1
|
Gu X, Li D, Wu P, Zhang C, Cui X, Shang D, Ma R, Liu J, Sun N, He J. Revisiting the CXCL13/CXCR5 axis in the tumor microenvironment in the era of single-cell omics: Implications for immunotherapy. Cancer Lett 2024; 605:217278. [PMID: 39332588 DOI: 10.1016/j.canlet.2024.217278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
As one of the important members of the family of chemokines and their receptors, the CXCL13/CXCR5 axis is involved in follicle formation in normal lymphoid tissues and the establishment of somatic cavity immunity under physiological conditions, as well as being associated with a wide range of infectious, autoimmune, and tumoral diseases. Here in this review, we focus on its role in tumors. Traditional studies have found the axis to be both pro- and anti-tumorigenic, involving a variety of immune cells, including the tumor cells themselves and those in the tumor microenvironment (TME), and the prognostic significance of this axis is clinical context-dependent. With the development of techniques at the single-cell level, we were able to explain in detail the status of the CXCL13/CXCR5 axis in the TME based on real clinical samples and found that it involves a range of crucial intrinsic anti-tumor immune processes in the TME and is therefore important in tumor immunotherapy. We summarize the cellular subsets, physiological functions, and prognostic significance associated with this axis in the most promising immune checkpoint inhibitor (ICI) therapies of the day and summarize possible therapeutic ideas based on this axis. As with any TME study, the most important takeaway is that the complexity of the CXCL13/CXCR5 axis in TME suggests the importance of personalized therapy in tumor therapy.
Collapse
Affiliation(s)
- Xuanyu Gu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dongyu Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinyu Cui
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dexin Shang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ruijie Ma
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingjing Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Wu D, Casey PJ. GPCR-Gα13 Involvement in Mitochondrial Function, Oxidative Stress, and Prostate Cancer. Int J Mol Sci 2024; 25:7162. [PMID: 39000269 PMCID: PMC11241654 DOI: 10.3390/ijms25137162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Gα13 and Gα12, encoded by the GNA13 and GNA12 genes, respectively, are members of the G12 family of Gα proteins that, along with their associated Gβγ subunits, mediate signaling from specific G protein-coupled receptors (GPCRs). Advanced prostate cancers have increased expression of GPCRs such as CXC Motif Chemokine Receptor 4 (CXCR4), lysophosphatidic acid receptor (LPAR), and protease activated receptor 1 (PAR-1). These GPCRs signal through either the G12 family, or through Gα13 exclusively, often in addition to other G proteins. The effect of Gα13 can be distinct from that of Gα12, and the role of Gα13 in prostate cancer initiation and progression is largely unexplored. The oncogenic effect of Gα13 on cell migration and invasion in prostate cancer has been characterized, but little is known about other biological processes such as mitochondrial function and oxidative stress. Current knowledge on the link between Gα13 and oxidative stress is based on animal studies in which GPCR-Gα13 signaling decreased superoxide levels, and the overexpression of constitutively active Gα13 promoted antioxidant gene activation. In human samples, mitochondrial superoxide dismutase 2 (SOD2) correlates with prostate cancer risk and prognostic Gleason grade. However, overexpression of SOD2 in prostate cancer cells yielded conflicting results on cell growth and survival under basal versus oxidative stress conditions. Hence, it is necessary to explore the effect of Gα13 on prostate cancer tumorigenesis, as well as the effect of Gα13 on SOD2 in prostate cancer cell growth under oxidative stress conditions.
Collapse
Affiliation(s)
- Di Wu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
| | - Patrick J. Casey
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, 308 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
3
|
Smith JS, Hilibrand AS, Skiba MA, Dates AN, Calvillo-Miranda VG, Kruse AC. The M3 Muscarinic Acetylcholine Receptor Can Signal through Multiple G Protein Families. Mol Pharmacol 2024; 105:386-394. [PMID: 38641412 PMCID: PMC11114115 DOI: 10.1124/molpharm.123.000818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024] Open
Abstract
The M3 muscarinic acetylcholine receptor (M3R) is a G protein-coupled receptor (GPCR) that regulates important physiologic processes, including vascular tone, bronchoconstriction, and insulin secretion. It is expressed on a wide variety of cell types, including pancreatic beta, smooth muscle, neuronal, and immune cells. Agonist binding to the M3R is thought to initiate intracellular signaling events primarily through the heterotrimeric G protein Gq. However, reports differ on the ability of M3R to couple to other G proteins beyond Gq. Using members from the four primary G protein families (Gq, Gi, Gs, and G13) in radioligand binding, GTP turnover experiments, and cellular signaling assays, including live cell G protein dissociation and second messenger assessment of cAMP and inositol trisphosphate, we show that other G protein families, particularly Gi and Gs, can also interact with the human M3R. We further show that these interactions are productive as assessed by amplification of classic second messenger signaling events. Our findings demonstrate that the M3R is more promiscuous with respect to G protein interactions than previously appreciated. SIGNIFICANCE STATEMENT: The study reveals that the human M3 muscarinic acetylcholine receptor (M3R), known for its pivotal roles in diverse physiological processes, not only activates intracellular signaling via Gq as previously known but also functionally interacts with other G protein families such as Gi and Gs, expanding our understanding of its versatility in mediating cellular responses. These findings signify a broader and more complex regulatory network governed by M3R and have implications for therapeutic targeting.
Collapse
Affiliation(s)
- Jeffrey S Smith
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts (J.S.S., A.S.H., M.A.S., A.N.D., V.G.C.-M., A.C.K.) and Brigham and Women's Hospital, Boston, Massachusetts (J.S.S.)
| | - Ari S Hilibrand
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts (J.S.S., A.S.H., M.A.S., A.N.D., V.G.C.-M., A.C.K.) and Brigham and Women's Hospital, Boston, Massachusetts (J.S.S.)
| | - Meredith A Skiba
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts (J.S.S., A.S.H., M.A.S., A.N.D., V.G.C.-M., A.C.K.) and Brigham and Women's Hospital, Boston, Massachusetts (J.S.S.)
| | - Andrew N Dates
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts (J.S.S., A.S.H., M.A.S., A.N.D., V.G.C.-M., A.C.K.) and Brigham and Women's Hospital, Boston, Massachusetts (J.S.S.)
| | - Victor G Calvillo-Miranda
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts (J.S.S., A.S.H., M.A.S., A.N.D., V.G.C.-M., A.C.K.) and Brigham and Women's Hospital, Boston, Massachusetts (J.S.S.)
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts (J.S.S., A.S.H., M.A.S., A.N.D., V.G.C.-M., A.C.K.) and Brigham and Women's Hospital, Boston, Massachusetts (J.S.S.)
| |
Collapse
|
4
|
Ullah A, Jiao W, Shen B. The role of proinflammatory cytokines and CXC chemokines (CXCL1-CXCL16) in the progression of prostate cancer: insights on their therapeutic management. Cell Mol Biol Lett 2024; 29:73. [PMID: 38745115 PMCID: PMC11094955 DOI: 10.1186/s11658-024-00591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Reproductive cancers are malignancies that develop in the reproductive organs. One of the leading cancers affecting the male reproductive system on a global scale is prostate cancer (PCa). The negative consequences of PCa metastases endure and are severe, significantly affecting mortality and life quality for those who are affected. The association between inflammation and PCa has captured interest for a while. Inflammatory cells, cytokines, CXC chemokines, signaling pathways, and other elements make up the tumor microenvironment (TME), which is characterized by inflammation. Inflammatory cytokines and CXC chemokines are especially crucial for PCa development and prognosis. Cytokines (interleukins) and CXC chemokines such as IL-1, IL-6, IL-7, IL-17, TGF-β, TNF-α, CXCL1-CXCL6, and CXCL8-CXCL16 are thought to be responsible for the pleiotropic effects of PCa, which include inflammation, progression, angiogenesis, leukocyte infiltration in advanced PCa, and therapeutic resistance. The inflammatory cytokine and CXC chemokines systems are also promising candidates for PCa suppression and immunotherapy. Therefore, the purpose of this work is to provide insight on how the spectra of inflammatory cytokines and CXC chemokines evolve as PCa develops and spreads. We also discussed recent developments in our awareness of the diverse molecular signaling pathways of these circulating cytokines and CXC chemokines, as well as their associated receptors, which may one day serve as PCa-targeted therapies. Moreover, the current status and potential of theranostic PCa therapies based on cytokines, CXC chemokines, and CXC receptors (CXCRs) are examined.
Collapse
Affiliation(s)
- Amin Ullah
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wang Jiao
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Kankanamge D, Tennakoon M, Karunarathne A, Gautam N. G protein gamma subunit, a hidden master regulator of GPCR signaling. J Biol Chem 2022; 298:102618. [PMID: 36272647 PMCID: PMC9678972 DOI: 10.1016/j.jbc.2022.102618] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022] Open
Abstract
Heterotrimeric G proteins (αβγ subunits) that are activated by G protein-coupled receptors (GPCRs) mediate the biological responses of eukaryotic cells to extracellular signals. The α subunits and the tightly bound βγ subunit complex of G proteins have been extensively studied and shown to control the activity of effector molecules. In contrast, the potential roles of the large family of γ subunits have been less studied. In this review, we focus on present knowledge about these proteins. Induced loss of individual γ subunit types in animal and plant models result in strikingly distinct phenotypes indicating that γ subtypes play important and specific roles. Consistent with these findings, downregulation or upregulation of particular γ subunit types result in various types of cancers. Clues about the mechanistic basis of γ subunit function have emerged from imaging the dynamic behavior of G protein subunits in living cells. This shows that in the basal state, G proteins are not constrained to the plasma membrane but shuttle between membranes and on receptor activation βγ complexes translocate reversibly to internal membranes. The translocation kinetics of βγ complexes varies widely and is determined by the membrane affinity of the associated γ subtype. On translocating, some βγ complexes act on effectors in internal membranes. The variation in translocation kinetics determines differential sensitivity and adaptation of cells to external signals. Membrane affinity of γ subunits is thus a parsimonious and elegant mechanism that controls information flow to internal cell membranes while modulating signaling responses.
Collapse
Affiliation(s)
- Dinesh Kankanamge
- Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Mithila Tennakoon
- Department of Chemistry, St Louis University, St Louis, Missouri, USA
| | | | - N Gautam
- Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri, USA; Department of Genetics, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
6
|
Xu X, Khater M, Wu G. The olfactory receptor OR51E2 activates ERK1/2 through the Golgi-localized Gβγ-PI3Kγ-ARF1 pathway in prostate cancer cells. Front Pharmacol 2022; 13:1009380. [PMID: 36313302 PMCID: PMC9606680 DOI: 10.3389/fphar.2022.1009380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
The olfactory receptor OR51E2 is ectopically expressed in prostate tissues and regulates prostate cancer progression, but its function and regulation in oncogenic mitogen-activate protein kinase (MAPK) activation are poorly defined. Here we demonstrate that β-ionone, an OR51E2 agonist, dose-dependently activates extracellular signal-regulated kinases 1 and 2 (ERK1/2) in prostate cancer cells, with an EC50 value of approximate 20 μM and an efficiency comparable to other receptor agonists. We also find that CRISPR-Cas9-mediated knockout of Golgi-translocating Gγ9 subunit, phosphoinositide 3-kinase γ (PI3Kγ) and the small GTPase ADP-ribosylation factor 1 (ARF1), as well as pharmacological inhibition of Gβγ, PI3Kγ and Golgi-localized ARF1, each abolishes ERK1/2 activation by β-ionone. We further show that β-ionone significantly promotes ARF1 translocation to the Golgi and activates ARF1 that can be inhibited by Gγ9 and PI3Kγ depletion. Collectively, our data demonstrate that OR51E2 activates ERK1/2 through the Gβγ-PI3Kγ-ARF1 pathway that occurs spatially at the Golgi, and also provide important insights into MAPK hyper-activation in prostate cancer.
Collapse
|
7
|
Wang B, Wang M, Ao D, Wei X. CXCL13-CXCR5 axis: Regulation in inflammatory diseases and cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188799. [PMID: 36103908 DOI: 10.1016/j.bbcan.2022.188799] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 01/10/2023]
Abstract
Chemokine C-X-C motif ligand 13 (CXCL13), originally identified as a B-cell chemokine, plays an important role in the immune system. The interaction between CXCL13 and its receptor, the G-protein coupled receptor (GPCR) CXCR5, builds a signaling network that regulates not only normal organisms but also the development of many diseases. However, the precise action mechanism remains unclear. In this review, we discussed the functional mechanisms of the CXCL13-CXCR5 axis under normal conditions, with special focus on its association with diseases. For certain refractory diseases, we emphasize the diagnostic and therapeutic role of CXCL13-CXCR5 axis.
Collapse
Affiliation(s)
- Binhan Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Danyi Ao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Saha A, Hamilton-Reeves J, DiGiovanni J. White adipose tissue-derived factors and prostate cancer progression: mechanisms and targets for interventions. Cancer Metastasis Rev 2022; 41:649-671. [PMID: 35927363 PMCID: PMC9474694 DOI: 10.1007/s10555-022-10056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 12/01/2022]
Abstract
Obesity represents an important risk factor for prostate cancer, driving more aggressive disease, chemoresistance, and increased mortality. White adipose tissue (WAT) overgrowth in obesity is central to the mechanisms that lead to these clinical observations. Adipose stromal cells (ASCs), the progenitors to mature adipocytes and other cell types in WAT, play a vital role in driving PCa aggressiveness. ASCs produce numerous factors, especially chemokines, including the chemokine CXCL12, which is involved in driving EMT and chemoresistance in PCa. A greater understanding of the impact of WAT in obesity-induced progression of PCa and the underlying mechanisms has begun to provide opportunities for developing interventional strategies for preventing or offsetting these critical events. These include weight loss regimens, therapeutic targeting of ASCs, use of calorie restriction mimetic compounds, and combinations of compounds as well as specific receptor targeting strategies.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78723, USA
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, 78723, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA
| | - Jill Hamilton-Reeves
- Departments of Urology and Dietetics & Nutrition, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78723, USA.
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, 78723, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA.
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA.
| |
Collapse
|
9
|
Guo P, Tai Y, Wang M, Sun H, Zhang L, Wei W, Xiang YK, Wang Q. Gα 12 and Gα 13: Versatility in Physiology and Pathology. Front Cell Dev Biol 2022; 10:809425. [PMID: 35237598 PMCID: PMC8883321 DOI: 10.3389/fcell.2022.809425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs), as the largest family of receptors in the human body, are involved in the pathological mechanisms of many diseases. Heterotrimeric G proteins represent the main molecular switch and receive cell surface signals from activated GPCRs. Growing evidence suggests that Gα12 subfamily (Gα12/13)-mediated signaling plays a crucial role in cellular function and various pathological processes. The current research on the physiological and pathological function of Gα12/13 is constantly expanding, Changes in the expression levels of Gα12/13 have been found in a wide range of human diseases. However, the mechanistic research on Gα12/13 is scattered. This review briefly describes the structural sequences of the Gα12/13 isoforms and introduces the coupling of GPCRs and non-GPCRs to Gα12/13. The effects of Gα12/13 on RhoA and other signaling pathways and their roles in cell proliferation, migration, and immune cell function, are discussed. Finally, we focus on the pathological impacts of Gα12/13 in cancer, inflammation, metabolic diseases, fibrotic diseases, and circulatory disorders are brought to focus.
Collapse
Affiliation(s)
- Paipai Guo
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu Tai
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Manman Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Hanfei Sun
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yang K Xiang
- Department of Pharmacology, University of California, Davis, Davis, CA, United States.,VA Northern California Health Care System, Mather, CA, United States
| | - Qingtong Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Potential Role of CXCL13/CXCR5 Signaling in Immune Checkpoint Inhibitor Treatment in Cancer. Cancers (Basel) 2022; 14:cancers14020294. [PMID: 35053457 PMCID: PMC8774093 DOI: 10.3390/cancers14020294] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Immunotherapy is currently the backbone of new drug treatments for many cancer patients. CXC chemokine ligand 13 (CXCL13) is an important factor involved in recruiting immune cells that express CXC chemokine receptor type 5 (CXCR5) in the tumor microenvironment and serves as a key molecular determinant of tertiary lymphoid structure (TLS) formation. An increasing number of studies have identified the influence of CXCL13 on prognosis in patients with cancer, regardless of the use of immunotherapy treatment. However, no comprehensive reviews of the role of CXCL13 in cancer immunotherapy have been published to date. This review aims to provide an overview of the CXCL13/CXCR5 signaling axis to summarize its mechanisms of action in cancer cells and lymphocytes, in addition to effects on immunity and cancer pathobiology, and its potential as a biomarker for the response to cancer immunotherapy. Abstract Immune checkpoint inhibitors (ICIs), including antibodies that target programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), or cytotoxic T lymphocyte antigen 4 (CTLA4), represent some of the most important breakthroughs in new drug development for oncology therapy from the past decade. CXC chemokine ligand 13 (CXCL13) exclusively binds CXC chemokine receptor type 5 (CXCR5), which plays a critical role in immune cell recruitment and activation and the regulation of the adaptive immune response. CXCL13 is a key molecular determinant of the formation of tertiary lymphoid structures (TLSs), which are organized aggregates of T, B, and dendritic cells that participate in the adaptive antitumor immune response. CXCL13 may also serve as a prognostic and predictive factor, and the role played by CXCL13 in some ICI-responsive tumor types has gained intense interest. This review discusses how CXCL13/CXCR5 signaling modulates cancer and immune cells to promote lymphocyte infiltration, activation by tumor antigens, and differentiation to increase the antitumor immune response. We also summarize recent preclinical and clinical evidence regarding the ICI-therapeutic implications of targeting the CXCL13/CXCR5 axis and discuss the potential role of this signaling pathway in cancer immunotherapy.
Collapse
|
11
|
CXCL13 in Cancer and Other Diseases: Biological Functions, Clinical Significance, and Therapeutic Opportunities. Life (Basel) 2021; 11:life11121282. [PMID: 34947813 PMCID: PMC8708574 DOI: 10.3390/life11121282] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/31/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022] Open
Abstract
The development of cancer is a multistep and complex process involving interactions between tumor cells and the tumor microenvironment (TME). C-X-C chemokine ligand 13 (CXCL13) and its receptor, CXCR5, make crucial contributions to this process by triggering intracellular signaling cascades in malignant cells and modulating the sophisticated TME in an autocrine or paracrine fashion. The CXCL13/CXCR5 axis has a dominant role in B cell recruitment and tertiary lymphoid structure formation, which activate immune responses against some tumors. In most cancer types, the CXCL13/CXCR5 axis mediates pro-neoplastic immune reactions by recruiting suppressive immune cells into tumor tissues. Tobacco smoke and haze (smohaze) and the carcinogen benzo(a)pyrene induce the secretion of CXCL13 by lung epithelial cells, which contributes to environmental lung carcinogenesis. Interestingly, the knockout of CXCL13 inhibits benzo(a)pyrene-induced lung cancer and azoxymethane/dextran sodium sulfate-induced colorectal cancer in mice. Thus, a better understanding of the context-dependent functions of the CXCL13/CXCR5 axis in tumor tissue and the TME is required to design an efficient immune-based therapy. In this review, we summarize the molecular events and TME alterations caused by CXCL13/CXCR5 and briefly discuss the potentials of agents targeting this axis in different malignant tumors.
Collapse
|
12
|
Nunez SK, Young CD, Griffen TL, Ohandjo AQ, McKinney LP, Kopetz S, Lillard JW. Identification of Gene Co-Expression Networks Associated with Consensus Molecular Subtype-1 of Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13225824. [PMID: 34830978 PMCID: PMC8616344 DOI: 10.3390/cancers13225824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is a frequently lethal disease with heterogenous outcomes. Alterations in the Wnt signaling pathways have been shown to promote activation of signaling pathways such as MAPK and PI3K-Akt. Consensus molecular subtyping (CMS) provides a cohesive structure to classify the heterogeneity of CRC using gene expression analysis. CMS is categorized into four subtypes: CMS1, immune; CMS2, canonical; CMS3, metabolic; and CMS4, mesenchymal. Here, we identify co-expressed gene networks associated with CMS1. Our findings distinguish co-expressed gene networks that play a pivotal role in key features specific for CMS1, such as immune infiltration and activation. The co-expressed gene networks for CMS1 were significantly and positively correlated with the TNF, WNT, and ERK1 and ERK2 signaling pathways. This study highlights the relevance of CMS1 gene networks relating to oncogenic signaling cascades, cell activation, and positive regulation of immune responses, promoting CRC progressiveness. Abstract Colorectal cancer (CRC) is driven in part by dysregulated Wnt, Ras-Raf-MAPK, TGF-β, and PI3K-Akt signaling. The progression of CRC is also promoted by molecular alterations and heterogeneous—yet interconnected—gene mutations, chromosomal instability, transcriptomic subtypes, and immune signatures. Genomic alterations of CRC progression lead to changes in RNA expression, which support CRC metastasis. An RNA-based classification system used for CRC, known as consensus molecular subtyping (CMS), has four classes. CMS1 has the lowest survival after relapse of the four CRC CMS phenotypes. Here, we identify gene signatures and associated coding mRNAs that are co-expressed during CMS1 CRC progression. Using RNA-seq data from CRC primary tumor samples, acquired from The Cancer Genome Atlas (TCGA), we identified co-expression gene networks significantly correlated with CMS1 CRC progression. CXCL13, CXCR5, IL10, PIK3R5, PIK3AP1, CCL19, and other co-expressed genes were identified to be positively correlated with CMS1. The co-expressed eigengene networks for CMS1 were significantly and positively correlated with the TNF, WNT, and ERK1 and ERK2 signaling pathways, which together promote cell proliferation and survival. This network was also aligned with biological characteristics of CMS1 CRC, being positively correlated to right-sided tumors, microsatellite instability, chemokine-mediated signaling pathways, and immune responses. CMS1 also differentially expressed genes involved in PI3K-Akt signaling. Our findings reveal CRC gene networks related to oncogenic signaling cascades, cell activation, and positive regulation of immune responses distinguishing CMS1 from other CRC subtypes.
Collapse
Affiliation(s)
- Sha’Kayla K. Nunez
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.K.N.); (C.D.Y.); (T.L.G.); (L.P.M.)
| | - Corey D. Young
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.K.N.); (C.D.Y.); (T.L.G.); (L.P.M.)
| | - Ti’ara L. Griffen
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.K.N.); (C.D.Y.); (T.L.G.); (L.P.M.)
| | | | - Lawrence P. McKinney
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.K.N.); (C.D.Y.); (T.L.G.); (L.P.M.)
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - James W. Lillard
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.K.N.); (C.D.Y.); (T.L.G.); (L.P.M.)
- Correspondence:
| |
Collapse
|
13
|
Critical regulation of follicular helper T cell differentiation and function by Gα 13 signaling. Proc Natl Acad Sci U S A 2021; 118:2108376118. [PMID: 34663730 PMCID: PMC8639339 DOI: 10.1073/pnas.2108376118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 12/27/2022] Open
Abstract
Optimal follicular helper T (Tfh) cell differentiation and function are required for effective humoral immunity against infection, while improper Tfh cell responses are associated with autoimmunity and allergy. We demonstrate that Gα13—a Gα protein subunit known to be involved in mediating signals related to cytoskeletal integrity, chemotaxis, and migration—acts as an essential positive regulator in Tfh cell development and function. The deletion of Gα13 in T cells results in dampened germinal center reactions in immunization and viral infection models. Mechanistically, Gα13-RhoA-ROCK2 axis is responsible for the Tfh cell differentiation from naïve precursors, and Rho agonists recuperate hampered Tfh cell function in Gα13-deficient mice. Such mechanistic insight underscores the possibility of targeting Gα13-mediated signaling to maneuver Tfh cell responses. GPCR-Gα protein–mediated signal transduction contributes to spatiotemporal interactions between immune cells to fine-tune and facilitate the process of inflammation and host protection. Beyond this, however, how Gα proteins contribute to the helper T cell subset differentiation and adaptive response have been underappreciated. Here, we found that Gα13 signaling in T cells plays a crucial role in inducing follicular helper T (Tfh) cell differentiation in vivo. T cell–specific Gα13-deficient mice have diminished Tfh cell responses in a cell-intrinsic manner in response to immunization, lymphocytic choriomeningitis virus infection, and allergen challenges. Moreover, Gα13-deficient Tfh cells express reduced levels of Bcl-6 and CXCR5 and are functionally impaired in their ability to adhere to and stimulate B cells. Mechanistically, Gα13-deficient Tfh cells harbor defective Rho-ROCK2 activation, and Rho agonist treatment recuperates Tfh cell differentiation and expression of Bcl-6 and CXCR5 in Tfh cells of T cell–specific Gα13-deficient mice. Conversely, ROCK inhibitor treatment hampers Tfh cell differentiation in wild-type mice. These findings unveil a crucial regulatory role of Gα13-Rho-ROCK axis in optimal Tfh cell differentiation and function, which might be a promising target for pharmacologic intervention in vaccine development as well as antibody-mediated immune disorders.
Collapse
|
14
|
Li F, Zhou YD, Liu J, Cai JD, Liao ZM, Chen GQ. RBP-J promotes cell growth and metastasis through regulating miR-182-5p-mediated Tiam1/Rac1/p38 MAPK axis in colorectal cancer. Cell Signal 2021; 87:110103. [PMID: 34339855 DOI: 10.1016/j.cellsig.2021.110103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND RBP-J is involved in number of cellular processes. However, the potential mechanisms of RBP-J on colorectal cancer (CRC) development have not been clearly defined. In this study, we aimed to investigate the role and molecular mechanism of RBP-J in CRC. METHODS The expression levels of RBP-J and Tiam1 in CRC tissues and cells were evaluated by RT-qPCR or western blot. RBP-J was knocked down with sh-RBP-J or overexpressed by pcDNA3.1-RBP-J in CRC cells. Cell proliferation, migration and invasion abilities were analyzed by MTT, wound healing, and transwell assay, respectively. CHIP-qPCR, RIP and dual luciferase reporter assays were performed to confirm the interaction between miR-182-5p and RBP-J or Tiam1. Expression levels of p-p38 MAPK, p38 MAPK, Slug-1, Twist1 and MMP-9 were analyzed by western blot. G-LISA test was used to detect Rac1 activity. RESULTS Our results showed that the expression of RBP-J and Tiam1 was significantly up-regulated in CRC tissues and cells. RBP-J overexpression promoted proliferation, migration and invasion of CRC cells. Moreover, RBP-J was found to directly target miR-182-5p promoter and positively regulate the Tiam1/Rac1/p38 MAPK signaling pathway in CRC cells. It was also proved that miR-182-5p can bind Tiam1 directly. Furthermore, experiments revealed that RBP-J could promote CRC cell proliferation, migration and invasion via miR-182-5p-mediated Tiam1/Rac1/p38 MAPK axis. In addition, knockdown of RBP-J reduced tumor growth and metastasis in CRC mice. CONCLUSION RBP-J regulates CRC cell growth and metastasis through miR-182-5p mediated Tiam1/Rac1/p38 MAPK signaling pathway, implying potential novel therapeutic targets for CRC patients.
Collapse
Affiliation(s)
- Fang Li
- Department of Pathology, The Fourth Hospital of Changsha City, Changsha 410006, Hunan Province, PR China
| | - Ya-Dong Zhou
- Department of Pathology, The Fourth Hospital of Changsha City, Changsha 410006, Hunan Province, PR China
| | - Jiao Liu
- Department of Pathology, The Fourth Hospital of Changsha City, Changsha 410006, Hunan Province, PR China
| | - Jiao-Di Cai
- Department of Pathology, The Fourth Hospital of Changsha City, Changsha 410006, Hunan Province, PR China
| | - Zhi-Ming Liao
- Department of Pathology, The Fourth Hospital of Changsha City, Changsha 410006, Hunan Province, PR China
| | - Guo-Qun Chen
- Department of Pathology, The Fourth Hospital of Changsha City, Changsha 410006, Hunan Province, PR China.
| |
Collapse
|
15
|
CXCL13 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:71-90. [PMID: 34286442 DOI: 10.1007/978-3-030-62658-7_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemokines have emerged as important players in tumorigenic process. An extensive body of literature generated over the last two or three decades strongly implicate abnormally activated or functionally disrupted chemokine signaling in liaising most-if not all-hallmark processes of cancer. It is well-known that chemokine signaling networks within the tumor microenvironment are highly versatile and context-dependent: exert both pro-tumoral and antitumoral activities. The C-X-C motif chemokine ligand 13 (CXCL13), and its cognate receptor CXCR5, represents an emerging example of chemokine signaling axes, which express the ability to modulate tumor growth and progression in either way. Collateral evidence indicate that CXCL13-CXCR5 axis may directly modulate tumor growth by inducing proliferation of cancer cells, as well as promoting invasive phenotypes and preventing their apoptosis. In addition, CXCL13-CXCR5 axis may also indirectly modulate tumor growth by regulating noncancerous cells, particularly the immune cells, within the tumor microenvironment. Here, we review the role of CXCL13, together with CXCR5, in the human tumor microenvironment. We first elaborate their patterns of expression, regulation, and biological functions in normal physiology. We then consider how their aberrant activity, as a result of differential overexpression or co-expression, may directly or indirectly modulate the growth of tumors through effects on both cancerous and noncancerous cells.
Collapse
|
16
|
Khater M, Wei Z, Xu X, Huang W, Lokeshwar BL, Lambert NA, Wu G. G protein βγ translocation to the Golgi apparatus activates MAPK via p110γ-p101 heterodimers. J Biol Chem 2021; 296:100325. [PMID: 33493514 PMCID: PMC7949113 DOI: 10.1016/j.jbc.2021.100325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 01/14/2023] Open
Abstract
The Golgi apparatus (GA) is a cellular organelle that plays a critical role in the processing of proteins for secretion. Activation of G protein-coupled receptors at the plasma membrane (PM) induces the translocation of G protein βγ dimers to the GA. However, the functional significance of this translocation is largely unknown. Here, we study PM-GA translocation of all 12 Gγ subunits in response to chemokine receptor CXCR4 activation and demonstrate that Gγ9 is a unique Golgi-translocating Gγ subunit. CRISPR-Cas9-mediated knockout of Gγ9 abolishes activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2), two members of the mitogen-activated protein kinase family, by CXCR4. We show that chemically induced recruitment to the GA of Gβγ dimers containing different Gγ subunits activates ERK1/2, whereas recruitment to the PM is ineffective. We also demonstrate that pharmacological inhibition of phosphoinositide 3-kinase γ (PI3Kγ) and depletion of its subunits p110γ and p101 abrogate ERK1/2 activation by CXCR4 and Gβγ recruitment to the GA. Knockout of either Gγ9 or PI3Kγ significantly suppresses prostate cancer PC3 cell migration, invasion, and metastasis. Collectively, our data demonstrate a novel function for Gβγ translocation to the GA, via activating PI3Kγ heterodimers p110γ-p101, to spatiotemporally regulate mitogen-activated protein kinase activation by G protein-coupled receptors and ultimately control tumor progression.
Collapse
Affiliation(s)
- Mostafa Khater
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Zhe Wei
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Wei Huang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Bal L Lokeshwar
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.
| |
Collapse
|
17
|
Rosenberg EM, Herrington J, Rajasekaran D, Murphy JW, Pantouris G, Lolis EJ. The N-terminal length and side-chain composition of CXCL13 affect crystallization, structure and functional activity. Acta Crystallogr D Struct Biol 2020; 76:1033-1049. [PMID: 33021505 PMCID: PMC7543660 DOI: 10.1107/s2059798320011687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/25/2020] [Indexed: 01/18/2023] Open
Abstract
CXCL13 is the cognate chemokine agonist of CXCR5, a class A G-protein-coupled receptor (GPCR) that is essential for proper humoral immune responses. Using a `methionine scanning' mutagenesis method on the N-terminus of CXCL13, which is the chemokine signaling region, it was shown that minor length alterations and side-chain substitutions still result in CXCR5 activation. This observation indicates that the orthosteric pocket of CXCR5 can tolerate these changes without severely affecting the activity. The introduction of bulk on the ligand was well tolerated by the receptor, whereas a loss of contacts was less tolerated. Furthermore, two crystal structures of CXCL13 mutants were solved, both of which represent the first uncomplexed structures of the human protein. These structures were stabilized by unique interactions formed by the N-termini of the ligands, indicating that CXCL13 exhibits substantial N-terminal flexibility while the chemokine core domain remains largely unchanged. Additionally, it was observed that CXCL13 harbors a large degree of flexibility in the C-terminal extension of the ligand. Comparisons with other published structures of human and murine CXCL13 validate the relative rigidity of the core domain as well as the N- and C-terminal mobilities. Collectively, these mutants and their structures provide the field with additional insights into how CXCL13 interacts with CXCR5.
Collapse
Affiliation(s)
- Eric M. Rosenberg
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - James Herrington
- Yale Center for Molecular Discovery, Yale West Campus, West Haven, CT 06516, USA
| | - Deepa Rajasekaran
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - James W. Murphy
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Georgios Pantouris
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Elias J. Lolis
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
18
|
Zhou J, Lei J, Wang J, Lian CL, Hua L, He ZY, Wu SG. Bioinformatics-Based Discovery of CKLF-Like MARVEL Transmembrane Member 5 as a Novel Biomarker for Breast Cancer. Front Cell Dev Biol 2020; 7:361. [PMID: 31998718 PMCID: PMC6962189 DOI: 10.3389/fcell.2019.00361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022] Open
Abstract
Chemokine-like factor (CKLF)-like MARVEL transmembrane members (CMTMs) represent a novel protein family linking the chemokine and transmembrane-4 superfamily families, which potentially play several roles in diverse physiological and pathological processes. The detailed functions and underlying molecular mechanisms of CMTMs remain elusive in breast cancer. Herein, we performed a comprehensive bioinformatic analysis to investigate the prognostic effect, potential functions, and biomolecular regulatory network of CMTMs in breast cancer. The mRNA expression level of CMTM5, in particular, was significantly downregulated in breast cancer; moreover, high mRNA expression level of CMTM5 was significantly associated with better relapse-free survival. DNA promoter hypermethylation of CMTM5 was negatively correlated with its mRNA expression levels. Furthermore, CMTM5 strongly associated with pathway in MARVEL domains, chemotaxis, cytokines, transmembrane structures, and integral component of membrane. For example, genes related to MARVEL domains, transmembrane structures, and chemokines were significantly enriched. Our findings indicate that CMTM5 can be used as a prognostic biomarker and potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Jian Lei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Jun Wang
- Department of Radiation Oncology, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Chen-Lu Lian
- Department of Radiation Oncology, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Li Hua
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Zhen-Yu He
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - San-Gang Wu
- Department of Radiation Oncology, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| |
Collapse
|
19
|
Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor. Mol Immunol 2019; 117:201-215. [PMID: 31835202 DOI: 10.1016/j.molimm.2019.11.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 02/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) expand in tumor-bearing host. They suppress anti-tumor immune response and promote tumor growth. Chemokines play a vital role in recruiting MDSCs into tumor tissue. They can also induce the generation of MDSCs in the bone marrow, maintain their suppressive activity, and promote their proliferation and differentiation. Here, we review CCL2/CCL12-CCR2, CCL3/4/5-CCR5, CCL15-CCR1, CX3CL1/CCL26-CX3CR1, CXCL5/2/1-CXCR2, CXCL8-CXCR1/2, CCL21-CCR7, CXCL13-CXCR5 signaling pathways, their role in MDSCs recruitment to tumor tissue, and their correlation with tumor development, metastasis and prognosis. Targeting chemokines and their receptors may serve as a promising strategy in immunotherapy, especially combined with other strategies such as chemotherapy, cyclin-dependent kinase or immune checkpoints inhibitors.
Collapse
|
20
|
Ohandjo AQ, Liu Z, Dammer EB, Dill CD, Griffen TL, Carey KM, Hinton DE, Meller R, Lillard JW. Transcriptome Network Analysis Identifies CXCL13-CXCR5 Signaling Modules in the Prostate Tumor Immune Microenvironment. Sci Rep 2019; 9:14963. [PMID: 31628349 PMCID: PMC6802083 DOI: 10.1038/s41598-019-46491-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
The tumor immune microenvironment (TIME) consists of multiple cell types that contribute to the heterogeneity and complexity of prostate cancer (PCa). In this study, we sought to understand the gene-expression signature of patients with primary prostate tumors by investigating the co-expression profiles of patient samples and their corresponding clinical outcomes, in particular “disease-free months” and “disease reoccurrence”. We tested the hypothesis that the CXCL13-CXCR5 axis is co-expressed with factors supporting TIME and PCa progression. Gene expression counts, with clinical attributes from PCa patients, were acquired from TCGA. Profiles of PCa patients were used to identify key drivers that influence or regulate CXCL13-CXCR5 signaling. Weighted gene co-expression network analysis (WGCNA) was applied to identify co-expression patterns among CXCL13-CXCR5, associated genes, and key genetic drivers within the CXCL13-CXCR5 signaling pathway. The processing of downloaded data files began with quality checks using NOISeq, followed by WGCNA. Our results confirmed the quality of the TCGA transcriptome data, identified 12 co-expression networks, and demonstrated that CXCL13, CXCR5 and associated genes are members of signaling networks (modules) associated with G protein coupled receptor (GPCR) responsiveness, invasion/migration, immune checkpoint, and innate immunity. We also identified top canonical pathways and upstream regulators associated with CXCL13-CXCR5 expression and function.
Collapse
Affiliation(s)
- Adaugo Q Ohandjo
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Zongzhi Liu
- R & D Bioinformatics, Sema4, Stamford, CT, 06902, USA
| | - Eric B Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Courtney D Dill
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Tiara L Griffen
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Kaylin M Carey
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Denise E Hinton
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Robert Meller
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - James W Lillard
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
| |
Collapse
|
21
|
Hussain M, Adah D, Tariq M, Lu Y, Zhang J, Liu J. CXCL13/CXCR5 signaling axis in cancer. Life Sci 2019; 227:175-186. [PMID: 31026453 DOI: 10.1016/j.lfs.2019.04.053] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment comprises stromal and tumor cells which interact with each other through complex cross-talks that are mediated by a variety of growth factors, cytokines, and chemokines. The chemokine ligand 13 (CXCL13) and its chemokine receptor 5 (CXCR5) are among the key chemotactic factors which play crucial roles in deriving cancer cell biology. CXCL13/CXCR5 signaling axis makes pivotal contributions to the development and progression of several human cancers. In this review, we discuss how CXCL13/CXCR5 signaling modulates cancer cell ability to grow, proliferate, invade, and metastasize. Furthermore, we also discuss the preliminary evidence on context-dependent functioning of this axis within the tumor-immune microenvironment, thus, highlighting its potential dichotomy with respect to anticancer immunity and cancer immune-evasion mechanisms. At the end, we briefly shed light on the therapeutic potential or implications of targeting CXCL13/CXCR5 axis within the tumor microenvironment.
Collapse
Affiliation(s)
- Muzammal Hussain
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dickson Adah
- University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Heath, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China
| | - Muqddas Tariq
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongzhi Lu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China
| | - Jiancun Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China.
| | - Jinsong Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China.
| |
Collapse
|
22
|
Caballero A, Mahn SA, Ali MS, Rogers MR, Marchese A. Heterologous regulation of CXCR4 lysosomal trafficking. J Biol Chem 2019; 294:8023-8036. [PMID: 30936203 DOI: 10.1074/jbc.ra118.005991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/26/2019] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptor (GPCR) signaling is regulated by members of the protein kinase C (PKC) and GPCR kinase (GRK) families, although the relative contribution of each to GPCR function varies among specific GPCRs. The CXC motif receptor 4 (CXCR4) is a member of the GPCR superfamily that binds the CXC motif chemokine ligand 12 (CXCL12), initiating signaling that is subsequently terminated in part by internalization and lysosomal degradation of CXCR4. The purpose of this study is to define the relative contribution of PKC and GRK to CXCR4 signaling attenuation by studying their effects on CXCR4 lysosomal trafficking and degradation. Our results demonstrate that direct activation of PKC via the phorbol ester phorbol 12-myristate 13-acetate (PMA) mimics CXCL12-mediated desensitization, internalization, ubiquitination, and lysosomal trafficking of CXCR4. In agreement, heterologous activation of PKC by stimulating the chemokine receptor CXCR5 with its ligand, CXCL13, also mimics CXCL12-mediated desensitization, internalization, ubiquitination, and lysosomal degradation of CXCR4. Similar to CXCL12, PMA promotes PKC-dependent phosphorylation of serine residues within CXCR4 C-tail that are required for binding and ubiquitination by the E3 ubiquitin ligase AIP4 (atrophin-interacting protein 4). However, inhibition of PKC activity does not alter CXCL12-mediated ubiquitination and degradation of CXCR4, suggesting that other kinases are also required. Accordingly, siRNA-mediated depletion of GRK6 results in decreased degradation and ubiquitination of CXCR4. Overall, these results suggest that PKC and GRK6 contribute to unique aspects of CXCR4 phosphorylation and lysosomal degradation to ensure proper signal propagation and termination.
Collapse
Affiliation(s)
- Adriana Caballero
- Department of Pharmacology, Loyola University Chicago, Maywood, Illinois 60153
| | - Sarah A Mahn
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Mudassir S Ali
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - M Rose Rogers
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Adriano Marchese
- Department of Pharmacology, Loyola University Chicago, Maywood, Illinois 60153; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
| |
Collapse
|
23
|
CC chemokines are differentially expressed in Breast Cancer and are associated with disparity in overall survival. Sci Rep 2019; 9:4014. [PMID: 30850664 PMCID: PMC6408438 DOI: 10.1038/s41598-019-40514-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/18/2019] [Indexed: 12/21/2022] Open
Abstract
Despite recent advances, breast cancer (BrCa) still affects many women and the impact is disproportional in African Americans (AA) compared to European Americans (EA). Addressing socioeconomic and behavioral status has not been enough to reduce disparity, suggesting contribution of biological differences in BrCa disparity. Our laboratory was first to show involvement of CC chemokines in BrCa. In this study, using ONCOMINE, TCGA, bc-GenExMiner and KMplotter, we examined the association of CC chemokines in BrCa outcomes and disparity. We show over-expression of CCL5, -7, -11, -17, -20, -22 and -25 in BrCa tissues. High mRNA levels of CCL7, -8, -17, -20 and -25 predicted a decrease in overall survival (OS). CCL7 and CCL8 were associated with decreased relapse-free survival. Expression of CCL17 and CCL25 was associated with decreased OS in AA. In EA, CCL8 was associated with decreased OS. Expression of CCL5, -7, -8, -17, -20 and -25 was highest in TNBC. Expression of CCL11 and CCL22 was associated with HER2. CCL7, -8, -17, -20 and -25 were elevated in AAs. In conclusion, our analysis suggests significant association of CC-chemokines in BrCa progression, OS and disparate disease outcome in AA compared to EA patients.
Collapse
|
24
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
25
|
MacDonald RJ, Yen A. CXCR5 overexpression in HL-60 cells enhances chemotaxis toward CXCL13 without anticipated interaction partners or enhanced MAPK signaling. In Vitro Cell Dev Biol Anim 2018; 54:725-735. [PMID: 30276608 DOI: 10.1007/s11626-018-0293-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/06/2018] [Indexed: 01/09/2023]
Abstract
CXCR5 is a serpentine receptor implicated in cell migration in lymphocytes and differentiation in leukocytes. It causes MAPK pathway activation and has known membrane partners for signaling. CXCR5 mRNA is reportedly expressed in neutrophils following isolation, but its role in this cellular context is unknown. CXCR5 is also expressed in HL-60 cells, a human acute myeloid leukemia line, following treatment with all-trans retinoic acid, which induces differentiation toward a neutrophil-like state. CXCR5 is necessary for this process; differentiation was crippled in CXCR5 knockout cells and enhanced in cells ectopically expressing it. Since CXCR5 has various membrane protein partners, we investigated whether CXCR5-driven all-trans retinoic acid-induced differentiation depends on its association with such partners. Pursuing this, we generated HL-60 cells overexpressing the protein. We found that CXCR5 drove migration toward its ligand, CXCL13, and probed for interactions with several candidates using flow cytometry-based Förster resonance energy transfer. Surprisingly, we did not detect interactions with any candidates, including three reported in other cellular contexts. Additionally, we observed no significant changes in all-trans retinoic acid-induced differentiation; this may be due to the stoichiometry of CXCR5 and partner receptors or CXCL13. The anticipated membrane partnerings were surprisingly apparently unnecessary for downstream CXCR5 signaling and all-trans retinoic acid-induced differentiation.
Collapse
Affiliation(s)
- Robert J MacDonald
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Veterinary Research Tower T4008A, Box 11, Ithaca, NY, 14853, USA
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Veterinary Research Tower T4008A, Box 11, Ithaca, NY, 14853, USA.
| |
Collapse
|
26
|
Staal J, Beyaert R. Inflammation and NF-κB Signaling in Prostate Cancer: Mechanisms and Clinical Implications. Cells 2018; 7:E122. [PMID: 30158439 PMCID: PMC6162478 DOI: 10.3390/cells7090122] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is a highly prevalent form of cancer that is usually slow-developing and benign. Due to its high prevalence, it is, however, still the second most common cause of death by cancer in men in the West. The higher prevalence of prostate cancer in the West might be due to elevated inflammation from metabolic syndrome or associated comorbidities. NF-κB activation and many other signals associated with inflammation are known to contribute to prostate cancer malignancy. Inflammatory signals have also been associated with the development of castration resistance and resistance against other androgen depletion strategies, which is a major therapeutic challenge. Here, we review the role of inflammation and its link with androgen signaling in prostate cancer. We further describe the role of NF-κB in prostate cancer cell survival and proliferation, major NF-κB signaling pathways in prostate cancer, and the crosstalk between NF-κB and androgen receptor signaling. Several NF-κB-induced risk factors in prostate cancer and their potential for therapeutic targeting in the clinic are described. A better understanding of the inflammatory mechanisms that control the development of prostate cancer and resistance to androgen-deprivation therapy will eventually lead to novel treatment options for patients.
Collapse
Affiliation(s)
- Jens Staal
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
27
|
Signaling regulation and role of filamin A cleavage in Ca2+-stimulated migration of androgen receptor-deficient prostate cancer cells. Oncotarget 2018; 8:3840-3853. [PMID: 27206800 PMCID: PMC5354799 DOI: 10.18632/oncotarget.9472] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/24/2016] [Indexed: 01/05/2023] Open
Abstract
Ca2+, a ubiquitous cellular signal, and filamin A, an actin-binding protein, play an important role in the regulation of cell adhesion, shape and motility. Using transwell filters to analyze cell migration, we found that extracellular Ca2+ (Cao2+) promotes the migration of androgen receptor (AR)-deficient and highly metastatic prostate cancer cell lines (DU145 and PC-3) compared to AR-positive and relatively less metastatic prostate cancer cells (LNCaP). Furthermore, we found that expression of filamin A is up-regulated in DU145 and PC-3 cells, and that Cao2+ significantly induces the cleavage of filamin A. Silencing expression of Ca2+-sensing receptor (CaR) and p115RhoGEF, and treating with leupeptin, a protease inhibitor, and ALLM, a calpain specific inhibitor, we further demonstrate that Cao2+-induced filamin A cleavage occurs via a CaR- p115RhoGEF-calpain dependent pathway. Our data show that Cao2+ via CaR- mediated signaling induces filamin A cleavage and promotes the migration in AR-deficient and highly metastatic prostate cancer cells.
Collapse
|
28
|
Nguyen L, Masouminia M, Mendoza A, Samadzadeh S, Tillman B, Morgan T, French B, French S. Alcoholic hepatitis versus non-alcoholic steatohepatitis: Levels of expression of some proteins involved in tumorigenesis. Exp Mol Pathol 2018; 104:45-49. [PMID: 29307797 DOI: 10.1016/j.yexmp.2017.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 12/31/2017] [Indexed: 12/31/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is commonly associated with obesity, type 2 diabetes, and/or hypertriglyceridemia, while alcoholic steatohepatitis (ASH) is associated with alcohol abuse. Both NASH and ASH patients can develop cirrhosis and hepatocellular carcinoma (HCC) if left untreated. However, the rate of tumorigenesis in NASH and ASH appears to be different. Individuals with NASH progress to HCC at a rate of 0.5% annually (Lindenmeyer and McCullough, 2018), when individuals with ASH progress to HCC at a rate of 3-10% annually (Schwartz and Reinus, 2012). Thus, the objective of our study is to determine if there are differences in NASH versus ASH in the levels of different proteins expressed involved in cancer development. The method used was measuring the proteins expressed in liver biopsied sections from NASH and ASH patients using immunohistochemical staining with fluorescent antibodies and then quantitating the fluorescence intensity morphometrically. The 20 proteins tested are parts of the Ingenuity Canonical Pathway of Molecular Mechanisms of Cancer and include: RAP2B, NAIP, FYN, PAK6, SUV39H1, GNAI1, BAX, E2F3, CKDN2B, BAK1, BCL2, DIABLO, RASGRF2, GNA15, PIK3CB, BRCA1, MAP2K1, BIRC3, CDK2, and ATM. In ASH, the proteins that showed upregulated levels of expression were SUV39H1, E2F3, BCL2, BAK1, BIRC3, and GNAI1. In NASH, the proteins that showed upregulated levels of expression were BAK1 and GNAI1 and the protein that showed downregulated level of expression was BCL2. Additionally, levels of expression for SUV39H1, E2F3, BCL2, BAK1, BIRC3, and GNAI1 were significant upregulated in ASH compared to NASH. These results showed significant differences in ASH compared to normal liver, and significant differences in ASH compared to NASH. Thus, we conclude that there are more proteins involved in tumorigenesis in ASH compared to NASH and in ASH compared to normal liver, which is consistent with the known tumor development rate in ASH and NASH.
Collapse
Affiliation(s)
- Luan Nguyen
- Harbor-UCLA Medical Center, Torrance, CA, United States.
| | | | | | | | | | | | | | - Samuel French
- Harbor-UCLA Medical Center, Torrance, CA, United States
| |
Collapse
|
29
|
Protein Kinase C Epsilon Cooperates with PTEN Loss for Prostate Tumorigenesis through the CXCL13-CXCR5 Pathway. Cell Rep 2017; 19:375-388. [PMID: 28402859 DOI: 10.1016/j.celrep.2017.03.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/01/2017] [Accepted: 03/13/2017] [Indexed: 11/22/2022] Open
Abstract
PKCε, an oncogenic member of the PKC family, is aberrantly overexpressed in epithelial cancers. To date, little is known about functional interactions of PKCε with other genetic alterations, as well as the effectors contributing to its tumorigenic and metastatic phenotype. Here, we demonstrate that PKCε cooperates with the loss of the tumor suppressor Pten for the development of prostate cancer in a mouse model. Mechanistic analysis revealed that PKCε overexpression and Pten loss individually and synergistically upregulate the production of the chemokine CXCL13, which involves the transcriptional activation of the CXCL13 gene via the non-canonical nuclear factor κB (NF-κB) pathway. Notably, targeted disruption of CXCL13 or its receptor, CXCR5, in prostate cancer cells impaired their migratory and tumorigenic properties. In addition to providing evidence for an autonomous vicious cycle driven by PKCε, our studies identified a compelling rationale for targeting the CXCL13-CXCR5 axis for prostate cancer treatment.
Collapse
|
30
|
Thurgood LA, Chataway TK, Lower KM, Kuss BJ. From genome to proteome: Looking beyond DNA and RNA in chronic lymphocytic leukemia. J Proteomics 2017; 155:73-84. [PMID: 28069558 DOI: 10.1016/j.jprot.2017.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/11/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
Abstract
Chronic lymphocytic leukemia (CLL) remains the most common leukemia in the Western world. Whilst its disease course is extremely heterogeneous (ranging from indolent to aggressive), current methods are unable to accurately predict the clinical journey of each patient. There is clearly a pressing need for both improved prognostication and treatment options for patients with this disease. Whilst molecular studies have analyzed both genetic mutations and gene expression profiles of these malignant B-cells, and as a result have shed light on the pathogenesis of CLL, proteomic studies have been largely overlooked to date. This review summarizes our current knowledge of the proteomics of CLL, and discusses some of the issues in CLL proteomic research, such as reproducibility and data interpretation. In addition, we look ahead to how proteomics may significantly help in the development of a successful treatment for this currently incurable disease.
Collapse
Affiliation(s)
- Lauren A Thurgood
- Department of Haematology and Genetic Pathology, Flinders University, Adelaide, South Australia, Australia.
| | - Tim K Chataway
- Department of Physiology, Flinders University, Adelaide, South Australia, Australia
| | - Karen M Lower
- Department of Haematology and Genetic Pathology, Flinders University, Adelaide, South Australia, Australia
| | - Bryone J Kuss
- Department of Haematology and Genetic Pathology, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
31
|
King J, Mir H, Singh S. Association of Cytokines and Chemokines in Pathogenesis of Breast Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:113-136. [DOI: 10.1016/bs.pmbts.2017.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Conley-LaComb MK, Semaan L, Singareddy R, Li Y, Heath EI, Kim S, Cher ML, Chinni SR. Pharmacological targeting of CXCL12/CXCR4 signaling in prostate cancer bone metastasis. Mol Cancer 2016; 15:68. [PMID: 27809841 PMCID: PMC5093938 DOI: 10.1186/s12943-016-0552-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/20/2016] [Indexed: 11/18/2022] Open
Abstract
Background The CXCL12/CXCR4 axis transactivates HER2 and promotes intraosseous tumor growth. To further explore the transactivation of HER2 by CXCL12, we investigated the role of small GTP protein Gαi2 in Src and HER2 phosphorylation in lipid raft membrane microdomains and the significance of CXCR4 in prostate cancer bone tumor growth. Methods We used a variety of methods such as lipid raft isolation, invasion assays, an in vivo model of intratibial tumor growth, bone histomorphometry, and immunohistochemistry to determine the role of CXCR4 signaling in lipid raft membrane microdomains and effects of targeting of CXCR4 for bone tumor growth. Results We determined that (a) CXCL12/CXCR4 transactivation of EGFR and HER2 is confined to lipid raft membrane microdomains, (b) CXCL12 activation of HER2 and Src is mediated by small GTP proteins in lipid rafts, (c) inhibition of the CXCL12/CXCR4 axis through plerixafor abrogates the initial establishment of tumor growth without affecting the growth of established bone tumors, and (d) inhibition of EGFR signaling through gefitinib leads to inhibition of established bone tumor growth. Conclusions These data suggest that lipid raft membrane microdomains are key sites for CXCL12/CXCR4 transactivation of HER2 via small GTP binding protein Gαi2 and Src kinase. The initial establishment of prostate cancer is supported by the endosteal niche, and blocking the CXCL12/CXCR4 axis of this niche along with its downstream signaling severely compromises initial establishment of tumors in the bone microenvironment, whereas expanding bone tumors are sensitive only to the members of growth factor receptor inhibition. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0552-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Katie Conley-LaComb
- Department of Urology, Wayne State University, School of Medicine, 9245 Scott Hall, 540 E. Canfield Avenue, Detroit, MI, 48201, USA
| | - Louie Semaan
- Department of Urology, Wayne State University, School of Medicine, 9245 Scott Hall, 540 E. Canfield Avenue, Detroit, MI, 48201, USA
| | - Rajareddy Singareddy
- Department of Urology, Wayne State University, School of Medicine, 9245 Scott Hall, 540 E. Canfield Avenue, Detroit, MI, 48201, USA
| | - Yanfeng Li
- Department of Urology, Wayne State University, School of Medicine, 9245 Scott Hall, 540 E. Canfield Avenue, Detroit, MI, 48201, USA
| | - Elisabeth I Heath
- Department of Oncology, Wayne State University, School of Medicine, 9245 Scott Hall, 540 E. Canfield Avenue, Detroit, MI, 48201, USA
| | - Seongho Kim
- Department of Oncology, Wayne State University, School of Medicine, 9245 Scott Hall, 540 E. Canfield Avenue, Detroit, MI, 48201, USA.,Biostatics Core, Karmanos Cancer Institute, Wayne State University, School of Medicine, 9245 Scott Hall, 540 E. Canfield Avenue, Detroit, MI, 48201, USA
| | - Michael L Cher
- Department of Urology, Wayne State University, School of Medicine, 9245 Scott Hall, 540 E. Canfield Avenue, Detroit, MI, 48201, USA.,Department of Pathology, Wayne State University, School of Medicine, 9245 Scott Hall, 540 E. Canfield Avenue, Detroit, MI, 48201, USA.,Department of Oncology, Wayne State University, School of Medicine, 9245 Scott Hall, 540 E. Canfield Avenue, Detroit, MI, 48201, USA
| | - Sreenivasa R Chinni
- Department of Urology, Wayne State University, School of Medicine, 9245 Scott Hall, 540 E. Canfield Avenue, Detroit, MI, 48201, USA. .,Department of Pathology, Wayne State University, School of Medicine, 9245 Scott Hall, 540 E. Canfield Avenue, Detroit, MI, 48201, USA. .,Department of Oncology, Wayne State University, School of Medicine, 9245 Scott Hall, 540 E. Canfield Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
33
|
Assinder SJ, Davies K, Surija J, Liu-Fu F. Oxytocin differentially effects 3β-hydroxysteroid dehydrogenase and 5α-reductase activities in prostate cancer cell lines. Peptides 2015. [PMID: 26211892 DOI: 10.1016/j.peptides.2015.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is known that oxytocin stimulates steroidogenesis in several organs by modulating activity of 3β-hydroxysteroid dehydrogenases (HSD3B) and steroid 5α-reductases (SRD5A). However, this has not been established in prostate cancer where these enzymes, key to local production of androgens, are increased. Analysis of both HSD3B and SRD5A activities using a live cell in situ colourimetric assay demonstrated that in PC-3 cells HSD3B activity was significantly increased by oxytocin whilst SRD5A activity was unchanged. This was confirmed in ELISA based assays of conversion of pregnenolone to progesterone and testosterone to dihydrotestosterone in cell lysates following treatment. In contrast, oxytocin significantly inhibited HSD3B activity in LNCaPs, but significantly increased activity of SRD5A, as confirmed by ELISA assays. Analysis of both cell lines by microarray and qRT-PCR determined that these changes were not due to altered gene transcription. This study demonstrates differential effects of oxytocin on the activities of key de novo steroidogenic enzymes in prostate cancer cells.
Collapse
Affiliation(s)
- Stephen J Assinder
- Disciplines of Physiology, School of Medical Sciences and Bosch Institute, University of Sydney, NSW 2006, Australia.
| | - Kathryn Davies
- Disciplines of Physiology, School of Medical Sciences and Bosch Institute, University of Sydney, NSW 2006, Australia
| | - Jonathan Surija
- Disciplines of Physiology, School of Medical Sciences and Bosch Institute, University of Sydney, NSW 2006, Australia
| | - Frank Liu-Fu
- Disciplines of Physiology, School of Medical Sciences and Bosch Institute, University of Sydney, NSW 2006, Australia
| |
Collapse
|
34
|
Expression and functional role of orphan receptor GPR158 in prostate cancer growth and progression. PLoS One 2015; 10:e0117758. [PMID: 25693195 PMCID: PMC4333349 DOI: 10.1371/journal.pone.0117758] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/23/2014] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the second-leading cause of cancer-related mortality, after lung cancer, in men from developed countries. In its early stages, primary tumor growth is dependent on androgens, thus generally can be controlled by androgen deprivation therapy (ADT). Eventually however, the disease progresses to castration-resistant prostate cancer (CRPC), a lethal form in need of more effective treatments. G-protein coupled receptors (GPCRs) comprise a large clan of cell surface proteins that have been implicated as therapeutic targets in PCa growth and progression. The findings reported here provide intriguing evidence of a role for the newly characterized glutamate family member GPR158 in PCa growth and progression. We found that GPR158 promotes PCa cell proliferation independent of androgen receptor (AR) functionality and that this requires its localization in the nucleus of the cell. This suggests that GPR158 acts by mechanisms different from other GPCRs. GPR158 expression is stimulated by androgens and GPR158 stimulates AR expression, implying a potential to sensitize tumors to low androgen conditions during ADT via a positive feedback loop. Further, we found GPR158 expression correlates with a neuroendocrine (NE) differentiation phenotype and promotes anchorage-independent colony formation implying a role for GPR158 in therapeutic progression and tumor formation. GPR158 expression was increased at the invading front of prostate tumors that formed in the genetically defined conditional Pten knockout mouse model, and co-localized with elevated AR expression in the cell nucleus. Kaplan-Meier analysis on a dataset from the Memorial Sloan Kettering cancer genome portal showed that increased GPR158 expression in tumors is associated with lower disease-free survival. Our findings strongly suggest that pharmaceuticals targeting GPR158 activities could represent a novel and innovative approach to the prevention and management of CRPC.
Collapse
|
35
|
Yang L, Gao L, Chen Y, Tang Z, Zhu Y, Han P, Li X, Wei Q. The Differential Expression and Function of the Inflammatory Chemokine Receptor CXCR5 in Benign Prostatic Hyperplasia and Prostate Cancer. Int J Med Sci 2015; 12:853-61. [PMID: 26640404 PMCID: PMC4643075 DOI: 10.7150/ijms.11713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/09/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Chemokine and chemokine receptors could have played an important role in tumor angiogenesis and distant metastasis. The mechanism of inflammation, expression and function of chemokines and chemokine receptors in benign prostatic hyperplasia (BPH) and prostate cancer (PCa) remain unclear. The purpose of present study is to detect differential expression and function of chemokines and chemokine receptors (CCRs) in BPH and PCa. METHODS BPH-1 and peripheral blood mononuclear cells (PBMCs) were co-cultured in Transwell chambers, and human normal prostate (NP) tissues, BPH tissues and PCa tissues were collected. CCR gene-chips were used to analyze and compare the differential expression of CCRs in BPH-1 cells, BPH-1 cells co-cultured with PBMCs, and LNCaP cells. The differential expression of CCRs was detected and validated using real-time PCR, western blotting and immunofluorescence (IF). The proliferation of LNCaP cells was also investigated after the knockdown CXCR5. RESULTS RESULTS of gene-chips indicated that there was low or no expression of CCR10, CXCR1, CXCR3 and CXCR5 in BPH-1 cells, whereas the expression of these receptors in BPH-1 cells was increased by PBMCs, and the expression was high in LNCaP cells. Furthermore, real-time PCR and western blotting confirmed the above mentioned results. IF verified no or low expression of CXCR1, CXCR3 and CXCR5 in NP tissues, low or moderate expression in BPH and high expression in PCa. However, CCR10 was not expressed at detectable levels in the three groups. The growth and proliferation of LNCaP cells was markedly inhibited after down-regulation of CXCR5. CONCLUSIONS PCa cells expressed high levels of CCR10, CXCR1, CXCR3 and CXCR5. Although BPH cells did not express these factors, their expression was up-regulated when BPH-1 cells were incubated with inflammatory cells. Finally, down-regulation of CXCR5 inhibited the growth and proliferation of LNCaP cells.
Collapse
Affiliation(s)
- Lu Yang
- Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, PR China
| | - Liang Gao
- Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, PR China
| | - Yongji Chen
- Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, PR China
| | - Zhuang Tang
- Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, PR China
| | - Yuchun Zhu
- Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, PR China
| | - Ping Han
- Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, PR China
| | - Xiang Li
- Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, PR China
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
36
|
Zhou J, Xiang Y, Yoshimura T, Chen K, Gong W, Huang J, Zhou Y, Yao X, Bian X, Wang JM. The role of chemoattractant receptors in shaping the tumor microenvironment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:751392. [PMID: 25110692 PMCID: PMC4119707 DOI: 10.1155/2014/751392] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/17/2014] [Indexed: 12/13/2022]
Abstract
Chemoattractant receptors are a family of seven transmembrane G protein coupled receptors (GPCRs) initially found to mediate the chemotaxis and activation of immune cells. During the past decades, the functions of these GPCRs have been discovered to not only regulate leukocyte trafficking and promote immune responses, but also play important roles in homeostasis, development, angiogenesis, and tumor progression. Accumulating evidence indicates that chemoattractant GPCRs and their ligands promote the progression of malignant tumors based on their capacity to orchestrate the infiltration of the tumor microenvironment by immune cells, endothelial cells, fibroblasts, and mesenchymal cells. This facilitates the interaction of tumor cells with host cells, tumor cells with tumor cells, and host cells with host cells to provide a basis for the expansion of established tumors and development of distant metastasis. In addition, many malignant tumors of the nonhematopoietic origin express multiple chemoattractant GPCRs that increase the invasiveness and metastasis of tumor cells. Therefore, GPCRs and their ligands constitute targets for the development of novel antitumor therapeutics.
Collapse
Affiliation(s)
- Jiamin Zhou
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Endoscopic Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi Xiang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Teizo Yoshimura
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Keqiang Chen
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Jian Huang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ye Zhou
- Department of Gastric Cancer and Soft Tissue Surgery, Fudan University Cancer Center, Shanghai 200032, China
| | - Xiaohong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ji Ming Wang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
37
|
Di Meo S, Airoldi I, Sorrentino C, Zorzoli A, Esposito S, Di Carlo E. Interleukin-30 expression in prostate cancer and its draining lymph nodes correlates with advanced grade and stage. Clin Cancer Res 2013; 20:585-94. [PMID: 24277453 DOI: 10.1158/1078-0432.ccr-13-2240] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The interleukin (IL)-27 cytokine subunit p28, also called IL-30, has been recognized as a novel immunoregulatory mediator endowed with its own functions. These are currently the subject of discussion in immunology, but completely unexplored in cancer biology. We set out to investigate the role of IL-30 in prostate carcinogenesis and its effects on human prostate cancer (hPCa) cells. EXPERIMENTAL DESIGN IL-30 expression, as visualized by immunohistochemistry and real-time reverse transcriptase PCR on prostate and draining lymph nodes from 125 patients with prostate cancer, was correlated with clinicopathologic data. IL-30 regulation of hPCa cell viability and expression of selected gene clusters was tested by flow cytometry and PCR array. RESULTS IL-30, absent in normal prostatic epithelia, was expressed by cancerous epithelia with Gleason ≥ 7% of 21.3% of prostate cancer stage I to III and 40.9% of prostate cancer stage IV. IL-30 expression by tumor infiltrating leukocytes (T-ILK) was higher in stage IV that in stage I to III prostate cancer (P = 0.0006) or in control tissue (P = 0.0011). IL-30 expression in prostate draining lymph nodes (LN)-ILK was higher in stage IV than in stage I to III prostate cancer (P = 0.0031) or in control nodes (P = 0.0023). The main IL-30 sources were identified as CD68(+) macrophages, CD33(+)/CD11b(+) myeloid cells, and CD14(+) monocytes. In vitro, IL-30 stimulated proliferation of hPCa cells and also downregulated CCL16/LEC, TNFSF14/LIGHT, chemokine-like factor (CKLF), and particularly CKLF-like MARVEL transmembrane domain containing 3 (CMTM3) and greatly upregulated ChemR23/CMKLR. CONCLUSIONS We provide the first evidence that IL-30 is implicated in prostate cancer progression because (i) its expression by prostate cancer or T- and LN-ILK correlates with advanced disease grade and stage; and (ii) IL-30 exerts protumor activity in hPCa cells.
Collapse
Affiliation(s)
- Serena Di Meo
- Authors' Affiliations: Department of Medicine and Sciences of Aging, Section of Anatomic Pathology and Molecular Medicine; Ce.S.I. Aging Research Center, "G. d'Annunzio" University Foundation, Chieti; and Laboratory of Oncology, Istituto Giannina Gaslini, Genova, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Boto T, Alcorta E. Toward identifying specific roles for G-protein β and γ subunit variants in olfactory reception. Front Cell Neurosci 2013; 7:114. [PMID: 23882185 PMCID: PMC3713392 DOI: 10.3389/fncel.2013.00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 06/28/2013] [Indexed: 11/25/2022] Open
Affiliation(s)
- Tamara Boto
- Departamento de Biologia Funcional (Genetica), Facultad de Medicina, Universidad de Oviedo Oviedo, Spain ; Department of Neuroscience, The Scripps Research Institute Jupiter, FL, USA
| | | |
Collapse
|