1
|
Li S, Zeng T, Wu Z, Huang J, Cao X, Liu Y, Bai S, Chen Q, Li C, Lu C, Yang H. DNA Tetrahedron-Driven Multivalent Proteolysis-Targeting Chimeras: Enhancing Protein Degradation Efficiency and Tumor Targeting. J Am Chem Soc 2025; 147:2168-2181. [PMID: 39749585 DOI: 10.1021/jacs.4c16438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Proteolysis-targeting chimeras (PROTACs) are dual-functional molecules composed of a protein of interest (POI) ligand and an E3 ligase ligand connected by a linker, which can recruit POI and E3 ligases simultaneously, thereby inducing the degradation of POI and showing great potential in disease treatment. A challenge in developing PROTACs is the design of linkers and the modification of ligands to establish a multifunctional platform that enhances degradation efficiency and antitumor activity. As a programmable and modifiable nanomaterial, DNA tetrahedron can precisely assemble and selectively recognize molecules and flexibly adjust the distance between molecules, making them ideal linkers. Herein, we developed a multivalent PROTAC based on a DNA tetrahedron, named AS-TD2-PRO. Using DNA tetrahedron as a linker, we combined modules targeting tumor cells, recognizing E3 ligases, and multiple POI together. We took the undruggable target protein signal transducer and activator of transcription 3 (STAT3), associated with the etiology and progression in a variety of malignant tumors, as an example in this study. AS-TD2-PRO with two STAT3 recognition modules demonstrated good potential in enhancing tumor-specific targeting and degradation efficiency compared to traditional bivalent PROTACs. Furthermore, in a mouse tumor model, the superior therapeutic activity of AS-TD2-PRO was observed. Overall, DNA tetrahedron-driven multivalent PROTACs both serve as a proof of principle for multifunctional PROTAC design and introduce a promising avenue for cancer treatment strategies.
Collapse
Affiliation(s)
- Shiqing Li
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Tao Zeng
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Zhixing Wu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jiabao Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Xiuping Cao
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yana Liu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shiyan Bai
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Chunsen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Chunhua Lu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
- School of Medicine, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Huanghao Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
- School of Medicine, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
2
|
Hu T, Wang G, Wang D, Deng Y, Wang W. m6A methylation modification: Potential pathways to suppress osteosarcoma metastasis. Int Immunopharmacol 2025; 145:113759. [PMID: 39662272 DOI: 10.1016/j.intimp.2024.113759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
Osteosarcoma is a highly aggressive malignant bone tumor prone to metastasis, and its metastatic process is one of the main reasons for treatment failure and poor prognosis. Recent studies have demonstrated that modification of m6A methylation plays an important role in osteosarcoma metastasis, influencing both invasion and metastasis through various signaling pathways. Therefore, clarification of the specific effects of m6A methylation modification in osteosarcoma may reveal ways to improve the prognosis of osteosarcoma patients. The roles of various components involved in the m6A methylation modification process in osteosarcoma have been investigated, with studies focusing more on their effects than on their mechanisms. In this review, we focus on the interactions between the "writers," "erasers," and "readers" of m6A methylation and tumor metastasis-related factors to enhance the understanding of osteosarcoma and m6A methylation modification, with the aim of identifying clinical diagnostic biomarkers and potential therapeutic targets for osteosarcoma metastasis.
Collapse
Affiliation(s)
- Tianrui Hu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Guowei Wang
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Dong Wang
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| | - Weiguo Wang
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
3
|
Guo Z, Chen E, Xie X, Guo Y, Zhang M, Zhu Y, Wang Y, Fang F, Yan L, Liu X. Flll32, a curcumin analog, improves adipose tissue thermogenesis. Biochem Biophys Res Commun 2024; 737:150919. [PMID: 39486136 DOI: 10.1016/j.bbrc.2024.150919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/17/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Adipose tissue is a key regulator of systemic energy homeostasis and improving adipose tissue function provides a brand-new theoretical reference for the prevention and treatment of obesity. FLLL32, a curcumin analog, can hinder various carcinogenic processes, however, its role in adipose tissue has not been fully elucidated. In this study, we observed that FLLL32 treatment significantly improved cold intolerance and reduced white adipose tissue (WAT) adipocyte size in mice, but had no effect on body weight and adipose tissues weight. Furthermore, FLLL32 treatment upregulated the expression level of uncoupling protein 1 and downregulated the expression level of peroxisome proliferator-activated receptor gamma in adipose tissue. Additionally, FLLL32 promoted the mRNA level of transferrin receptor protein 1, a key iron transporter on the cell membrane, and the lipid peroxidation in inguinal WAT. Finally, FLLL32 significantly inhibited the differentiation and maturation of preadipocytes. In summary, our results demonstrated that FLLL32 plays a crucial role in regulating adipose tissue function.
Collapse
Affiliation(s)
- Zeyu Guo
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Enhui Chen
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xianghong Xie
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yanfang Guo
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Minglong Zhang
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yinghan Zhu
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yiting Wang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Fude Fang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Li Yan
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Xiaojun Liu
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
4
|
Rodrigues JA, Pires BRB, de Amorim ISS, Siqueira PB, de Sousa Rodrigues MM, de Souza da Fonseca A, Panis C, Mencalha AL. STAT3 Regulates the Redox Profile in MDA-MB-231 Breast Cancer Cells. Cell Biochem Biophys 2024; 82:3507-3516. [PMID: 39033092 DOI: 10.1007/s12013-024-01439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Unbalanced redox status and constitutive STAT3 activation are related to several aspects of tumor biology and poor prognosis, including metastasis and drug resistance. The triple-negative breast cancer (TNBC) is listed as the most aggressive and exhibits the worst prognosis among the breast cancer subtypes. Although the mechanism of reactive oxygen species (ROS) generation led to STAT3 activation is described, there is no data concerning the STAT3 influence on redox homeostasis in TNBC. To address the role of STAT3 signaling in redox balance, we inhibited STAT3 in TNBC cells and investigated its impact on total ROS levels, contents of hydroperoxides, nitric oxide (NO), and total glutathione (GSH), as well as the expression levels of 3-nitrotyrosine (3NT), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and nuclear factor kappa B (NF-κB)/p65. Our results indicate that ROS levels depend on the STAT3 activation, while the hydroperoxide level remained unchanged, and NO and 3NT expression increased. Furthermore, GSH levels, Nrf2, and NF-κB/p65 protein levels are decreased in the STAT3-inhibited cells. Accordingly, TNBC patients' data from TCGA demonstrated that both STAT3 mRNA levels and STAT3 signature are correlated to NF-κB/p65 and Nrf2 signatures. Our findings implicate STAT3 in controlling redox balance and regulating redox-related genes' expression in triple-negative breast cancer.
Collapse
Affiliation(s)
- Juliana Alves Rodrigues
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Bruno Ricardo Barreto Pires
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Isis Salviano Soares de Amorim
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Priscyanne Barreto Siqueira
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Mariana Moreno de Sousa Rodrigues
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Carolina Panis
- Laboratório de Biologia de Tumores, Universidade Estadual do Oeste do Paraná, UNIOESTE, Francisco Beltrão, Paraná, 85605-010, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil.
| |
Collapse
|
5
|
Cursaro I, Milioni L, Eslami K, Sirous H, Carullo G, Gemma S, Butini S, Campiani G. Targeting N-Methyl-lysine Histone Demethylase KDM4 in Cancer: Natural Products Inhibitors as a Driving Force for Epigenetic Drug Discovery. ChemMedChem 2024:e202400682. [PMID: 39498961 DOI: 10.1002/cmdc.202400682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024]
Abstract
KDM4A-F enzymes are a subfamily of histone demethylases containing the Jumonji C domain (JmjC) using Fe(II) and 2-oxoglutarate for their catalytic function. Overexpression or deregulation of KDM4 enzymes is associated with various cancers, altering chromatin structure and causing transcriptional dysfunction. As KDM4 enzymes have been associated with malignancy, they may represent novel targets for developing innovative therapeutic tools to treat different solid and blood tumors. KDM4A is the isozyme most frequently associated with aggressive phenotypes of these tumors. To this aim, industrial and academic medicinal chemistry efforts have identified different KDM4 inhibitors. Industrial and academic efforts in medicinal chemistry have identified numerous KDM4 inhibitors, primarily pan-KDM4 inhibitors, though they often lack selectivity against other Jumonji family members. The pharmacophoric features of the inhibitors frequently include a chelating group capable of coordinating the catalytic iron within the active site of the KDM4 enzyme. Nonetheless, non-chelating compounds have also demonstrated promising inhibitory activity, suggesting potential flexibility in the drug design. Several natural products, containing monovalent or bivalent chelators, have been identified as KDM4 inhibitors, albeit with a micromolar inhibition potency. This highlights the potential for leveraging them as templates for the design and synthesis of new derivatives, exploiting nature's chemical diversity to pursue more potent and selective KDM4 inhibitors.
Collapse
Affiliation(s)
- Ilaria Cursaro
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Leonardo Milioni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Kourosh Eslami
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-7346, Iran
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-7346, Iran
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
6
|
Kabasawa M, Furuta M, Ibayashi Y, Kanemaru K, Kohatsu H, Kuramochi F, Yamatoya K, Nakata K, Nakamura Y, Tomoshige S, Ohgane K, Furuyama Y, Takasawa R, Kobayashi S, Sugawara F, Ikekita M, Kuramochi K. Plakevulin A induces apoptosis and suppresses IL-6-induced STAT3 activation in HL60 cells. Bioorg Med Chem Lett 2024; 110:129886. [PMID: 38996938 DOI: 10.1016/j.bmcl.2024.129886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
(+)-Plakevulin A (1), an oxylipin isolated from an Okinawan sponge Plakortis sp. inhibits enzymatic inhibition of DNA polymerases (pols) α and δ and exhibits cytotoxicity against murine leukemia (L1210) and human cervix carcinoma (KB) cell lines. However, the half-maximal inhibitory concentration (IC50) value for cytotoxicity significantly differed from those observed for the enzymatic inhibition of pols α and β, indicating the presence of target protein(s) other than pols. This study demonstrated cytotoxicity against human promyelocytic leukemia (HL60), human cervix epithelioid carcinoma (HeLa), mouse calvaria-derived pre-osteoblast (MC3T3-E1), and human normal lung fibroblast (MRC-5) cell lines. This compound had selectivity to cancer cells over normal ones. Among these cell lines, HL60 exhibited the highest sensitivity to (+)-plakevulin A. (+)-Plakevulin A induced DNA fragmentation and caspase-3 activation in HL60 cells, indicating its role in apoptosis induction. Additionally, hydroxysteroid 17-β dehydrogenase 4 (HSD17B4) was isolated from the HL60 lysate as one of its binding proteins through pull-down experiments using its biotinylated derivative and neutravidin-coated beads. Moreover, (+)-plakevulin A suppressed the activation of interleukin 6 (IL-6)-induced signal transducer and activator of transcription 3 (STAT3). Because the knockdown or inhibition of STAT3 induces apoptosis and HSD17B4 regulates STAT3 activation, (+)-plakevulin A may induce apoptosis in HL60 cell lines by suppressing STAT3 activation, potentially by binding to HSD17B4. The present findings provide valuable information for the mechanism of its action.
Collapse
Affiliation(s)
- Misaki Kabasawa
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Masateru Furuta
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yuuka Ibayashi
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kaori Kanemaru
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Haruki Kohatsu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Fumiyo Kuramochi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Kenji Yamatoya
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan; Laboratory of Genomic Function Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ward, Kawasaki 214-8571, Kanagawa, Japan
| | - Kazuya Nakata
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan; Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-0012, Japan
| | - Yoshikazu Nakamura
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Shusuke Tomoshige
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan; Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Kenji Ohgane
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan; Department of Chemistry, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Yuuki Furuyama
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ryoko Takasawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Susumu Kobayashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Fumio Sugawara
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Masahiko Ikekita
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kouji Kuramochi
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
7
|
Li X, Liu X, Yang F, Meng T, Li X, Yan Y, Xiao K. Mechanism of Dahuang Mudan Decotion in the treatment of colorectal cancer based on network pharmacology and experimental validation. Heliyon 2024; 10:e32136. [PMID: 38882337 PMCID: PMC11176830 DOI: 10.1016/j.heliyon.2024.e32136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Objective The objective of this study was to assess the pharmacological activity and therapeutic mechanism of Dahuang Mudan Decotion (DHMDD) for colorectal cancer using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS), network pharmacology and in vitro experiments. Methods The chemical components of DHMDD were identified by UPLC-MS. Network pharmacological analysis was utilized to screen the active ingredients and targets associated with DHMDD for colorectal cancer. Based on the results of network pharmacology, the potential mechanism of DHMDD on colorectal cancer predicted was experimentally studied and verified in vitro. Results DHMDD primarily exerts its effects on colorectal cancer through 52 active ingredients. AKT1, ESR1, HSP90AA1, JUN, PIK3CA, PIK3CB, PIK3R1, SRC, STAT3, TP53 were the top 10 targets. The top 10 ingredient nodes were Quercetin, Physcione, Pontigenin, Crysophanol, Linolenic acid, Piceatannol, Adenosine, Emodin, Sambunigrin, and Prunasin. The main compounds and the target proteins exhibited strong binding ability in molecular docking studies. The results of cell experiments demonstrated that DHMDD can inhibit the proliferation, invasion and migration of CRC cells through the PI3K/Akt pathway. Conclusion Through network pharmacology analysis and cell experiments, this study suggests that DHMDD can exert its therapeutic effects on colorectal cancer through a combination of multiple components and targets.
Collapse
Affiliation(s)
- Xinghua Li
- Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, PR China
| | - Xinyue Liu
- Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, PR China
- The Gynecology Department of Shanxi Provincial People' Hospital, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Fan Yang
- Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, PR China
| | - Tianwei Meng
- Heilongjiang University of Chinese Medicine, Harbin, 150040, PR China
| | - Xiang Li
- Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, PR China
| | - Yan Yan
- The Gynecology Department of Shanxi Provincial People' Hospital, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Keyuan Xiao
- Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, PR China
| |
Collapse
|
8
|
Kovář M, Šubr V, Běhalová K, Studenovský M, Starenko D, Kovářová J, Procházková P, Etrych T, Kostka L. Chemosensitization of tumors via simultaneous delivery of STAT3 inhibitor and doxorubicin through HPMA copolymer-based nanotherapeutics with pH-sensitive activation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 56:102730. [PMID: 38158146 DOI: 10.1016/j.nano.2023.102730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/13/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
We synthesized three novel STAT3 inhibitors (S3iD1-S3iD3) possessing oxoheptanoic residue enabling linkage to HPMA copolymer carrier via a pH-sensitive hydrazone bond. HPMA copolymer conjugates bearing doxorubicin (Dox) and our STAT3 inhibitors were synthesized to evaluate the anticancer effect of Dox and STAT3 inhibitor co-delivery into tumors. S3iD1-3 and their copolymer-bound counterparts (P-S3iD1-P-S3iD3) showed considerable in vitro cytostatic activities in five mouse and human cancer cell lines with IC50 ~0.6-7.9 μM and 0.7-10.9 μM, respectively. S3iD2 and S3iD3 were confirmed to inhibit the STAT3 signaling pathway. The combination of HPMA copolymer-bound Dox (P-Dox) and P-S3iD3 at the dosage showing negligible toxicity demonstrated significant antitumor activity in B16F10 melanoma-bearing mice and completely cured 2 out of 15 mice. P-Dox alone had a significantly lower therapeutic activity with no completely cured mice. Thus, polymer conjugates bearing STAT3 inhibitors may be used for the chemosensitization of chemorefractory tumors.
Collapse
Affiliation(s)
- M Kovář
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - V Šubr
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic
| | - K Běhalová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - M Studenovský
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic
| | - D Starenko
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - J Kovářová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - P Procházková
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - T Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic
| | - L Kostka
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic.
| |
Collapse
|
9
|
Sheet S, Jang SS, Kim JH, Park W, Kim D. A transcriptomic analysis of skeletal muscle tissues reveals promising candidate genes and pathways accountable for different daily weight gain in Hanwoo cattle. Sci Rep 2024; 14:315. [PMID: 38172605 PMCID: PMC10764957 DOI: 10.1038/s41598-023-51037-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
Cattle traits like average daily weight gain (ADG) greatly impact profitability. Selecting based on ADG considering genetic variability can lead to economic and genetic advancements in cattle breeding. This study aimed to unravel genetic influences on ADG variation in Hanwoo cattle at the skeletal muscle transcriptomic level. RNA sequencing was conducted on longissimus dorsi (LD), semimembranosus (SB), and psoas major (PM) muscles of 14 steers assigned to same feed, grouped by low (≤ 0.71 kg) and high (≥ 0.77 kg) ADG. At P ≤ 0.05 and log2fold > 1.5, the distinct pattern of gene expression was identified with 184, 172, and 210 differentially expressed genes in LD, SB, and PM muscles, respectively. Tissue-specific responses to ADG variation were evident, with myogenesis and differentiation associated JAK-STAT signaling pathway and prolactin signaling pathways enriched in LD and SB muscles, while adipogenesis-related PPAR signaling pathways were enriched in PM muscle. Key hub genes (AXIN2, CDKN1A, MYC, PTGS2, FZD5, SPP1) were upregulated and functionally significant in muscle growth and differentiation. Notably, DPP6, CDKN1A, and FZD5 emerged as possible candidate genes linked to ADG variation. These findings enhance our understanding of genetic factors behind ADG variation in Hanwoo cattle, illuminating skeletal muscle mechanisms influencing ADG.
Collapse
Affiliation(s)
- Sunirmal Sheet
- Animal Genomics and Bioinformatics Division, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Sun Sik Jang
- Hanwoo Research Institute, National Institute of Animal Science, RDA, Pyeongchang, 25342, Republic of Korea
| | - Jae Hwan Kim
- Animal Genomics and Bioinformatics Division, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Woncheoul Park
- Animal Genomics and Bioinformatics Division, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea.
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea.
| |
Collapse
|
10
|
Joshi P, Verma K, Kumar Semwal D, Dwivedi J, Sharma S. Mechanism insights of curcumin and its analogues in cancer: An update. Phytother Res 2023; 37:5435-5463. [PMID: 37649266 DOI: 10.1002/ptr.7983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 09/01/2023]
Abstract
Cancer is the world's second leading cause of mortality and one of the major public health problems. Cancer incidence and mortality rates remain high despite the great advancements in existing therapeutic, diagnostic, and preventive approaches. Therefore, a quest for less toxic and more efficient anti-cancer strategies is still at the forefront of the current research. Traditionally important, curcumin commonly known as a wonder molecule has received considerable attention as an anti-cancer, anti-inflammatory, and antioxidant candidate. However, limited water solubility and low bioavailability restrict its extensive utility in different pathological states. The investigators are making consistent efforts to develop newer strategies to overcome its limitations by designing different analogues with better pharmacokinetic and pharmacodynamic properties. The present review highlights the recent updates on curcumin and its analogues with special emphasis on various mechanistic pathways involved in anti-cancer activity. In addition, the structure-activity relationship of curcumin analogues has also been precisely discussed. This article will also provide key information for the design and development of newer curcumin analogues with desired pharmacokinetic and pharmacodynamic profiles and will provide in depth understanding of molecular pathways involved in the anti-cancer activities.
Collapse
Affiliation(s)
- Priyanka Joshi
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Deepak Kumar Semwal
- Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, Uttarakhand, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
11
|
El-Sayed SAES, El-Alfy ES, Baghdadi HB, Sayed-Ahmed MZ, Alqahtani SS, Alam N, Ahmad S, Ali MS, Igarashi I, Rizk MA. Antiparasitic activity of FLLL-32 against four Babesia species, B. bovis, B. bigemina, B. divergens and B. caballi, and one Theileria species, Theileria equi in vitro, and Babesia microti in mice. Front Pharmacol 2023; 14:1278451. [PMID: 38027032 PMCID: PMC10651744 DOI: 10.3389/fphar.2023.1278451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: FLLL-32, a synthetic analog of curcumin, is a potent inhibitor of STAT3's constitutive activation in a variety of cancer cells, and its anticancer properties have been demonstrated both in vitro and in vivo. It is also suggested that it might have other pharmacological activities including activity against different parasites. Aim: This study therefore investigated the in vitro antiparasitic activity of FLLL-32 against four pathogenic Babesia species, B. bovis, B. bigemina, B. divergens, and B. caballi, and one Theileria species, Theileria equi. In vivo anti-Babesia microti activity of FLLL-32 was also evaluated in mice. Methods: The FLLL-32, in the growth inhibition assay with a concentration range (0.005-50 μM), was tested for it's activity against these pathogens. The reverse transcription PCR (RT-PCR) assay was used to evaluate the possible effects of FLLL-32 treatment on the mRNA transcription of the target B. bovis genes including S-adenosylhomocysteine hydrolase and histone deacetylase. Results: The in vitro growth of B. bovis, B. bigemina, B. divergens, B. caballi, and T. equi was significantly inhibited in a dose-dependent manner (in all cases, p < 0.05). FLLL-32 exhibits the highest inhibitory effects on B. bovis growth in vitro, and it's IC50 value against this species was 9.57 μM. The RT-PCR results showed that FLLL-32 inhibited the transcription of the B. bovis S-adenosylhomocysteine hydrolase gene. In vivo, the FLLL-32 showed significant inhibition (p < 0.05) of B. microti parasitemia in infected mice with results comparable to that of diminazene aceturate. Parasitemia level in B. microti-infected mice treated with FLLL-32 from day 12 post infection (pi) was reduced to reach zero level at day 16 pi when compared to the infected non-treated mice. Conclusion: The present study demonstrated the antibabesial properties of FLLL-32 and suggested it's usage in the treatment of babesiosis especially when utilized in combination therapy with other antibabesial drugs.
Collapse
Affiliation(s)
- Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - El-Sayed El-Alfy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hanadi B. Baghdadi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohamed Z. Sayed-Ahmed
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Saad S. Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Nawazish Alam
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Sarfaraz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Md. Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamed Abdo Rizk
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
12
|
Hashemi M, Abbaszadeh S, Rashidi M, Amini N, Talebi Anaraki K, Motahhary M, Khalilipouya E, Harif Nashtifani A, Shafiei S, Ramezani Farani M, Nabavi N, Salimimoghadam S, Aref AR, Raesi R, Taheriazam A, Entezari M, Zha W. STAT3 as a newly emerging target in colorectal cancer therapy: Tumorigenesis, therapy response, and pharmacological/nanoplatform strategies. ENVIRONMENTAL RESEARCH 2023; 233:116458. [PMID: 37348629 DOI: 10.1016/j.envres.2023.116458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/11/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Colorectal cancer (CRC) ranks as the third most aggressive tumor globally, and it can be categorized into two forms: colitis-mediated CRC and sporadic CRC. The therapeutic approaches for CRC encompass surgical intervention, chemotherapy, and radiotherapy. However, even with the implementation of these techniques, the 5-year survival rate for metastatic CRC remains at a mere 12-14%. In the realm of CRC treatment, gene therapy has emerged as a novel therapeutic approach. Among the crucial molecular pathways that govern tumorigenesis, STAT3 plays a significant role. This pathway is subject to regulation by cytokines and growth factors. Once translocated into the nucleus, STAT3 influences the expression levels of factors associated with cell proliferation and metastasis. Literature suggests that the upregulation of STAT3 expression is observed as CRC cells progress towards metastatic stages. Consequently, elevated STAT3 levels serve as a significant determinant of poor prognosis and can be utilized as a diagnostic factor for cancer patients. The biological and malignant characteristics of CRC cells contribute to low survival rates in patients, as the upregulation of STAT3 prevents apoptosis and promotes pro-survival autophagy, thereby accelerating tumorigenesis. Furthermore, STAT3 plays a role in facilitating the proliferation of CRC cells through the stimulation of glycolysis and promoting metastasis via the induction of epithelial-mesenchymal transition (EMT). Notably, an intriguing observation is that the upregulation of STAT3 can mediate resistance to 5-fluorouracil, oxaliplatin, and other anti-cancer drugs. Moreover, the radio-sensitivity of CRC diminishes with increased STAT3 expression. Compounds such as curcumin, epigallocatechin gallate, and other anti-tumor agents exhibit the ability to suppress STAT3 and its associated pathways, thereby impeding tumorigenesis in CRC. Furthermore, it is worth noting that nanostructures have demonstrated anti-proliferative and anti-metastatic properties in CRC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Abbaszadeh
- Faculty of Medicine, Islamic Azad University Tonekabon Branch, Tonekabon, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nafisesadat Amini
- Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Ensi Khalilipouya
- Department of Radiology, Mahdiyeh Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sasan Shafiei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
| | - Rasoul Raesi
- Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Wenliang Zha
- Second Affiliated Hospital, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
13
|
Jaradat NJ, Alshaer W, Hatmal M, Taha MO. Discovery of new STAT3 inhibitors as anticancer agents using ligand-receptor contact fingerprints and docking-augmented machine learning. RSC Adv 2023; 13:4623-4640. [PMID: 36760267 PMCID: PMC9896621 DOI: 10.1039/d2ra07007c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
STAT3 belongs to a family of seven vital transcription factors. High levels of STAT3 are detected in several types of cancer. Hence, STAT3 inhibition is considered a promising therapeutic anti-cancer strategy. In this work, we used multiple docked poses of STAT3 inhibitors to augment training data for machine learning QSAR modeling. Ligand-Receptor Contact Fingerprints and scoring values were implemented as descriptor variables. Escalating docking-scoring consensus levels were scanned against orthogonal machine learners, and the best learners (Random Forests and XGBoost) were coupled with genetic algorithm and Shapley additive explanations (SHAP) to identify critical descriptors that determine anti-STAT3 bioactivity to be translated into pharmacophore model(s). Two successful pharmacophores were deduced and subsequently used for in silico screening against the National Cancer Institute (NCI) database. A total of 26 hits were evaluated in vitro for their anti-STAT3 bioactivities. Out of which, three hits of novel chemotypes, showed cytotoxic IC50 values in the nanomolar range (35 nM to 6.7 μM). However, two are potent dihydrofolate reductase (DHFR) inhibitors and therefore should have significant indirect STAT3 inhibitory effects. The third hit (cytotoxic IC50 = 0.44 μM) is purely direct STAT3 inhibitor (devoid of DHFR activity) and caused, at its cytotoxic IC50, more than two-fold reduction in the expression of STAT3 downstream genes (c-Myc and Bcl-xL). The presented work indicates that the concept of data augmentation using multiple docked poses is a promising strategy for generating valid machine learning models capable of discriminating active from inactive compounds.
Collapse
Affiliation(s)
- Nour Jamal Jaradat
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan Amman 11492 Jordan +962 6 5339649 +962 6 5355000 ext. 23305
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan Amman 11942 Jordan
| | - Mamon Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University P.O. Box 330127 Zarqa 13133 Jordan
| | - Mutasem Omar Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan Amman 11492 Jordan +962 6 5339649 +962 6 5355000 ext. 23305
| |
Collapse
|
14
|
Ashique S, Garg A, Singh V, Rai G, Mishra N, Soni ML, Kumar S, Madamsetty VS. Role of Block Copolymers in Colon Cancer. BLOCK CO-POLYMERIC NANOCARRIERS: DESIGN, CONCEPT, AND THERAPEUTIC APPLICATIONS 2023:181-209. [DOI: 10.1007/978-981-99-6917-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Reiszadeh-Jahromi S, Haddadi M, Mousavi P, Sanadgol N. Prophylactic effects of cucurbitacin B in the EAE Model of multiple sclerosis by adjustment of STAT3/IL-23/IL-17 axis and improvement of neuropsychological symptoms. Metab Brain Dis 2022; 37:2937-2953. [PMID: 36287356 DOI: 10.1007/s11011-022-01083-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 09/06/2022] [Indexed: 10/31/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous system. Although remarkable progress has been made in treating MS, current therapies are less effective in protecting against the progression of the disease. Since cucurbitacins have shown an extreme range of pharmacological properties, in this study, we aimed to investigate the prophylactic effect of cucurbitacin B (CuB) in the experimental MS model. Experimental autoimmune encephalomyelitis (EAE) induced by subcutaneous immunization of MOG35-55 in C57BL/6 mice. CuB interventions (0.5 and 1 mg/kg, i.p.) were performed every other day from the first day of EAE induction. Assessment of clinical scores and motor function, inflammatory responses, and microglial activation were assessed by qRT-PCR, western blotting, and immunohistochemical (IHC) analyses. CuB (1 mg/kg) significantly decreased the population of CD45+ (P < 0.01), CD11b+ (P < 0.01) and CD45+/CD11b+ (P < 0.05) cells in cortical lesions of EAE mice. In addition, activation of STAT3 (P < 0.001), expression of IL-17 A and IL-23 A (both mRNA and protein), and transcription of Iba-1 significantly decreased. On the contrary, CuB (1 mg/kg) significantly increased the transcription of MBP and Olig-2. Furthermore, a significant decrease in the severity of EAE (P < 0.05), and an improvement in motor function (P < 0.05) and coordination (P < 0.05) were observed after treatment with a high dose of CuB. Our results suggest that CuB may have a wide-ranging effect on autoimmune responses in MS via a reduction in STAT3 activation, microgliosis, and adaptation of the IL-23/IL-17 axis. Further studies are needed to investigate the exact effect of CuB in glial cells and its efficiency and bioavailability in other neuroinflammatory diseases.
Collapse
Affiliation(s)
| | - Mohammad Haddadi
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran.
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
16
|
Liu Z, Gao Z, Yang W, Zhang L, Xiao N, Qu D, Su Z, Xu K, Liu G, Wang Y, Ren Q, Yu S, Cheng Y, Zhou Y, Deng Q, Zhao Y, Wang Z, Yang H. A randomized, double-blind, single-dose, parallel phase I clinical trial to compare the bioequivalence, immunogenicity and safety of bevacizumab biosimilar and bevacizumab in healthy Chinese subjects. Expert Opin Drug Metab Toxicol 2022; 18:519-527. [PMID: 35961948 DOI: 10.1080/17425255.2022.2113382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Bevacizumab, a humanized monoclonal antibody against VEGF, can be used as a target therapy for colorectal cancer. A phase I clinical trial was conducted to compare the bioequivalence, immunogenicity and safety of bevacizumab biosimilar (Chia Tai Tianqing Pharmaceutical Group Co., Ltd.) and Bevacizumab (Roche Diagnostics GmbH) in healthy Chinese males. RESEARCH DESIGN & METHOD Healthy Chinese subjects (N = 98) were randomly divided into two groups. A single-dose bevacizumab biosimilar or Bevacizumab was given for per cycle. Plasma drug concentrations were detected by liquid chromatography-tandem mass spectrometry (LC-MC/MS) assay. We detected the levels of anti-drug antibody (ADA) to evaluate drug immunogenicity and the safety of drugs throughout the study. RESULTS The geometric mean ratios (GMRs) of AUC0-t, Cmax and AUC0-∞ for bevacizumab biosimilar and Bevacizumab were 96.27%, 93.69% and 97.01%, respectively. The 90% CIs were all within 80%-125%, meeting the bioequivalence standards. The levels of ADA were similar. In addition, the two drugs both demonstrated excellent safety in the trial. CONCLUSION This study showed that bevacizumab biosimilar and Bevacizumab had similar pharmacokinetics (PK) parameters and safety in healthy Chinese subjects. CLINICAL TRIAL REGISTRATION INFORMATION This trial was registered in ClinicalTrials.gov (Number: NCT05476341, date registered: 25, Jul 2022) and Drug Clinical Trial Registration and Information Disclosure Platform (Number: CTR20171308, date registered: 16, Nov 2017).
Collapse
Affiliation(s)
- Zhengzhi Liu
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Zhenyue Gao
- Department of clinical research center, Chia Tai Tianqing Pharmaceutical Group Co.,Ltd., Nanjing, China
| | - Wei Yang
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Lixiu Zhang
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Nan Xiao
- Department of clinical research center, Chia Tai Tianqing Pharmaceutical Group Co.,Ltd., Nanjing, China
| | - Dongmei Qu
- Ansiterui Medical Technology Consulting Co.,Ltd., Changchun, China
| | - Zhengjie Su
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Kaibo Xu
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Guangwen Liu
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yanli Wang
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Qing Ren
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Yu
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yang Cheng
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yannan Zhou
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Qiaohuan Deng
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yicheng Zhao
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Wang
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China.,Scientific Research Department, Changchun University of Chinese Medicine, Changchun, China
| | - Haimiao Yang
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
17
|
Joshi S, Sharabi A. Targeting myeloid-derived suppressor cells to enhance natural killer cell-based immunotherapy. Pharmacol Ther 2022; 235:108114. [DOI: 10.1016/j.pharmthera.2022.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/09/2022]
|
18
|
Yang Z, Cai Z, Yang C, Luo Z, Bao X. ALKBH5 regulates STAT3 activity to affect the proliferation and tumorigenicity of osteosarcoma via an m6A-YTHDF2-dependent manner. EBioMedicine 2022; 80:104019. [PMID: 35490460 PMCID: PMC9062761 DOI: 10.1016/j.ebiom.2022.104019] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022] Open
Abstract
Background N6-methyladenosine (m6A) is the most common and abundant mRNA modification and it plays crucial roles in many biological processes. However, as a key RNA demethylase, alkylation repair homolog protein 5 (ALKBH5) has not been well studied in human osteosarcoma. The present study sought to explore ALKBH5-mediated m6A modification and the underlying mechanisms in human osteosarcoma. Methods The expression of ALKBH5 and its correlation with clinicopathological features were examined by bioinformatics analysis and tissue microarrays. Cellular proliferation was detected by CCK8 assays. Cell cycle and apoptosis were analyzed by TUNEL and Flow cytometry assay. Finally, investigation of the regulatory mechanism of ALKBH5 in human osteosarcoma was performed by MeRIP assay, RNA-sequencing, dual luciferase reporter assay, RNA pull-down and RNA stability assay. Tumor xenograft models were established for in vivo experiments. Findings Our data showed that low expression of ALKBH5 was associated with worse overall survival for osteosarcoma patients. Reducing m6A mRNA levels in human osteosarcoma cells through ALKBH5 up-regulation lead to cell proliferation inhibition, cell apoptosis and cycle arrest. We identified SOCS3, a negative regulator of STAT3, as a downstream target of ALKBH5-mediated m6A modification. And the m6A modified SOCS3 mRNA was recognized by YTHDF2, which promotes the decay of SOCS3. Mechanistically, our data revealed that ALKBH5 inactivated STAT3 pathway by increasing SOCS3 expression via an m6A-YTHDF2-dependent manner. Interpretation M6A methylation is rising as a pathway affecting tumorigenicity and tumor progression. Our findings illuminate the clinical significance of ALKBH5-mediated m6A modification in human osteosarcoma and the regulatory mechanisms underlying tumor proliferation and growth, suggesting that ALKBH5 is a potential biomarker for treatment in human osteosarcoma. Funding This work was supported by and Science and Technology foundation of Hubei, China (Grant No.2017CFB762); the Tongji hospital foundation (Grant No.2201103013); and the National Natural Science Foudation of China (No.82002849).
Collapse
Affiliation(s)
- Zechuan Yang
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Orthopedics, Wuhan 430030, China
| | - Zhuo Cai
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Orthopedics, Wuhan 430030, China
| | - Caihong Yang
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Orthopedics, Wuhan 430030, China
| | - Zhengqiang Luo
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Orthopedics, Wuhan 430030, China.
| | - Xing Bao
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Orthopedics, Wuhan 430030, China.
| |
Collapse
|
19
|
Shi W, Yao X, Fu Y, Wang Y. Interferon‑α and its effects on cancer cell apoptosis (Review). Oncol Lett 2022; 24:235. [PMID: 35720476 PMCID: PMC9185151 DOI: 10.3892/ol.2022.13355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022] Open
Abstract
Interferon (IFN)-α is a cytokine that exhibits a wide range of biological activities and is used in various cancer treatments. It regulates numerous genes that serve roles in antiviral, antiproliferative and proapoptotic activities. For decades, one of the main aspects of clinical oncology has been the development of anticancer therapeutics that promote the effective elimination of cancer cells via apoptosis. However, the updated available information concerning IFN-α-induced cancer cell apoptosis needs to be assembled, so as to provide an improved theoretical reference for the basic scientific research and clinical treatment of malignant tumors. Therefore, the present review focuses on the potential effects of IFN-α in inducing cancer cell apoptosis. The biological characteristics of IFN-α, the apoptotic signaling pathways and molecular mechanisms of apoptosis caused by IFN-α are discussed in different types of cancer cells. The present review provided a comprehensive understanding of the effects of IFN-α on cancer cell apoptosis, which will aid in developing more efficient strategies to effectively control the progression of certain cancers.
Collapse
Affiliation(s)
- Weiye Shi
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Xu Yao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Yu Fu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Yingze Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| |
Collapse
|
20
|
Yue P, Zhu Y, Brotherton-Pleiss C, Fu W, Verma N, Chen J, Nakamura K, Chen W, Chen Y, Alonso-Valenteen F, Mikhael S, Medina-Kauwe L, Kershaw KM, Celeridad M, Pan S, Limpert AS, Sheffler DJ, Cosford NDP, Shiao SL, Tius MA, Lopez-Tapia F, Turkson J. Novel potent azetidine-based compounds irreversibly inhibit Stat3 activation and induce antitumor response against human breast tumor growth in vivo. Cancer Lett 2022; 534:215613. [PMID: 35276290 PMCID: PMC9867837 DOI: 10.1016/j.canlet.2022.215613] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 02/27/2022] [Indexed: 01/26/2023]
Abstract
Signal transducer and activator of transcription (Stat)3 is a valid anticancer therapeutic target. We have discovered a highly potent chemotype that amplifies the Stat3-inhibitory activity of lead compounds to levels previously unseen. The azetidine-based compounds, including H172 (9f) and H182, irreversibly bind to Stat3 and selectively inhibit Stat3 activity (IC50 0.38-0.98 μM) over Stat1 or Stat5 (IC50 > 15.8 μM) in vitro. Mass spectrometry detected the Stat3 cysteine peptides covalently bound to the azetidine compounds, and the key residues, Cys426 and Cys468, essential for the high potency inhibition, were confirmed by site-directed mutagenesis. In triple-negative breast cancer (TNBC) models, treatment with the azetidine compounds inhibited constitutive and ligand-induced Stat3 signaling, and induced loss of viable cells and tumor cell death, compared to no effect on the induction of Janus kinase (JAK)2, Src, epidermal growth factor receptor (EGFR), and other proteins, or weak effects on cells that do not harbor aberrantly-active Stat3. H120 (8e) and H182 as a single agent inhibited growth of TNBC xenografts, and H278 (hydrochloric acid salt of H182) in combination with radiation completely blocked mouse TNBC growth and improved survival in syngeneic models. We identify potent azetidine-based, selective, irreversible Stat3 inhibitors that inhibit TNBC growth in vivo.
Collapse
Affiliation(s)
- Peibin Yue
- Department of Medicine, Division of Medical Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angenes, CA, 90048, USA,Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Yinsong Zhu
- Department of Medicine, Division of Medical Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angenes, CA, 90048, USA,Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Christine Brotherton-Pleiss
- Cancer Biology Program, University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, HI, 96813, USA,Department of Chemistry, University of Hawaii, Manoa, 2545 McCarthy Mall, Honolulu, HI, 96825, USA
| | - Wenzhen Fu
- Cancer Biology Program, University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, HI, 96813, USA,Department of Chemistry, University of Hawaii, Manoa, 2545 McCarthy Mall, Honolulu, HI, 96825, USA
| | - Nagendra Verma
- Department of Medicine, Division of Medical Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angenes, CA, 90048, USA,Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Jasmine Chen
- Cancer Biology Program, University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, HI, 96813, USA
| | - Kayo Nakamura
- Department of Chemistry, University of Hawaii, Manoa, 2545 McCarthy Mall, Honolulu, HI, 96825, USA
| | - Weiliang Chen
- Department of Chemistry, University of Hawaii, Manoa, 2545 McCarthy Mall, Honolulu, HI, 96825, USA
| | - Yue Chen
- Department of Medicine, Division of Medical Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angenes, CA, 90048, USA,Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Felix Alonso-Valenteen
- Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA,Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Simoun Mikhael
- Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA,Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Lali Medina-Kauwe
- Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA,Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Kathleen M. Kershaw
- Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA,Department of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Maria Celeridad
- Cell and Molecular Biology of Cancer Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Songqin Pan
- W. M. Keck Proteomics Laboratory, University of California, Riverside, CA, 92521, USA
| | - Allison S. Limpert
- Cell and Molecular Biology of Cancer Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Douglas J. Sheffler
- Cell and Molecular Biology of Cancer Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Nicholas D. P. Cosford
- Cell and Molecular Biology of Cancer Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Stephen L. Shiao
- Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA,Department of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Marcus A. Tius
- Cancer Biology Program, University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, HI, 96813, USA,Department of Chemistry, University of Hawaii, Manoa, 2545 McCarthy Mall, Honolulu, HI, 96825, USA
| | - Francisco Lopez-Tapia
- Department of Medicine, Division of Medical Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angenes, CA, 90048, USA,Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA,Corresponding author. Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA. (J. Turkson)
| | - James Turkson
- Department of Medicine, Division of Medical Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angenes, CA, 90048, USA; Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| |
Collapse
|
21
|
Deng M, Li Y, Li Y, Mao X, Ke H, Liang W, Lei X, Lau YL, Mao H. A Novel STAT3 Gain-of-Function Mutation in Fatal Infancy-Onset Interstitial Lung Disease. Front Immunol 2022; 13:866638. [PMID: 35677041 PMCID: PMC9169891 DOI: 10.3389/fimmu.2022.866638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) gain-of-function (GOF) mutations cause early-onset immune dysregulation syndrome, characterized by multi-organ autoimmunity and lymphoproliferation. Of them, interstitial lung disease (ILD) usually develops after the involvement of other organs, and the onset time is childhood and beyond rather than infancy. Here, we reported a patient who presented with fatal infancy-onset ILD, finally succumbing to death. Next-generation sequencing identified a novel heterozygous mutation in STAT3 (c.989C>G, p.P330R). Functional experiments revealed it was a gain-of-function mutation. Upon interleukin 6 stimulation, this mutation caused a much higher activation of STAT3 than the wild-type control. In addition, the mutation also activated STAT3 under the steady state. The T helper 17 cell level in the patient was significantly higher than that in normal controls, which may contribute to the autoimmune pathology caused by the STAT3P330R mutation. Apart from Janus kinase (JAK) inhibitors, we also provided experimental evidence of a STAT3 selective inhibitor (Stattic) effectively suppressing the activation of mutant STAT3 in vitro. Collectively, our study expanded the clinical spectrum of STAT3 GOF syndrome. STAT3 GOF mutation appears as a new etiology of ILD and should be considered in patients with early-onset ILDs. In addition to JAK inhibitors, the specific STAT3 inhibitor would be an appealing option for the targeted treatment.
Collapse
Affiliation(s)
- Mengyue Deng
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical Univeristy, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Yue Li
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical Univeristy, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Yulu Li
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical Univeristy, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Xiaolan Mao
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical Univeristy, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Han Ke
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Weiling Liang
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yu-Lung Lau
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Huawei Mao
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical Univeristy, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
- *Correspondence: Huawei Mao,
| |
Collapse
|
22
|
Wang X, Jia P, Ren T, Zou Z, Xu S, Zhang Y, Shi Y, Bao S, Li Y, Fang Y, Ding X. MicroRNA-382 Promotes M2-Like Macrophage via the SIRP-α/STAT3 Signaling Pathway in Aristolochic Acid-Induced Renal Fibrosis. Front Immunol 2022; 13:864984. [PMID: 35585990 PMCID: PMC9108237 DOI: 10.3389/fimmu.2022.864984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/31/2022] [Indexed: 12/17/2022] Open
Abstract
Aristolochic acid nephropathy (AAN) is a type of drug-induced nephropathy and is correlated with a potentially progression of kidney fibrosis. However, whether miR-382 is implicated in macrophage activation in AA-induced kidney fibrosis remains elusive. Here, cell-sorting experiments defined a significant miR-382 enrichment in renal macrophage after AAN 14 days. Then, we found that treatment of AA induced a significant switch in the phenotype of macrophage both in vivo and in vitro. Furthermore, miR-382 knockout (KO) mice and miR-382-/- bone marrow-derived macrophage (BMDM) were subjected to AA induction. We found that both systemic KO and macrophage-specific miR-382 depletion notably suppressed M2-like macrophage activation as well as kidney interstitial fibrosis. Additionally, adoptive transfer of miR-382 overexpression BMDMs into mice promoted AA-induced kidney injury. Moreover, in cultured macrophage, upregulation of miR-382 promoted M2-related gene expression, accompanied by downregulation of signal regulatory protein α (SIRP-α) and activation of signal transducer and activator of transcription 3 (STAT3). The interaction between miR-382 and SIRP-α was evaluated via dual-luciferase assay. Knockdown of SIRP-α upregulated phosphorylated STAT3 at S727 and Y705. Pharmacological inhibition of STAT3 was performed both in vivo and in vitro. Inhibition of STAT3 attenuated AA-induced kidney fibrosis, in parallel to lesser macrophage M2 polarization. Coculture experiments further confirmed that overexpressed miR-382 in macrophage promoted injuries of tubular cells. Luminex bio-chip detection suggested that IL-4 and CCL-5 were critical in the cross talk between macrophages and tubular cells. Taken together, our data suggest that miR-382 is a critical mediator in M2-like macrophage polarization and can be a promising therapeutic target for kidney fibrosis.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Ping Jia
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Ting Ren
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Zhouping Zou
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Sujuan Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Yunlu Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Yiqin Shi
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Siyu Bao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Yingxiang Li
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- *Correspondence: Xiaoqiang Ding, ; Yi Fang,
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- *Correspondence: Xiaoqiang Ding, ; Yi Fang,
| |
Collapse
|
23
|
Yu CC, Li Y, Cheng ZJ, Wang X, Mao W, Zhang YW. Active Components of Traditional Chinese Medicinal Material for Multiple Myeloma: Current Evidence and Future Directions. Front Pharmacol 2022; 13:818179. [PMID: 35153791 PMCID: PMC8834085 DOI: 10.3389/fphar.2022.818179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by clonal expansion of plasma cells in bone marrow, leading to the overproduction of monoclonal immunoglobulins. The clinical manifestations resulting from monoclonal proteins and malignant cells include signs of end-organ damage, such as hypercalcemia, renal failure, anemia, and bone lesions. Despite improvement in the survival of MM patients with use of myeloma-targeted and immunomodulatory therapies, MM remains an incurable disease. Moreover, patients with relapsed or refractory MM show poor survival outcomes. In recent years, there has been a growing interest in the use of traditional Chinese medicinal materials (TCMMs) for management of a wide spectrum of diseases. The bioactive ingredients derived from TCMMs hold great potential for the development of anticancer drugs. Here we summarize the evidence of the pharmacological effects of the active components in TCMMs on MM, including curcumin, resveratrol, baicalein, berberine, bufalin, cinobufagin, gambogic acid, ginsenoside, icariin, daidzin, formononetin, polysaccharides extracts from Hedyotis difus, and scutellarein. Available evidence indicates that the anti-MM effects of these bioactive ingredients are mediated via regulation of proliferation, apoptosis, autophagy, cell cycle, osteogenic differentiation, and drug resistance. In the future, the underlying mechanisms of the anti-MM effects of these components should be further investigated. Large-scale and well-designed clinical trials are also required to validate the efficacy of these bioactive constituents for MM.
Collapse
Affiliation(s)
- Chao-Chao Yu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yi Li
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zhao-Jun Cheng
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Wang
- Department of Oncology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Wei Mao
- Peking University Shenzhen Hospital Hua Wei Clinic, Shenzhen, China
| | - Ying-Wen Zhang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Sudhesh Dev S, Zainal Abidin SA, Farghadani R, Othman I, Naidu R. Receptor Tyrosine Kinases and Their Signaling Pathways as Therapeutic Targets of Curcumin in Cancer. Front Pharmacol 2021; 12:772510. [PMID: 34867402 PMCID: PMC8634471 DOI: 10.3389/fphar.2021.772510] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane cell-surface proteins that act as signal transducers. They regulate essential cellular processes like proliferation, apoptosis, differentiation and metabolism. RTK alteration occurs in a broad spectrum of cancers, emphasising its crucial role in cancer progression and as a suitable therapeutic target. The use of small molecule RTK inhibitors however, has been crippled by the emergence of resistance, highlighting the need for a pleiotropic anti-cancer agent that can replace or be used in combination with existing pharmacological agents to enhance treatment efficacy. Curcumin is an attractive therapeutic agent mainly due to its potent anti-cancer effects, extensive range of targets and minimal toxicity. Out of the numerous documented targets of curcumin, RTKs appear to be one of the main nodes of curcumin-mediated inhibition. Many studies have found that curcumin influences RTK activation and their downstream signaling pathways resulting in increased apoptosis, decreased proliferation and decreased migration in cancer both in vitro and in vivo. This review focused on how curcumin exhibits anti-cancer effects through inhibition of RTKs and downstream signaling pathways like the MAPK, PI3K/Akt, JAK/STAT, and NF-κB pathways. Combination studies of curcumin and RTK inhibitors were also analysed with emphasis on their common molecular targets.
Collapse
Affiliation(s)
- Sareshma Sudhesh Dev
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| |
Collapse
|
25
|
Su CW, Chuang CY, Chen YT, Yang WE, Pan YP, Lin CW, Yang SF. FLLL32 Triggers Caspase-Mediated Apoptotic Cell Death in Human Oral Cancer Cells by Regulating the p38 Pathway. Int J Mol Sci 2021; 22:11860. [PMID: 34769290 PMCID: PMC8584525 DOI: 10.3390/ijms222111860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Oral cancer is the most common oral malignant tumor in Taiwan. Although there exist several methods for treatment, oral cancer still has a poor prognosis and high recurrence. FLLL32, a synthetic analog of curcumin with antitumor activity, is currently known to induce melanoma apoptosis and inhibit tumor growth in various cancers. However, few studies have examined the mechanisms of FLLL32 in oral cancer. In this study, we explore whether FLLL32 induces apoptosis in oral cancer. We determined that FLLL32 can inhibit the cell viability of oral cancer. Next, we analyzed the effect of FLLL32 on the cell cycle of oral cancer cells and observed that the proportion of cells in the G2/M phase was increased. Additionally, annexin-V/PI double staining revealed that FLLL32 induced apoptosis in oral cancer cells. Data from the Human Apoptosis Array revealed that FLLL32 increases the expression of cleaved caspase-3 and heme oxygenase-1 (HO-1). FLLL32 activates proteins such as caspase-8, caspase-9, caspase-3, PARP, and mitogen-activated protein kinases (MAPKs) in apoptosis-related molecular mechanisms. Moreover, by using MAPK inhibitors, we suggest that FLLL32 induces the apoptosis of oral cancer cells through the p38 MAPK signaling pathway. In conclusion, our findings suggest that FLLL32 is a potential therapeutic agent for oral cancer by inducing caspase-dependent apoptosis and HO-1 activation through the p38 pathway. We believe that the activation of HO-1 and the p38 pathway by FLLL32 represent potential targets for further research in oral cancer.
Collapse
Affiliation(s)
- Chun-Wen Su
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-W.S.); (W.-E.Y.); (Y.-P.P.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chun-Yi Chuang
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yi-Tzu Chen
- School of Dentistry, Chung Shan Medical University, Taichung 402, Taiwan;
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-W.S.); (W.-E.Y.); (Y.-P.P.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yi-Ping Pan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-W.S.); (W.-E.Y.); (Y.-P.P.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-W.S.); (W.-E.Y.); (Y.-P.P.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
26
|
Pyrimidine-2,4-dione targets STAT3 signaling pathway to induce cytotoxicity in hepatocellular carcinoma cells. Bioorg Med Chem Lett 2021; 50:128332. [PMID: 34418571 DOI: 10.1016/j.bmcl.2021.128332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/21/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a tumorigenic transcription factor that is persistently activated in various human cancers including hepatocellular carcinoma (HCC). Therefore, STAT3 is considered as a prominent target to counteract the uncontrolled proliferation of cancer cells. In the present report, pyrimidine-2,4-diones (N-methyluracil derivatives) (MNK1-MNK14) were synthesized in an ionic liquid (BMIm PF6) medium employing a ligand-free Suzuki-Miyaura cross-coupling process. Among the 14 derivatives, compound MNK8 showed good cytotoxicity towards both the tested cell lines and did not display a toxic effect against normal hepatocytes (LO2). MNK8 significantly increased the Sub-G1 cell count in both cell lines and the cytotoxic effect of MNK8 was found to be mediated through the suppression of constitutive phosphorylation of STAT3Y705. It also decreased the DNA interaction ability of nuclear STAT3 in HCC cells. MNK8 downregulated the levels of apoptosis-related proteins (such as Bcl-2, cyclin D1, survivin) and increased cleaved caspase-3 inferring the apoptogenic effect of MNK8. It also reduced the CXCL12-triggered cell migration and invasion in in vitro assay systems. Overall, MNK8 has been demonstrated as a new inhibitor of STAT3 signaling cascade in HCC cells.
Collapse
|
27
|
IL-6 enhances CD4 cell motility by sustaining mitochondrial Ca 2+ through the noncanonical STAT3 pathway. Proc Natl Acad Sci U S A 2021; 118:2103444118. [PMID: 34507993 DOI: 10.1073/pnas.2103444118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
Interleukin 6 (IL-6) is known to regulate the CD4 T cell function by inducing gene expression of a number of cytokines through activation of Stat3 transcription factor. Here, we reveal that IL-6 strengthens the mechanics of CD4 T cells. The presence of IL-6 during activation of mouse and human CD4 T cells enhances their motility (random walk and exploratory spread), resulting in an increase in travel distance and higher velocity. This is an intrinsic effect of IL-6 on CD4 T-cell fitness that involves an increase in mitochondrial Ca2+ Although Stat3 transcriptional activity is dispensable for this process, IL-6 uses mitochondrial Stat3 to enhance mitochondrial Ca2+-mediated motility of CD4 T cells. Thus, through a noncanonical pathway, IL-6 can improve competitive fitness of CD4 T cells by facilitating cell motility. These results could lead to alternative therapeutic strategies for inflammatory diseases in which IL-6 plays a pathogenic role.
Collapse
|
28
|
Luo M, Yang X, Chen HN, Nice EC, Huang C. Drug resistance in colorectal cancer: An epigenetic overview. Biochim Biophys Acta Rev Cancer 2021; 1876:188623. [PMID: 34481016 DOI: 10.1016/j.bbcan.2021.188623] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Despite significant progress that has been made in therapies against CRC over the past decades, drug resistance is still a major limitation in CRC treatment. Numerous investigations have unequivocally shown that epigenetic regulation plays an important role in CRC drug resistance because of the high rate of epigenetic alterations in multiple genes during cancer development or drug treatment. Furthermore, the reversibility of epigenetic alterations provides novel therapeutic strategies to overcome drug resistance using small molecules, which can target non-coding RNAs or reverse histone modification and DNA methylation. In this review, we discuss epigenetic regulation in CRC drug resistance and the possible role of preventing or reversing CRC drug resistance using epigenetic therapy in CRC treatment.
Collapse
Affiliation(s)
- Maochao Luo
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xingyue Yang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Hai-Ning Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| | - Canhua Huang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
29
|
Dong J, Cheng XD, Zhang WD, Qin JJ. Recent Update on Development of Small-Molecule STAT3 Inhibitors for Cancer Therapy: From Phosphorylation Inhibition to Protein Degradation. J Med Chem 2021; 64:8884-8915. [PMID: 34170703 DOI: 10.1021/acs.jmedchem.1c00629] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that regulates various biological processes, including proliferation, metastasis, angiogenesis, immune response, and chemoresistance. In normal cells, STAT3 is tightly regulated to maintain a transiently active state, while persistent STAT3 activation occurs frequently in cancers, associating with a poor prognosis and tumor progression. Targeting the STAT3 protein is a potentially promising therapeutic strategy for tumors. Although none of the STAT3 inhibitors has been marketed yet, a few of them have succeeded in entering clinical trials. This Review aims to systematically summarize the progress of the last 5 years in the discovery of directive STAT3 small-molecule inhibitors and degraders, focusing primarily on their structural features, design strategies, and bioactivities. We hope this Review will shed light on future drug design and inhibitor optimization to accelerate the discovery process of STAT3 inhibitors or degraders.
Collapse
Affiliation(s)
- Jinyun Dong
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Xiang-Dong Cheng
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jiang-Jiang Qin
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
30
|
Mirzaei H, Bagheri H, Ghasemi F, Khoi JM, Pourhanifeh MH, Heyden YV, Mortezapour E, Nikdasti A, Jeandet P, Khan H, Sahebkar A. Anti-Cancer Activity of Curcumin on Multiple Myeloma. Anticancer Agents Med Chem 2021; 21:575-586. [PMID: 32951583 DOI: 10.2174/1871520620666200918113625] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022]
Abstract
Multiple Myeloma (MM) is the third most common and deadly hematological malignancy, which is characterized by a progressive monoclonal proliferation within the bone marrow. MM is cytogenetically heterogeneous with numerous genetic and epigenetic alterations, which lead to a wide spectrum of signaling pathways and cell cycle checkpoint aberrations. MM symptoms can be attributed to CRAB features (hyperCalcemia, Renal failure, Anemia, and Bone lesion), which profoundly affect both the Health-Related Quality of Life (HRQoL) and the life expectancy of patients. Despite all enhancement and improvement in therapeutic strategies, MM is almost incurable, and patients suffering from this disease eventually relapse. Curcumin is an active and non-toxic phenolic compound, isolated from the rhizome of Curcuma longa L. It has been widely studied and has a confirmed broad range of therapeutic properties, especially anti-cancer activity, and others, including anti-proliferation, anti-angiogenesis, antioxidant and anti-mutation activities. Curcumin induces apoptosis in cancerous cells and prevents Multidrug Resistance (MDR). Growing evidence concerning the therapeutic properties of curcumin caused a pharmacological impact on MM. It is confirmed that curcumin interferes with various signaling pathways and cell cycle checkpoints, and with oncogenes. In this paper, we summarized the anti- MM effects of curcumin.
Collapse
Affiliation(s)
- Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Bagheri
- Molecular and Medicine Research Center, Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Next to Milad Tower, Tehran, Iran
| | | | | | - Yvan V Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Erfan Mortezapour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Nikdasti
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Bhat AA, Nisar S, Maacha S, Carneiro-Lobo TC, Akhtar S, Siveen KS, Wani NA, Rizwan A, Bagga P, Singh M, Reddy R, Uddin S, Grivel JC, Chand G, Frenneaux MP, Siddiqi MA, Bedognetti D, El-Rifai W, Macha MA, Haris M. Cytokine-chemokine network driven metastasis in esophageal cancer; promising avenue for targeted therapy. Mol Cancer 2021; 20:2. [PMID: 33390169 PMCID: PMC7780621 DOI: 10.1186/s12943-020-01294-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/06/2020] [Indexed: 02/08/2023] Open
Abstract
Esophageal cancer (EC) is a disease often marked by aggressive growth and poor prognosis. Lack of targeted therapies, resistance to chemoradiation therapy, and distant metastases among patients with advanced disease account for the high mortality rate. The tumor microenvironment (TME) contains several cell types, including fibroblasts, immune cells, adipocytes, stromal proteins, and growth factors, which play a significant role in supporting the growth and aggressive behavior of cancer cells. The complex and dynamic interactions of the secreted cytokines, chemokines, growth factors, and their receptors mediate chronic inflammation and immunosuppressive TME favoring tumor progression, metastasis, and decreased response to therapy. The molecular changes in the TME are used as biological markers for diagnosis, prognosis, and response to treatment in patients. This review highlighted the novel insights into the understanding and functional impact of deregulated cytokines and chemokines in imparting aggressive EC, stressing the nature and therapeutic consequences of the cytokine-chemokine network. We also discuss cytokine-chemokine oncogenic potential by contributing to the Epithelial-Mesenchymal Transition (EMT), angiogenesis, immunosuppression, metastatic niche, and therapeutic resistance development. In addition, it discusses the wide range of changes and intracellular signaling pathways that occur in the TME. Overall, this is a relatively unexplored field that could provide crucial insights into tumor immunology and encourage the effective application of modulatory cytokine-chemokine therapy to EC.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Selma Maacha
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Nissar A Wani
- Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India
| | - Arshi Rizwan
- Department of Nephrology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Puneet Bagga
- Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mayank Singh
- Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (BRAIRCH), AIIMS, New Delhi, India
| | - Ravinder Reddy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Gyan Chand
- Department of Endocrine Surgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | | | - Mushtaq A Siddiqi
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | - Davide Bedognetti
- Laboratory of Cancer Immunogenomics, Cancer Research Department, Sidra Medicine, Doha, Qatar
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India.
| | - Mohammad Haris
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
32
|
Liu Y, Liao S, Bennett S, Tang H, Song D, Wood D, Zhan X, Xu J. STAT3 and its targeting inhibitors in osteosarcoma. Cell Prolif 2020; 54:e12974. [PMID: 33382511 PMCID: PMC7848963 DOI: 10.1111/cpr.12974] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/21/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is one of seven STAT family members involved with the regulation of cellular growth, differentiation and survival. STAT proteins are conserved among eukaryotes and are important for biological functions of embryogenesis, immunity, haematopoiesis and cell migration. STAT3 is widely expressed and located in the cytoplasm in an inactive form. STAT3 is rapidly and transiently activated by tyrosine phosphorylation by a range of signalling pathways, including cytokines from the IL‐6 family and growth factors, such as EGF and PDGF. STAT3 activation and subsequent dimer formation initiates nuclear translocation of STAT3 for the regulation of target gene transcription. Four STAT3 isoforms have been identified, which have distinct biological functions. STAT3 is considered a proto‐oncogene and constitutive activation of STAT3 is implicated in the development of various cancers, including multiple myeloma, leukaemia and lymphomas. In this review, we focus on recent progress on STAT3 and osteosarcoma (OS). Notably, STAT3 is overexpressed and associated with the poor prognosis of OS. Constitutive activation of STAT3 in OS appears to upregulate the expression of target oncogenes, leading to OS cell transformation, proliferation, tumour formation, invasion, metastasis, immune evasion and drug resistance. Taken together, STAT3 is a target for cancer therapy, and STAT3 inhibitors represent potential therapeutic candidates for the treatment of OS.
Collapse
Affiliation(s)
- Yun Liu
- Department of Spine and Osteopathic Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Shijie Liao
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Samuel Bennett
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Haijun Tang
- Department of Orthopedic, Guangxi hospital for nationalities, Nanning, Guangxi, China
| | - Dezhi Song
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - David Wood
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Xinli Zhan
- Department of Spine and Osteopathic Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiake Xu
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
33
|
Han X, Wang L, Li T, Zhang J, Zhang D, Li J, Xia Y, Liu Y, Tan W. Beyond Blocking: Engineering RNAi-Mediated Targeted Immune Checkpoint Nanoblocker Enables T-Cell-Independent Cancer Treatment. ACS NANO 2020; 14:17524-17534. [PMID: 33290659 DOI: 10.1021/acsnano.0c08022] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The emergence of immune checkpoint blockade to activate host T cells to attack tumor cells has revolutionized the cancer treatment landscape over the past decade. However, sustained response has only been achieved in a small proportion of patients. This can be attributed to physiological barriers, such as T-cell heterogeneity and immunosuppressive tumor microenvironments. To this can be added obstacles intrinsic to traditional antibody-driven blockade methods, including the inability to inhibit checkpoint translocation from cytoplasm, systemic immune toxicity, and "bite back" effect on T cells. Using non-small cell lung cancer (NSCLC) as the cancer model, here we report an unconventional, yet powerful, tumor-targeted checkpoint blocking strategy by RNAi nanoengineering for T-cell-independent cancer therapy. Unlike antibodies, such nanoblocker silences both membranous and cytoplasmic PD-L1 in cancer cells, thus eliminating the binding step. Moreover, it is demonstrated that silencing of PD-L1 by the nanoblocker can cause the direct programmed cell death of NSCLC H460 cells, without the need of T-cell intervention. In vivo results from xenograft tumor models further demonstrate that tumor-homing peptide modification enables the nanoblocker to accumulate in the tumor tissue, downregulate the PD-L1 expression, and inhibit the tumor growth more efficiently than the nontargeted group. These findings may offer an effective means toward overcoming barriers against traditional checkpoint blockade and provide different insights into the molecular mechanism(s) underlying immunotherapy.
Collapse
Affiliation(s)
- Xiaoyan Han
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Ting Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Jiahui Zhang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Dailiang Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Jili Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Yinghao Xia
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200040, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
34
|
Marginean EC, Gotfrit J, Marginean H, Yokom DW, Bateman JJ, Daneshmand M, Sud S, Gown AM, Jonker D, Asmis T, Goodwin RA. Phosphorylated transducer and activator of transcription-3 (pSTAT3) immunohistochemical expression in paired primary and metastatic colorectal cancer. Transl Oncol 2020; 14:100996. [PMID: 33341488 PMCID: PMC7750168 DOI: 10.1016/j.tranon.2020.100996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Signal Transducer and Activator of Transcription-3 (STAT3) mediates cellular functions. We assessed the IHC expression of phosphorylated STAT3 (pSTAT3) in paired primary tumors and liver metastases in patients with advanced stage colorectal cancer (CRC). METHODS We included patients with tissue blocks available from both the primary CRC and a surgically resected liver metastasis. The IHC pSTAT3 expression agreement was measured using Cohen's kappa statistic. RESULTS The study included 103 patients, 55% male, median age was 64. 43% tumors originated in rectum, and 63% of the primary tumors were synchronous. Expression of pSTAT3 was 76% in liver metastases and 71% in primary tumors. A difference in pSTAT3 staining between the primary tumor and liver metastases was noted in 64%. There was lost expression of pSTAT3 in the liver metastases in 28% and gained expression in 36% of cases compared to the primary. The kappa statistic comparing agreement between staining patterns of the primary tumors and liver metastases was a "less-than-chance", at -0.02. Median survival was 4.9 years, with no difference in survival outcomes by pSTAT3 expression in the primary tumor or liver metastases. DISCUSSION STAT3 is not a prognostic marker in the selective setting of metastatic CRC to liver, but it may remain a potential therapeutic target given most liver metastases expressed pSTAT3. Discordant pSTAT3 expression in between primary tumors and paired liver metastases suggests that use of this class of drug to treat liver predominant metastatic colorectal cancer in a biomarker-driven approach may require confirmatory liver tumor biopsy.
Collapse
Affiliation(s)
- Esmeralda C Marginean
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Joanna Gotfrit
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Horia Marginean
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Daniel W Yokom
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Justin J Bateman
- Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9; The Ottawa Hospital, Department of Pathology, 501 Smyth Road, Ottawa ON K1H 8L6 Canada.
| | - Manijeh Daneshmand
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Shelly Sud
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Allen M Gown
- PhenoPath Laboratories, 551 N. 34th Street Seattle 98103 USA.
| | - Derek Jonker
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Timothy Asmis
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Rachel A Goodwin
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| |
Collapse
|
35
|
Wang H, Tao Z, Feng M, Li X, Deng Z, Zhao G, Yin H, Pan T, Chen G, Feng Z, Li Y, Zhou Y. Dual PLK1 and STAT3 inhibition promotes glioblastoma cells apoptosis through MYC. Biochem Biophys Res Commun 2020; 533:368-375. [PMID: 32962858 DOI: 10.1016/j.bbrc.2020.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/05/2020] [Indexed: 12/27/2022]
Abstract
Glioblastoma (GBM) is the deadliest primary brain tumor that is highly resistant to current treatments. Polo-like kinase 1 (PLK1) and signal transducer and activator of transcription 3 (STAT3) are highly expressed in gliomas, especially GBM. Previous studies have shown reciprocal activation between PLK1 and STAT3 and that they regulate the same pools of MYC downstream. We have demonstrated that PLK1 and STAT3 levels are elevated in gliomas compared with those in normal brain tissues, and high expression of both PLK1 and STAT3 is associated with poor prognosis in TCGA. Moreover, there was direct or indirect reciprocal regulation between PLK1 and STAT3. Furthermore, we found that PLK1 and STAT3 can regulate the same pools of MYC downstream. Compared to monotherapy, combined treatment of glioma cells with PLK1 and STAT3 inhibitors, BI2536 and Stattic, respectively, showed lower expression of MYC, synergistic induction of cell invasion and apoptosis in vitro, and tumor inhibition in xenografts. PLK1 and STAT3 were able to directly regulate the expression of MYC and induce apoptosis of glioma cells through the regulation of MYC. These findings may help develop a therapeutic strategy for dual inhibition of PLK1 and STAT3 against the tumorigenesis of glioma.
Collapse
Affiliation(s)
- Hao Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhennan Tao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ming Feng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuetao Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhitong Deng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Guozheng Zhao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haoran Yin
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tingzheng Pan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Guangliang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zibin Feng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanyan Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Youxin Zhou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
36
|
Elbehairi SEI, Ismail LA, Alfaifi MY, Elshaarawy RF, Hafez HS. Chitosan nano-vehicles as biocompatible delivering tools for a new Ag(I)curcuminoid-Gboxin analog complex in cancer and inflammation therapy. Int J Biol Macromol 2020; 165:2750-2764. [DOI: 10.1016/j.ijbiomac.2020.10.153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
|
37
|
Wang K, Du B, Xu B, Lv X. JMJD6-STAT3 Y705ph axis promotes autophagy in osteosarcoma cancer cells by regulating ATG. Biofactors 2020; 46:839-848. [PMID: 31958364 DOI: 10.1002/biof.1614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/27/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Osteosarcoma cancer is a malignant tumor with poor outcome. Activation of STAT3 is closely related with tumor development. We intended to study the effects of JMJD6 on phosphorylation of STAT3 at Y705 site. METHODS Osteosarcoma cancer cell lines (Saos-2, MG-63, and HOS) and clinical specimens were obtained. Interference RNA or JMJD6 mimic was transfected into the cells to silence or mimic JMJD6. Immunoprecipitation assay and glutathione S-transferase (GST) pull down was implemented to investigate whether JMJD6 is associated with STAT3. STAT3-null HOS cells were simultaneously transfected with the plasmids bearing STAT3WT or STAT3Y705F and EGFP-tagged LC3 plasmids. Recombinant full-length JMJD6 protein was subjected to in vitro kinase activity assay for testing its ability to phosphorylate STAT3. The severity of autophagy was indicated by the number of autophagosomes, expression of EGFP-LC3, ratio of LC3-II to LC3-I, degradation percentage of long-lived proteins and expression of autophagy associated gene (ATG). RESULTS JMJD6 modulated the phosphorylation of STAT3 at Y705 site in osteosarcoma cells. Results from immunoprecipitation and GST pull down assays showed that JMJD6 associated with STAT3 in osteosarcoma cells. JMJD6 silence impeded the formation of autophagosomes, inhibited the accumulation of EGFP-LC3, decreased the ratio of LC3-II to LC3-I, blocked the degradation of long-lived proteins, and repressed the expression of ATG. JMJD6-induced autophagy was impaired by STAT3Y705F which was not phosphorylated by JMJD6. The JMJD6-STAT3Y705ph axis was implicated in the transcriptional regulation of ATG. CONCLUSION JMJD6 was included in regulating the phosphorylation of STAT3Y705 and promoted autophagy of osteosarcoma cells through its kinase activity.
Collapse
Affiliation(s)
- Kun Wang
- Department of Emergency and Trauma Surgery, Jining No.1 People's Hospital, Jining, China
- Affiliated Jining No.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Baoyin Du
- Department of Emergency and Trauma Surgery, Jining No.1 People's Hospital, Jining, China
| | - Bin Xu
- Department of Emergency and Trauma Surgery, Jining No.1 People's Hospital, Jining, China
| | - Xin Lv
- Department of Children Rehabilitation, Jining No.1 People's Hospital, Jining, China
| |
Collapse
|
38
|
Ren S, Xing Y, Wang C, Jiang F, Liu G, Li Z, Jiang T, Zhu Y, Piao D. Fraxetin inhibits the growth of colon adenocarcinoma cells via the Janus kinase 2/signal transducer and activator of transcription 3 signalling pathway. Int J Biochem Cell Biol 2020; 125:105777. [PMID: 32504672 DOI: 10.1016/j.biocel.2020.105777] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Fraxetin, extracted from the bark of Fraxinus rhynchophylla, has been shown to exhibit antitumour and anti-inflammatory pharmacological properties. However, the mechanism underlying its anticancer activity towards colon adenocarcinoma (COAD) is not well understood. We aimed to determine the antitumour effect of fraxetin on COAD cell lines and elucidate its biochemical and molecular targets. METHODS The cell lines HCT116 and DLD-1 were used to evaluate the in vitro antitumour efficacy of fraxetin. Cytotoxicity and viability were assessed by CCK-8 and plate colony formation assays. Flow cytometry was used to assess apoptosis and cell cycle progression in fraxetin-treated COAD cells. Western blot, RT-qPCR, molecular docking, immunohistochemical, and immunofluorescence analyses were used to gain insights into cellular and molecular mechanisms. Preclinical curative effects were evaluated in nude mouse xenograft models. RESULTS Fraxetin significantly inhibited COAD cell proliferation in both dose- and time-dependent manners, specifically by inducing S-phase cell cycle arrest and triggering intrinsic apoptosis. Additionally, the level of p-JAK2 was decreased by fraxetin via the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signalling pathway. Interestingly, in COAD cells, fraxetin directly targeted the Y1007 and Y1008 residues of JAK2 to suppress its auto- or transphosphorylation, leading to decreased activation of its downstream effector STAT3 and blocking its nuclear translocation. Finally, fraxetin exhibited good tumour growth suppression activity and low toxicity. CONCLUSIONS Fraxetin inhibits the proliferation of COAD cells by regulating the JAK2/STAT3 signalling pathway, providing evidence that targeting JAK2 with fraxetin may offer a novel potential auxiliary therapy for COAD treatment.
Collapse
Affiliation(s)
- Shuo Ren
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yanwei Xing
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Chengbo Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Fengqi Jiang
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Guangyu Liu
- Department of Anorectal Surgery, The Shenzhen Hospital of Southern Medical University, Southern Medical University, Shenzhen, China
| | - Ziyi Li
- The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Tao Jiang
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Daxun Piao
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China.
| |
Collapse
|
39
|
Gong T, Zhang P, Jia L, Pan Y. Suppression of ovarian cancer by low-intensity ultrasound through depletion of IL-6/STAT3 inflammatory pathway-maintained cancer stemness. Biochem Biophys Res Commun 2020; 526:820-826. [PMID: 32273089 DOI: 10.1016/j.bbrc.2020.03.136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/24/2020] [Indexed: 12/30/2022]
Abstract
Ovarian carcinoma is the key cause of cancer death from gynecological malignancy of women. Chemotherapy-resistance, metastasis and relapse contribute to the high mortality in ovarian cancer patients. Cancer stem cells (CSCs) stand for the root of kinds of cancer types such as ovarian cancer, are the key driver of tumor initiation, cancer metastasis, and resistance to conventional chemotherapy as well as genomic targeted therapy. Thus, the approach to eliminate CSCs and uncovering the mechanism will have substantial impact on cancer therapy. However, targeting CSC remains unfeasible in clinical practice in ovarian cancer therapy. In this study, we first found that Low-intensity ultrasound (LIUS) was capable of reducing the CSC populations in the xenograft model with ovarian cancer, with blocking survival, anti-apoptosis, self-renewal, and downregulating the cancer stemness genes in ovarian CSCs. Moreover, LIUS ameliorated IL-6/STAT3 inflammatory pathway via inhibiting IL-6-induced STAT3 phosphorylation, DNA binding activity and, the expressions of its downstream effectors in ovarian CSCs while no explicit effect was found in the corresponding bulk cancer cells. Additional approaches in molecular studies showed that LIUS disrupts CSC features via inhibiting IL-6/STAT3 inflammatory pathway. Collectively, our data for the first time elucidate IL-6/STAT3 inflammatory loop as the key CSC or cancer stemness pathway in ovarian cancer by LIUS treatment, providing a novel and potential therapy and a promising target in ovarian cancer.
Collapse
Affiliation(s)
- Ting Gong
- Medical Ultrasound Center, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, 710061, China
| | - Penghua Zhang
- Medical Ultrasound Center, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, 710061, China
| | - Liang Jia
- First Department of Gynecology, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, 710061, China
| | - Yanyan Pan
- Medical Ultrasound Center, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
40
|
LLY17, a novel small molecule STAT3 inhibitor induces apoptosis and suppresses cell migration and tumor growth in triple-negative breast cancer. Breast Cancer Res Treat 2020; 181:31-41. [PMID: 32240456 DOI: 10.1007/s10549-020-05613-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/23/2020] [Indexed: 01/29/2023]
Abstract
PURPOSE Persistent STAT3 signaling is frequently detected in many cancer types including triple-negative breast cancer, and thus could potentially serve as a viable therapeutic target. We have designed a novel non-peptide compound LLY17 targeting STAT3 using Advanced Multiple Ligand Simultaneous Docking (AMLSD) methods. However, the efficacy of LLY17 has not been evaluated extensively in human and murine triple-negative breast cancer cells. In this study, we tested LLY17 in multiple human and murine triple-negative breast cancer cell lines. METHODS Human triple-negative breast cancer MDA-MB-468, MDA-MB-231, SUM159, and BT-549 cells, and murine triple-negative breast cancer 4T1 cells were used to study the inhibition effects of LLY17. The inhibition of STAT3 activation of LLY17 was investigated using western blot analysis. Cell viability, apoptosis and migration assays were carried out by MTT assay, Caspase-3/7 assay and wound healing assay, respectively. A mammary fat pad syngeneic mouse model was used to evaluate the antitumor effect of LLY17 in vivo. RESULTS LLY17 inhibited IL-6-mediated induction of STAT3 phosphorylation but had no effect on IFN-γ-induced STAT1 phosphorylation or EGF-induced ERK phosphorylation. LLY17 inhibited STAT3 phosphorylation and induced apoptosis in human and murine triple-negative breast cancer cells but exhibited minimal toxicity toward Luminal A subtype breast cancer MCF-7 cells. RNAi attenuation experiments supported the requirement of STAT3 for LLY17-mediated inhibition of cell viability in triple-negative breast cancer cells. In addition, LLY17 inhibited cell migration of human and murine triple-negative breast cancer cells. Furthermore, LLY17 suppressed tumor growth and STAT3 phosphorylation of triple-negative breast cancer cells in a mammary fat pad syngeneic mouse model in vivo. CONCLUSIONS Together, our findings suggest that targeting persistent STAT3 signaling by novel small molecule LLY17 may be a potential approach for the therapy of triple-negative breast cancer.
Collapse
|
41
|
Skyvalidas DΝ, Mavropoulos A, Tsiogkas S, Dardiotis E, Liaskos C, Mamuris Z, Roussaki-Schulze A, Sakkas LI, Zafiriou E, Bogdanos DP. Curcumin mediates attenuation of pro-inflammatory interferon γ and interleukin 17 cytokine responses in psoriatic disease, strengthening its role as a dietary immunosuppressant. Nutr Res 2020; 75:95-108. [PMID: 32114280 DOI: 10.1016/j.nutres.2020.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 01/05/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Curcumin exhibits anti-inflammatory properties and has been used for centuries in traditional medicine and as dietary supplement. Data from clinical trials has strengthened the notion that curcumin may exert an anti-inflammatory and immunosuppressive role in patients with psoriatic disease, but its mode of action has remained elusive. We hypothesized that curcumin could inhibit interferon (IFN)-γ and interleukin (IL)-17 production in peripheral blood mononuclear cells from patients with psoriasis and psoriatic arthritis (PsA). To this end, we assessed the in vitro effect of curcumin on IFN-γ production by cluster differentiation (CD)4(+), CD8(+) T cells, natural killer (NK) and NKT cells and on IL-17 production by CD4(+) T cells from 34 patients with psoriatic disease (22 with psoriasis and 12 with PsA); 15 normal subjects were included as healthy controls. We also assessed the effect of curcumin on signal transducer and activator of transcription (STAT)3 activation. Curcumin significantly decreased, in a dose dependent manner, IFNγ-production by CD4(+) and CD8(+) T cells, and NK and NKT cells in patients with psoriatic disease and healthy controls. It also decreased IL-17 production by CD4(+) T cells (Th17). At the molecular level, curcumin increased STAT3 serine 727 phosphorylation intensity and p-STAT3(+) CD4(+) T cells in patients with PsA and psoriasis. In conclusion, curcumin in vitro inhibits pro-inflammatory IFN-γ and IL-17 production in psoriatic disease, and this may strengthen its role as a dietary immunosuppressant in patients with this disease.
Collapse
Affiliation(s)
- Dimitrios Ν Skyvalidas
- Department of Rheumatology and Clinical Immunology, University of Thessaly, Larissa, Greece
| | - Athanasios Mavropoulos
- Department of Rheumatology and Clinical Immunology, University of Thessaly, Larissa, Greece
| | - Sotirios Tsiogkas
- Department of Rheumatology and Clinical Immunology, University of Thessaly, Larissa, Greece
| | - Efthymios Dardiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christos Liaskos
- Department of Rheumatology and Clinical Immunology, University of Thessaly, Larissa, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Larissa, Greece
| | | | - Lazaros I Sakkas
- Department of Rheumatology and Clinical Immunology, University of Thessaly, Larissa, Greece
| | - Efterpi Zafiriou
- Department of Dermatology, University of Thessaly, Larissa, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, University of Thessaly, Larissa, Greece.
| |
Collapse
|
42
|
Chen A, Koehler AN. Transcription Factor Inhibition: Lessons Learned and Emerging Targets. Trends Mol Med 2020; 26:508-518. [PMID: 32359481 DOI: 10.1016/j.molmed.2020.01.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022]
Abstract
Transcription factors have roles at focal points in signaling pathways, controlling many normal cellular processes, such as cell growth and proliferation, metabolism, apoptosis, immune responses, and differentiation. Their activity is frequently deregulated in disease and targeting this class of proteins is a major focus of interest. However, the structural disorder and lack of binding pockets have made design of small molecules for transcription factors challenging. Here, we review some of the most recent developments for small molecule inhibitors of transcription factors emphasized in James Darnell's vision 17 years ago. We also discuss the progress so far on transcription factors recently nominated by genome-scale loss-of-function screens from the cancer dependency map project.
Collapse
Affiliation(s)
- Andrew Chen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02142, USA
| | - Angela N Koehler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02142, USA; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, MA 02142, USA.
| |
Collapse
|
43
|
Revisiting the development of small molecular inhibitors that directly target the signal transducer and activator of transcription 3 (STAT3) domains. Life Sci 2020; 242:117241. [DOI: 10.1016/j.lfs.2019.117241] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 12/31/2022]
|
44
|
Liu M, Zhang Y, Yang J, Cui X, Zhou Z, Zhan H, Ding K, Tian X, Yang Z, Fung KMA, Edil BH, Postier RG, Bronze MS, Fernandez-Zapico ME, Stemmler MP, Brabletz T, Li YP, Houchen CW, Li M. ZIP4 Increases Expression of Transcription Factor ZEB1 to Promote Integrin α3β1 Signaling and Inhibit Expression of the Gemcitabine Transporter ENT1 in Pancreatic Cancer Cells. Gastroenterology 2020; 158:679-692.e1. [PMID: 31711924 PMCID: PMC7837454 DOI: 10.1053/j.gastro.2019.10.038] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Pancreatic tumors undergo rapid growth and progression, become resistant to chemotherapy, and recur after surgery. We studied the functions of the solute carrier family 39 member 4 (SLC39A4, also called ZIP4), which regulates concentrations of intracellular zinc and is increased in pancreatic cancer cells, in cell lines and mice. METHODS We obtained 93 pancreatic cancer specimens (tumor and adjacent nontumor tissues) from patients who underwent surgery and gemcitabine chemotherapy and analyzed them by immunohistochemistry. ZIP4 and/or ITGA3 or ITGB1 were overexpressed or knocked down with short hairpin RNAs in AsPC-1 and MIA PaCa-2 pancreatic cancer cells lines, and in pancreatic cells from KPC and KPC-ZEB1-knockout mice, and pancreatic spheroids were established; cells and spheroids were analyzed by immunoblots, reverse transcription polymerase chain reaction, and liquid chromatography tandem mass spectrometry. We studied transcriptional regulation of ZEB1, ITGA3, ITGB1, JNK, and ENT1 by ZIP4 using chromatin precipitation and luciferase reporter assays. Nude mice were given injections of genetically manipulated AsPC-1 and MIA PaCa-2 cells, and growth of xenograft tumors and metastases was measured. RESULTS In pancreatic cancer specimens from patients, increased levels of ZIP4 were associated with shorter survival times. MIA PaCa-2 cells that overexpressed ZIP4 had increased resistance to gemcitabine, 5-fluorouracil, and cisplatin, whereas AsPC-1 cells with ZIP4 knockdown had increased sensitivity to these drugs. In mice, xenograft tumors grown from AsPC-1 cells with ZIP4 knockdown were smaller and more sensitive to gemcitabine. ZIP4 overexpression significantly reduced accumulation of gemcitabine in pancreatic cancer cells, increased growth of xenograft tumors in mice, and increased expression of the integrin subunits ITGA3 and ITGB1; expression levels of ITGA3 and ITGB1 were reduced in cells with ZIP4 knockdown. Pancreatic cancer cells with ITGA3 or ITGB1 knockdown had reduced proliferation and formed smaller tumors in mice, despite overexpression of ZIP4; spheroids established from these cells had increased sensitivity to gemcitabine. We found ZIP4 to activate STAT3 to induce expression of ZEB1, which induced expression of ITGA3 and ITGB1 in KPC cells. Increased ITGA3 and ITGB1 expression and subsequent integrin α3β1 signaling, via c-Jun-N-terminal kinase (JNK), inhibited expression of the gemcitabine transporter ENT1, which reduced gemcitabine uptake by pancreatic cancer cells. ZEB1-knockdown cells had increased sensitivity to gemcitabine. CONCLUSIONS In studies of pancreatic cancer cell lines and mice, we found that ZIP4 increases expression of the transcription factor ZEB1, which activates expression of ITGA3 and ITGB1. The subsequent increase in integrin α3β1 signaling, via JNK, inhibits expression of the gemcitabine transporter ENT1, so that cells take up smaller amounts of the drug. Activation of this pathway might help mediate resistance of pancreatic tumors to chemotherapeutic agents.
Collapse
Affiliation(s)
- Mingyang Liu
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma;,Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yuqing Zhang
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma;,Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jingxuan Yang
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma;,Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Xiaobo Cui
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma;,Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Zhijun Zhou
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma;,Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Hanxiang Zhan
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma;,Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Xiang Tian
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma
| | - Kar-Ming A. Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Barish H. Edil
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Russell G. Postier
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Michael S. Bronze
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Martin E. Fernandez-Zapico
- Department of Oncology, Mayo Clinic, Rochester, Minnesota;,Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Marc P. Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Glückstrasse 6, 91054 Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Glückstrasse 6, 91054 Erlangen, Germany
| | - Yi-Ping Li
- Department of Integrative Biology & Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas
| | - Courtney W. Houchen
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Min Li
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
45
|
Brachet-Botineau M, Polomski M, Neubauer HA, Juen L, Hédou D, Viaud-Massuard MC, Prié G, Gouilleux F. Pharmacological Inhibition of Oncogenic STAT3 and STAT5 Signaling in Hematopoietic Cancers. Cancers (Basel) 2020; 12:E240. [PMID: 31963765 PMCID: PMC7016966 DOI: 10.3390/cancers12010240] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Signal Transducer and Activator of Transcription (STAT) 3 and 5 are important effectors of cellular transformation, and aberrant STAT3 and STAT5 signaling have been demonstrated in hematopoietic cancers. STAT3 and STAT5 are common targets for different tyrosine kinase oncogenes (TKOs). In addition, STAT3 and STAT5 proteins were shown to contain activating mutations in some rare but aggressive leukemias/lymphomas. Both proteins also contribute to drug resistance in hematopoietic malignancies and are now well recognized as major targets in cancer treatment. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations during the last decade. This review summarizes the current knowledge of oncogenic STAT3 and STAT5 functions in hematopoietic cancers as well as advances in preclinical and clinical development of pharmacological inhibitors.
Collapse
Affiliation(s)
- Marie Brachet-Botineau
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| | - Marion Polomski
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria;
| | - Ludovic Juen
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Damien Hédou
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Marie-Claude Viaud-Massuard
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Gildas Prié
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Fabrice Gouilleux
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| |
Collapse
|
46
|
Huang Q, Zhong Y, Dong H, Zheng Q, Shi S, Zhu K, Qu X, Hu W, Zhang X, Wang Y. Revisiting signal transducer and activator of transcription 3 (STAT3) as an anticancer target and its inhibitor discovery: Where are we and where should we go? Eur J Med Chem 2019; 187:111922. [PMID: 31810784 DOI: 10.1016/j.ejmech.2019.111922] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022]
Abstract
As a transcription factor, STAT3 protein transduces extracellular signals to the nucleus and then activates transcription of target genes. STAT3 has been well validated as an attractive anticancer target due to its important roles in cancer initiation and progression. Identification of specific and potent STAT3 inhibitors has attracted much attention, while there has been no STAT3 targeted drug approved for clinical application. In this review, we will briefly introduce STAT3 protein and review its role in multiple aspects of cancer, and systematically summarize the recent advances in discovery of STAT3 inhibitors, especially the ones discovered in the past five years. In the last part of the review, we will discuss the possible new strategies to overcome the difficulties of developing potent and specific STAT3 inhibitors and hope to shed light on future drug design and inhibitor optimization.
Collapse
Affiliation(s)
- Qiuyao Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yan Zhong
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hui Dong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qiyao Zheng
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuo Shi
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Kai Zhu
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xinming Qu
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiaolei Zhang
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Yuanxiang Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
47
|
Sabanés Zariquiey F, da Souza JV, Estrada-Tejedor R, Bronowska AK. If You Cannot Win Them, Join Them: Understanding New Ways to Target STAT3 by Small Molecules. ACS OMEGA 2019; 4:13913-13921. [PMID: 31497709 PMCID: PMC6714540 DOI: 10.1021/acsomega.9b01601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Signal transducer activator of transcription 3 (STAT3) is among the most investigated oncogenic transcription factors, as it is highly associated with cancer initiation, progression, metastasis, chemoresistance, and immune evasion. Evidences from both preclinical and clinical studies have demonstrated that STAT3 plays a critical role in several malignancies associated with poor prognosis such as glioblastoma and triple-negative breast cancer, and STAT3 inhibitors have shown efficacy in inhibiting cancer growth and metastasis. Constitutive activation of STAT3 by mutations occurs frequently in tumor cells and directly contributes to many malignant phenotypes. Unfortunately, detailed structural biology studies on STAT3 as well as target-based drug discovery efforts have been hampered by difficulties in the expression and purification of the full-length STAT3 and a lack of ligand-bound crystal structures. Considering these, molecular modeling and simulations offer an attractive strategy for the assessment of the "druggability" of STAT3 dimers and allow investigations of reported activating and inhibiting STAT3 mutants at the atomistic level of detail. In the present study, we focused on the effects exerted by reported STAT3 mutations on the protein structure, dynamics, DNA-binding, and dimerization, thus linking structure, dynamics, energetics, and the biological function. By employing atomistic molecular dynamics and umbrella-sampling simulations to a series of human STAT3 dimers, which comprised wild-type protein and four mutations, we explained the modulation of STAT3 activity by these mutations. Counter-intuitively, our results show that the D570K inhibitory mutation exerts its effect by enhancing rather than weakening STAT3-DNA interactions, which interfere with the DNA release by the protein dimer and thus inhibit STAT3 function as a transcription factor. We mapped the binding site and characterized the binding mode of a clinical candidate napabucasin/BBI-608 at STAT3, which resembles the effect of a D570K mutation. Our results contribute to understanding the activation/inhibition mechanism of STAT3, to explain the molecular mechanism of STAT3 inhibition by BBI-608. Alongside the characterization of the BBI-608 binding mode, we also discovered a novel binding site amenable to bind small-molecule ligands, which may pave the way to design novel STAT3 inhibitors and to suggest new strategies for pharmacological interventions to combat cancers associated with poor prognosis.
Collapse
Affiliation(s)
- Francesc Sabanés Zariquiey
- Chemistry,
School of Natural and Environmental Sciences, Newcastle University, NE1 7RU Newcastle, United Kingdom
| | - João V. da Souza
- Chemistry,
School of Natural and Environmental Sciences, Newcastle University, NE1 7RU Newcastle, United Kingdom
| | - Roger Estrada-Tejedor
- IQS
School of Engineering(IQS)—Universitat
Ramon Llull (URL), 08017 Barcelona, Spain
| | - Agnieszka K. Bronowska
- Chemistry,
School of Natural and Environmental Sciences, Newcastle University, NE1 7RU Newcastle, United Kingdom
| |
Collapse
|
48
|
Paulraj F, Abas F, H Lajis N, Othman I, Naidu R. Molecular Pathways Modulated by Curcumin Analogue, Diarylpentanoids in Cancer. Biomolecules 2019; 9:E270. [PMID: 31295798 PMCID: PMC6681237 DOI: 10.3390/biom9070270] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 01/09/2023] Open
Abstract
While curcumin has a range of therapeutic benefits, its potent anticancer activity remains an attractive avenue for anticancer research owing to the multifactorial nature of cancer itself. The structure of curcumin has thus been used as a lead to design more potent analogues, and diarylpentanoids in particular have shown improved cytotoxicity over curcumin. Investigations of diarylpentanoids have demonstrated that these compounds exert anti-cancer effects through several signalling pathways that are associated with cancer. This review focuses on selected diarylpentanoids and highlights molecular targets that modulate key pathways involved in cancer such as NF-κB, MAPK/ERK, and STAT signalling. Future research will need to focus on drug interactions to explore potential synergistic actions of diarylpentanoids and further establish the use of diverse animal models.
Collapse
Affiliation(s)
- Felicia Paulraj
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Nordin H Lajis
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia.
| |
Collapse
|
49
|
Bruno A, Mortara L, Baci D, Noonan DM, Albini A. Myeloid Derived Suppressor Cells Interactions With Natural Killer Cells and Pro-angiogenic Activities: Roles in Tumor Progression. Front Immunol 2019; 10:771. [PMID: 31057536 PMCID: PMC6482162 DOI: 10.3389/fimmu.2019.00771] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) contribute to the induction of an immune suppressive/anergic, tumor permissive environment. MDSCs act as immunosuppression orchestrators also by interacting with several components of both innate and adaptive immunity. Natural killer (NK) cells are innate lymphoid cells functioning as primary effector of immunity, against tumors and virus-infected cells. Apart from the previously described anergy and hypo-functionality of NK cells in different tumors, NK cells in cancer patients show pro-angiogenic phenotype and functions, similar to decidual NK cells. We termed the pro-angiogenic NK cells in the tumor microenvironment "tumor infiltrating NK" (TINKs), and peripheral blood NK cells in cancer patients "tumor associated NK" (TANKs). The contribution of MDSCs in regulating NK cell functions in tumor-bearing host, still represent a poorly explored topic, and even less is known on NK cell regulation of MDSCs. Here, we review whether the crosstalk between MDSCs and NK cells can impact on tumor onset, angiogenesis and progression, focusing on key cellular and molecular interactions. We also propose that the similarity of the properties of tumor associated/tumor infiltrating NK and MDSC with those of decidual NK and decidual MDSCs during pregnancy could hint to a possible onco-fetal origin of these pro-angiogenic leukocytes.
Collapse
Affiliation(s)
- Antonino Bruno
- Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Denisa Baci
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Douglas M Noonan
- Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy.,Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Adriana Albini
- Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy.,School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
50
|
Tumour-Associated Macrophages (TAMs) in Colon Cancer and How to Reeducate Them. J Immunol Res 2019; 2019:2368249. [PMID: 30931335 PMCID: PMC6410439 DOI: 10.1155/2019/2368249] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 12/20/2022] Open
Abstract
Tumour-associated macrophage (TAM) serves as the site in which most inflammatory cells coreside. It plays an important role in determining the progression and metastasis of a tumour. The characteristic of TAM is largely dependent on the stimuli present in its tumour microenvironment (TME). Under this environment, however, M2 macrophages are found to be in abundance compared to M1 macrophages which later promote tumour progression. Numerous studies have elucidated the relationship between TAM and the progression of tumour; hence, TAM has now been the subject of interest among researchers for anticancer therapy. This review discusses the role of TAM in colorectal cancer (CRC) and some of the potential candidates that could reeducate TAM to fight against CRC. It is with hope that this review will serve as the foundation in understanding TAM in CRC and helping other researchers to select the most suitable candidate to reeducate TAM that could assist in enhancing the tumouricidal activity of M1 macrophage and eventually repress the development of CRC.
Collapse
|