1
|
Wagner PM, Fornasier SJ, Guido ME. Pharmacological Modulation of the Cytosolic Oscillator Affects Glioblastoma Cell Biology. Cell Mol Neurobiol 2024; 44:51. [PMID: 38907776 PMCID: PMC11193694 DOI: 10.1007/s10571-024-01485-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
The circadian system is a conserved time-keeping machinery that regulates a wide range of processes such as sleep/wake, feeding/fasting, and activity/rest cycles to coordinate behavior and physiology. Circadian disruption can be a contributing factor in the development of metabolic diseases, inflammatory disorders, and higher risk of cancer. Glioblastoma (GBM) is a highly aggressive grade 4 brain tumor that is resistant to conventional therapies and has a poor prognosis after diagnosis, with a median survival of only 12-15 months. GBM cells kept in culture were shown to contain a functional circadian oscillator. In seeking more efficient therapies with lower side effects, we evaluated the pharmacological modulation of the circadian clock by targeting the cytosolic kinases glycogen synthase kinase-3 (GSK-3) and casein kinase 1 ε/δ (CK1ε/δ) with specific inhibitors (CHIR99021 and PF670462, respectively), the cryptochrome protein stabilizer (KL001), or circadian disruption after Per2 knockdown expression in GBM-derived cells. CHIR99021-treated cells had a significant effect on cell viability, clock protein expression, migration, and cell cycle distribution. Moreover, cultures exhibited higher levels of reactive oxygen species and alterations in lipid droplet content after GSK-3 inhibition compared to control cells. The combined treatment of CHIR99021 with temozolomide was found to improve the effect on cell viability compared to temozolomide therapy alone. Per2 disruption affected both GBM migration and cell cycle progression. Overall, our results suggest that pharmacological modulation or molecular clock disruption severely affects GBM cell biology.
Collapse
Affiliation(s)
- Paula M Wagner
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Santiago J Fornasier
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mario E Guido
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
2
|
Chung J, Kim YC, Jeong JH. Bipolar Disorder, Circadian Rhythm and Clock Genes. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:211-221. [PMID: 38627069 PMCID: PMC11024693 DOI: 10.9758/cpn.23.1093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 04/20/2024]
Abstract
Sleep disturbance and abnormal circadian rhythm might be closely related to bipolar disorder. Several studies involving disturbed sleep/wake cycle, changes in rhythms such as melatonin and cortisol, clock genes, and circadian preference have shown the relationship between bipolar disorder and circadian rhythm. The results differed across different studies. In some studies, a delay in the circadian rhythm was observed in the depressive episode and advanced circadian rhythm was observed during the manic episode. In other studies, a delay in circadian rhythm was observed independent of mood episodes. Accordingly, circadian rhythm disorder was proposed as a trait marker for bipolar disorder. The altered circadian rhythm may represent a pathological mechanism that contributes to the mood episodes. However, a prospective cohort study is needed for further clarification.
Collapse
Affiliation(s)
- Junsoo Chung
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young-Chan Kim
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Psychiatry, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jong-Hyun Jeong
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Psychiatry, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
3
|
Kitanaka N, Arai K, Takehara K, Hall FS, Tomita K, Igarashi K, Sato T, Uhl GR, Kitanaka J. Opioid receptor antagonists reduce motivated wheel-running behavior in mice. Behav Pharmacol 2024; 35:114-121. [PMID: 38451023 DOI: 10.1097/fbp.0000000000000769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
We hypothesized that opioid receptor antagonists would inhibit motivated behavior produced by a natural reward. To evaluate motivated responses to a natural reward, mice were given access to running wheels for 71.5 h in a multi-configuration testing apparatus. In addition to a running wheel activity, locomotor activity (outside of the wheel), food and water intake, and access to a food container were measured in the apparatus. Mice were also tested separately for novel-object exploration to investigate whether naloxone affects behavior unrelated to natural reward. In untreated mice wheel running increased from day 1 to day 3. The selective µ-opioid receptor antagonist β-funaltrexamine (β-FNA) (5 mg/kg) slightly decreased wheel running, but did not affect the increase in wheel running from day 1 to day 3. The non-selective opioid receptor antagonist naloxone produced a greater reduction in wheel running than β-FNA and eliminated the increase in wheel running that occurred over time in the other groups. Analysis of food access, locomotor behavior, and behavior in the novel-object test suggested that the reduction in wheel running was selective for this highly reinforcing behavior. These results indicate that opioid receptor antagonism reduces responses to the natural rewarding effects of wheel running and that these effects involve multiple opioid receptors since the non-selective opioid receptor antagonist had greater effects than the selective µ-opioid receptor antagonist. It is possible that at the doses employed, other receptor systems than opioid receptors might be involved, at least in part, in the effect of naloxone and β-FNA.
Collapse
Affiliation(s)
- Nobue Kitanaka
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Kanayo Arai
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Kaoko Takehara
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio, USA
| | - Kazuo Tomita
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kento Igarashi
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - George R Uhl
- Neurology, VA Maryland Healthcare System
- Departments of Neurology
- Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Junichi Kitanaka
- Neurology, VA Maryland Healthcare System
- Laboratory of Drug Addiction and Experimental Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, Kobe, Japan
| |
Collapse
|
4
|
Oka M, Yoshino R, Kitanaka N, Hall FS, Uhl GR, Kitanaka J. Role of glycogen synthase kinase-3β in dependence and abuse liability of alcohol. Alcohol Alcohol 2024; 59:agad086. [PMID: 38145944 DOI: 10.1093/alcalc/agad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Alcohol is a major abused drug worldwide that contributes substantially to health and social problems. These problems result from acute alcohol overuse as well as chronic use, leading to alcohol use disorder (AUD). A major goal of this field is to establish a treatment for alcohol abuse and dependence in patients with AUD. The central molecular mechanisms of acute alcohol actions have been extensively investigated in rodent models. AIMS One of the central mechanisms that may be involved is glycogen synthase kinase-3β (GSK-3β) activity, a key enzyme involved in glycogen metabolism but which has crucial roles in numerous cellular processes. Although the exact mechanisms leading from acute alcohol actions to these chronic changes in GSK-3β function are not yet clear, GSK-3β nonetheless constitutes a potential therapeutic target for AUD by reducing its function using GSK-3β inhibitors. This review is focused on the correlation between GSK-3β activity and the degree of alcohol consumption. METHODS Research articles regarding investigation of effect of GSK-3β on alcohol consumption in rodents were searched on PubMed, Embase, and Scopus databases using keywords "glycogen synthase kinase," "alcohol (or ethanol)," "intake (or consumption)," and evaluated by changes in ratios of pGSK-3βSer9/pGSK-3β. RESULTS In animal experiments, GSK-3β activity decreases in the brain under forced and voluntary alcohol consumption while GSK-3β activity increases under alcohol-seeking behavior. CONCLUSIONS Several pieces of evidence suggest that alterations in GSK-3β function are important mediators of chronic ethanol actions, including those related to alcohol dependence and the adverse effects of chronic ethanol exposure.
Collapse
Affiliation(s)
- Masahiro Oka
- Laboratory of Drug Addiction and Experimental Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan
| | - Rui Yoshino
- Laboratory of Drug Addiction and Experimental Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan
| | - Nobue Kitanaka
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Frederic and Mary Wolfe Center HEB 282D, Mail Stop 1015, 3000 Arlington Avenue,Toledo, OH 43614, United States
| | - George R Uhl
- Neurology Service, VA Maryland Healthcare System, 10 North Greene Street, Baltimore, MD 21201, United States
- Departments of Neurology and Pharmacology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, United States
| | - Junichi Kitanaka
- Laboratory of Drug Addiction and Experimental Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan
| |
Collapse
|
5
|
Dollish HK, Tsyglakova M, McClung CA. Circadian rhythms and mood disorders: Time to see the light. Neuron 2024; 112:25-40. [PMID: 37858331 PMCID: PMC10842077 DOI: 10.1016/j.neuron.2023.09.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
The importance of time is ever prevalent in our world, and disruptions to the normal light/dark and sleep/wake cycle have now become the norm rather than the exception for a large part of it. All mood disorders, including seasonal affective disorder (SAD), major depressive disorder (MDD), and bipolar disorder (BD), are strongly associated with abnormal sleep and circadian rhythms in a variety of physiological processes. Environmental disruptions to normal sleep/wake patterns, light/dark changes, and seasonal changes can precipitate episodes. Moreover, treatments that target the circadian system have proven to be therapeutic in certain cases. This review will summarize much of our current knowledge of how these disorders associate with specific circadian phenotypes, as well as the neuronal mechanisms that link the circadian clock with mood regulation. We also discuss what has been learned from therapies that target circadian rhythms and how we may use current knowledge to develop more individually designed treatments.
Collapse
Affiliation(s)
- Hannah K Dollish
- Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA
| | - Mariya Tsyglakova
- Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA
| | - Colleen A McClung
- Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA.
| |
Collapse
|
6
|
Gangitano E, Baxter M, Voronkov M, Lenzi A, Gnessi L, Ray D. The interplay between macronutrients and sleep: focus on circadian and homeostatic processes. Front Nutr 2023; 10:1166699. [PMID: 37680898 PMCID: PMC10482045 DOI: 10.3389/fnut.2023.1166699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
Sleep disturbances are an emerging risk factor for metabolic diseases, for which the burden is particularly worrying worldwide. The importance of sleep for metabolic health is being increasingly recognized, and not only the amount of sleep plays an important role, but also its quality. In this review, we studied the evidence in the literature on macronutrients and their influence on sleep, focusing on the mechanisms that may lay behind this interaction. In particular, we focused on the effects of macronutrients on circadian and homeostatic processes of sleep in preclinical models, and reviewed the evidence of clinical studies in humans. Given the importance of sleep for health, and the role of circadian biology in healthy sleep, it is important to understand how macronutrients regulate circadian clocks and sleep homeostasis.
Collapse
Affiliation(s)
- Elena Gangitano
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Matthew Baxter
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Maria Voronkov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucio Gnessi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - David Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
7
|
Palm D, Uzoni A, Kronenberg G, Thome J, Faltraco F. Human Derived Dermal Fibroblasts as in Vitro Research Tool to Study Circadian Rhythmicity in Psychiatric Disorders. PHARMACOPSYCHIATRY 2023; 56:87-100. [PMID: 37187177 DOI: 10.1055/a-1147-1552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A number of psychiatric disorders are defined by persistent or recurrent sleep-wake disturbances alongside disruptions in circadian rhythm and altered clock gene expression. Circadian rhythms are present not only in the hypothalamic suprachiasmatic nucleus but also in peripheral tissues. In this respect, cultures of human derived dermal fibroblasts may serve as a promising new tool to investigate cellular and molecular mechanisms underlying the pathophysiology of mental illness. In this article, we discuss the advantages of fibroblast cultures to study psychiatric disease. More specifically, we provide an update on recent advances in modeling circadian rhythm disorders using human fibroblasts.
Collapse
Affiliation(s)
- Denise Palm
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Germany
| | - Adriana Uzoni
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Germany
| | - Golo Kronenberg
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Germany
| | - Johannes Thome
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Germany
| | - Frank Faltraco
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
8
|
Kitanaka J, Kitanaka N, Tomita K, Hall FS, Igarashi K, Uhl GR, Sato T. Glycogen Synthase Kinase-3 Inhibitors Block Morphine-Induced Locomotor Activation, Straub Tail, and Depression of Rearing in Mice Via a Possible Central Action. Neurochem Res 2023; 48:2230-2240. [PMID: 36907972 DOI: 10.1007/s11064-023-03902-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/14/2023]
Abstract
We investigated morphine-induced Straub's tail reaction (STR) in mice pretreated with or without glycogen synthase kinase-3 (GSK-3) inhibitors (SB216763 and AR-A014418) by using a newly modified, infrared beam sensor-based automated apparatus. Mice treated with a single injection of morphine (30 mg/kg, i.p.) showed a significant STR with a plateau level at a time point of 20 min after morphine challenge. Pretreatment of mice with SB216763 (5 mg/kg, s.c.) or AR-A014418 (3 mg/kg, i.p.) significantly inhibited morphine-induced STR and attenuated the duration of STR in a dose-dependent fashion. In the striatum and the nucleus accumbens, expression of pGSK-3βTyr216 but not GSK3β or pGSK-3βSer9 was largely but not significantly reduced after treatment with SB216763 (5 mg/kg, s.c.) in combination with/without morphine, indicating that the inhibitory effect of GSK-3 inhibitors on morphine-induced STR and hyperlocomotion might not depend on the direct blockade of GSK-3β function. In constipated mice after morphine challenge (30 mg/kg), the effect of GSK-3 inhibitors on gastrointestinal transit was examined to reveal whether the action of GSK-3 inhibitors on morphine effects was central and/or peripheral. Pretreatment with SB216763 (5 mg/kg) did not block constipation in morphine-injected mice. The mechanism of action seems to be central but not peripheral, although the underlying subcellular mechanism of GSK-3 inhibitors is not clear. Our measurement system is a useful tool for investigating the excitatory effects of morphine in experimental animals.
Collapse
Affiliation(s)
- Junichi Kitanaka
- Laboratory of Drug Addiction and Experimental Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo, 650-8530, Japan.
| | - Nobue Kitanaka
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan
| | - Kazuo Tomita
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Kento Igarashi
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan
| | - George R Uhl
- VA Maryland Healthcare System, Baltimore, MD, 21201, USA.,Departments of Neurology and Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tomoaki Sato
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan
| |
Collapse
|
9
|
Yu BJ, Oz RS, Sethi S. Ketogenic diet as a metabolic therapy for bipolar disorder: Clinical developments. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2023. [DOI: 10.1016/j.jadr.2022.100457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
10
|
Manella G, Bolshette N, Golik M, Asher G. Input integration by the circadian clock exhibits nonadditivity and fold-change detection. Proc Natl Acad Sci U S A 2022; 119:e2209933119. [PMID: 36279450 PMCID: PMC9636907 DOI: 10.1073/pnas.2209933119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Circadian clocks are synchronized by external timing cues to align with one another and the environment. Various signaling pathways have been shown to independently reset the phase of the clock. However, in the body, circadian clocks are exposed to a multitude of potential timing cues with complex temporal dynamics, raising the question of how clocks integrate information in response to multiple signals. To investigate different modes of signal integration by the circadian clock, we used Circa-SCOPE, a method we recently developed for high-throughput phase resetting analysis. We found that simultaneous exposure to different combinations of known pharmacological resetting agents elicits a diverse range of responses. Often, the response was nonadditive and could not be readily predicted by the response to the individual signals. For instance, we observed that dexamethasone is dominant over other tested inputs. In the case of signals administered sequentially, the background levels of a signal attenuated subsequent resetting by the same signal, but not by signals acting through a different pathway. This led us to examine whether the circadian clock is sensitive to relative rather than absolute levels of the signal. Importantly, our analysis revealed the involvement of a signal-specific fold-change detection mechanism in the clock response. This mechanism likely stems from properties of the signaling pathway that are upstream to the clock. Overall, our findings elucidate modes of input integration by the circadian clock, with potential relevance to clock resetting under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Gal Manella
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Nityanand Bolshette
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Marina Golik
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
11
|
Hoyt KR, Obrietan K. Circadian clocks, cognition, and Alzheimer's disease: synaptic mechanisms, signaling effectors, and chronotherapeutics. Mol Neurodegener 2022; 17:35. [PMID: 35525980 PMCID: PMC9078023 DOI: 10.1186/s13024-022-00537-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/08/2022] [Indexed: 12/20/2022] Open
Abstract
Modulation of basic biochemical and physiological processes by the circadian timing system is now recognized as a fundamental feature of all mammalian organ systems. Within the central nervous system, these clock-modulating effects are reflected in some of the most complex behavioral states including learning, memory, and mood. How the clock shapes these behavioral processes is only now beginning to be realized. In this review we describe recent findings regarding the complex set of cellular signaling events, including kinase pathways, gene networks, and synaptic circuits that are under the influence of the clock timing system and how this, in turn, shapes cognitive capacity over the circadian cycle. Further, we discuss the functional roles of the master circadian clock located in the suprachiasmatic nucleus, and peripheral oscillator populations within cortical and limbic circuits, in the gating of synaptic plasticity and memory over the circadian cycle. These findings are then used as the basis to discuss the connection between clock dysregulation and cognitive impairments resulting from Alzheimer's disease (AD). In addition, we discuss the conceptually novel idea that in AD, there is a selective disruption of circadian timing within cortical and limbic circuits, and that it is the disruption/desynchronization of these regions from the phase-entraining effects of the SCN that underlies aspects of the early- and mid-stage cognitive deficits in AD. Further, we discuss the prospect that the disruption of circadian timing in AD could produce a self-reinforcing feedback loop, where disruption of timing accelerates AD pathogenesis (e.g., amyloid deposition, oxidative stress and cell death) that in turn leads to a further disruption of the circadian timing system. Lastly, we address potential therapeutic approaches that could be used to strengthen cellular timing networks and, in turn, how these approaches could be used to improve cognitive capacity in Alzheimer's patients.
Collapse
Affiliation(s)
- Kari R Hoyt
- Division of Pharmaceutics and Pharmacology, Ohio State University, 412 Riffe Building, 12th Ave, Columbus, OH, 43210, USA.
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
12
|
Natural products as novel scaffolds for the design of glycogen synthase kinase 3β inhibitors. Expert Opin Drug Discov 2022; 17:377-396. [PMID: 35262427 DOI: 10.1080/17460441.2022.2043845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The different and relevant roles of GSK-3 are of critical importance since they deal with development, metabolic homeostasis, cell polarity and fate, neuronal growth and differentiation as well as modulation of apoptotic potential. Given their involvement with different diseases, many investigations have been undertaken with the aim of discovering new and promising inhibitors for this target. In this context, atural products represent an invaluable source of active molecules. AREAS COVERED In order to overcome issues such as poor pharmacokinetic properties or efficacy, frequently associated with natural compounds, different GSK-3β inhibitors belonging to alkaloid or flavonoid classes have been subjected to structural modifications in order to obtain more potent and safer compounds. Herein, the authors report the results obtained from studies where natural compounds have been used as hits with the aim of providing new kinase inhibitors endowed with a better inhibitory profile. EXPERT OPINION Structurally modification of natural scaffolds is a proven approach taking advantage of their pharmacological characteristics. Indeed, whatever the strategy adopted is and, despite the limitations associated with the structural complexity of natural products, the authors recommend the use of natural scaffolds as a promising strategy for the discovery of novel and potent GSK-3β inhibitors.
Collapse
|
13
|
Arciniegas Ruiz SM, Eldar-Finkelman H. Glycogen Synthase Kinase-3 Inhibitors: Preclinical and Clinical Focus on CNS-A Decade Onward. Front Mol Neurosci 2022; 14:792364. [PMID: 35126052 PMCID: PMC8813766 DOI: 10.3389/fnmol.2021.792364] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
The protein kinase, GSK-3, participates in diverse biological processes and is now recognized a promising drug discovery target in treating multiple pathological conditions. Over the last decade, a range of newly developed GSK-3 inhibitors of diverse chemotypes and inhibition modes has been developed. Even more conspicuous is the dramatic increase in the indications that were tested from mood and behavior disorders, autism and cognitive disabilities, to neurodegeneration, brain injury and pain. Indeed, clinical and pre-clinical studies were largely expanded uncovering new mechanisms and novel insights into the contribution of GSK-3 to neurodegeneration and central nerve system (CNS)-related disorders. In this review we summarize new developments in the field and describe the use of GSK-3 inhibitors in the variety of CNS disorders. This remarkable volume of information being generated undoubtedly reflects the great interest, as well as the intense hope, in developing potent and safe GSK-3 inhibitors in clinical practice.
Collapse
|
14
|
Faltraco F, Palm D, Coogan A, Simon F, Tucha O, Thome J. Molecular Link between Circadian Rhythmicity and Mood Disorders. Curr Med Chem 2021; 29:5692-5709. [PMID: 34620057 DOI: 10.2174/0929867328666211007113725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The internal clock is driven by circadian genes [e.g., Clock, Bmal1, Per1-3, Cry1-2], hormones [e.g., melatonin, cortisol], as well as zeitgeber ['synchronisers']. Chronic disturbances in the circadian rhythm in patients diagnosed with mood disorders have been recognised for more than 50 years. OBJECTIVES The aim of this review is to summarise the current knowledge and literature regarding circadian rhythms in the context of mood disorders, focussing on the role of circadian genes, hormones, and neurotransmitters. METHOD The review presents the current knowledge and literature regarding circadian rhythms in mood disorders using the Pubmed database. Articles with a focus on circadian rhythms and mood disorders [n=123], particularly from 1973 to 2020, were included. RESULTS The article suggests a molecular link between disruptions in the circadian rhythm and mood disorders. Circadian disturbances, caused by the dysregulation of circadian genes, hormones, and neurotransmitters, often result in a clinical picture resembling depression. CONCLUSION Circadian rhythms are intrinsically linked to affective disorders, such as unipolar depression and bipolar disorder.
Collapse
Affiliation(s)
- Frank Faltraco
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock. Germany
| | - Denise Palm
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock. Germany
| | - Andrew Coogan
- Department of Psychology, Maynooth University, National University of Ireland, Maynooth. Ireland
| | - Frederick Simon
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock. Germany
| | - Oliver Tucha
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock. Germany
| | - Johannes Thome
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock. Germany
| |
Collapse
|
15
|
Shilovsky GA, Putyatina TS, Morgunova GV, Seliverstov AV, Ashapkin VV, Sorokina EV, Markov AV, Skulachev VP. A Crosstalk between the Biorhythms and Gatekeepers of Longevity: Dual Role of Glycogen Synthase Kinase-3. BIOCHEMISTRY (MOSCOW) 2021; 86:433-448. [PMID: 33941065 PMCID: PMC8033555 DOI: 10.1134/s0006297921040052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review discusses genetic and molecular pathways that link circadian timing with metabolism, resulting in the emergence of positive and negative regulatory feedback loops. The Nrf2 pathway is believed to be a component of the anti-aging program responsible for the healthspan and longevity. Nrf2 enables stress adaptation by activating cell antioxidant defense and other metabolic processes via control of expression of over 200 target genes in response to various types of stress. The GSK3 system represents a “regulating valve” that controls fine oscillations in the Nrf2 level, unlike Keap1, which prevents significant changes in the Nrf2 content in the absence of oxidative stress and which is inactivated by the oxidative stress. Furthermore, GSK3 modifies core circadian clock proteins (Bmal1, Clock, Per, Cry, and Rev-erbα). Phosphorylation by GSK3 leads to the inactivation and degradation of circadian rhythm-activating proteins (Bmal1 and Clock) and vice versa to the activation and nuclear translocation of proteins suppressing circadian rhythms (Per and Rev-erbα) with the exception of Cry protein, which is likely to be implicated in the fine tuning of biological clock. Functionally, GSK3 appears to be one of the hubs in the cross-regulation of circadian rhythms and antioxidant defense. Here, we present the data on the crosstalk between the most powerful cell antioxidant mechanism, the Nrf2 system, and the biorhythm-regulating system in mammals, including the impact of GSK3 overexpression and knockout on the Nrf2 signaling. Understanding the interactions between the regulatory cascades linking homeostasis maintenance and cell response to oxidative stress will help in elucidating molecular mechanisms that underlie aging and longevity.
Collapse
Affiliation(s)
- Gregory A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - Tatyana S Putyatina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Galina V Morgunova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Seliverstov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - Vasily V Ashapkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena V Sorokina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Markov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vladimir P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
16
|
Wirianto M, Yang J, Kim E, Gao S, Paudel KR, Choi JM, Choe J, Gloston GF, Ademoji P, Parakramaweera R, Jin J, Esser KA, Jung SY, Geng YJ, Lee HK, Chen Z, Yoo SH. The GSK-3β-FBXL21 Axis Contributes to Circadian TCAP Degradation and Skeletal Muscle Function. Cell Rep 2021; 32:108140. [PMID: 32937135 PMCID: PMC8299398 DOI: 10.1016/j.celrep.2020.108140] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/04/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022] Open
Abstract
FBXL21 is a clock-controlled E3 ligase modulating circadian periodicity via subcellular-specific CRYPTOCHROME degradation. How FBXL21 regulates tissue-specific circadian physiology and what mechanism operates upstream is poorly understood. Here we report the sarcomere component TCAP as a cytoplasmic substrate of FBXL21. FBXL21 interacts with TCAP in a circadian manner antiphasic to TCAP accumulation in skeletal muscle, and circadian TCAP oscillation is disrupted in Psttm mice with an Fbxl21 hypomorph mutation. GSK-3β phosphorylates FBXL21 and TCAP to activate FBXL21-mediated, phosphodegron-dependent TCAP degradation. GSK-3β inhibition or knockdown diminishes FBXL21-Cul1 complex formation and delays FBXL21-mediated TCAP degradation. Finally, Psttm mice show significant skeletal muscle defects, including impaired fiber size, exercise tolerance, grip strength, and response to glucocorticoid-induced atrophy, in conjunction with cardiac dysfunction. These data highlight a circadian regulatory pathway where a GSK-3β-FBXL21 functional axis controls TCAP degradation via SCF complex formation and regulates skeletal muscle function. Wirianto et al. find that the circadian E3 ligase FBXL21 drives rhythmic degradation of the sarcomeric protein TCAP in skeletal muscle. GSK-3β co-phosphorylates FBXL21 and TCAP and promotes SCF complex formation and phosphodegron-dependent TCAP turnover. Psttm mice, expressing a hypomorphic Fbxl21 mutant, show dysregulated TCAP degradation and impaired muscle function.
Collapse
Affiliation(s)
- Marvin Wirianto
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Jiah Yang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Song Gao
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Keshav Raj Paudel
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Jong Min Choi
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeehwan Choe
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Gabrielle F Gloston
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Precious Ademoji
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Randika Parakramaweera
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Jianping Jin
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, The University of Florida College of Medicine, Gainesville, FL 32610-0274, USA
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yong-Jian Geng
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Hyun Kyoung Lee
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA.
| |
Collapse
|
17
|
Sreenivas NK, Rao S. Analyzing the effects of memory biases and mood disorders on social performance. Sci Rep 2020; 10:20895. [PMID: 33262387 PMCID: PMC7708996 DOI: 10.1038/s41598-020-77715-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/21/2020] [Indexed: 12/04/2022] Open
Abstract
Realistic models of decision-making and social interactions, considering the nature of memory and biases, continue to be an area of immense interest. Emotion and mood are a couple of key factors that play a major role in decisions, nature of social interactions, size of the social network, and the level of engagement. Most of the prior work in this direction focused on a single trait, behavior, or bias. However, this work builds an integrated model that considers multiple traits such as loneliness, the drive to interact, the memory, and mood biases in an agent. The agent system comprises of rational, manic, depressed, and bipolar agents. The system is modeled with an interconnected network, and the size of the personal network of each agent is based on its nature. We consider a game of iterated interactions where an agent cooperates based on its past experiences with the other agent. Through simulation, the effects of various biases and comparative performances of agent types is analyzed. Taking the performance of rational agents as the baseline, manic agents do much better, and depressed agents do much worse. The payoffs also exhibit an almost-linear relationship with the extent of mania. It is also observed that agents with stronger memory perform better than those with weaker memory. For rational agents, there is no significant difference between agents with a positive bias and those with a negative bias. Positive bias is linked with higher payoffs in manic and bipolar agents. In depressed agents, negative bias is linked with higher payoffs. In manic agents, an intermediate value of mood dependence offers the highest payoff. But the opposite is seen in depressed agents. In bipolar agents, agents with weak mood dependence perform the best.
Collapse
Affiliation(s)
| | - Shrisha Rao
- International Institute of Information Technology - Bangalore, Bangalore, India.
| |
Collapse
|
18
|
Kirlioglu SS, Balcioglu YH. Chronobiology Revisited in Psychiatric Disorders: From a Translational Perspective. Psychiatry Investig 2020; 17:725-743. [PMID: 32750762 PMCID: PMC7449842 DOI: 10.30773/pi.2020.0129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Several lines of evidence support a relationship between circadian rhythms disruption in the onset, course, and maintenance of mental disorders. Despite the study of circadian phenotypes promising a decent understanding of the pathophysiologic or etiologic mechanisms of psychiatric entities, several questions still need to be addressed. In this review, we aimed to synthesize the literature investigating chronobiologic theories and their associations with psychiatric entities. METHODS The Medline, Embase, PsycInfo, and Scopus databases were comprehensively and systematically searched and articles published between January 1990 and October 2019 were reviewed. Different combinations of the relevant keywords were polled. We first introduced molecular elements and mechanisms of the circadian system to promote a better understanding of the chronobiologic implications of mental disorders. Then, we comprehensively and systematically reviewed circadian system studies in mood disorders, schizophrenia, and anxiety disorders. RESULTS Although subject characteristics and study designs vary across studies, current research has demonstrated that circadian pathologies, including genetic and neurohumoral alterations, represent the neural substrates of the pathophysiology of many psychiatric disorders. Impaired HPA-axis function-related glucocorticoid rhythm and disrupted melatonin homeostasis have been prominently demonstrated in schizophrenia and other psychotic disorders, while alterations of molecular expressions of circadian rhythm genes including CLOCK, PER, and CRY have been reported to be involved in the pathogenesis of mood disorders. CONCLUSION Further translational work is needed to identify the causal relationship between circadian physiology abnormalities and mental disorders and related psychopathology, and to develop sound pharmacologic interventions.
Collapse
Affiliation(s)
- Simge Seren Kirlioglu
- Department of Psychiatry, Bakirkoy Prof Mazhar Osman Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Yasin Hasan Balcioglu
- Department of Psychiatry, Bakirkoy Prof Mazhar Osman Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| |
Collapse
|
19
|
Lecarpentier Y, Schussler O, Hébert JL, Vallée A. Molecular Mechanisms Underlying the Circadian Rhythm of Blood Pressure in Normotensive Subjects. Curr Hypertens Rep 2020; 22:50. [PMID: 32661611 PMCID: PMC7359176 DOI: 10.1007/s11906-020-01063-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Blood pressure (BP) follows a circadian rhythm (CR) in normotensive subjects. BP increases in the morning and decreases at night. This review aims at providing an up-to-date overview regarding the molecular mechanisms underlying the circadian regulation of BP. RECENT FINDINGS The suprachiasmatic nucleus (SCN) is the regulatory center for CRs. In SCN astrocytes, the phosphorylated glycogen synthase kinase-3β (pGSK-3β) also follows a CR and its expression reaches a maximum in the morning and decreases at night. pGSK-3β induces the β-catenin migration to the nucleus. During the daytime, the nuclear β-catenin increases the expression of the glutamate excitatory amino acid transporter 2 (EAAT2) and glutamine synthetase (GS). In SCN, EAAT2 removes glutamate from the synaptic cleft of glutamatergic neurons and transfers it to the astrocyte cytoplasm where GS converts glutamate into glutamine. Thus, glutamate decreases in the synaptic cleft. This decreases the stimulation of the glutamate receptors AMPA-R and NMDA-R located on glutamatergic post-synaptic neurons. Consequently, activation of NTS is decreased and BP increases. The opposite occurs at night. Despite several studies resulting from animal studies, the circadian regulation of BP appears largely controlled in normotensive subjects by the canonical WNT/β-catenin pathway involving the SCN, astrocytes, and glutamatergic neurons.
Collapse
Affiliation(s)
- Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, 77104, Meaux, France.
| | - Olivier Schussler
- Department of Thoracic surgery, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Department of Cardiovascular Surgery, Research Laboratory, Geneva University Hospital, Geneva, Switzerland
| | - Jean-Louis Hébert
- Cardiology Institute, Pitié-Salpétrière Hospital, AP-HP, Paris, France
| | - Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Paris-Descartes University, Hôtel-Dieu Hospital, AP-HP, Paris, France
| |
Collapse
|
20
|
Kitanaka N, Hall FS, Uhl GR, Kitanaka J. Lithium Pharmacology and a Potential Role of Lithium on Methamphetamine Abuse and Dependence. Curr Drug Res Rev 2020; 11:85-91. [PMID: 31875781 DOI: 10.2174/2589977511666190620141824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/18/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The effectiveness of lithium salts in neuropsychiatric disorders such as bipolar disorder, Alzheimer's disease, and treatment-resistant depression has been documented in an extensive scientific literature. Lithium inhibits inositol monophosphatase, inositol polyphosphate 1- phosphatase, and glycogen synthase kinase-3 and decreases expression level of tryptophan hydroxylase 2, conceivably underlying the mood stabilizing effects of lithium, as well as procognitive and neuroprotective effects. However, the exact molecular mechanisms of action of lithium on mood stabilizing and pro-cognitive effects in humans are still largely unknown. OBJECTIVE On the basis of the known aspects of lithium pharmacology, this review will discuss the possible mechanisms underlying the therapeutic effects of lithium on positive symptoms of methamphetamine abuse and dependence. CONCLUSION It is possible that lithium treatment reduces the amount of newly synthesized phosphatidylinositol, potentially preventing or reversing neuroadaptations contributing to behavioral sensitization induced by methamphetamine. In addition, it is suggested that exposure to repeated doses of methamphetamine induces hyperactivation of glycogen synthase kinase-3β in the nucleus accumbens and in dorsal hippocampus, resulting in a long-term alterations in synaptic plasticity underlying behavioral sensitization as well as other behavioral deficits in memory-related behavior. Therefore it is clear that glycogen synthase kinase-3β inhibitors can be considered as a potential candidate for the treatment of methamphetamine abuse and dependence.
Collapse
Affiliation(s)
- Nobue Kitanaka
- Department of Pharmacology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Frank Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43614, United States
| | - George Richard Uhl
- Neurology and Research Services, New Mexico VA Healthcare System, Albuquerque, New Mexico 87108, United States.,Departments of Neurology, Neuroscience, Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Junichi Kitanaka
- Department of Pharmacology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| |
Collapse
|
21
|
Huh Y, Chen D, Riley S, Chang C, Nicholas T. Evaluation of QT Liability for PF-05251749 in the Presence of Potential Circadian Rhythm Modification. CPT Pharmacometrics Syst Pharmacol 2020; 9:60-69. [PMID: 31749321 PMCID: PMC6966184 DOI: 10.1002/psp4.12483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
PF-05251749 is a dual inhibitor of casein kinase 1 δ/ε, key regulators of circadian rhythm. As a result of its mechanism of action, PF-05251749 may also change the heart rate corrected QT (QTc) circadian rhythm, which may confound detection of drug-induced QTc prolongation. In this analysis, a nonlinear mixed effect model including a multioscillator function was developed in addition to fitting the prespecified linear mixed effect concentration-QTc model, to identify QTc liability of PF-05251749 in the presence of potential circadian rhythm change. The modeling results suggested lack of clinically meaningful QTc prolongation (upper bound of 90% confidence interval for ∆∆QTc < 10 milliseconds) and that the drug-induced QTc circadian rhythm change was not present. However, simulation results indicated that inference of drug-induced QTc prolongation could be misleading if the drug effect on QTc circadian rhythm is not properly addressed. The modeling and simulation results suggest that prespecification of the concentration-QTc model should be reconsidered for drugs with circadian rhythm modulation potential.
Collapse
Affiliation(s)
- Yeamin Huh
- Global Product DevelopmentPfizer IncGrotonConnecticutUSA
| | - Danny Chen
- Early Clinical DevelopmentPfizer IncCambridgeMassachusettsUSA
| | - Steve Riley
- Global Product DevelopmentPfizer IncGrotonConnecticutUSA
| | - Cheng Chang
- Global Product DevelopmentPfizer IncGrotonConnecticutUSA
| | | |
Collapse
|
22
|
Biological Rhythms Advance in Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1180:117-133. [DOI: 10.1007/978-981-32-9271-0_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Costemale-Lacoste JF, Colle R, Martin S, Asmar KE, Loeb E, Feve B, Verstuyft C, Trabado S, Ferreri F, Haffen E, Polosan M, Becquemont L, Corruble E. Glycogen synthase kinase-3β genetic polymorphisms and insomnia in depressed patients: A prospective study. J Affect Disord 2018; 240:230-236. [PMID: 30081294 DOI: 10.1016/j.jad.2018.07.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/22/2018] [Accepted: 07/22/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND 80-90% of patients with Major Depressive Episode (MDE) experience insomnia and up-to 50% severe insomnia. Glycogen Synthase Kinase-3β (GSK3B) is involved both in mood regulation and circadian rhythm. Since GSK3B polymorphisms could affect protein levels or functionality, we investigated the association of GSK3B polymorphisms with insomnia in a sample of depressed patients treated with antidepressants. METHODS In this 6-month prospective real-world treatment study in psychiatric settings (METADAP), 492 Caucasian patients requiring a new antidepressant treatment were included and genotyped for five GSK3B Single Nucleotide Polymorphisms (SNPs) (rs6808874, rs6782799, rs2319398, rs13321783, rs334558). Insomnia and MDE severity were rated using the Hamilton Depression Rating Scale (HDRS). Bi- and multivariate analyses were performed to assess the association between GSK3B SNPs and insomnia (main objective). We also assessed their association with MDE severity and HDRS response/remission after antidepressant treatment. RESULTS At baseline severe insomnia was associated with the GSK3B rs334558 minor allele (C+) [OR=1.81, CI95%(1.17-2.80), p=0.008]. GSK3B rs334558 C+ had greater insomnia improvement after 6 months of antidepressant treatment (p=0.007, β=0.17, t=2.736). No association was found between GSK3B SNPs and MDE baseline severity or 6-month response/remission. CONCLUSION GSK3B rs334558 was associated with insomnia but not with MDE severity in depressed patients. Targeting GSK3B in patients with MDE and a severe insomnia could be a way to improve their symptoms with greater efficiency. And it should be further studied whether the GSK3B-insomnia association may fit into the larger picture of mood disorders.
Collapse
Affiliation(s)
- Jean-François Costemale-Lacoste
- CESP/UMR-S1178, Equipe "Dépression et Antidépresseurs", Univ Paris-Sud, Faculté de Médecine, INSERM, Le Kremlin Bicêtre, France; Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France; Dispositif Territorial de Recherche et Formation (DTRF) Paris Sud
| | - Romain Colle
- CESP/UMR-S1178, Equipe "Dépression et Antidépresseurs", Univ Paris-Sud, Faculté de Médecine, INSERM, Le Kremlin Bicêtre, France; Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France; Dispositif Territorial de Recherche et Formation (DTRF) Paris Sud
| | - Séverine Martin
- CESP/UMR-S1178, Equipe "Dépression et Antidépresseurs", Univ Paris-Sud, Faculté de Médecine, INSERM, Le Kremlin Bicêtre, France; Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Khalil El Asmar
- CESP/UMR-S1178, Equipe "Dépression et Antidépresseurs", Univ Paris-Sud, Faculté de Médecine, INSERM, Le Kremlin Bicêtre, France
| | - Emanuel Loeb
- CESP/UMR-S1178, Equipe "Dépression et Antidépresseurs", Univ Paris-Sud, Faculté de Médecine, INSERM, Le Kremlin Bicêtre, France; Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Bruno Feve
- Sorbonne Universities, Pierre and Marie Curie University Paris 6, INSERM, Saint-Antoine Research Center, Saint-Antoine Hospital; Hospitalo-Universitary Institute, ICAN; Department of Endocrinology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris France; INSERM, UMR S_938- Centre de Recherche Saint-Antoine, Paris, France
| | - Céline Verstuyft
- CESP/UMR-S1178, Equipe "Dépression et Antidépresseurs", Univ Paris-Sud, Faculté de Médecine, INSERM, Le Kremlin Bicêtre, France; Service de Génétique Moléculaire, pharmacogénétique et hormonologie, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Séverine Trabado
- Service de Génétique Moléculaire, pharmacogénétique et hormonologie, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Florian Ferreri
- UPMC Paris 6; Department of Psychiatry, Saint-Antoine Hospital, Paris, France
| | - Emmanuel Haffen
- Department of Clinical Psychiatry, University Hospital; EA 481, Laboratory of Neurosciences, University of Bourgogne Franche-Comté; CIC-1431 Inserm, University Hospital, Besançon, France
| | - Mircea Polosan
- Univ. Grenoble Alpes; Inserm U1216, Grenoble Institut de Neurosciences, CHU de Grenoble, F-38000 Grenoble, France
| | - Laurent Becquemont
- CESP/UMR-S1178, Equipe "Dépression et Antidépresseurs", Univ Paris-Sud, Faculté de Médecine, INSERM, Le Kremlin Bicêtre, France; Centre de Recherche Clinique Paris Sud, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Emmanuelle Corruble
- CESP/UMR-S1178, Equipe "Dépression et Antidépresseurs", Univ Paris-Sud, Faculté de Médecine, INSERM, Le Kremlin Bicêtre, France; Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France; Dispositif Territorial de Recherche et Formation (DTRF) Paris Sud.
| |
Collapse
|
24
|
Takaesu Y. Circadian rhythm in bipolar disorder: A review of the literature. Psychiatry Clin Neurosci 2018; 72:673-682. [PMID: 29869403 DOI: 10.1111/pcn.12688] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022]
Abstract
Sleep disturbances and circadian rhythm dysfunction have been widely demonstrated in patients with bipolar disorder (BD). Irregularity of the sleep-wake rhythm, eveningness chronotype, abnormality of melatonin secretion, vulnerability of clock genes, and the irregularity of social time cues have also been well-documented in BD. Circadian rhythm dysfunction is prominent in BD compared with that in major depressive disorders, implying that circadian rhythm dysfunction is a trait marker of BD. In the clinical course of BD, the circadian rhythm dysfunctions may act as predictors for the first onset of BD and the relapse of mood episodes. Treatments focusing on sleep disturbances and circadian rhythm dysfunction in combination with pharmacological, psychosocial, and chronobiological treatments are believed to be useful for relapse prevention. Further studies are therefore warranted to clarify the relation between circadian rhythm dysfunction and the pathophysiology of BD to develop treatment strategies for achieving recovery in BD patients.
Collapse
Affiliation(s)
- Yoshikazu Takaesu
- Department of Neuropsychiatry, Kyorin University, School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Mendoza C, Barreto GE, Iarkov A, Tarasov VV, Aliev G, Echeverria V. Cotinine: A Therapy for Memory Extinction in Post-traumatic Stress Disorder. Mol Neurobiol 2018; 55:6700-6711. [PMID: 29335846 DOI: 10.1007/s12035-018-0869-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/07/2018] [Indexed: 12/14/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a mental disorder that may develop after exposure to exceptionally threatening or unescapable horrifying events. Actual therapies fail to alleviate the emotional suffering and cognitive impairment associated with this disorder, mostly because they are ineffective in treating the failure to extinguish trauma memories in a great percentage of those affected. In this review, current behavioral, cellular, and molecular evidence supporting the use of cotinine for treating PTSD are reviewed. The role of the positive modulation by cotinine of the nicotinic acetylcholine receptors (nAChRs) and their downstream effectors, the protection of astroglia, and the inhibition of microglia in the PTSD brain are also discussed.
Collapse
Affiliation(s)
- Cristhian Mendoza
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, 4030000, Concepción, Chile
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Alexandre Iarkov
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, 4030000, Concepción, Chile
| | - Vadim V Tarasov
- Institute of Pharmacy and Translational Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Severniy Proezd, Chernogolovka, Moscow Region, 1142432, Russia. .,"GALLY" International Biomedical Research Consulting LLC, San Antonio, TX, 78229, USA. .,School of Health Sciences and Healthcare Administration, University of Atlanta, Johns Creek, GA, 30097, USA.
| | - Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, 4030000, Concepción, Chile. .,Bay Pines VA Healthcare System, Research and Development, Bay Pines, FL, 33744, USA.
| |
Collapse
|
26
|
Comparison of the Effects of Quetiapine XR and Lithium Monotherapy on Actigraphy-Measured Circadian Parameters in Patients With Bipolar II Depression. J Clin Psychopharmacol 2017; 37:351-354. [PMID: 28328790 DOI: 10.1097/jcp.0000000000000699] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE/BACKGROUND The aim of this study was to evaluate the effects of quetiapine XR and lithium on actigraphy-measured circadian parameters in patients with bipolar II depression. METHODS/PROCEDURES This was an 8-week, open-label, prospective, randomized comparative study. The assessments included the 17-item Hamilton Depression Rating Scale score and actigraphic measures concerning the previous 7 days, collected at each visit (weeks 0 [baseline], 1, 2, 4, 6, and 8); the actigraphic data were analyzed with a cosinor analysis. FINDINGS/RESULTS Medication, time, and the interaction between medication and time were significantly associated with acrophase for the entire group (Ps = 0.003, 0.020, and 0.042, respectively). More specifically, acrophase was significantly delayed at weeks 1 and 6 (Ps = 0.004 and 0.039, respectively) in the quetiapine XR group. The F statistics significantly increased over time for the entire group (P < 0.001), and there was a significant increase in F statistics on weeks 4 and 6 in the quetiapine XR group (Ps = 0.016 and 0.020, respectively) and on weeks 4 and 8 in the lithium group (Ps = 0.001 and 0.016, respectively). In addition, scores on the 17-item Hamilton Depression Rating Scale were significantly associated with the F statistics during 8 weeks for the entire group (P = 0.008). IMPLICATIONS/CONCLUSIONS Both quetiapine XR and lithium affected several circadian parameters, including peak activity time and robustness of circadian rhythm, but exerted different effects on acrophase in patients with bipolar II depression. In particular, clinical depressive symptoms were associated with robustness of circadian rhythm during the course of the 8-week treatment.
Collapse
|
27
|
Clock Genes and Altered Sleep-Wake Rhythms: Their Role in the Development of Psychiatric Disorders. Int J Mol Sci 2017; 18:ijms18050938. [PMID: 28468274 PMCID: PMC5454851 DOI: 10.3390/ijms18050938] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/04/2017] [Accepted: 03/09/2017] [Indexed: 12/12/2022] Open
Abstract
In mammals, the circadian clocks network (central and peripheral oscillators) controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder). However, the underlying mechanisms of these associations remain to be ascertained and the cause–effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep–wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders). First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep–wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders.
Collapse
|
28
|
Kim Y, Santos R, Gage FH, Marchetto MC. Molecular Mechanisms of Bipolar Disorder: Progress Made and Future Challenges. Front Cell Neurosci 2017; 11:30. [PMID: 28261061 PMCID: PMC5306135 DOI: 10.3389/fncel.2017.00030] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/01/2017] [Indexed: 12/15/2022] Open
Abstract
Bipolar disorder (BD) is a chronic and progressive psychiatric illness characterized by mood oscillations, with episodes of mania and depression. The impact of BD on patients can be devastating, with up to 15% of patients committing suicide. This disorder is associated with psychiatric and medical comorbidities and patients with a high risk of drug abuse, metabolic and endocrine disorders and vascular disease. Current knowledge of the pathophysiology and molecular mechanisms causing BD is still modest. With no clear biological markers available, early diagnosis is a great challenge to clinicians without previous knowledge of the longitudinal progress of illness. Moreover, despite recommendations from evidence-based guidelines, polypharmacy is still common in clinical treatment of BD, reflecting the gap between research and clinical practice. A major challenge in BD is the development of effective drugs with low toxicity for the patients. In this review article, we focus on the progress made and future challenges we face in determining the pathophysiology and molecular pathways involved in BD, such as circadian and metabolic perturbations, mitochondrial and endoplasmic reticulum (ER) dysfunction, autophagy and glutamatergic neurotransmission; which may lead to the development of new drugs.
Collapse
Affiliation(s)
- Yeni Kim
- Laboratory of Genetics, The Salk Institute for Biological StudiesLa Jolla, CA, USA; Department of Child and Adolescent Psychiatry, National Center for Mental HealthSeoul, South Korea
| | - Renata Santos
- Laboratory of Genetics, The Salk Institute for Biological StudiesLa Jolla, CA, USA; Ecole Normale Supérieure, PSL Research University, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Paris, France
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies La Jolla, CA, USA
| | - Maria C Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies La Jolla, CA, USA
| |
Collapse
|
29
|
Luca A, Calandra C, Luca M. Gsk3 Signalling and Redox Status in Bipolar Disorder: Evidence from Lithium Efficacy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3030547. [PMID: 27630757 PMCID: PMC5007367 DOI: 10.1155/2016/3030547] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/28/2016] [Accepted: 07/20/2016] [Indexed: 12/15/2022]
Abstract
Objective. To discuss the link between glycogen synthase kinase-3 (GSK3) and the main biological alterations demonstrated in bipolar disorder (BD), with special attention to the redox status and the evidence supporting the efficacy of lithium (a GSK3 inhibitor) in the treatment of BD. Methods. A literature research on the discussed topics, using Pubmed and Google Scholar, has been conducted. Moreover, a manual selection of interesting references from the identified articles has been performed. Results. The main biological alterations of BD, pertaining to inflammation, oxidative stress, membrane ion channels, and circadian system, seem to be intertwined. The dysfunction of the GSK3 signalling pathway is involved in all the aforementioned "biological causes" of BD. In a complex scenario, it can be seen as the common denominator linking them all. Lithium inhibition of GSK3 could, at least in part, explain its positive effect on these biological dysfunctions and its superiority in terms of clinical efficacy. Conclusions. Deepening the knowledge on the molecular bases of BD is fundamental to identifying the biochemical pathways that must be targeted in order to provide patients with increasingly effective therapeutic tools against an invalidating disorder such as BD.
Collapse
Affiliation(s)
- Antonina Luca
- Department of Medical and Surgical Sciences and Advanced Technologies, University Hospital Policlinico-Vittorio Emanuele, Santa Sofia Street 78, Catania, 95100 Sicily, Italy
| | - Carmela Calandra
- Psychiatry Unit, Department of Medical and Surgical Sciences and Advanced Technologies, University Hospital Policlinico-Vittorio Emanuele, Santa Sofia Street 78, Catania, 95100 Sicily, Italy
| | - Maria Luca
- Psychiatry Unit, Department of Medical and Surgical Sciences and Advanced Technologies, University Hospital Policlinico-Vittorio Emanuele, Santa Sofia Street 78, Catania, 95100 Sicily, Italy
| |
Collapse
|
30
|
Noguchi T, Lo K, Diemer T, Welsh DK. Lithium effects on circadian rhythms in fibroblasts and suprachiasmatic nucleus slices from Cry knockout mice. Neurosci Lett 2016; 619:49-53. [PMID: 26930624 DOI: 10.1016/j.neulet.2016.02.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/05/2016] [Accepted: 02/16/2016] [Indexed: 12/16/2022]
Abstract
Lithium is widely used as a treatment of bipolar disorder, a neuropsychiatric disorder associated with disrupted circadian rhythms. Lithium is known to lengthen period and increase amplitude of circadian rhythms. One possible pathway for these effects involves inhibition of glycogen synthase kinase-3β (GSK-3β), which regulates degradation of CRY2, a canonical clock protein determining circadian period. CRY1 is also known to play important roles in regulating circadian period and phase, although there is no evidence that it is similarly phosphorylated by GSK-3β. In this paper, we tested the hypothesis that lithium affects circadian rhythms through CRYs. We cultured fibroblasts and slices of the suprachiasmatic nucleus (SCN), the master circadian pacemaker of the brain, from Cry1-/-, Cry2-/-, or wild-type (WT) mice bearing the PER2:LUC circadian reporter. Lithium was applied in the culture medium, and circadian rhythms of PER2 expression were measured. In WT and Cry2-/- fibroblasts, 10mM lithium increased PER2 expression and rhythm amplitude but not period, and 1mM lithium did not affect either period or amplitude. In non-rhythmic Cry1-/- fibroblasts, 10mM lithium increased PER2 expression. In SCN slices, 1mM lithium lengthened period ∼1h in all genotypes, but did not affect amplitude except in Cry2-/- SCN. Thus, the amplitude-enhancing effect of lithium in WT fibroblasts was unaffected by Cry2 knockout and occurred in the absence of period-lengthening, whereas the period-lengthening effect of lithium in WT SCN was unaffected by Cry1 or Cry2 knockout and occurred in the absence of rhythm amplification, suggesting that these two effects of lithium on circadian rhythms are independent of CRYs and of each other.
Collapse
Affiliation(s)
- Takako Noguchi
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, 9500 Gilman Drive MC0603, La Jolla, CA 92093-0603, USA; Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| | - Kevin Lo
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, 9500 Gilman Drive MC0603, La Jolla, CA 92093-0603, USA.
| | - Tanja Diemer
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, 9500 Gilman Drive MC0603, La Jolla, CA 92093-0603, USA.
| | - David K Welsh
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, 9500 Gilman Drive MC0603, La Jolla, CA 92093-0603, USA; Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| |
Collapse
|
31
|
Pandey MK, DeGrado TR. Glycogen Synthase Kinase-3 (GSK-3)-Targeted Therapy and Imaging. Am J Cancer Res 2016; 6:571-93. [PMID: 26941849 PMCID: PMC4775866 DOI: 10.7150/thno.14334] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is associated with various key biological processes, including glucose regulation, apoptosis, protein synthesis, cell signaling, cellular transport, gene transcription, proliferation, and intracellular communication. Accordingly, GSK-3 has been implicated in a wide variety of diseases and specifically targeted for both therapeutic and imaging applications by a large number of academic laboratories and pharmaceutical companies. Here, we review the structure, function, expression levels, and ligand-binding properties of GSK-3 and its connection to various diseases. A selected list of highly potent GSK-3 inhibitors, with IC50 <20 nM for adenosine triphosphate (ATP)-competitive inhibitors and IC50 <5 μM for non-ATP-competitive inhibitors, were analyzed for structure activity relationships. Furthermore, ubiquitous expression of GSK-3 and its possible impact on therapy and imaging are also highlighted. Finally, a rational perspective and possible route to selective and effective GSK-3 inhibitors is discussed.
Collapse
|
32
|
Oosterman JE, Belsham DD. Glucose Alters Per2 Rhythmicity Independent of AMPK, Whereas AMPK Inhibitor Compound C Causes Profound Repression of Clock Genes and AgRP in mHypoE-37 Hypothalamic Neurons. PLoS One 2016; 11:e0146969. [PMID: 26784927 PMCID: PMC4718556 DOI: 10.1371/journal.pone.0146969] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/23/2015] [Indexed: 01/11/2023] Open
Abstract
Specific neurons in the hypothalamus are regulated by peripheral hormones and nutrients to maintain proper metabolic control. It is unclear if nutrients can directly control clock gene expression. We have therefore utilized the immortalized, hypothalamic cell line mHypoE-37, which exhibits robust circadian rhythms of core clock genes. mHypoE-37 neurons were exposed to 0.5 or 5.5 mM glucose, comparable to physiological levels in the brain. Per2 and Bmal1 mRNAs were assessed every 3 hours over 36 hours. Incubation with 5.5 mM glucose significantly shortened the period and delayed the phase of Per2 mRNA levels, but had no effect on Bmal1. Glucose had no significant effect on phospho-GSK3β, whereas AMPK phosphorylation was altered. Thus, the AMPK inhibitor Compound C was utilized, and mRNA levels of Per2, Bmal1, Cryptochrome1 (Cry1), agouti-related peptide (AgRP), carnitine palmitoyltransferase 1C (Cpt1c), and O-linked N-acetylglucosamine transferase (Ogt) were measured. Remarkably, Compound C dramatically reduced transcript levels of Per2, Bmal1, Cry1, and AgRP, but not Cpt1c or Ogt. Because AMPK was not inhibited at the same time or concentrations as the clock genes, we suggest that the effect of Compound C on gene expression occurs through an AMPK-independent mechanism. The consequences of inhibition of the rhythmic expression of clock genes, and in turn downstream metabolic mediators, such as AgRP, could have detrimental effects on overall metabolic processes. Importantly, the effects of the most commonly used AMPK inhibitor Compound C should be interpreted with caution, considering its role in AMPK-independent repression of specific genes, and especially clock gene rhythm dysregulation.
Collapse
Affiliation(s)
- Johanneke E. Oosterman
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Denise D. Belsham
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Cellular and Molecular Biology, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
33
|
Role of Opioid Receptors Signaling in Remote Electrostimulation--Induced Protection against Ischemia/Reperfusion Injury in Rat Hearts. PLoS One 2015; 10:e0138108. [PMID: 26430750 PMCID: PMC4592126 DOI: 10.1371/journal.pone.0138108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/25/2015] [Indexed: 01/28/2023] Open
Abstract
Aims Our previous studies demonstrated that remote electro-stimulation (RES) increased myocardial GSK3 phosphorylation and attenuated ischemia/ reperfusion (I/R) injury in rat hearts. However, the role of various opioid receptors (OR) subtypes in preconditioned RES-induced myocardial protection remains unknown. We investigated the role of OR subtype signaling in RES-induced cardioprotection against I/R injury of the rat heart. Methods & Results Male Spraque-Dawley rats were used. RES was performed on median nerves area with/without pretreatment with various receptors antagonists such as opioid receptor (OR) subtype receptors (KOR, DOR, and MOR). The expressions of Akt, GSK3, and PKCε expression were analyzed by Western blotting. When RES was preconditioned before the I/R model, the rat's hemodynamic index, infarction size, mortality and serum CK-MB were evaluated. Our results showed that Akt, GSK3 and PKCε expression levels were significantly increased in the RES group compared to the sham group, which were blocked by pretreatment with specific antagonists targeting KOR and DOR, but not MOR subtype. Using the I/R model, the duration of arrhythmia and infarct size were both significantly attenuated in RES group. The mortality rates of the sham RES group, the RES group, RES group + KOR antagonist, RES group + DOR/MOR antagonists (KOR left), RES group + DOR antagonist, and RES group + KOR/MOR antagonists (DOR left) were 50%, 20%, 67%, 13%, 50% and 55%, respectively. Conclusion The mechanism of RES-induced myocardial protection against I/R injury seems to involve multiple target pathways such as Akt, KOR and/or DOR signaling.
Collapse
|
34
|
The bipolarity of light and dark: A review on Bipolar Disorder and circadian cycles. J Affect Disord 2015; 185:219-29. [PMID: 26241867 DOI: 10.1016/j.jad.2015.07.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/06/2015] [Accepted: 07/08/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND Bipolar Disorder is characterized by episodes running the full mood spectrum, from mania to depression. Between mood episodes, residual symptoms remain, as sleep alterations, circadian cycle disturbances, emotional deregulation, cognitive impairment and increased risk for comorbidities. The present review intends to reflect about the most recent and relevant information concerning the biunivocal relation between bipolar disorder and circadian cycles. METHODS It was conducted a literature search on PubMed database using the search terms "bipolar", "circadian", "melatonin", "cortisol", "body temperature", "Clock gene", "Bmal1 gene", "Per gene", "Cry gene", "GSK3β", "chronotype", "light therapy", "dark therapy", "sleep deprivation", "lithum" and "agomelatine". Search results were manually reviewed, and pertinent studies were selected for inclusion as appropriate. RESULTS Several studies support the relationship between bipolar disorder and circadian cycles, discussing alterations in melatonin, body temperature and cortisol rhythms; disruption of sleep/wake cycle; variations of clock genes; and chronotype. Some therapeutics for bipolar disorder directed to the circadian cycles disturbances are also discussed, including lithium carbonate, agomelatine, light therapy, dark therapy, sleep deprivation and interpersonal and social rhythm therapy. LIMITATIONS This review provides a summary of an extensive research for the relevant literature on this theme, not a patient-wise meta-analysis. CONCLUSIONS In the future, it is essential to achieve a better understanding of the relation between bipolar disorder and the circadian system. It is required to establish new treatment protocols, combining psychotherapy, therapies targeting the circadian rhythms and the latest drugs, in order to reduce the risk of relapse and improve affective behaviour.
Collapse
|
35
|
Lithium is associated with decrease in all-cause and suicide mortality in high-risk bipolar patients: A nationwide registry-based prospective cohort study. J Affect Disord 2015; 183:159-65. [PMID: 26005778 DOI: 10.1016/j.jad.2015.04.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Mortality rates, in particular due to suicide, are especially high in bipolar patients. This nationwide, registry-based study analyses the associations of medication use with hospitalization due to attempted suicides, deaths from suicide, and overall mortality across different psychotropic agents in bipolar patients. METHOD Altogether 826 bipolar patients hospitalized in Finland between 1996-2003 because of a suicide attempt were followed-up for a mean of 3.5 years. The relative risk of suicide attempts leading to hospitalization, completed suicide, and overall mortality during lithium vs. no-lithium, antipsychotic vs. no-antipsychotic, valproic acid vs. no-valproic acid, antidepressant vs. no-antidepressant and benzodiazepine vs. no-benzodiazepine treatment was measured. RESULTS The use of valproic acid (RR=1.53, 95% CI: 1.26-1.85, p<0.001), antidepressants (RR=1.49, 95% CI: 1.23-1.8, p<0.001) and benzodiazepines (RR=1.49, 95% CI: 1.23-1.80, p<0.001) was associated with increased risk of attempted suicide. Lithium was associated with a (non-significantly) lower risk of suicide attempts, and with significantly decreased suicide mortality in univariate (RR=0.39, 95% CI: 0.17-0.93, p=0.03), Cox (HR=0.37, 95% CI: 0.16-0.88, p=0.02) and marginal structural models (HR=0.31, 95% CI: 0.12-0.79, p=0.02). Moreover, lithium was related to decreased all-cause mortality by 49% (marginal structural models). LIMITATIONS Only high-risk bipolar patients hospitalized after a suicide attempt were studied. Diagnosis was not based on standardized diagnostic interviews; treatment regimens were uncontrolled. CONCLUSIONS Maintenance therapy with lithium, but not with other medications, is linked to decreased suicide and all-cause mortality in high-risk bipolar patients. Lithium should be considered for suicide prevention in high-risk bipolar patients.
Collapse
|
36
|
Logan RW, McClung CA. Animal models of bipolar mania: The past, present and future. Neuroscience 2015; 321:163-188. [PMID: 26314632 DOI: 10.1016/j.neuroscience.2015.08.041] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 12/19/2022]
Abstract
Bipolar disorder (BD) is the sixth leading cause of disability in the world according to the World Health Organization and affects nearly six million (∼2.5% of the population) adults in the United State alone each year. BD is primarily characterized by mood cycling of depressive (e.g., helplessness, reduced energy and activity, and anhedonia) and manic (e.g., increased energy and hyperactivity, reduced need for sleep, impulsivity, reduced anxiety and depression), episodes. The following review describes several animal models of bipolar mania with a focus on more recent findings using genetically modified mice, including several with the potential of investigating the mechanisms underlying 'mood' cycling (or behavioral switching in rodents). We discuss whether each of these models satisfy criteria of validity (i.e., face, predictive, and construct), while highlighting their strengths and limitations. Animal models are helping to address critical questions related to pathophysiology of bipolar mania, in an effort to more clearly define necessary targets of first-line medications, lithium and valproic acid, and to discover novel mechanisms with the hope of developing more effective therapeutics. Future studies will leverage new technologies and strategies for integrating animal and human data to reveal important insights into the etiology, pathophysiology, and treatment of BD.
Collapse
Affiliation(s)
- R W Logan
- University of Pittsburgh School of Medicine, Department of Psychiatry, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, United States
| | - C A McClung
- University of Pittsburgh School of Medicine, Department of Psychiatry, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, United States.
| |
Collapse
|
37
|
Zordan MA, Sandrelli F. Circadian Clock Dysfunction and Psychiatric Disease: Could Fruit Flies have a Say? Front Neurol 2015; 6:80. [PMID: 25941512 PMCID: PMC4403521 DOI: 10.3389/fneur.2015.00080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/24/2015] [Indexed: 12/15/2022] Open
Abstract
There is evidence of a link between the circadian system and psychiatric diseases. Studies in humans and mammals suggest that environmental and/or genetic disruption of the circadian system leads to an increased liability to psychiatric disease. Disruption of clock genes and/or the clock network might be related to the etiology of these pathologies; also, some genes, known for their circadian clock functions, might be associated to mental illnesses through clock-independent pleiotropy. Here, we examine the features which we believe make Drosophila melanogaster a model apt to study the role of the circadian clock in psychiatric disease. Despite differences in the organization of the clock system, the molecular architecture of the Drosophila and mammalian circadian oscillators are comparable and many components are evolutionarily related. In addition, Drosophila has a rather complex nervous system, which shares much at the cell and neurobiological level with humans, i.e., a tripartite brain, the main neurotransmitter systems, and behavioral traits: circadian behavior, learning and memory, motivation, addiction, social behavior. There is evidence that the Drosophila brain shares some homologies with the vertebrate cerebellum, basal ganglia, and hypothalamus-pituitary-adrenal axis, the dysfunctions of which have been tied to mental illness. We discuss Drosophila in comparison to mammals with reference to the: organization of the brain and neurotransmitter systems; architecture of the circadian clock; clock-controlled behaviors. We sum up current knowledge on behavioral endophenotypes, which are amenable to modeling in flies, such as defects involving sleep, cognition, or social interactions, and discuss the relationship of the circadian system to these traits. Finally, we consider if Drosophila could be a valuable asset to understand the relationship between circadian clock malfunction and psychiatric disease.
Collapse
Affiliation(s)
- Mauro Agostino Zordan
- Department of Biology, University of Padova, Padova, Italy
- Cognitive Neuroscience Center, University of Padova, Padova, Italy
| | | |
Collapse
|
38
|
Besing RC, Paul JR, Hablitz LM, Rogers CO, Johnson RL, Young ME, Gamble KL. Circadian rhythmicity of active GSK3 isoforms modulates molecular clock gene rhythms in the suprachiasmatic nucleus. J Biol Rhythms 2015; 30:155-60. [PMID: 25724980 PMCID: PMC4586074 DOI: 10.1177/0748730415573167] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The suprachiasmatic nucleus (SCN) drives and synchronizes daily rhythms at the cellular level via transcriptional-translational feedback loops comprising clock genes such as Bmal1 and Period (Per). Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, phosphorylates at least 5 core clock proteins and shows diurnal variation in phosphorylation state (inactivation) of the GSK3β isoform. Whether phosphorylation of the other primary isoform (GSK3α) varies across the subjective day-night cycle is unknown. The purpose of this study was to determine if the endogenous rhythm of GSK3 (α and β) phosphorylation is critical for rhythmic BMAL1 expression and normal amplitude and periodicity of the molecular clock in the SCN. Significant circadian rhythmicity of phosphorylated GSK3 (α and β) was observed in the SCN from wild-type mice housed in constant darkness for 2 weeks. Importantly, chronic activation of both GSK3 isoforms impaired rhythmicity of the GSK3 target BMAL1. Furthermore, chronic pharmacological inhibition of GSK3 with 20 µM CHIR-99021 enhanced the amplitude and shortened the period of PER2::luciferase rhythms in organotypic SCN slice cultures. These results support the model that GSK3 activity status is regulated by the circadian clock and that GSK3 feeds back to regulate the molecular clock amplitude in the SCN.
Collapse
Affiliation(s)
| | - Jodi R Paul
- Department of Psychiatry and Behavioral Neurobiology
| | | | | | | | - Martin E Young
- Division of Cardiovascular Diseases, Department of Medicine; University of Alabama at Birmingham, Birmingham, Alabama
| | | |
Collapse
|
39
|
Oosterman JE, Kalsbeek A, la Fleur SE, Belsham DD. Impact of nutrients on circadian rhythmicity. Am J Physiol Regul Integr Comp Physiol 2014; 308:R337-50. [PMID: 25519730 DOI: 10.1152/ajpregu.00322.2014] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The suprachiasmatic nucleus (SCN) in the mammalian hypothalamus functions as an endogenous pacemaker that generates and maintains circadian rhythms throughout the body. Next to this central clock, peripheral oscillators exist in almost all mammalian tissues. Whereas the SCN is mainly entrained to the environment by light, peripheral clocks are entrained by various factors, of which feeding/fasting is the most important. Desynchronization between the central and peripheral clocks by, for instance, altered timing of food intake can lead to uncoupling of peripheral clocks from the central pacemaker and is, in humans, related to the development of metabolic disorders, including obesity and Type 2 diabetes. Diets high in fat or sugar have been shown to alter circadian clock function. This review discusses the recent findings concerning the influence of nutrients, in particular fatty acids and glucose, on behavioral and molecular circadian rhythms and will summarize critical studies describing putative mechanisms by which these nutrients are able to alter normal circadian rhythmicity, in the SCN, in non-SCN brain areas, as well as in peripheral organs. As the effects of fat and sugar on the clock could be through alterations in energy status, the role of specific nutrient sensors will be outlined, as well as the molecular studies linking these components to metabolism. Understanding the impact of specific macronutrients on the circadian clock will allow for guidance toward the composition and timing of meals optimal for physiological health, as well as putative therapeutic targets to regulate the molecular clock.
Collapse
Affiliation(s)
- Johanneke E Oosterman
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Departments of Physiology
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Hypothalamic Integration Mechanisms, The Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Denise D Belsham
- Departments of Physiology, Obstetrics and Gynaecology and Medicine, University of Toronto and Division of Cellular and Molecular Biology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; and
| |
Collapse
|
40
|
Musazzi L, Seguini M, Mallei A, Treccani G, Pelizzari M, Tornese P, Racagni G, Tardito D. Time-dependent activation of MAPK/Erk1/2 and Akt/GSK3 cascades: modulation by agomelatine. BMC Neurosci 2014; 15:119. [PMID: 25332063 PMCID: PMC4207903 DOI: 10.1186/s12868-014-0119-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/09/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The novel antidepressant agomelatine, a melatonergic MT1/MT2 agonist combined with 5-HT2c serotonin antagonist properties, showed antidepressant action in preclinical and clinical studies. There is a general agreement that the therapeutic action of antidepressants needs the activation of slow-onset adaptations in downstream signalling pathways finally regulating neuroplasticity. In the last several years, particular attention was given to cAMP-responsive element binding protein (CREB)-related pathways, since it was shown that chronic antidepressants increase CREB phosphorylation and transcriptional activity, through the activation of calcium/calmodulin-dependent (CaM) and mitogen activated protein kinase cascades (MAPK/Erk1/2). Aim of this work was to analyse possible effects of chronic agomelatine on time-dependent changes of different intracellular signalling pathways in hippocampus and prefrontal/frontal cortex of male rats. To this end, measurements were performed 1 h or 16 h after the last agomelatine or vehicle injection. RESULTS We have found that in naïve rats chronic agomelatine, contrary to traditional antidepressants, did not increase CREB phosphorylation, but modulates the time-dependent regulation of MAPK/Erk1/2 and Akt/glycogen synthase kinase-3 (GSK-3) pathways. CONCLUSION Our results suggest that the intracellular molecular mechanisms modulated by chronic agomelatine may be partly different from those of traditional antidepressants and involve the time-dependent regulation of MAPK/Erk1/2 and Akt/GSK-3 signalling pathways. This could exert a role in the antidepressant efficacy of the drug.
Collapse
Affiliation(s)
- Laura Musazzi
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano, Via Balzaretti 9, Milano, 20133, Italy.
| | - Mara Seguini
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano, Via Balzaretti 9, Milano, 20133, Italy.
| | - Alessandra Mallei
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano, Via Balzaretti 9, Milano, 20133, Italy.
| | - Giulia Treccani
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano, Via Balzaretti 9, Milano, 20133, Italy.
| | - Mariagrazia Pelizzari
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano, Via Balzaretti 9, Milano, 20133, Italy.
| | - Paolo Tornese
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano, Via Balzaretti 9, Milano, 20133, Italy.
| | - Giorgio Racagni
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano, Via Balzaretti 9, Milano, 20133, Italy. .,Istituto di Ricovero e Cura a Carattere Scientifico Centro S. Giovanni di Dio-Fatebenefratelli, Brescia, Italy.
| | - Daniela Tardito
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano, Via Balzaretti 9, Milano, 20133, Italy.
| |
Collapse
|
41
|
Ahn J, Jang J, Choi J, Lee J, Oh SH, Lee J, Yoon K, Kim S. GSK3β, but not GSK3α, inhibits the neuronal differentiation of neural progenitor cells as a downstream target of mammalian target of rapamycin complex1. Stem Cells Dev 2014; 23:1121-33. [PMID: 24397546 DOI: 10.1089/scd.2013.0397] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) acts as an important regulator during the proliferation and differentiation of neural progenitor cells (NPCs), but the roles of the isoforms of this molecule (GSK3α and GSK3β) have not been clearly defined. In this study, we investigated the functions of GSK3α and GSK3β in the context of neuronal differentiation of murine NPCs. Treatment of primary NPCs with a GSK3 inhibitor (SB216763) resulted in an increase in the percentage of TuJ1-positive immature neurons, suggesting an inhibitory role of GSK3 in embryonic neurogenesis. Downregulation of GSK3β expression increased the percentage of TuJ1-positive cells, while knock-down of GSK3α seemed to have no effect. When primary NPCs were engineered to stably express either isoform of GSK3 using retroviral vectors, GSK3β, but not GSK3α, inhibited neuronal differentiation and helped the cells to maintain the characteristics of NPCs. Mutant GSK3β (Y216F) failed to suppress neuronal differentiation, indicating that the kinase activity of GSK3β is important for this regulatory function. Similar results were obtained in vivo when a retroviral vector expressing GSK3β was delivered to E9.5 mouse brains using the ultrasound image-guided gene delivery technique. In addition, SB216763 was found to block the rapamycin-mediated inhibition of neuronal differentiation of NPCs. Taken together, our results demonstrate that GSK3β, but not GSK3α, negatively controls the neuronal differentiation of progenitor cells and that GSK3β may act downstream of the mammalian target of rapamycin complex1 signaling pathway.
Collapse
Affiliation(s)
- Jyhyun Ahn
- 1 School of Biological Sciences, Seoul National University , Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Oliva CA, Vargas JY, Inestrosa NC. Wnts in adult brain: from synaptic plasticity to cognitive deficiencies. Front Cell Neurosci 2013; 7:224. [PMID: 24348327 PMCID: PMC3847898 DOI: 10.3389/fncel.2013.00224] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 11/03/2013] [Indexed: 01/21/2023] Open
Abstract
During development of the central nervous system the Wnt signaling pathway has been implicated in a wide spectrum of physiological processes, including neuronal connectivity and synapse formation. Wnt proteins and components of the Wnt pathway are expressed in the brain since early development to the adult life, however, little is known about its role in mature synapses. Here, we review evidences indicating that Wnt proteins participate in the remodeling of pre- and post-synaptic regions, thus modulating synaptic function. We include the most recent data in the literature showing that Wnts are constantly released in the brain to maintain the basal neural activity. Also, we review the evidences that involve components of the Wnt pathway in the development of neurological and mental disorders, including a special emphasis on in vivo studies that relate behavioral abnormalities to deficiencies in Wnt signaling. Finally, we include the evidences that support a neuroprotective role of Wnt proteins in Alzheimer’s disease. We postulate that deregulation in Wnt signaling might have a fundamental role in the origin of neurological diseases, by altering the synaptic function at stages where the phenotype is not yet established but when the cognitive decline starts.
Collapse
Affiliation(s)
- Carolina A Oliva
- Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile ; Departamento de Biologïa Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Jessica Y Vargas
- Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile ; Departamento de Biologïa Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile ; Departamento de Biologïa Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
43
|
Glycogen synthase kinase-3β haploinsufficiency lengthens the circadian locomotor activity period in mice. Behav Brain Res 2013; 253:262-5. [PMID: 23919927 DOI: 10.1016/j.bbr.2013.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 07/29/2013] [Accepted: 08/01/2013] [Indexed: 11/21/2022]
Abstract
The mood stabiliser drug lithium has been reported to impact circadian rhythms in vertebrates. Among several putative therapeutic molecular targets, direct inhibition of glycogen synthase kinase-3 beta (GSK3β) by lithium has been proposed to underlie its effects on circadian physiology. Here we study the effect of GSK3β haploinsufficiency on the circadian locomotor activity in mice during a free-running period in comparison to wildtype littermates (WT). Mice were housed individually to record their circadian wheel running activity and were entrained to a 12h light/12h dark cycle for 14 days and then placed under constant darkness for 14 days to allow free-running. During the free-running phase, the circadian locomotor activity period of GSK3β(+/-) was significantly lengthened (23.83±0.05h) when compared to the WT mice (23.54±0.10h; p=0.0374). No significant difference in locomotor activity was observed. Knowing that GSK3β interacts with most of the core clock components, these data suggest that GSK3β acts as a critical intrinsic regulator of the circadian clock and plays an important role in regulating its period in response to lithium treatment.
Collapse
|
44
|
Bunney BG, Bunney WE. Mechanisms of rapid antidepressant effects of sleep deprivation therapy: clock genes and circadian rhythms. Biol Psychiatry 2013; 73:1164-71. [PMID: 22906517 DOI: 10.1016/j.biopsych.2012.07.020] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 11/16/2022]
Abstract
A significant subset of both major depressive disorder and bipolar disorder patients rapidly (within 24 hours) and robustly improves with the chronotherapeutic intervention of sleep deprivation therapy (SDT). Major mood disorder patients are reported to have abnormal circadian rhythms including temperature, hormonal secretion, mood, and particularly sleep. These rhythms are modulated by the clock gene machinery and its products. It is hypothesized that SDT resets abnormal clock gene machinery, that relapse of depressive symptoms during recovery night sleep reactivates abnormal clock gene machinery, and that supplemental chronotherapies and medications can block relapse and help stabilize circadian-related improvement. The central circadian clock genes, BMAL1/CLOCK (NPAS2), bind to Enhancer Boxes to initiate the transcription of circadian genes, including the period genes (per1, per2, per3). It is suggested that a defect in BMAL1/CLOCK (NPAS2) or in the Enhancer Box binding contributes to altered circadian function associated, in part, with the period genes. The fact that chronotherapies, including SDT and sleep phase advance, are dramatically effective suggests that altered clock gene machinery may represent a core pathophysiological defect in a subset of mood disorder patients.
Collapse
Affiliation(s)
- Blynn G Bunney
- Department of Psychiatry, School of Medicine, University of California, Irvine, California, USA
| | | |
Collapse
|
45
|
Oliva CA, Vargas JY, Inestrosa NC. Wnt signaling: role in LTP, neural networks and memory. Ageing Res Rev 2013; 12:786-800. [PMID: 23665425 DOI: 10.1016/j.arr.2013.03.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/15/2013] [Accepted: 03/05/2013] [Indexed: 01/07/2023]
Abstract
Wnt components are key regulators of a variety of developmental processes, including embryonic patterning, cell specification, and cell polarity. The Wnt signaling pathway participates in the development of the central nervous system and growing evidence indicates that Wnts also regulates the function of the adult nervous system. In fact, most of the key components including Wnts and Frizzled receptors are expressed in the adult brain. Wnt ligands have been implicated in the regulation of synaptic assembly as well as in neurotransmission and synaptic plasticity. Deregulation of Wnt signaling has been associated with several pathologies, and more recently has been related to neurodegenerative diseases and to mental and mood disorders. In this review, we focus our attention on the Wnt signaling cascade in postnatal life and we review in detail the presence of Wnt signaling components in pre- and postsynaptic regions. Due to the important role of Wnt proteins in wiring neural circuits, we discuss recent findings about the role of Wnt pathways both in basal spontaneous activities as well as in activity-dependent processes that underlie synaptic plasticity. Finally, we review the role of Wnt in vivo and we finish with the most recent data in literature that involves the effect of components of the Wnt signaling pathway in neurological and mental disorders, including a special emphasis on in vivo studies that relate behavioral abnormalities to deficiencies in Wnt signaling, as well as the data that support a neuroprotective role of Wnt proteins in relation to the pathogenesis of Alzheimer's disease.
Collapse
|
46
|
Abstract
Lithium has been used for the treatment of mood disorders for over 60 years, yet the exact mechanisms by which it exerts its therapeutic effects remain unclear. Two enzymatic chains or pathways emerge as targets for lithium: inositol monophosphatase within the phosphatidylinositol signalling pathway and the protein kinase glycogen synthase kinase 3. Lithium inhibits these enzymes through displacing the normal cofactor magnesium, a vital regulator of numerous signalling pathways. Here we provide an overview of evidence, supporting a role for the inhibition of glycogen synthase kinase 3 and inositol monophosphatase in the pharmacodynamic actions of lithium. We also explore how inhibition of these enzymes by lithium can lead to downstream effects of clinical relevance, both for mood disorders and neurodegenerative diseases. Establishing a better understanding of lithium's mechanisms of action may allow the development of more effective and more tolerable pharmacological agents for the treatment of a range of mental illnesses, and provide clearer insight into the pathophysiology of such disorders.
Collapse
Affiliation(s)
- Kayleigh M Brown
- Institute of Psychiatry, King's College London, PO Box 63, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | | |
Collapse
|
47
|
Hickie IB, Scott J, Hermens DF, Scott EM, Naismith SL, Guastella AJ, Glozier N, McGorry PD. Clinical classification in mental health at the cross-roads: which direction next? BMC Med 2013; 11:125. [PMID: 23672522 PMCID: PMC3653738 DOI: 10.1186/1741-7015-11-125] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/18/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND After 30 years of consensus-derived diagnostic categories in mental health, it is time to head in new directions. Those categories placed great emphasis on enhanced reliability and the capacity to identify them via standardized checklists. Although this enhanced epidemiology and health services planning, it failed to link broad diagnostic groupings to underlying pathophysiology or specific treatment response. DISCUSSION It is time to adopt new goals that prioritize the validation of clinical entities and foster alternative strategies to support those goals. The value of new dimensions (notably clinical staging), that are both clinically relevant and directly related to emerging developmental and neurobiological research, is proposed. A strong emphasis on 'reverse translation' (that is, working back from the clinic to the laboratory) underpins these novel approaches. However, it relies on using diagnostic groupings that already have strong evidence of links to specific risk factors or patterns of treatment response. SUMMARY The strategies described abandon the historical divides between clinical neurology, psychiatry and psychology and adopt the promotion of pathways to illness models.
Collapse
Affiliation(s)
- Ian B Hickie
- Clinical Research Unit, Brain & Mind Research Institute, University of Sydney, 100 Mallett Street, Camperdown, 2050, Australia
| | - Jan Scott
- Academic Psychiatry, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- FondaMental Foundation, Fondation de Coopération Scientifique Hôpital A. Chenevier, 40 Rue de Mesly, Creteil, F-94000, France
- INSERM, U 955, IMRB, Psychiatry Genetic, Creteil, F-94000, France
| | - Daniel F Hermens
- Clinical Research Unit, Brain & Mind Research Institute, University of Sydney, 100 Mallett Street, Camperdown, 2050, Australia
| | - Elizabeth M Scott
- Clinical Research Unit, Brain & Mind Research Institute, University of Sydney, 100 Mallett Street, Camperdown, 2050, Australia
- School of Medicine, The University of Notre Dame, 160 Oxford Street, Darlinghurst, Sydney, 2010, Australia
| | - Sharon L Naismith
- Clinical Research Unit, Brain & Mind Research Institute, University of Sydney, 100 Mallett Street, Camperdown, 2050, Australia
| | - Adam J Guastella
- Clinical Research Unit, Brain & Mind Research Institute, University of Sydney, 100 Mallett Street, Camperdown, 2050, Australia
| | - Nick Glozier
- Clinical Research Unit, Brain & Mind Research Institute, University of Sydney, 100 Mallett Street, Camperdown, 2050, Australia
| | - Patrick D McGorry
- Centre for Youth Mental Health, University of Melbourne, 35 Poplar Road, Parkville, 3052, Australia
- Orygen Youth Health Research Centre, Department of Psychiatry, University of Melbourne, 35 Poplar Road, Parkville, 3052, Australia
| |
Collapse
|
48
|
Lin YF, Huang MC, Liu HC. Glycogen synthase kinase 3β gene polymorphisms may be associated with bipolar I disorder and the therapeutic response to lithium. J Affect Disord 2013; 147:401-6. [PMID: 23021822 DOI: 10.1016/j.jad.2012.08.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 08/14/2012] [Accepted: 08/17/2012] [Indexed: 01/25/2023]
Abstract
BACKGROUND Glycogen Synthase Kinase 3β (GSK-3β) is thought to be a key feature in the therapeutic mechanism of mood stabilizers (e.g., lithium). Overexpression of GSK-3β might play a role in the pathogenesis of bipolar I disorder. Within the GSK-3β gene, a promoter single nucleotide polymorphism (SNP) rs334558 was identified associated with transcriptional strength, and an intronic SNP rs6438552 was found to regulate selection of splice acceptor sites. The aim of this study is to test the association between the two polymorphisms and bipolar I disorder. METHODS We genotyped the two SNPs in 138 Taiwanese bipolar I disorder patients and 131 controls. Lithium treatment efficacy was evaluated for 83 patients who had been treated with lithium carbonate for at least 24 months. RESULTS We found no association between each of the two SNPs and the risk of bipolar I disorder. Following correction for multiple testing, CT genotype at rs6438552 was associated with an older age of onset than other genotypes (P=0.042) in female patients. Patients with genotype TT at rs334558 (P=0.044) had poorer response to lithium treatment. There was a trend that haplotype C-T increased the risk for bipolar I disorder (adjusted OR=4.22, corrected P=0.084), and patients with haplotype T-T had poorer treatment response to lithium than those with haplotype C-C. LIMITATIONS Limitations included small sample size, retrospective data collection, and a potential sampling bias. CONCLUSIONS Despite the several limitations of the study, our results suggested GSK-3β genetic variants may be associated with the risk of bipolar I disorder, age of disease onset in females, and the therapeutic response to lithium.
Collapse
Affiliation(s)
- Yen-Feng Lin
- Harvard School of Public Health, Boston, MA 02115, USA
| | | | | |
Collapse
|
49
|
Van Rheenen TE, Rossell SL. Genetic and neurocognitive foundations of emotion abnormalities in bipolar disorder. Cogn Neuropsychiatry 2013; 18:168-207. [PMID: 23088582 DOI: 10.1080/13546805.2012.690938] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Bipolar Disorder (BD) is a serious mood disorder, the aetiology of which is still unclear. The disorder is characterised by extreme mood variability in which patients fluctuate between markedly euphoric, irritable, and elevated states to periods of severe depression. The current research literature shows that BD patients demonstrate compromised neurocognitive ability in addition to these mood symptoms. Viable candidate genes implicated in neurocognitive and socioemotional processes may explain the development of these core emotion abnormalities. Additionally, links between faulty neurocognition and impaired socioemotional ability complement genetic explanations of BD pathogenesis. This review examines associations between cognition indexing prefrontal neural regions and socioemotional impairments including emotion processing and regulation. A review of the effect of COMT and TPH2 on these functions is also explored. METHODS Major computer databases including PsycINFO, Google Scholar, and Medline were consulted in order to conduct a comprehensive review of the genetic and cognitive literature in BD. RESULTS This review determines that COMT and TPH2 genetic variants contribute susceptibility to abnormal prefrontal neurocognitive function which oversees the processing and regulation of emotion. This provides for greater understanding of some of the emotional and cognitive symptoms in BD. CONCLUSIONS Current findings in this direction show promise, although the literature is still in its infancy and further empirical research is required to investigate these links explicitly.
Collapse
Affiliation(s)
- Tamsyn E Van Rheenen
- Brain and Psychological Sciences Research Centre, Faculty of Life and Social Sciences, Swinburne University, and Cognitive Neuropsychology Laboratory, Monash Alfred Psychiatry Research Center, The Alfred Hospital, Melbourne, Australia.
| | | |
Collapse
|
50
|
Hickie IB, Naismith SL, Robillard R, Scott EM, Hermens DF. Manipulating the sleep-wake cycle and circadian rhythms to improve clinical management of major depression. BMC Med 2013; 11:79. [PMID: 23521808 PMCID: PMC3760618 DOI: 10.1186/1741-7015-11-79] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 03/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clinical psychiatry has always been limited by the lack of objective tests to substantiate diagnoses and a lack of specific treatments that target underlying pathophysiology. One area in which these twin failures has been most frustrating is major depression. Due to very considerable progress in the basic and clinical neurosciences of sleep-wake cycles and underlying circadian systems this situation is now rapidly changing. DISCUSSION The development of specific behavioral or pharmacological strategies that target these basic regulatory systems is driving renewed clinical interest. Here, we explore the extent to which objective tests of sleep-wake cycles and circadian function - namely, those that measure timing or synchrony of circadian-dependent physiology as well as daytime activity and nighttime sleep patterns - can be used to identify a sub-class of patients with major depression who have disturbed circadian profiles. SUMMARY Once this unique pathophysiology is characterized, a highly personalized treatment plan can be proposed and monitored. New treatments will now be designed and old treatments re-evaluated on the basis of their effects on objective measures of sleep-wake cycles, circadian rhythms and related metabolic systems.
Collapse
Affiliation(s)
- Ian B Hickie
- Clinical Research Unit, Brain & Mind Research Institute, University of Sydney, 100 Mallett St, Camperdown, NSW, 2050, Australia
| | - Sharon L Naismith
- Clinical Research Unit, Brain & Mind Research Institute, University of Sydney, 100 Mallett St, Camperdown, NSW, 2050, Australia
| | - Rébecca Robillard
- Clinical Research Unit, Brain & Mind Research Institute, University of Sydney, 100 Mallett St, Camperdown, NSW, 2050, Australia
| | - Elizabeth M Scott
- Clinical Research Unit, Brain & Mind Research Institute, University of Sydney, 100 Mallett St, Camperdown, NSW, 2050, Australia
- School of Medicine, The University of Notre Dame, 160 Oxford St, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Daniel F Hermens
- Clinical Research Unit, Brain & Mind Research Institute, University of Sydney, 100 Mallett St, Camperdown, NSW, 2050, Australia
| |
Collapse
|