store information in the geometry of representational manifolds, resulting in joint sensory and semantic maps that may support distributed learning processes.
Collapse
Affiliation(s)
- Bo Hu
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| | - Nesibe Z. Temiz
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| | - Chi-Ning Chou
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA
| | - Peter Rupprecht
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
- Neuroscience Center Zurich, 8057 Zurich, Switzerland
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Claire Meissner-Bernard
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
| | - Benjamin Titze
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
| | - SueYeon Chung
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Rainer W. Friedrich
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| |
Collapse
|
41
|
Ohman LC, Huang T, Unwin VA, Singh A, Walters B, Whiddon ZD, Krimm RF. Deciphering Peripheral Taste Neuron Diversity: Using Genetic Identity to Bridge Taste Bud Innervation Patterns and Functional Responses. J Neurosci 2024; 44:e0583242024. [PMID: 39379155 PMCID: PMC11561867 DOI: 10.1523/jneurosci.0583-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/19/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
Peripheral taste neurons exhibit functional, genetic, and morphological diversity, yet understanding how or if these attributes combine into taste neuron types remains unclear. In this study, we used male and female mice to relate taste bud innervation patterns to the function of a subset of proenkephalin-expressing (Penk+) taste neurons. We found that taste arbors (the portion of the axon within the taste bud) stemming from Penk+ neurons displayed diverse branching patterns and lacked stereotypical endings. The range in complexity observed for individual taste arbors from Penk+ neurons mirrored the entire population, suggesting that taste arbor morphologies are not primarily regulated by the neuron type. Notably, the distinguishing feature of arbors from Penk+ neurons was their propensity to come within 110 nm (in apposition with) different types of taste-transducing cells within the taste bud. This finding is contrary to the expectation of genetically defined taste neuron types that functionally represent a single stimulus. Consistently, further investigation of Penk+ neuron function revealed that they are more likely to respond to innately aversive stimuli-sour, bitter, and high salt concentrations-as compared with the full taste population. Penk+ neurons are less likely to respond to nonaversive stimuli-sucrose, umami, and low salt-compared with the full population. Our data support the presence of a genetically defined neuron type in the geniculate ganglion that is responsive to innately aversive stimuli. This implies that genetic expression might categorize peripheral taste neurons into hedonic groups, rather than simply identifying neurons that respond to a single stimulus.
Collapse
Affiliation(s)
- Lisa C Ohman
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Tao Huang
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Victori A Unwin
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Aditi Singh
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Brittany Walters
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Zachary D Whiddon
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Robin F Krimm
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| |
Collapse
|
42
|
Xiong W, Qin M, Zhong H. PKA regulation of neuronal function requires the dissociation of catalytic subunits from regulatory subunits. eLife 2024; 13:RP93766. [PMID: 39508822 PMCID: PMC11542917 DOI: 10.7554/elife.93766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Protein kinase A (PKA) plays essential roles in diverse cellular functions. However, the spatiotemporal dynamics of endogenous PKA upon activation remain debated. The classical model predicts that PKA catalytic subunits dissociate from regulatory subunits in the presence of cAMP, whereas a second model proposes that catalytic subunits remain associated with regulatory subunits following physiological activation. Here, we report that different PKA subtypes, as defined by the regulatory subunit, exhibit distinct subcellular localization at rest in CA1 neurons of cultured hippocampal slices. Nevertheless, when all tested PKA subtypes are activated by norepinephrine, presumably via the β-adrenergic receptor, catalytic subunits translocate to dendritic spines but regulatory subunits remain unmoved. These differential spatial dynamics between the subunits indicate that at least a significant fraction of PKA dissociates. Furthermore, PKA-dependent regulation of synaptic plasticity and transmission can be supported only by wildtype, dissociable PKA, but not by inseparable PKA. These results indicate that endogenous PKA regulatory and catalytic subunits dissociate to achieve PKA function in neurons.
Collapse
Affiliation(s)
- Weihong Xiong
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| | - Maozhen Qin
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| | - Haining Zhong
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| |
Collapse
|
43
|
Moya-Díaz J, Simões P, Lagnado L. Substance P and dopamine form a "push-pull" system that diurnally regulates retinal gain. Curr Biol 2024; 34:5028-5039.e3. [PMID: 39419032 DOI: 10.1016/j.cub.2024.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/07/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
The operation of the retina, like other brain circuits, is under modulatory control. One coordinator of changes in retinal function is dopamine, a neuromodulator released in a light-dependent way to adjust vision on a diurnal cycle. Here, we demonstrate that substance P is a similarly powerful retinal modulator that interacts with the dopamine system. By imaging glutamatergic synaptic transmission in larval zebrafish, we find that substance P decreases the contrast sensitivity of ON and OFF visual channels up to 8-fold, with suppression of visual signals being strongest through the "transient" pathway responding to higher frequencies. These actions are exerted in the morning, in large part by suppressing the amplification of visual signals by dopamine, but substance P is almost completely inactive in the afternoon. Modulation of retinal gain is accompanied by changes in patterns of vesicle release at the synapses of bipolar cells: increased gain shifts coding of stimulus strength from the rate of release events to their amplitude generated by a process of multivesicular release (MVR). Together, these actions of substance P reduce the flow of visual information, measured in bits, ∼3-fold. Thus, whereas dopamine "pushes" the retina to transmit information at higher rates in the afternoon, substance P acts in antiphase to suppress dopamine signaling and "pull down" information transmission in the morning.
Collapse
Affiliation(s)
- José Moya-Díaz
- Neuroscience, School of Life Sciences, University of Sussex, Sussex, Brighton BN19QG, UK
| | - Patrício Simões
- Neuroscience, School of Life Sciences, University of Sussex, Sussex, Brighton BN19QG, UK
| | - Leon Lagnado
- Neuroscience, School of Life Sciences, University of Sussex, Sussex, Brighton BN19QG, UK.
| |
Collapse
|
44
|
Shao LX, Liao C, Davoudian PA, Savalia NK, Jiang Q, Wojtasiewicz C, Tan D, Nothnagel JD, Liu RJ, Woodburn SC, Bilash OM, Kim H, Che A, Kwan AC. Pyramidal cell types and 5-HT 2A receptors are essential for psilocybin's lasting drug action. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.02.621692. [PMID: 39554087 PMCID: PMC11566025 DOI: 10.1101/2024.11.02.621692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Psilocybin is a serotonergic psychedelic with therapeutic potential for treating mental illnesses1-4. At the cellular level, psychedelics induce structural neural plasticity5,6, exemplified by the drug-evoked growth and remodeling of dendritic spines in cortical pyramidal cells7-9. A key question is how these cellular modifications map onto cell type-specific circuits to produce psychedelics' behavioral actions10. Here, we use in vivo optical imaging, chemogenetic perturbation, and cell type-specific electrophysiology to investigate the impact of psilocybin on the two main types of pyramidal cells in the mouse medial frontal cortex. We find that a single dose of psilocybin increased the density of dendritic spines in both the subcortical-projecting, pyramidal tract (PT) and intratelencephalic (IT) cell types. Behaviorally, silencing the PT neurons eliminates psilocybin's ability to ameliorate stress-related phenotypes, whereas silencing IT neurons has no detectable effect. In PT neurons only, psilocybin boosts synaptic calcium transients and elevates firing rates acutely after administration. Targeted knockout of 5-HT2A receptors abolishes psilocybin's effects on stress-related behavior and structural plasticity. Collectively these results identify a pyramidal cell type and the 5-HT2A receptor in the medial frontal cortex as playing essential roles for psilocybin's long-term drug action.
Collapse
Affiliation(s)
- Ling-Xiao Shao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Clara Liao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Pasha A. Davoudian
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Neil K. Savalia
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Quan Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | | | - Diran Tan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Jack D. Nothnagel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Rong-Jian Liu
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Samuel C. Woodburn
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Olesia M. Bilash
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Hail Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Alicia Che
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Alex C. Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
45
|
Noorman M, Hulse BK, Jayaraman V, Romani S, Hermundstad AM. Maintaining and updating accurate internal representations of continuous variables with a handful of neurons. Nat Neurosci 2024; 27:2207-2217. [PMID: 39363052 PMCID: PMC11537979 DOI: 10.1038/s41593-024-01766-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/14/2024] [Indexed: 10/05/2024]
Abstract
Many animals rely on persistent internal representations of continuous variables for working memory, navigation, and motor control. Existing theories typically assume that large networks of neurons are required to maintain such representations accurately; networks with few neurons are thought to generate discrete representations. However, analysis of two-photon calcium imaging data from tethered flies walking in darkness suggests that their small head-direction system can maintain a surprisingly continuous and accurate representation. We thus ask whether it is possible for a small network to generate a continuous, rather than discrete, representation of such a variable. We show analytically that even very small networks can be tuned to maintain continuous internal representations, but this comes at the cost of sensitivity to noise and variations in tuning. This work expands the computational repertoire of small networks, and raises the possibility that larger networks could represent more and higher-dimensional variables than previously thought.
Collapse
Affiliation(s)
- Marcella Noorman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Brad K Hulse
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Vivek Jayaraman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sandro Romani
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ann M Hermundstad
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
46
|
Hebert E, Xu C. Improving the scan throughput of polygon scanners. BIOMEDICAL OPTICS EXPRESS 2024; 15:6549-6560. [PMID: 39553878 PMCID: PMC11563318 DOI: 10.1364/boe.538757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 11/19/2024]
Abstract
Polygon scanners allow for some of the fastest available line rates for raster scanning imaging. Due to the optical invariant, however, there is a trade-off between the line rate and the number of resolvable points per line. Here, we describe a device that can increase the number of resolvable points per line of mirror-based scanners without sacrificing speed. We first theoretically model the effect of the device on the number of resolvable points per line of a polygon scanner, and then experimentally test this device with both a simplified facet system and a transmission microscope using a polygon scanner. We demonstrate an improvement in the field of view by 1.7 times without a reduction in spatial resolution.
Collapse
Affiliation(s)
- Eric Hebert
- School of Applied and Engineering Physics, Cornell University, USA
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, USA
| |
Collapse
|
47
|
Yang HH, Brezovec BE, Serratosa Capdevila L, Vanderbeck QX, Adachi A, Mann RS, Wilson RI. Fine-grained descending control of steering in walking Drosophila. Cell 2024; 187:6290-6308.e27. [PMID: 39293446 DOI: 10.1016/j.cell.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/18/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024]
Abstract
Locomotion involves rhythmic limb movement patterns that originate in circuits outside the brain. Purposeful locomotion requires descending commands from the brain, but we do not understand how these commands are structured. Here, we investigate this issue, focusing on the control of steering in walking Drosophila. First, we describe different limb "gestures" associated with different steering maneuvers. Next, we identify a set of descending neurons whose activity predicts steering. Focusing on two descending cell types downstream of distinct brain networks, we show that they evoke specific limb gestures: one lengthens strides on the outside of a turn, while the other attenuates strides on the inside of a turn. Our results suggest that a single descending neuron can have opposite effects during different locomotor rhythm phases, and we identify networks positioned to implement this phase-specific gating. Together, our results show how purposeful locomotion emerges from specific, coordinated modulations of low-level patterns.
Collapse
Affiliation(s)
- Helen H Yang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Bella E Brezovec
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | | | - Quinn X Vanderbeck
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Atsuko Adachi
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Locantore JR, Liu Y, White J, Wallace JB, Beron CC, Kraft E, Sabatini BL, Wallace ML. Mixed representations of choice direction and outcome by GABA/glutamate cotransmitting neurons in the entopeduncular nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597980. [PMID: 38895480 PMCID: PMC11185773 DOI: 10.1101/2024.06.07.597980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The basal ganglia (BG) are an evolutionarily conserved and phylogenetically old set of sub-cortical nuclei that guide action selection, evaluation, and reinforcement. The entopeduncular nucleus (EP) is a major BG output nucleus that contains a population of GABA/glutamate cotransmitting neurons (EP Sst+ ) that specifically target the lateral habenula (LHb) and whose function in behavior remains mysterious. Here we use a probabilistic switching task that requires an animal to maintain flexible relationships between action selection and evaluation to examine when and how GABA/glutamate cotransmitting neurons contribute to behavior. We find that EP Sst+ neurons are strongly engaged during this task and show bidirectional changes in activity during the choice and outcome periods of a trial. We then tested the effects of either permanently blocking cotransmission or modifying the GABA/glutamate ratio on behavior in well-trained animals. Neither manipulation produced detectable changes in behavior despite significant changes in synaptic transmission in the LHb, demonstrating that the outputs of these neurons are not required for on-going action-outcome updating in a probabilistic switching task.
Collapse
|
49
|
Bauer J, Lewin U, Herbert E, Gjorgjieva J, Schoonover CE, Fink AJP, Rose T, Bonhoeffer T, Hübener M. Sensory experience steers representational drift in mouse visual cortex. Nat Commun 2024; 15:9153. [PMID: 39443498 PMCID: PMC11499870 DOI: 10.1038/s41467-024-53326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Representational drift-the gradual continuous change of neuronal representations-has been observed across many brain areas. It is unclear whether drift is caused by synaptic plasticity elicited by sensory experience, or by the intrinsic volatility of synapses. Here, using chronic two-photon calcium imaging in primary visual cortex of female mice, we find that the preferred stimulus orientation of individual neurons slowly drifts over the course of weeks. By using cylinder lens goggles to limit visual experience to a narrow range of orientations, we show that the direction of drift, but not its magnitude, is biased by the statistics of visual input. A network model suggests that drift of preferred orientation largely results from synaptic volatility, which under normal visual conditions is counteracted by experience-driven Hebbian mechanisms, stabilizing preferred orientation. Under deprivation conditions these Hebbian mechanisms enable adaptation. Thus, Hebbian synaptic plasticity steers drift to match the statistics of the environment.
Collapse
Affiliation(s)
- Joel Bauer
- Max Planck Institute for Biological Intelligence, Martinsried, Germany.
- International Max Planck Research School for Molecular Life Sciences, Martinsried, Germany.
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| | - Uwe Lewin
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Elizabeth Herbert
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | - Carl E Schoonover
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Andrew J P Fink
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Tobias Rose
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Medical Center, Bonn, Germany
| | - Tobias Bonhoeffer
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Mark Hübener
- Max Planck Institute for Biological Intelligence, Martinsried, Germany.
| |
Collapse
|
50
|
Tamimi A, Caldarola M, Hambura S, Boffi JC, Noordzij N, Los JWN, Guardiani A, Kooiman H, Wang L, Kieser C, Braun F, Castaneda MAU, Fognini A, Prevedel R. Deep Mouse Brain Two-Photon Near-Infrared Fluorescence Imaging Using a Superconducting Nanowire Single-Photon Detector Array. ACS PHOTONICS 2024; 11:3960-3971. [PMID: 39429856 PMCID: PMC11487655 DOI: 10.1021/acsphotonics.4c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 10/22/2024]
Abstract
Two-photon microscopy (2PM) has become an important tool in biology to study the structure and function of intact tissues in vivo. However, adult mammalian tissues such as the mouse brain are highly scattering, thereby putting fundamental limits on the achievable imaging depth, which typically reside at around 600-800 μm. In principle, shifting both the excitation as well as (fluorescence) emission light to the shortwave near-infrared (SWIR, 1000-1700 nm) region promises substantially deeper imaging in 2PM, yet this shift has proven challenging in the past due to the limited availability of detectors and probes in this wavelength region. To overcome these limitations and fully capitalize on the SWIR region, in this work, we introduce a novel array of superconducting nanowire single-photon detectors (SNSPDs) and associated custom detection electronics for use in near-infrared 2PM. The SNSPD array exhibits high efficiency and dynamic range as well as low dark-count rates over a wide wavelength range. Additionally, the electronics and software permit a seamless integration into typical 2PM systems. Together with an organic fluorescent dye emitting at 1105 nm, we report imaging depth of >1.1 mm in the in vivo mouse brain, limited mostly by available labeling density and laser properties. Our work establishes a promising, and ultimately scalable, new detector technology for SWIR 2PM that facilitates deep tissue biological imaging.
Collapse
Affiliation(s)
- Amr Tamimi
- Cell
Biology and Biophysics Unit, European Molecular
Biology Laboratory, Heidelberg 69117, Germany
| | | | - Sebastian Hambura
- Cell
Biology and Biophysics Unit, European Molecular
Biology Laboratory, Heidelberg 69117, Germany
| | - Juan C. Boffi
- Cell
Biology and Biophysics Unit, European Molecular
Biology Laboratory, Heidelberg 69117, Germany
| | | | | | | | - Hugo Kooiman
- Single
Quantum B.V, Delft, HH 2629, The Netherlands
| | - Ling Wang
- Cell
Biology and Biophysics Unit, European Molecular
Biology Laboratory, Heidelberg 69117, Germany
| | - Christian Kieser
- Cell
Biology and Biophysics Unit, European Molecular
Biology Laboratory, Heidelberg 69117, Germany
| | - Florian Braun
- Chemical
Synthesis Core Facility, European Molecular
Biology Laboratory, Heidelberg 69117, Germany
| | | | | | - Robert Prevedel
- Cell
Biology and Biophysics Unit, European Molecular
Biology Laboratory, Heidelberg 69117, Germany
- Developmental
Biology Unit, European Molecular Biology
Laboratory, Heidelberg 69117, Germany
- Epigenetics
and Neurobiology Unit, European Molecular
Biology Laboratory Rome, Monterotondo 00015, Italy
- German
Center
for Lung Research (DZL), Heidelberg 69120, Germany
- Interdisciplinary
Center of Neurosciences, Heidelberg University, Heidelberg 69120, Germany
| |
Collapse
|