1
|
Wang PL, Borsley S, Power MJ, Cavasso A, Giuseppone N, Leigh DA. Transducing chemical energy through catalysis by an artificial molecular motor. Nature 2025; 637:594-600. [PMID: 39815097 PMCID: PMC11735380 DOI: 10.1038/s41586-024-08288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/25/2024] [Indexed: 01/18/2025]
Abstract
Cells display a range of mechanical activities generated by motor proteins powered through catalysis1. This raises the fundamental question of how the acceleration of a chemical reaction can enable the energy released from that reaction to be transduced (and, consequently, work to be done) by a molecular catalyst2-7. Here we demonstrate the molecular-level transduction of chemical energy to mechanical force8 in the form of the powered contraction and powered re-expansion of a cross-linked polymer gel driven by the directional rotation of artificial catalysis-driven9 molecular motors. Continuous 360° rotation of the rotor about the stator of the catalysis-driven motor-molecules incorporated in the polymeric framework of the gel twists the polymer chains of the cross-linked network around one another. This progressively increases writhe and tightens entanglements, causing a macroscopic contraction of the gel to approximately 70% of its original volume. The subsequent addition of the opposite enantiomer fuelling system powers the rotation of the motor-molecules in the reverse direction, unwinding the entanglements and causing the gel to re-expand. Continued powered twisting of the strands in the new direction causes the gel to re-contract. In addition to actuation, motor-molecule rotation in the gel produces other chemical and physical outcomes, including changes in the Young modulus and storage modulus-the latter is proportional to the increase in strand crossings resulting from motor rotation. The experimental demonstration of work against a load by a synthetic organocatalyst, and its mechanism of energy transduction6, informs both the debate3,5,7 surrounding the mechanism of force generation by biological motors and the design principles6,10-14 for artificial molecular nanotechnology.
Collapse
Affiliation(s)
- Peng-Lai Wang
- Department of Chemistry, University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Stefan Borsley
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Martin J Power
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Alessandro Cavasso
- SAMS Research Group, Université de Strasbourg and Institut Charles Sadron, Strasbourg, France
| | - Nicolas Giuseppone
- SAMS Research Group, Université de Strasbourg and Institut Charles Sadron, Strasbourg, France.
- Institut Universitaire de France (IUF), Paris, France.
| | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, UK.
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| |
Collapse
|
2
|
Ye Z, Sun L, Xiang Q, Hao Y, Liu H, He Q, Yang X, Liao W. Advancements of Biomacromolecular Hydrogel Applications in Food Nutrition and Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23689-23708. [PMID: 39410660 DOI: 10.1021/acs.jafc.4c05903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Hydrogels exhibit remarkable degradability, biocompatibility and functionality, which position them as highly promising materials for applications within the food and pharmaceutical industries. Although many relevant studies on hydrogels have been reported in the chemical industry, materials, and other fields, there have been few reviews on their potential applications in food nutrition and human health. This study aims to address this gap by reviewing the functional properties of hydrogels and assessing their value in terms of food nutrition and human health. The use of hydrogels in preserving bioactive ingredients, food packaging and food distribution is delved into specifically in this review. Hydrogels can serve as cutting-edge materials for food packaging and delivery, ensuring the preservation of nutritional activity within food products, facilitating targeted delivery of bioactive compounds and regulating the digestion and absorption processes in the human body, thereby promoting human health. Moreover, hydrogels find applications in in vitro cell and tissue culture, human tissue repair, as well as chronic disease prevention and treatment. These broad applications have attracted great attention in the fields of human food nutrition and health. Ultimately, this paper serves as a valuable reference for further utilization and exploration of hydrogels in these respective fields.
Collapse
Affiliation(s)
- Zichong Ye
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Linye Sun
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Qianru Xiang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Hongji Liu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Qi He
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xingfen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| |
Collapse
|
3
|
Ryoo H, Giovanni R, Kimmel H, Jain I, Underhill GH. Combinatorial Microgels for 3D ECM Screening and Heterogeneous Microenvironmental Culture of Primary Human Hepatic Stellate Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303128. [PMID: 38348560 PMCID: PMC11022709 DOI: 10.1002/advs.202303128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/03/2023] [Indexed: 02/15/2024]
Abstract
Nonalcoholic fatty liver disease affects 30% of the United States population and its progression can lead to nonalcoholic steatohepatitis (NASH), and increased risks for cirrhosis and hepatocellular carcinoma. NASH is characterized by a highly heterogeneous liver microenvironment created by the fibrotic activity of hepatic stellate cells (HSCs). While HSCs have been widely studied in 2D, further advancements in physiologically relevant 3D culture platforms for the in vitro modeling of these heterogeneous environments are needed. In this study, the use of stiffness-variable, extracellular matrix (ECM) protein-conjugated polyethylene glycol microgels as 3D cell culture scaffolds to modulate HSC activation is demonstrated. These microgels as a high throughput ECM screening system to identify HSC matrix remodeling and metabolic activities in distinct heterogeneous microenvironmental conditions are further employed. The 6 kPa fibronectin microgels are shown to significantly increase HSC matrix remodeling and metabolic activities in single or multiple-component microenvironments. Overall, heterogeneous microenvironments consisting of multiple distinct ECM microgels promoted a decrease in HSC matrix remodeling and metabolic activities compared to homogeneous microenvironments. The study envisions this ECM screening platform being adapted to a broad number of cell types to aid the identification of ECM microenvironments that best recapitulate the desired phenotype, differentiation, or drug efficacy.
Collapse
Affiliation(s)
- Hyeon Ryoo
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Regina Giovanni
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Hannah Kimmel
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Ishita Jain
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Gregory H. Underhill
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
4
|
Cai B, Kilian D, Ramos Mejia D, Rios RJ, Ali A, Heilshorn SC. Diffusion-Based 3D Bioprinting Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306470. [PMID: 38145962 PMCID: PMC10885663 DOI: 10.1002/advs.202306470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/11/2023] [Indexed: 12/27/2023]
Abstract
3D bioprinting has enabled the fabrication of tissue-mimetic constructs with freeform designs that include living cells. In the development of new bioprinting techniques, the controlled use of diffusion has become an emerging strategy to tailor the properties and geometry of printed constructs. Specifically, the diffusion of molecules with specialized functions, including crosslinkers, catalysts, growth factors, or viscosity-modulating agents, across the interface of printed constructs will directly affect material properties such as microstructure, stiffness, and biochemistry, all of which can impact cell phenotype. For example, diffusion-induced gelation is employed to generate constructs with multiple materials, dynamic mechanical properties, and perfusable geometries. In general, these diffusion-based bioprinting strategies can be categorized into those based on inward diffusion (i.e., into the printed ink from the surrounding air, solution, or support bath), outward diffusion (i.e., from the printed ink into the surroundings), or diffusion within the printed construct (i.e., from one zone to another). This review provides an overview of recent advances in diffusion-based bioprinting strategies, discusses emerging methods to characterize and predict diffusion in bioprinting, and highlights promising next steps in applying diffusion-based strategies to overcome current limitations in biofabrication.
Collapse
Affiliation(s)
- Betty Cai
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - David Kilian
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Daniel Ramos Mejia
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Ricardo J. Rios
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Ashal Ali
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Sarah C. Heilshorn
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| |
Collapse
|
5
|
Zhang X, Dai X, Habib MA, Gao L, Chen W, Wei W, Tang Z, Qi X, Gong X, Jiang L, Yan LT. Unconventionally fast transport through sliding dynamics of rodlike particles in macromolecular networks. Nat Commun 2024; 15:525. [PMID: 38225267 PMCID: PMC10789817 DOI: 10.1038/s41467-024-44765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
Transport of rodlike particles in confinement environments of macromolecular networks plays crucial roles in many important biological processes and technological applications. The relevant understanding has been limited to thin rods with diameter much smaller than network mesh size, although the opposite case, of which the dynamical behaviors and underlying physical mechanisms remain unclear, is ubiquitous. Here, we solve this issue by combining experiments, simulations and theory. We find a nonmonotonic dependence of translational diffusion on rod length, characterized by length commensuration-governed unconventionally fast dynamics which is in striking contrast to the monotonic dependence for thin rods. Our results clarify that such a fast diffusion of thick rods with length of integral multiple of mesh size follows sliding dynamics and demonstrate it to be anomalous yet Brownian. Moreover, good agreement between theoretical analysis and simulations corroborates that the sliding dynamics is an intermediate regime between hopping and Brownian dynamics, and provides a mechanistic interpretation based on the rod-length dependent entropic free energy barrier. The findings yield a principle, that is, length commensuration, for optimal design of rodlike particles with highly efficient transport in confined environments of macromolecular networks, and might enrich the physics of the diffusion dynamics in heterogeneous media.
Collapse
Affiliation(s)
- Xuanyu Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, 100084, Beijing, China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, 100084, Beijing, China
| | - Md Ahsan Habib
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, 510640, Guangzhou, China
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, 100084, Beijing, China
| | - Wenlong Chen
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, 100084, Beijing, China
| | - Wenjie Wei
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, 100084, Beijing, China
| | - Zhongqiu Tang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, 510640, Guangzhou, China
| | - Xianyu Qi
- Faculty of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Xiangjun Gong
- Faculty of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, 510640, Guangzhou, China.
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China.
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
6
|
Godfrey B, Li B, Gottshall E, Brysons S, Abrahamson B, Winkler M. Co-immobilization of AOA strains with anammox bacteria in three different synthetic bio-granules maintained under two substrate-level conditions. CHEMOSPHERE 2023; 342:140192. [PMID: 37722534 DOI: 10.1016/j.chemosphere.2023.140192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Hydrogel encapsulation of ammonium oxidizing archaea (AOA) along with anammox bacteria holds potential to enable mainstream partial nitritation (PN)-anammox process attributing to AOA's high affinity to ammonia and oxygen. This study explored the growth of AOA and anammox in hydrogel-based synthetic biogranules by testing two AOA strains, three types of hydrogel beads and two substrate levels, to identify the optimal combination favoring the concomitant growth of AOA and anammox. The AOA Nitrososphaera viennensis (AOA-NV) exhibited higher abundance (10-2.3±0.6 AOA/16S) than the AOA-DW (10-4.7±0.8 AOA/16S) during the entire experimental period. Amongst the three types of hydrogel beads, the PVA-SA-BaCl2 (140 days) and PVA-SA-H3BO3 beads (>180 days) exhibited better long-term structural stability than the PEGDMA-SA-CaCl2 beads. The PVA-SA-H3BO3 beads exhibited the best long-term stability and both the PVA/SA BaCl2 and PVA-SA-H3BO3 beads had comparable ability to retain AOA, anammox and the overall microbial community. Substrate conditions rather than the bead type primarily controlled the microbial community structure. Modest substrate concentrations (1 mM NH4+-N in the feed and 0.8 mg/L dissolved oxygen (DO) in the reactor during aeration phase) followed by low substrate conditions (0.1 mM NH4+-N and 0.2 mg DO/L) both supported the growth of AOA and anammox, while the low substrate condition also suppressed the growth of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB), with AOA /AOB and anammox/NOB ratio of 0.7 and 0.4 at moderate substrate condition and 16.5 and 2.6 at low substrate condition.
Collapse
Affiliation(s)
- Bruce Godfrey
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA, 98195, USA
| | - Bo Li
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA, 98195, USA.
| | - Ekaterina Gottshall
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA, 98195, USA
| | - Samuel Brysons
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA, 98195, USA
| | - Britt Abrahamson
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA, 98195, USA
| | - Mari Winkler
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA, 98195, USA
| |
Collapse
|
7
|
Kittel Y, Guerzoni LPB, Itzin C, Rommel D, Mork M, Bastard C, Häßel B, Omidinia-Anarkoli A, Centeno SP, Haraszti T, Kim K, Guck J, Kuehne AJC, De Laporte L. Varying the Stiffness and Diffusivity of Rod-Shaped Microgels Independently through Their Molecular Building Blocks. Angew Chem Int Ed Engl 2023; 62:e202309779. [PMID: 37712344 DOI: 10.1002/anie.202309779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Microgels are water-swollen, crosslinked polymers that are widely used as colloidal building blocks in scaffold materials for tissue engineering and regenerative medicine. Microgels can be controlled in their stiffness, degree of swelling, and mesh size depending on their polymer architecture, crosslink density, and fabrication method-all of which influence their function and interaction with the environment. Currently, there is a lack of understanding of how the polymer composition influences the internal structure of soft microgels and how this morphology affects specific biomedical applications. In this report, we systematically vary the architecture and molar mass of polyethylene glycol-acrylate (PEG-Ac) precursors, as well as their concentration and combination, to gain insight in the different parameters that affect the internal structure of rod-shaped microgels. We characterize the mechanical properties and diffusivity, as well as the conversion of acrylate groups during photopolymerization, in both bulk hydrogels and microgels produced from the PEG-Ac precursors. Furthermore, we investigate cell-microgel interaction, and we observe improved cell spreading on microgels with more accessible RGD peptide and with a stiffness in a range of 20 kPa to 50 kPa lead to better cell growth.
Collapse
Affiliation(s)
- Yonca Kittel
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Luis P B Guerzoni
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Carolina Itzin
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Dirk Rommel
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Matthias Mork
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Céline Bastard
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
- Center for Biohybrid Medical Systems (CBMS), Advanced Materials for Biomedicine (AMB), Institute of Applied Medical Engineering (AME), Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Bernhard Häßel
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Abdolrahman Omidinia-Anarkoli
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Silvia P Centeno
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Tamás Haraszti
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Kyoohyun Kim
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Staudtstraße 2, 91058, Erlangen, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Staudtstraße 2, 91058, Erlangen, Germany
| | - Alexander J C Kuehne
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Laura De Laporte
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
- Center for Biohybrid Medical Systems (CBMS), Advanced Materials for Biomedicine (AMB), Institute of Applied Medical Engineering (AME), Forckenbeckstraße 55, 52074, Aachen, Germany
| |
Collapse
|
8
|
Foreman K, Tran-Ba KH. Single-Particle Tracking in Poly(Ethylene Glycol) Diacrylate: Probe Size Effect on the Diffusion Behaviors of Nanoparticles in Unentangled Polymer Solutions. J Phys Chem B 2023; 127:7091-7102. [PMID: 37527454 DOI: 10.1021/acs.jpcb.3c03499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
A thorough understanding of the relevant factors governing the transport of nanoparticles in poly(ethylene glycol) diacrylate (PEGDA) is crucial for many applications utilizing this polymer. Here, single-particle tracking (SPT) was used to systematically investigate the role of the probe size (3-200 nm) on the diffusion behaviors of individual fluorescent nanoparticles in semidilute and unentangled PEGDA solutions. The quantitative assessment of the SPT data via the recorded single-particle trajectories and diffusion coefficients (D) not only showed that the observed probe dynamics in PEGDA were temporally and spatially heterogeneous, but more importantly that the measured D were observed to be significantly reduced (vs in solvent) and strongly size-dependent. We explained these results based on a modified multiscale model for particle diffusion, built upon well-established hydrodynamics and obstruction theories. We furthermore showed that the presence of steric interactions and probe confinement effects in highly crowded, unentangled PEGDA microstructures can lead to deviations in the single-particle displacements from the expected Gaussian behavior, as revealed by the van Hove displacement distributions and the associated non-Gaussian parameters. This study has demonstrated the power of SPT methods in offering an advanced characterization of the transport characteristics in complex polymer structures, overcoming challenges posed by traditional characterization techniques.
Collapse
Affiliation(s)
- Kathryn Foreman
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - Khanh-Hoa Tran-Ba
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| |
Collapse
|
9
|
Natesan PV, Sundar Banerjee S, Swaminathan R. Investigation of the Effect of Swelling on the Diffusion Properties of Polyethylene Glycol Hydrogel for Wound Healing Applications. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38261471 DOI: 10.1109/embc40787.2023.10340290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The present research work aims to comprehensively analyze the effect of swelling of polyethylene glycol (PEG) hydrogel on its diffusion properties for wound healing applications. For this study, a computational model based on three fundamental theories namely, equilibrium swelling theory, rubber elasticity theory and free volume theory has been implemented to determine the diffusion parameters of PEG hydrogel having a molecular weight of 20,000 g/mol. The diffusion of two plant metabolites with inherent antimicrobial activity namely, Cinnamaldehyde and Curcumin and two synthetic antimicrobial drugs namely, Amphotericin B and Vancomycin has been simulated. The results demonstrate that the proposed theoretical framework is capable of predicting the alterations occurring in the diffusion characteristics due to the swelling of PEG hydrogel. The diffusion coefficient of the solute is found to increase with the volumetric swelling ratio (Qv), owing to the wider mesh size of the hydrogel matrix. The diffusion time of the therapeutic compounds is observed to be in the range of 2.40 - 8.30 h.Clinical Relevance- The modelling approach employed in this study will be clinically relevant for designing hydrogel drug delivery systems capable of accelerating the treatment of the infected wounds.
Collapse
|
10
|
Khan ZM, Munson JM, Long TE, Vlaisavljevich E, Verbridge SS. Development of a Synthetic, Injectable Hydrogel to Capture Residual Glioblastoma and Glioblastoma Stem-Like Cells with CXCL12-Mediated Chemotaxis. Adv Healthc Mater 2023; 12:e2300671. [PMID: 37014179 PMCID: PMC11469263 DOI: 10.1002/adhm.202300671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Glioblastoma (GBM), characterized by high infiltrative capacity, is the most common and deadly type of primary brain tumor in adults. GBM cells, including therapy-resistant glioblastoma stem-like cells (GSCs), invade the healthy brain parenchyma to form secondary tumors even after patients undergo surgical resection and chemoradiotherapy. New techniques are therefore urgently needed to eradicate these residual tumor cells. A thiol-Michael addition injectable hydrogel for compatibility with GBM therapy is previously characterized and optimized. This study aims to develop the hydrogel further to capture GBM/GSCs through CXCL12-mediated chemotaxis. The release kinetics of hydrogel payloads are investigated, migration and invasion assays in response to chemoattractants are performed, and the GBM-hydrogel interactions in vitro are studied. With a novel dual-layer hydrogel platform, it is demonstrated that CXCL12 released from the synthetic hydrogel can induce the migration of U251 GBM cells and GSCs from the extracellular matrix microenvironment and promote invasion into the synthetic hydrogel via amoeboid migration. The survival of GBM cells entrapped deep into the synthetic hydrogel is limited, while live cells near the surface reinforce the hydrogel through fibronectin deposition. This synthetic hydrogel, therefore, demonstrates a promising method to attract and capture migratory GBM cells and GSCs responsive to CXCL12 chemotaxis.
Collapse
Affiliation(s)
- Zerin Mahzabin Khan
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
| | - Jennifer M. Munson
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
- Wake Forest Baptist Comprehensive Cancer CenterWake Forest UniversityWinston‐SalemNC27157USA
- Fralin Biomedical Research Institute at Virginia Tech – CarillionRoanokeVA24016USA
| | - Timothy E. Long
- Biodesign Center for Sustainable Macromolecular Materials and ManufacturingArizona State UniversityTempeAZ85287USA
| | - Eli Vlaisavljevich
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
| | - Scott S. Verbridge
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
- Wake Forest Baptist Comprehensive Cancer CenterWake Forest UniversityWinston‐SalemNC27157USA
| |
Collapse
|
11
|
Ryoo H, Underhill GH. Combinatorial Microgels for 3D ECM Screening and Heterogeneous Microenvironmental Culture of Primary Human Hepatic Stellate Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539608. [PMID: 37214995 PMCID: PMC10197534 DOI: 10.1101/2023.05.05.539608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Non-alcoholic fatty liver disease affects 30% of the United States population and its progression can lead to non-alcoholic steatohepatitis (NASH), which can result in cirrhosis and hepatocellular carcinoma. NASH is characterized by a highly heterogeneous liver microenvironment created by the fibrotic activity of hepatic stellate cells (HSCs). While HSCs have been widely studied in 2D, further advancements in physiologically-relevant 3D culture platforms for the in vitro modeling of these heterogeneous environments are needed. In this study, we have demonstrated the use of stiffness-variable, ECM protein-conjugated polyethylene glycol microgels as 3D cell culture scaffolds to modulate HSC activation. We further employed these microgels as a high throughput ECM screening system to identify HSC matrix remodeling and metabolic activities in distinct heterogeneous microenvironmental conditions. In particular, 6 kPa fibronectin microgels were shown to significantly increase HSC matrix remodeling and metabolic activities in single or multiple component microenvironments. Overall, heterogeneous microenvironments consisting of multiple distinct ECM microgels promoted a decrease in HSC matrix remodeling and metabolic activities compared to homogeneous microenvironments. We envision this ECM screening platform being adapted to a broad number of cell types to aid the identification of ECM microenvironments that best recapitulate the desired phenotype, differentiation, or drug efficacy.
Collapse
Affiliation(s)
- Hyeon Ryoo
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Gregory H. Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Ahmed TA, Eldaly B, Eldosuky S, Elkhenany H, El-Derby AM, Elshazly MF, El-Badri N. The interplay of cells, polymers, and vascularization in three-dimensional lung models and their applications in COVID-19 research and therapy. Stem Cell Res Ther 2023; 14:114. [PMID: 37118810 PMCID: PMC10144893 DOI: 10.1186/s13287-023-03341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/14/2023] [Indexed: 04/30/2023] Open
Abstract
Millions of people have been affected ever since the emergence of the corona virus disease of 2019 (COVID-19) outbreak, leading to an urgent need for antiviral drug and vaccine development. Current experimentation on traditional two-dimensional culture (2D) fails to accurately mimic the in vivo microenvironment for the disease, while in vivo animal model testing does not faithfully replicate human COVID-19 infection. Human-based three-dimensional (3D) cell culture models such as spheroids, organoids, and organ-on-a-chip present a promising solution to these challenges. In this report, we review the recent 3D in vitro lung models used in COVID-19 infection and drug screening studies and highlight the most common types of natural and synthetic polymers used to generate 3D lung models.
Collapse
Affiliation(s)
- Toka A Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Bassant Eldaly
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Shadwa Eldosuky
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Muhamed F Elshazly
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt.
| |
Collapse
|
13
|
Natesan PV, Banerjee SS, Arunachalakasi A, Swaminathan R. Analysis of diffusion of plant metabolites from polyethylene glycol hydrogels using free volume theory. Proc Inst Mech Eng H 2023:9544119231162772. [PMID: 36939171 DOI: 10.1177/09544119231162772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
The present work aims to comprehensively analyze the diffusion of plant metabolites from the polyethylene glycol (PEG) hydrogels for controlled release applications. For this study, a mathematical model based on free volume theory has been utilized to simulate the diffusion of low molecular weight plant metabolites. The results demonstrate that the mesh size of the crosslinked network, thereby the diffusion coefficient of the natural compound can be computed using the current framework. The proposed model has also been validated using the experimental data. The diffusion period has been observed to vary within a wide range of 3.42 h for Cinnamaldehyde to 49.25 h for Grandinin. An empirical parametric relationship between the diffusion time and molecular weight of both the hydrogels and natural compounds is established. It appears that the reported modeling approach will be clinically useful for improving the design of the sustained drug delivery systems.
Collapse
Affiliation(s)
- Pooja Vardhini Natesan
- Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Shib Sundar Banerjee
- Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Arockiarajan Arunachalakasi
- Solid Mechanics Division, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Ramakrishnan Swaminathan
- Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
14
|
Richbourg NR, Peppas NA. Solute diffusion and partitioning in multi-arm poly(ethylene glycol) hydrogels. J Mater Chem B 2023; 11:377-388. [PMID: 36511476 DOI: 10.1039/d2tb02004a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Controlling solute transport in hydrogels is critical for numerous chemical separation applications, tissue engineering, and drug delivery systems. In previous review work, we have pointed out that proposed theoretical models and associated experiments tend to oversimplify the influence of the hydrogel structure on solute transport by addressing only the effects of the polymer volume fraction and mesh size of the networks on solute transport. Here, we reexamine these models by experimenting with a library of multi-arm poly(ethylene glycol) (PEG) hydrogels with simultaneous variations in four independent structural parameters. Standardized, high-throughput fluorescence recovery after photobleaching (FRAP) experiments in hydrogels characterize size-dependent solute diffusion and partitioning in each hydrogel formulation. Solute diffusivity dependence on junction functionality shows an influence from network geometry that is not addressed by mesh size-based models, experimentally validating the use of the geometry-responsive mesh radius in solute diffusivity modeling. Furthermore, the Richbourg-Peppas swollen polymer network (SPN) model accurately predicts how three of the four structural parameters affect solute diffusivity in hydrogels. Comparison with the large pore effective medium (LPEM) model showed that the SPN model better predicts solute size and hydrogel structure effects on diffusivity. This study provides a framework for investigating solute transport in hydrogels that will continue to improve hydrogel design for tissue engineering and drug delivery.
Collapse
Affiliation(s)
- Nathan R Richbourg
- Department of Biomedical Engineering, University of Texas, Austin, TX, 78712, USA.
| | - Nicholas A Peppas
- Department of Biomedical Engineering, University of Texas, Austin, TX, 78712, USA. .,McKetta Department of Chemical Engineering, University of Texas, Austin, TX, 78712, USA.,Division of Molecular Therapeutics and Drug Delivery, College of Pharmacy, University of Texas, Austin, TX, 78712, USA.,Departments of Surgery and Pediatrics, Dell Medical School, University of Texas, Austin, TX, 78712, USA
| |
Collapse
|
15
|
Braegelman AS, Ollier RC, Su B, Addonizio CJ, Zou L, Cole SL, Webber MJ. Macromolecular Solute Transport in Supramolecular Hydrogels Spanning Dynamic to Quasi-Static States. ACS APPLIED BIO MATERIALS 2022; 5:10.1021/acsabm.2c00165. [PMID: 35623099 PMCID: PMC10019485 DOI: 10.1021/acsabm.2c00165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogels prepared from supramolecular cross-linking motifs are appealing for use as biomaterials and drug delivery technologies. The inclusion of macromolecules (e.g., protein therapeutics) in these materials is relevant to many of their intended uses. However, the impact of dynamic network cross-linking on macromolecule diffusion must be better understood. Here, hydrogel networks with identical topology but disparate cross-link dynamics are explored. These materials are prepared from cross-linking with host-guest complexes of the cucurbit[7]uril (CB[7]) macrocycle and two guests of different affinity. Rheology confirms differences in bulk material dynamics arising from differences in cross-link thermodynamics. Fluorescence recovery after photobleaching (FRAP) provides insight into macromolecule diffusion as a function of probe molecular weight and hydrogel network dynamics. Together, both rheology and FRAP enable the estimation of the mean network mesh size, which is then related to the solute hydrodynamic diameters to further understand macromolecule diffusion. Interestingly, the thermodynamics of host-guest cross-linking are correlated with a marked deviation from classical diffusion behavior for higher molecular weight probes, yielding solute aggregation in high-affinity networks. These studies offer insights into fundamental macromolecular transport phenomena as they relate to the association dynamics of supramolecular networks. Translation of these materials from in vitro to in vivo is also assessed by bulk release of an encapsulated macromolecule. Contradictory in vitro to in vivo results with inverse relationships in release between the two hydrogels underscores the caution demanded when translating supramolecular biomaterials into application.
Collapse
Affiliation(s)
- Adam S. Braegelman
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556 USA
- University of Notre Dame, Bioengineering PhD Program, Notre Dame, IN 46556 USA
| | - Rachel C. Ollier
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556 USA
| | - Bo Su
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556 USA
| | - Christopher J. Addonizio
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556 USA
| | - Lei Zou
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556 USA
| | - Sara L. Cole
- University of Notre Dame, Integrated Imaging Facility, Notre Dame, IN 46556 USA
| | - Matthew J. Webber
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556 USA
| |
Collapse
|
16
|
Brunel LG, Hull SM, Heilshorn SC. Engineered assistive materials for 3D bioprinting: support baths and sacrificial inks. Biofabrication 2022; 14:032001. [PMID: 35487196 PMCID: PMC10788121 DOI: 10.1088/1758-5090/ac6bbe] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/29/2022] [Indexed: 11/11/2022]
Abstract
Three-dimensional (3D) bioprinting is a promising technique for spatially patterning cells and materials into constructs that mimic native tissues and organs. However, a trade-off exists between printability and biological function, where weak materials are typically more suited for 3D cell culture but exhibit poor shape fidelity when printed in air. Recently, a new class of assistive materials has emerged to overcome this limitation and enable fabrication of more complex, biologically relevant geometries, even when using soft materials as bioinks. These materials include support baths, which bioinks are printed into, and sacrificial inks, which are printed themselves and then later removed. Support baths are commonly yield-stress materials that provide physical confinement during the printing process to improve resolution and shape fidelity. Sacrificial inks have primarily been used to create void spaces and pattern perfusable networks, but they can also be combined directly with the bioink to change its mechanical properties for improved printability or increased porosity. Here, we outline the advantages of using such assistive materials in 3D bioprinting, define their material property requirements, and offer case study examples of how these materials are used in practice. Finally, we discuss the remaining challenges and future opportunities in the development of assistive materials that will propel the bioprinting field forward toward creating full-scale, biomimetic tissues and organs.
Collapse
Affiliation(s)
- Lucia G Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA, United States of America
| | - Sarah M Hull
- Department of Chemical Engineering, Stanford University, Stanford, CA, United States of America
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
17
|
Zhang J, Liu J, Li H, Li X, Zhao Y, Zhao P, Cui J, Yang B, Song Y, Zheng Y. Programming Hydrogels with Complex Transient Behaviors via Autocatalytic Cascade Reactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20073-20082. [PMID: 35439417 DOI: 10.1021/acsami.2c03177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is challenging to design complex synthetic life-like systems that can show both autoevolution and fuel-driven transient behaviors. Here, we report a new class of chemical reaction networks (CRNs) to construct life-like polymer hydrogels. The CRNs are constituted of autocatalytic cascade reactions and fuel-driven reaction networks. The reactions start with only two compounds, that is, thiol of 4-arm-PEG-SH and thiuram disulfides, and undergo thiol oxidation (k1), disulfide metathesis (k2), and thionate hydrolysis-coupling reactions (k3) subsequently, leading to a four-state autonomous transition of sol(I) → soft gel → sol(II) → stiff gel. Moreover, thiuram disulfides can be applied as a fuel to drive the repeated occurrence of metathesis and hydrolysis-coupling reactions, generating dissipative stiff gel → sol(II) → stiff gel cycles. Systematic kinetics studies reveal that the event and lifetime of every transient state could be delicately tailored-up by varying the thiuram disulfide concentration, pH of the system, and thiuram structures. Since the consecutive transient behaviors are precisely predictable, we envision the strategy's potential in guiding the molecular designs of autonomous and adaptive materials for many fields.
Collapse
Affiliation(s)
- Jingyi Zhang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, P. R. China
| | - Jian Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, P. R. China
| | - Huizeng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Xiaohe Li
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, P. R. China
| | - Yuanfeng Zhao
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, P. R. China
| | - Peng Zhao
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, P. R. China
| | - Jiaxi Cui
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Yijun Zheng
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, P. R. China
| |
Collapse
|
18
|
Seida Y, Tokuyama H. Hydrogel Adsorbents for the Removal of Hazardous Pollutants—Requirements and Available Functions as Adsorbent. Gels 2022; 8:gels8040220. [PMID: 35448121 PMCID: PMC9028382 DOI: 10.3390/gels8040220] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Over the last few decades, various adsorption functions of polymer hydrogels for the removal of hazardous pollutants have been developed. The performance of hydrogel adsorbents depends on the constituents of the gels and the functions produced by the polymer networks of the gels. Research on hydrogels utilizing the characteristic functions of polymer networks has increased over the last decade. The functions of polymer networks are key to the development of advanced adsorbents for the removal of various pollutants. No review has discussed hydrogel adsorbents from the perspective of the roles and functions of polymer networks in hydrogels. This paper briefly reviews the basic requirements of adsorbents and the general characteristics of hydrogels as adsorbents. Thereafter, hydrogels are reviewed on the basis of the roles and functions of the polymer networks in them for the removal of hazardous pollutants by introducing studies published over the last decade. The application of hydrogels as adsorbents for the removal of hazardous pollutants is discussed as well.
Collapse
Affiliation(s)
- Yoshimi Seida
- Natural Science Laboratory, Toyo University, 5-28-20 Hakusan, Bunkyo-ku, Tokyo 112-8606, Japan
- Correspondence: ; Tel.: +81-3-3945-4894
| | - Hideaki Tokuyama
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan;
| |
Collapse
|
19
|
Wenger L, Hubbuch J. Investigation of Lysozyme Diffusion in Agarose Hydrogels Employing a Microfluidics-Based UV Imaging Approach. Front Bioeng Biotechnol 2022; 10:849271. [PMID: 35350183 PMCID: PMC8957962 DOI: 10.3389/fbioe.2022.849271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Hydrogels are polymer-based materials with a high water content. Due to their biocompatible and cell-friendly nature, they play a major role in a variety of biotechnological applications. For many of these applications, diffusibility is an essential property influencing the choice of material. We present an approach to estimate diffusion coefficients in hydrogels based on absorbance measurements of a UV area imaging system. A microfluidic chip with a y-junction was employed to generate a fluid-hydrogel interface and the diffusion of lysozyme from the fluid into the hydrogel phase was monitored. Employing automated image and data processing, analyte concentration profiles were generated from the absorbance measurements and fits with an analytical solution of Fick's second law of diffusion were applied to estimate diffusion coefficients. As a case study, the diffusion of lysozyme in hydrogels made from different concentrations (0.5-1.5% (w/w)) of an unmodified and a low-melt agarose was investigated. The estimated diffusion coefficients for lysozyme were between 0.80 ± 0.04×10-10 m2 s-1 for 1.5% (w/w) low-melt agarose and 1.14 ± 0.02×10-10 m2 s-1 for 0.5% (w/w) unmodified agarose. The method proved sensitive enough to resolve significant differences between the diffusion coefficients in different concentrations and types of agarose. The microfluidic approach offers low consumption of analyte and hydrogel and requires only relatively simple instrumentation.
Collapse
Affiliation(s)
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
20
|
Quesada-Pérez M, Maroto-Centeno JA, Ramos-Tejada MDM, Martín-Molina A. Coarse-Grained Simulations of Solute Diffusion in Crosslinked Flexible Hydrogels. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Manuel Quesada-Pérez
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, Linares 23700, Jaén, Spain
| | - José-Alberto Maroto-Centeno
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, Linares 23700, Jaén, Spain
| | - María del Mar Ramos-Tejada
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, Linares 23700, Jaén, Spain
| | - Alberto Martín-Molina
- Departamento de Física Aplicada, Universidad de Granada, Campus de Fuentenueva s/n, Granada 18071, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Campus de Fuentenueva s/n, Granada 18071, Spain
| |
Collapse
|
21
|
Caetano-Silva S, Simbi BH, Marr N, Hibbert A, Allen SP, Pitsillides AA. Restraint upon Embryonic Metatarsal Ex Vivo Growth by Hydrogel Reveals Interaction between Quasi-Static Load and the mTOR Pathway. Int J Mol Sci 2021; 22:ijms222413220. [PMID: 34948015 PMCID: PMC8706285 DOI: 10.3390/ijms222413220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
Mechanical cues play a vital role in limb skeletal development, yet their influence and underpinning mechanisms in the regulation of endochondral ossification (EO) processes are incompletely defined. Furthermore, interactions between endochondral growth and mechanics and the mTOR/NF-ĸB pathways are yet to be explored. An appreciation of how mechanical cues regulate EO would also clearly be beneficial in the context of fracture healing and bone diseases, where these processes are recapitulated. The study herein addresses the hypothesis that the mTOR/NF-ĸB pathways interact with mechanics to control endochondral growth. To test this, murine embryonic metatarsals were incubated ex vivo in a hydrogel, allowing for the effects of quasi-static loading on longitudinal growth to be assessed. The results showed significant restriction of metatarsal growth under quasi-static loading during a 14-day period and concentration-dependent sensitivity to hydrogel-related restriction. This study also showed that hydrogel-treated metatarsals retain their viability and do not present with increased apoptosis. Metatarsals exhibited reversal of the growth-restriction when co-incubated with mTOR compounds, whilst it was found that these compounds showed no effects under basal culture conditions. Transcriptional changes linked to endochondral growth were assessed and downregulation of Col2 and Acan was observed in hydrogel-treated metatarsi at day 7. Furthermore, cell cycle analyses confirmed the presence of chondrocytes exhibiting S-G2/M arrest. These data indicate that quasi-static load provokes chondrocyte cell cycle arrest, which is partly overcome by mTOR, with a less marked interaction for NF-ĸB regulators.
Collapse
|
22
|
Quesada-Pérez M, Maroto-Centeno JA, Ramos-Tejada MDM, Martín-Molina A. Universal description of steric hindrance in flexible polymer gels. Phys Chem Chem Phys 2021; 23:14997-15002. [PMID: 34231600 DOI: 10.1039/d1cp02113c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this work, the long-time diffusion of a solute in a chemically crosslinked and flexible hydrogel is computed from a bead-spring model of a polymeric network to assess the effect of steric obstruction. The relative diffusivities obtained for a wide variety of systems can be described by an exponential decay depending on a parameter that differs from that employed for rigid gels. The mathematical expression derived here can approximately predict the diffusivity in flexible gels if steric hindrance is the mechanism ruling diffusion.
Collapse
Affiliation(s)
- Manuel Quesada-Pérez
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, Linares, 23700, Jaén, Spain
| | - José Alberto Maroto-Centeno
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, Linares, 23700, Jaén, Spain
| | - María Del Mar Ramos-Tejada
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, Linares, 23700, Jaén, Spain
| | - Alberto Martín-Molina
- Departamento de Física Aplicada, Universidad de Granada, Campus de Fuentenueva s/n, Granada 18071, Spain. and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Campus de Fuentenueva s/n, Granada 18071, Spain
| |
Collapse
|
23
|
Danielsen SPO, Beech HK, Wang S, El-Zaatari BM, Wang X, Sapir L, Ouchi T, Wang Z, Johnson PN, Hu Y, Lundberg DJ, Stoychev G, Craig SL, Johnson JA, Kalow JA, Olsen BD, Rubinstein M. Molecular Characterization of Polymer Networks. Chem Rev 2021; 121:5042-5092. [PMID: 33792299 DOI: 10.1021/acs.chemrev.0c01304] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymer networks are complex systems consisting of molecular components. Whereas the properties of the individual components are typically well understood by most chemists, translating that chemical insight into polymer networks themselves is limited by the statistical and poorly defined nature of network structures. As a result, it is challenging, if not currently impossible, to extrapolate from the molecular behavior of components to the full range of performance and properties of the entire polymer network. Polymer networks therefore present an unrealized, important, and interdisciplinary opportunity to exert molecular-level, chemical control on material macroscopic properties. A barrier to sophisticated molecular approaches to polymer networks is that the techniques for characterizing the molecular structure of networks are often unfamiliar to many scientists. Here, we present a critical overview of the current characterization techniques available to understand the relation between the molecular properties and the resulting performance and behavior of polymer networks, in the absence of added fillers. We highlight the methods available to characterize the chemistry and molecular-level properties of individual polymer strands and junctions, the gelation process by which strands form networks, the structure of the resulting network, and the dynamics and mechanics of the final material. The purpose is not to serve as a detailed manual for conducting these measurements but rather to unify the underlying principles, point out remaining challenges, and provide a concise overview by which chemists can plan characterization strategies that suit their research objectives. Because polymer networks cannot often be sufficiently characterized with a single method, strategic combinations of multiple techniques are typically required for their molecular characterization.
Collapse
Affiliation(s)
- Scott P O Danielsen
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Haley K Beech
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Bassil M El-Zaatari
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaodi Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | | | - Zi Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Patricia N Johnson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yixin Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Georgi Stoychev
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Physics, Duke University, Durham, North Carolina 27708, United States.,World Primer Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
24
|
Harrington S, Ott L, Karanu F, Ramachandran K, Stehno-Bittel L. A Versatile Microencapsulation Platform for Hyaluronic Acid and Polyethylene Glycol. Tissue Eng Part A 2021; 27:153-164. [PMID: 32103710 PMCID: PMC7891217 DOI: 10.1089/ten.tea.2019.0286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/14/2020] [Indexed: 12/16/2022] Open
Abstract
Cell microencapsulation is a rapidly expanding field with broad potential for stem cell therapies and tissue engineering research. Traditional alginate microspheres suffer from poor biocompatibility, and microencapsulation of more advanced hydrogels is challenging due to their slower gelation rates. We have developed a novel, noncytotoxic, nonemulsion-based method to produce hydrogel microspheres compatible with a wide variety of materials, called core-shell spherification (CSS). Fabrication of microspheres by CSS derived from two slow-hardening hydrogels, hyaluronic acid (HA) and polyethylene glycol diacrylate (PEGDA), was characterized. HA microspheres were manufactured with two different crosslinking methods: thiolation and methacrylation. Microspheres of methacrylated HA (MeHA) had the greatest swelling ratio, the largest average diameter, and the lowest diffusion barrier. In contrast, PEGDA microspheres had the smallest diameters, the lowest swelling ratio, and the highest diffusion barrier, while microspheres of thiolated HA had characteristics that were in between the other two groups. To test the ability of the hydrogels to protect cells, while promoting function, diabetic NOD mice received intraperitoneal injections of PEGDA or MeHA microencapsulated canine islets. PEGDA microspheres reversed diabetes for the length of the study (up to 16 weeks). In contrast, islets encapsulated in MeHA microspheres at the same dose restored normoglycemia, but only transiently (3-4 weeks). Nonencapsulated canine islet transplanted at the same dose did not restore normoglycemia for any length of time. In conclusion, CSS provides a nontoxic microencapsulation procedure compatible with various hydrogel types.
Collapse
Affiliation(s)
- Stephen Harrington
- Likarda LLC, Kansas City, Missouri, USA
- Department of Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | | - Lisa Stehno-Bittel
- Likarda LLC, Kansas City, Missouri, USA
- Department of Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
25
|
Fernando K, Kwang LG, Lim JTC, Fong ELS. Hydrogels to engineer tumor microenvironments in vitro. Biomater Sci 2021; 9:2362-2383. [DOI: 10.1039/d0bm01943g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Illustration of engineered hydrogel to recapitulate aspects of the tumor microenvironment.
Collapse
Affiliation(s)
- Kanishka Fernando
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - Leng Gek Kwang
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - Joanne Tze Chin Lim
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - Eliza Li Shan Fong
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
- The N.1 Institute for Health
- National University of Singapore
| |
Collapse
|
26
|
Blacutt J, Lan Z, Cosgriff-Hernandez EM, Gordon VD. Quantitative confocal microscopy and calibration for measuring differences in cyclic-di-GMP signalling by bacteria on biomedical hydrogels. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201453. [PMID: 33614081 PMCID: PMC7890475 DOI: 10.1098/rsos.201453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
The growth of bacterial biofilms on implanted medical devices causes harmful infections and device failure. Biofilm development initiates when bacteria attach to and sense a surface. For the common nosocomial pathogen Pseudomonas aeruginosa and many others, the transition to the biofilm phenotype is controlled by the intracellular signal and second messenger cyclic-di-GMP (c-di-GMP). It is not known how biomedical materials might be adjusted to impede c-di-GMP signalling, and there are few extant methods for conducting such studies. Here, we develop such a method. We allowed P. aeruginosa to attach to the surfaces of poly(ethylene glycol) diacrylate (PEGDA) hydrogels. These bacteria contained a plasmid for a green fluorescent protein (GFP) reporter for c-di-GMP. We used laser-scanning confocal microscopy to measure the dynamics of the GFP reporter for 3 h, beginning 1 h after introducing bacteria to the hydrogel. We controlled for the effects of changes in bacterial metabolism using a promoterless plasmid for GFP, and for the effects of light passing through different hydrogels being differently attenuated by using fluorescent plastic beads as 'standard candles' for calibration. We demonstrate that this method can measure statistically significant differences in c-di-GMP signalling associated with different PEGDA gel types and with the surface-exposed protein PilY1.
Collapse
Affiliation(s)
- Jacob Blacutt
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, USA
| | - Ziyang Lan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | | | - Vernita D. Gordon
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, USA
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
27
|
Quesada-Pérez M, Martín-Molina A. Solute diffusion in gels: Thirty years of simulations. Adv Colloid Interface Sci 2021; 287:102320. [PMID: 33296722 DOI: 10.1016/j.cis.2020.102320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/20/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022]
Abstract
In this review, we present a summary of computer simulation studies on solute diffusion in gels carried out in the last three decades. Special attention is paid to coarse-grained simulations in which the role of steric and electrostatic interactions on the particle diffusion can be evaluated. In addition, other important characteristics of particle diffusion in gels, such as the stiffness of the gel structure and hydrodynamic interactions, can be taken into account through coarse-grained simulations. Emphasis is placed on how simulation results help to test phenomenological models and to improve the interpretation interof experimental results. Finally, coarse-grained simulations have also been employed to study the diffusion controlled release of drugs from gels. We believe that scientific advances in this line will be useful to better understand the mechanisms that control the diffusive transport of molecules in a wide variety of biological systems.
Collapse
Affiliation(s)
- Manuel Quesada-Pérez
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, Linares, 23700 Jaén, Spain
| | - Alberto Martín-Molina
- Departamento de Física Aplicada, Universidad de Granada, Campus de Fuentenueva sn, 18071 Granada, Spain; Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Campus de Fuentenueva sn, 18071 Granada, Spain.
| |
Collapse
|
28
|
Cho HW, Kim H, Sung BJ, Kim JS. Tracer Diffusion in Tightly-Meshed Homogeneous Polymer Networks: A Brownian Dynamics Simulation Study. Polymers (Basel) 2020; 12:E2067. [PMID: 32932910 PMCID: PMC7569880 DOI: 10.3390/polym12092067] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/02/2022] Open
Abstract
We report Brownian dynamics simulations of tracer diffusion in regularly crosslinked polymer networks in order to elucidate the transport of a tracer particle in polymer networks. The average mesh size of homogeneous polymer networks is varied by assuming different degrees of crosslinking or swelling, and the size of a tracer particle is comparable to the average mesh size. Simulation results show subdiffusion of a tracer particle at intermediate time scales and normal diffusion at long times. In particular, the duration of subdiffusion is significantly prolonged as the average mesh size decreases with increasing degree of crosslinking, for which long-time diffusion occurs via the hopping processes of a tracer particle after undergoing rattling motions within a cage of the network mesh for an extended period of time. On the other hand, the cage dynamics and hopping process are less pronounced as the mesh size decreases with increasing polymer volume fractions. The interpretation is provided in terms of fluctuations in network mesh size: at higher polymer volume fractions, the network fluctuations are large enough to allow for collective, structural changes of network meshes, so that a tracer particle can escape from the cage, whereas, at lower volume fractions, the fluctuations are so small that a tracer particle remains trapped within the cage for a significant period of time before making infrequent jumps out of the cage. This work suggests that fluctuation in mesh size, as well as average mesh size itself, plays an important role in determining the dynamics of molecules and nanoparticles that are embedded in tightly meshed polymer networks.
Collapse
Affiliation(s)
- Hyun Woo Cho
- Department of Chemistry, Sogang University, Seoul 04107, Korea;
| | - Haein Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea;
| | - Bong June Sung
- Department of Chemistry, Sogang University, Seoul 04107, Korea;
| | - Jun Soo Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea;
| |
Collapse
|
29
|
Dual delivery of stem cells and insulin-like growth factor-1 in coacervate-embedded composite hydrogels for enhanced cartilage regeneration in osteochondral defects. J Control Release 2020; 327:284-295. [PMID: 32763434 DOI: 10.1016/j.jconrel.2020.08.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/07/2020] [Accepted: 08/02/2020] [Indexed: 12/31/2022]
Abstract
Exogenous dual delivery of progenitor cell population and therapeutic growth factors (GFs) is one of alternative tissue engineering strategies for osteochondral tissue regeneration. In the present study, an implantable dual delivery platform was developed using coacervates (Coa) (i.e., a tertiary complex of poly(ethylene argininylaspartate diglyceride) (PEAD) polycation, heparin, and cargo insulin-like growth factor-1 (IGF-1), in thiolated gelatin (gelatin-SH)/ poly(ethylene glycol) diacrylate (PEGDA) interpenetrating network (IPN) hydrogels. Since Coa is able to protect cargo GF and maintain its long-term bioactivity, it is speculated that Coa-mediated delivery of chondrogenic factor IGF-1 with the aid of adipose-derived stem cells (ADSCs) would synergistically facilitate osteochondral tissue repair during physiological regeneration process. Our results indicate that gelatin-SH/PEGDA IPN hydrogels demonstrated biocompatibility and mechanical properties for a possible long-term transplantation, and PEAD-base Coa exhibited a sustained release of bioactive IGF-1 over 3 weeks. Subsequently, released IGF-1 from Coa could effectively induce chondrogenic differentiation of embedded ADSCs in the hydrogel, by showing enhanced glycosaminoglycan deposition and expression of chondrogenesis-associated genes. More importantly, at 12 weeks post-implantation in a rabbit full thickness osteochondral defect model, the quality of regenerative tissues in both chondral and subchondral layers was significantly improved in dual delivery of ADSC and IGF-1 in Coa encapsulated in gelatin-SH/PEGDA IPN hydrogels, as compared with a single delivery of ADSC only and a dual delivery without Coa. Therefore, we conclude that our Coa-embedded composite hydrogel platform could effectively augment osteochondral tissue regeneration holds promise for a feasible osteoarthritis therapeutic application.
Collapse
|
30
|
Wenger L, Radtke CP, Göpper J, Wörner M, Hubbuch J. 3D-Printable and Enzymatically Active Composite Materials Based on Hydrogel-Filled High Internal Phase Emulsions. Front Bioeng Biotechnol 2020; 8:713. [PMID: 32850688 PMCID: PMC7396703 DOI: 10.3389/fbioe.2020.00713] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/08/2020] [Indexed: 02/02/2023] Open
Abstract
The immobilization of enzymes in biocatalytic flow reactors is a common strategy to increase enzyme reusability and improve biocatalytic performance. Extrusion-based 3D bioprinting has recently emerged as a versatile tool for the fabrication of perfusable hydrogel grids containing entrapped enzymes for the use in such reactors. This study demonstrates the suitability of water-in-oil high internal phase emulsions (HIPEs) as 3D-printable bioinks for the fabrication of composite materials with a porous polymeric scaffold (polyHIPE) filled with enzyme-laden hydrogel. The prepared HIPEs exhibited excellent printability and are shown to be suitable for the printing of complex three-dimensional structures without the need for sacrificial support material. An automated activity assay method for the systematic screening of different material compositions in small-scale batch experiments is presented. The monomer mass fraction in the aqueous phase and the thickness of printed objects were found to be the most important parameters determining the apparent activity of the immobilized enzyme. Mass transfer limitations and enzyme inactivation were identified as probable factors reducing the apparent activity. The presented HIPE-based bioinks enable the fabrication of flow-optimized and more efficient biocatalytic reactors while the automated activity assay method allows the rapid screening of materials to optimize the biocatalytic efficiency further without time-consuming flow-through experiments involving whole printed reactors.
Collapse
Affiliation(s)
- Lukas Wenger
- Institute of Functional Interfaces, Department of Bioengineering and Biosystems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Carsten P. Radtke
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jacqueline Göpper
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michael Wörner
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Functional Interfaces, Department of Bioengineering and Biosystems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
31
|
Patarroyo JL, Florez-Rojas JS, Pradilla D, Valderrama-Rincón JD, Cruz JC, Reyes LH. Formulation and Characterization of Gelatin-Based Hydrogels for the Encapsulation of Kluyveromyces lactis-Applications in Packed-Bed Reactors and Probiotics Delivery in Humans. Polymers (Basel) 2020; 12:polym12061287. [PMID: 32512791 PMCID: PMC7362005 DOI: 10.3390/polym12061287] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
One of the main issues when orally administering microorganism-based probiotics is the significant loss of bioactivity as they pass through the gastrointestinal (GI) tract. To overcome these issues, here, we propose to encapsulate the probiotic yeast Kluyveromyces lactis on chemically crosslinked gelatin hydrogels as a means to protect the bioactive agents in different environments. Hydrogels were prepared by the chemical crosslinking of gelatin, which is commercially available and inexpensive. This is crucial to ensure scalability and cost-effectiveness. To explore changes in key physicochemical parameters and their impact on cell viability, we varied the concentration of the crosslinking agent (glutaraldehyde) and the gelatin. The synthesized hydrogels were characterized in terms of morphological, physical-chemical, mechanical, thermal and rheological properties. This comprehensive characterization allowed us to identify critical parameters to facilitate encapsulation and enhance cell survival. Mainly due to pore size in the range of 5-10 μm, sufficient rigidity (breaking forces of about 1 N), low brittleness and structural stability under swelling and relatively high shear conditions, we selected hydrogels with a high concentration of gelatin (7.5% (w/v)) and concentrations of the crosslinking agent of 3.0% and 5.0% (w/w) for cell encapsulation. Yeasts were encapsulated with an efficiency of about 10% and subsequently tested in bioreactor operation and GI tract simulated media, thereby leading to cell viability levels that approached 95% and 50%, respectively. After testing, the hydrogels' firmness was only reduced to half of the initial value and maintained resistance to shear even under extreme pH conditions. The mechanisms underlying the observed mechanical response will require further investigation. These encouraging results, added to the superior structural stability after the treatments, indicate that the proposed encapsulates are suitable to overcome most of the major issues of oral administration of probiotics and open the possibility to explore additional biotech applications further.
Collapse
Affiliation(s)
- Jorge Luis Patarroyo
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Bogotá, DC 111711, USA; (J.L.P.); (J.S.F.-R.); (D.P.)
| | - Juan Sebastian Florez-Rojas
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Bogotá, DC 111711, USA; (J.L.P.); (J.S.F.-R.); (D.P.)
| | - Diego Pradilla
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Bogotá, DC 111711, USA; (J.L.P.); (J.S.F.-R.); (D.P.)
| | | | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, DC 111711, USA
- Correspondence: (J.C.C.); (L.H.R.); Tel.: +57-1-339-4949 (ext. 1789) (J.C.C.); +57-1-339-4949 (ext. 1702) (L.H.R.)
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Bogotá, DC 111711, USA; (J.L.P.); (J.S.F.-R.); (D.P.)
- Correspondence: (J.C.C.); (L.H.R.); Tel.: +57-1-339-4949 (ext. 1789) (J.C.C.); +57-1-339-4949 (ext. 1702) (L.H.R.)
| |
Collapse
|
32
|
Richbourg NR, Peppas NA. The swollen polymer network hypothesis: Quantitative models of hydrogel swelling, stiffness, and solute transport. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101243] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Xie Y, Hillmyer MA. Nanostructured Polymer Monoliths for Biomedical Delivery Applications. ACS APPLIED BIO MATERIALS 2020; 3:3236-3247. [PMID: 35025366 DOI: 10.1021/acsabm.0c00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Drug delivery systems are designed to control the release rate and location of therapeutic agents in the body to achieve enhanced drug efficacy and to mitigate adverse side effects. In particular, drug-releasing implants provide sustained and localized release. We report nanostructured polymer monoliths synthesized by polymerization-induced microphase separation (PIMS) as potential implantable delivery devices. As a model system, free poly(ethylene oxide) homopolymers were incorporated into the nanoscopic poly(ethylene oxide) domains contained within a cross-linked polystyrene matrix. The in vitro release of these poly(ethylene oxide) molecules from monoliths was investigated as a function of poly(ethylene oxide) loading and molar mass as well as the molar mass and weight fraction of poly(ethylene oxide) macro-chain transfer agent used in the PIMS process for forming the monoliths. We also developed nanostructured microneedles targeting efficient and long-term transdermal drug delivery by combining PIMS and microfabrication techniques. Finally, given the prominence of poly(lactide) in drug delivery devices, the degradation rate of microphase-separated poly(lactide) in PIMS monoliths was evaluated and compared with bulk poly(lactide).
Collapse
Affiliation(s)
- Yihui Xie
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
34
|
Khandai S, Siegel RA, Jena SS. Probing the microenvironment of polyacrylamide hydrogel matrix using turbidity and fluorescence recovery after photobleaching: One versus Two phases. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Tokuyama H, Nakahata Y, Ban T. Diffusion coefficient of solute in heterogeneous and macroporous hydrogels and its correlation with the effective crosslinking density. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
36
|
Abstract
Thermodynamic partitioning dictates solute loading and release from a hydrogel. Design of drug delivery vehicles, cell and tissue matrices, and immunoassay scaffolds that utilize hydrogel materials is informed by an understanding of the thermodynamic partitioning properties of those hydrogels. We develop aberration-compensated laser scanning confocal microscopy (AC-LSCM), a technique that can be applied to all fluorescence microscopy-based equilibrium partition coefficient measurements where the fluorescence is uniformly distributed in the reference material (e.g., many solutes in thermodynamic equilibrium). In this paper, we use AC-LSCM to measure spatially resolved in situ equilibrium partition coefficients of various fluorescently labeled solutes in single-layer and multilayer open hydrogels. In considering a dynamic material, we scrutinize solute interactions with a UV photoactive polyacrylamide gel that incorporates a benzophenone methacrylamide backbone. We observed strong agreement with an adjusted version of Ogston's ideal size-exclusion model for spatially resolved in situ equilibrium partition coefficients across a wide range of polyacrylamide hydrogel densities (R2 = 0.98). Partition coefficients of solutes differing in hydrodynamic radius were consistent with size-based theory in the photoactive hydrogels, but exceed those in unmodified polyacrylamide gels. This observation suggests a deviation from the size-exclusion model and a shift in the thermodynamic equilibrium state of the solutes toward the gel phase. AC-LSCM also resolves differential partitioning behavior of the model solute in two-layer gels, providing insight into the transport phenomena governing the partitioning in multilaminate gel structures. Furthermore, AC-LSCM identifies and quantifies depth-dependent axial aberrations that could confound quantitation, highlighting the need for the "aberration compensated" aspect of AC-LSCM.
Collapse
Affiliation(s)
- Alison Su
- The UC Berkeley/UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Benjamin E. Smith
- Department of Vision Sciences, University of California Berkeley, Berkeley, California 94720, United States
| | - Amy E. Herr
- The UC Berkeley/UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
37
|
Campbell KT, Wysoczynski K, Hadley DJ, Silva EA. Computational-Based Design of Hydrogels with Predictable Mesh Properties. ACS Biomater Sci Eng 2019; 6:308-319. [PMID: 33313390 DOI: 10.1021/acsbiomaterials.9b01520] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hydrogel systems are an appealing class of therapeutic delivery vehicles, though it can be challenging to design hydrogels that maintain desired spatiotemporal presentation of therapeutic cargo. In this work, we propose a different approach in which computational tools are developed that creates a theoretical representation of the hydrogel polymer network to design hydrogels with predefined mesh properties critical for controlling therapeutic delivery. We postulated and confirmed that the computational model could incorporate properties of alginate polymers, including polymer content, monomer composition and polymer chain radius, to accurately predict cross-link density and mesh size for a wide range of alginate hydrogels. Additionally, the simulations provided a robust strategy to determine the mesh size distribution and identified properties to control the mesh size of alginate hydrogels. Furthermore, the model was validated for additional hydrogel systems and provided a high degree of correlation (R2 > 0.95) to the mesh sizes determined for both fibrin and polyethylene glycol (PEG) hydrogels. Finally, a full factorial and Box-Behnken design of experiments (DOE) approach utilized in combination with the computational model predicted that the mesh size of hydrogels could be varied from approximately 5 nm to 5 μm through controlling properties of the polymer network. Overall, this computational model of the hydrogel polymer network provides a rapid and accessible strategy to predict hydrogel mesh properties and ultimately design hydrogel systems with desired mesh properties for potential therapeutic applications.
Collapse
Affiliation(s)
- Kevin T Campbell
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Kajetan Wysoczynski
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Dustin J Hadley
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Eduardo A Silva
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| |
Collapse
|
38
|
Axpe E, Chan D, Offeddu GS, Chang Y, Merida D, Hernandez HL, Appel EA. A Multiscale Model for Solute Diffusion in Hydrogels. Macromolecules 2019; 52:6889-6897. [PMID: 31579160 PMCID: PMC6764024 DOI: 10.1021/acs.macromol.9b00753] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/13/2019] [Indexed: 12/27/2022]
Abstract
The number of biomedical applications of hydrogels is increasing rapidly on account of their unique physical, structural, and mechanical properties. The utility of hydrogels as drug delivery systems or tissue engineering scaffolds critically depends on the control of diffusion of solutes through the hydrogel matrix. Predicting or even modeling this diffusion is challenging due to the complex structure of hydrogels. Currently, the diffusivity of solutes in hydrogels is typically modeled by one of three main theories proceeding from distinct diffusion mechanisms: (i) hydrodynamic, (ii) free volume, and (iii) obstruction theory. Yet, a comprehensive predictive model is lacking. Thus, time and capital-intensive trial-and-error procedures are used to test the viability of hydrogel applications. In this work, we have developed a model for the diffusivity of solutes in hydrogels combining the three main theoretical frameworks, which we call the multiscale diffusion model (MSDM). We verified the MSDM by analyzing the diffusivity of dextran of different sizes in a series of poly(ethylene glycol) (PEG) hydrogels with distinct mesh sizes. We measured the subnanoscopic free volume by positron annihilation lifetime spectroscopy (PALS) to characterize the physical hierarchy of these materials. In addition, we performed a meta-analysis of literature data from previous studies on the diffusion of solutes in hydrogels. The model presented outperforms traditional models in predicting solute diffusivity in hydrogels and provides a practical approach to predicting the transport properties of solutes such as drugs through hydrogels used in many biomedical applications.
Collapse
Affiliation(s)
- Eneko Axpe
- Department
of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
- Space
Biosciences Division, NASA-Ames Research Center, Moffett Field, California 94035, United States
| | - Doreen Chan
- Department
of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Giovanni S. Offeddu
- Department
of Biological Engineering, Massachusetts
Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02138, United States
| | - Yin Chang
- Department
of Engineering, Cambridge University, 11 JJ Thomson Ave., Cambridge CB3 0FF, U.K.
| | - David Merida
- Department
of Electricity and Electronics, University
of the Basque Country UPV/EHU, Sarriena s/n, Bilbao 48940, Spain
| | - Hector Lopez Hernandez
- Department
of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Eric A. Appel
- Department
of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| |
Collapse
|
39
|
Huth S, Sindt S, Selhuber-Unkel C. Automated analysis of soft hydrogel microindentation: Impact of various indentation parameters on the measurement of Young's modulus. PLoS One 2019; 14:e0220281. [PMID: 31374079 PMCID: PMC6677382 DOI: 10.1371/journal.pone.0220281] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/14/2019] [Indexed: 12/18/2022] Open
Abstract
Measurements of Young's moduli are mostly evaluated using strong assumptions, such as sample homogeneity and isotropy. At the same time, descriptions of measurement parameters often lack detailed specifications. Many of these assumptions are, for soft hydrogels especially, not completely valid and the complexity of hydrogel microindentation demands more sophisticated experimental procedures in order to describe their elastic properties more accurately. We created an algorithm that automates indentation data analysis as a basis for the evaluation of large data sets with consideration of the influence of indentation depth on the measured Young's modulus. The algorithm automatically determines the Young's modulus in indentation regions where it becomes independent of the indentation depth and furthermore minimizes the error from fitting an elastic model to the data. This approach is independent of the chosen elastic fitting model and indentation device. With this, we are able to evaluate large amounts of indentation curves recorded on many different sample positions and can therefore apply statistical methods to overcome deviations due to sample inhomogeneities. To prove the applicability of our algorithm, we carried out a systematic analysis of how the indentation speed, indenter size and sample thickness affect the determination of Young's modulus from atomic force microscope (AFM) indentation curves on polyacrylamide (PAAm) samples. We chose the Hertz model as the elastic fitting model for this proof of principle of our algorithm and found that all of these parameters influence the measured Young's moduli to a certain extent. Hence, it is essential to clearly state the experimental parameters used in microindentation experiments to ensure reproducibility and comparability of data.
Collapse
Affiliation(s)
- Steven Huth
- Institute of Materials Science, Biocompatible Nanomaterials, Kiel University, Kiel, Germany
| | - Sandra Sindt
- Institute of Materials Science, Biocompatible Nanomaterials, Kiel University, Kiel, Germany
| | | |
Collapse
|
40
|
Romo-Uribe A, Lichtenhan J, Reyes-Mayer A, Paredes-Pérez M, Yañez-Lino M. Chain Disentanglements and Oxygen Transmission Reduction in LDPE/POSS Nanocomposites. Influence of POSS Size. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01846] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Angel Romo-Uribe
- Research & Development, Advanced Science & Technology Division, Johnson & Johnson Vision Care Inc., Jacksonville, Florida 32256, United States
| | | | - Adriana Reyes-Mayer
- Centro de Caracterización e Investigación en Materiales S.A. de C.V., Calle 21 Este #205, Bodega F, Col. Civac, Jiutepec, Morelos 62578, Mexico
- Universidad Tecnologica Emiliano Zapata del Estado de Morelos UTEZ, Avenida Universidad Tecnologica No. 1, Col. Palo Escrito, Emiliano Zapata, Morelos 62760, Mexico
| | - Marcela Paredes-Pérez
- Centro de Caracterización e Investigación en Materiales S.A. de C.V., Calle 21 Este #205, Bodega F, Col. Civac, Jiutepec, Morelos 62578, Mexico
| | - Mauricio Yañez-Lino
- Polymer Solutions and Innovation S.A. de C.V., Calle 21 Este #205, Bodega F, Col. Civac, Jiutepec, Mor. 62578, Mexico
| |
Collapse
|
41
|
Çolak A, Li B, Blass J, Koynov K, Del Campo A, Bennewitz R. The mechanics of single cross-links which mediate cell attachment at a hydrogel surface. NANOSCALE 2019; 11:11596-11604. [PMID: 31169854 DOI: 10.1039/c9nr01784d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The response of cultured cells to the mechanical properties of hydrogel substrates depends ultimately on the response of single crosslinks to external forces exerted at cell attachment points. We prepared hydrogels by co-polymerization of poly(ethylene glycol diacrylate) (PEGDA) and carboxy poly(ethylene glycol) acrylate (ACPEG-COOH) and confirmed fibroblast spreading on the hydrogel after the ACPEG linker was functionalized with the RGD cell adhesive motif. We performed specific force spectroscopy experiments on the same ACPEG linkers in order to probe the mechanics of single cross-links which mediate the cell attachment and spreading. Measurements were performed with tips of an atomic force microscope (AFM) functionalized with streptavidin and ACPEG linkers functionalized with biotin. We compared hydrogels of varying elastic modulus between 4 and 41 kPa which exhibited significant differences in cell spreading. An effective spring constant for the displacement of single cross-links at the hydrogel surface was derived from the distributions of rupture force and molecular stiffness. A factor of ten in the elastic modulus E of the hydrogel corresponded to a factor of five in the effective spring constant k of single crosslinks, indicating a transition in scaling with the mesh size ξ from the macroscopic E∝ξ-3 to the molecular k∝ξ-2. The quantification of stiffness and deformation at the molecular length scale contributes to the discussion of mechanisms in force-regulated phenomena in cell biology.
Collapse
Affiliation(s)
- Arzu Çolak
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Engineering functional hydrogel microparticle interfaces by controlled oxygen-inhibited photopolymerization. Colloids Surf B Biointerfaces 2019; 180:371-375. [PMID: 31079030 DOI: 10.1016/j.colsurfb.2019.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 01/26/2023]
Abstract
Functional poly(ethylene glycol) diacrylate (PEGDA) hydrogel microparticles for the detection of bioactive macromolecules were fabricated via oxygen-inhibited photopolymerization in a droplet microfluidic device. Hydrogel network functionalization and architecture were characterized using a biotin-avidin binding assay, which revealed radial network inhomogeneities dependent on exposure conditions. Empirical results were corroborated using a reaction-diffusion model, describing the effects of exposure intensity on the spatial photopolymerization kinetics and resulting polymeric mesh network. The combination of finely controlled exposure conditions and predictive simulations enables the generation of tailored particles with microengineered interfaces and gradients in crosslinking density, which dictate solute diffusivity and elasticity, augmenting the utility of this approach in engineering multifunctional, size-excluding hydrogel particles for multiplexed biomolecular sensing.
Collapse
|
43
|
Abstract
A computationally lean model for the coarse-grained description of contact mechanics of hydrogels is proposed and characterized. It consists of a simple bead-spring model for the interaction within a chain, potentials describing the interaction between monomers and mold or confining walls, and a coarse-grained potential reflecting the solvent-mediated effective repulsion between non-bonded monomers. Moreover, crosslinking only takes place after the polymers have equilibrated in their mold. As such, the model is able to reflect the density, solvent quality, and the mold hydrophobicity that existed during the crosslinking of the polymers. Finally, such produced hydrogels are exposed to sinusoidal indenters. The simulations reveal a wavevector-dependent effective modulus E * ( q ) with the following properties: (i) stiffening under mechanical pressure, and a sensitivity of E * ( q ) on (ii) the degree of crosslinking at large wavelengths, (iii) the solvent quality, and (iv) the hydrophobicity of the mold in which the polymers were crosslinked. Finally, the simulations provide evidence that the elastic heterogeneity inherent to hydrogels can suffice to pin a compressed hydrogel to a microscopically frictionless wall that is undulated at a mesoscopic length scale. Although the model and simulations of this feasibility study are only two-dimensional, its generalization to three dimensions can be achieved in a straightforward fashion.
Collapse
|
44
|
Şenol Ş, Akyol E. Study on the preparation and drug release property of Modified PEG-DA based hydrogels. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2019. [DOI: 10.18596/jotcsa.485817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
45
|
Alev-Tuzuner B, Beyler-Cigil A, Vezir Kahraman M, Yarat A. PEG-based hydrogel-coated test strip for on-site urea determination. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1482460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Burcin Alev-Tuzuner
- Department of Basic Medical Sciences, Biochemistry, Faculty of Dentistry, Marmara University, Maltepe, Turkey, Istanbul
| | - Asli Beyler-Cigil
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Goztepe, Turkey Istanbul
- Department of Chemistry, Faculty of Arts and Sciences, Amasya University, Amasya, Turkey
| | - Memet Vezir Kahraman
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Goztepe, Turkey Istanbul
| | - Aysen Yarat
- Department of Basic Medical Sciences, Biochemistry, Faculty of Dentistry, Marmara University, Maltepe, Turkey, Istanbul
| |
Collapse
|
46
|
Offeddu GS, Axpe E, Harley BAC, Oyen ML. Relationship between permeability and diffusivity in polyethylene glycol hydrogels. AIP ADVANCES 2018; 8:105006. [PMID: 30345162 PMCID: PMC6172138 DOI: 10.1063/1.5036999] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/10/2018] [Indexed: 05/22/2023]
Abstract
The transport properties of hydrogels largely affect their performance in biomedical applications ranging from cell culture scaffolds to drug delivery systems. Solutes can move through the polymer mesh as a result of concentration gradients in the interstitial fluid or pressure gradients that move the fluid and solutes simultaneously. The relationship between the two modalities of transport in hydrogels can provide insight for the design of materials that can function effectively in the dynamic conditions experienced in vitro and in vivo, yet this correlation has not been previously elucidated. Here, fluorescence recovery after photobleaching (FRAP) is used to measure the diffusivity of dextran molecules of different size within polyethylene glycol hydrogels. Spherical indentation analyzed in a poroelastic framework is used to measure the permeability to fluid flow of the same hydrogels. It is found that while the diffusivity varies with exp(ξ -2), where ξ is the mesh size of the hydrogels, it also varies with exp(k -1), where k is the intrinsic permeability. For the same hydrogel structure, diffusive transport is affected by the solute size, while convective transport is unaffected. As spherical indentation is a reliable, quick and non-destructive testing method for hydrated soft materials, the relationship provides the means to faster assessment of the transport properties of hydrogels and, ultimately, of their effective use in biomedical applications.
Collapse
Affiliation(s)
- G. S. Offeddu
- The Nanoscience Centre, Department of Engineering, University of Cambridge, Cambridge CB3 0FF, United Kingdom
| | - E. Axpe
- The Nanoscience Centre, Department of Engineering, University of Cambridge, Cambridge CB3 0FF, United Kingdom
| | - B. A. C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 110 Roger Adams Lab., 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - M. L. Oyen
- The Nanoscience Centre, Department of Engineering, University of Cambridge, Cambridge CB3 0FF, United Kingdom
| |
Collapse
|
47
|
Kim S, Kim J, Gajendiran M, Yoon M, Hwang MP, Wang Y, Kang BJ, Kim K. Enhanced Skull Bone Regeneration by Sustained Release of BMP-2 in Interpenetrating Composite Hydrogels. Biomacromolecules 2018; 19:4239-4249. [DOI: 10.1021/acs.biomac.8b01013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sungjun Kim
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012 Korea
| | - Junhyung Kim
- Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Mani Gajendiran
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012 Korea
| | - Minhyuk Yoon
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012 Korea
| | - Mintai P. Hwang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Byung-Jae Kang
- Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Kyobum Kim
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012 Korea
| |
Collapse
|
48
|
Majer G, Southan A. Adenosine triphosphate diffusion through poly(ethylene glycol) diacrylate hydrogels can be tuned by cross-link density as measured by PFG-NMR. J Chem Phys 2018; 146:225101. [PMID: 29166037 DOI: 10.1063/1.4984979] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The diffusion of small molecules through hydrogels is of great importance for many applications. Especially in biological contexts, the diffusion of nutrients through hydrogel networks defines whether cells can survive inside the hydrogel or not. In this contribution, hydrogels based on poly(ethylene glycol) diacrylate with mesh sizes ranging from ξ = 1.1 to 12.9 nm are prepared using polymers with number-average molecular weights between Mn = 700 and 8000 g/mol. Precise measurements of diffusion coefficients D of adenosine triphosphate (ATP), an important energy carrier in biological systems, in these hydrogels are performed by pulsed field gradient nuclear magnetic resonance. Depending on the mesh size, ξ, and on the polymer volume fraction of the hydrogel after swelling, ϕ, it is possible to tune the relative ATP diffusion coefficient D/D0 in the hydrogels to values between 0.14 and 0.77 compared to the ATP diffusion coefficient D0 in water. The diffusion coefficients of ATP in these hydrogels are compared with predictions of various mathematical expressions developed under different model assumptions. The experimental data are found to be in good agreement with the predictions of a modified obstruction model or the free volume theory in combination with the sieving behavior of the polymer chains. No reasonable agreement was found with the pure hydrodynamic model.
Collapse
Affiliation(s)
- Günter Majer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569 Stuttgart, Germany
| |
Collapse
|
49
|
Li J, Carney RP, Liu R, Fan J, Zhao S, Chen Y, Lam KS, Pan T. Microfluidic Print-to-Synthesis Platform for Efficient Preparation and Screening of Combinatorial Peptide Microarrays. Anal Chem 2018; 90:5833-5840. [PMID: 29633611 DOI: 10.1021/acs.analchem.8b00371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this paper, we introduce a novel microfluidic combinatorial synthesis platform, referred to as Microfluidic Print-to-Synthesis (MPS), for custom high-throughput and automated synthesis of a large number of unique peptides in a microarray format. The MPS method utilizes standard Fmoc chemistry to link amino acids on a polyethylene glycol (PEG)-functionalized microdisc array. The resulting peptide microarrays permit rapid screening for interactions with molecular targets or live cells, with low nonspecific binding. Such combinatorial peptide microarrays can be reliably prepared at a spot size of 200 μm with 1 mm center-to-center distance, dimensions that require only minimal reagent consumption (less than 30 nL per spot per coupling reaction). The MPS platform has a scalable design for extended multiplexibility, allowing for 12 different building blocks and coupling reagents to be dispensed in one microfluidic cartridge in the current format, and could be further scaled up. As proof of concept for the MPS platform, we designed and constructed a focused tetrapeptide library featuring 2560 synthetic peptide sequences, capped at the N-terminus with 4-[( N'-2-methylphenyl)ureido]phenylacetic acid. We then used live human T lymphocyte Jurkat cells as a probe to screen the peptide microarrays for their interaction with α4β1 integrin overexpressed and activated on these cells. Unlike the one-bead-one-compound approach that requires subsequent decoding of positive beads, each spot in the MPS array is spatially addressable. Therefore, this platform is an ideal tool for rapid optimization of lead compounds found in nature or discovered from diverse combinatorial libraries, using either biochemical or cell-based assays.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Biomedical Engineering , University of California , Davis , California 95765 , United States
| | - Randy P Carney
- Department of Biochemistry and Molecular Medicine , University of California , Davis , California 95765 , United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine , University of California , Davis , California 95765 , United States
| | - Jinzhen Fan
- Department of Biomedical Engineering , University of California , Davis , California 95765 , United States
| | - Siwei Zhao
- Department of Biomedical Engineering , University of California , Davis , California 95765 , United States
| | - Yan Chen
- Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen 518055 , People's Republic of China
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine , University of California , Davis , California 95765 , United States
| | - Tingrui Pan
- Department of Biomedical Engineering , University of California , Davis , California 95765 , United States
| |
Collapse
|
50
|
Saalwächter K, Seiffert S. Dynamics-based assessment of nanoscopic polymer-network mesh structures and their defects. SOFT MATTER 2018; 14:1976-1991. [PMID: 29504001 DOI: 10.1039/c7sm02444d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Polymer-network gels often exhibit complex nanoscopic architectures. First, the polymer-network mesh topology on scales of 1-10 nm is usually not uniform and regular, but disordered and irregular. Second, on top of that, many swollen polymer networks display spatial inhomogeneity of their polymer segmental density and crosslinking density on scales of 10-100 nm. This multi-scale structural complexity affects the permeability, mechanical strength, and optical clarity of the polymer gels, which is of central relevance for their performance in popular applications. As a result, there is a need to characterize the polymer network structures on multiple scales. On the scale of the spatial inhomogeneity of crosslinking, 10-100 nm, scattering of neutrons, X-rays, and light has extraordinary utility and is well established. On the scale of the mesh topology, 1-10 nm, in contrast, experimental techniques are less established. This review intends to close this gap by reviewing two intrinsically dynamic methods that yield information on polymer network mesh structures. First, NMR-based assessment of residual dipolar proton-spin couplings, which arise upon the introduction of crosslinks into a liquidlike polymer system to impart partial solidlike characteristics, is suitable to quantitatively assess network meshes and local network defects. Second, diffusive penetration of molecular, macromolecular, and mesoscopic colloidal probes through a polymer gel provides insight into its obstructing network mesh structure and its potential irregularity. Either method is highly synergistic to scattering-based assessment of the network structures on larger scales, and in concert, a rich picture on the nano- and mesoscopic gel topology is obtained.
Collapse
Affiliation(s)
- Kay Saalwächter
- Martin-Luther-University Halle-Wittenberg, Institute of Physics - NMR Group, Betty-Heimann-Str. 7, D-06120 Halle/Saale, Germany.
| | | |
Collapse
|