1
|
Liu C, Guo Z, Pang J, Zhang Y, Yang Z, Cao J, Zhang T. Administration of Atosiban, an oxytocin receptor antagonist, ameliorates autistic-like behaviors in a female rat model of valproic acid-induced autism. Behav Brain Res 2024; 469:115052. [PMID: 38782096 DOI: 10.1016/j.bbr.2024.115052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Autism spectrum disorder (ASD) is a pervasive developmental disorder with gender differences. Oxytocin (OXT) is currently an important candidate drug for autism, but the lack of data on female autism is a big issue. It has been reported that the effect of OXT is likely to be different between male and female ASD patients. In the study, we specifically explored the role of the OXT signaling pathway in a VPA-induced female rat's model of autism. The data showed that there was an increase of either oxytocin or its receptor expressions in both the hippocampus and the prefrontal cortex of VPA-induced female offspring. To determine if the excess of OXT signaling contributed to autism symptoms in female rats, exogenous oxytocin and oxytocin receptor antagonists Atosiban were used in the experiment. It was found that exogenous oxytocin triggered autism-like behaviors in wild-type female rats by intranasal administration. More interestingly, several autism-like deficits including social interaction, anxiety, and repeat stereotypical sexual behavior in the VPA female offspring were significantly attenuated by oxytocin receptor antagonists Atosiban. Moreover, Atosiban also effectively improved the synaptic plasticity impairment induced by VPA in female offspring. Our results suggest that oxytocin receptor antagonists significantly improve autistic-like behaviors in a female rat model of valproic acid-induced autism.
Collapse
Affiliation(s)
- Chunhua Liu
- School of Medicine, Nankai University, Tianjin 300071, PR China
| | - Zhengyang Guo
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin 300071, PR China
| | - Jiyi Pang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin 300071, PR China
| | - Yuying Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin 300071, PR China
| | - Zhuo Yang
- School of Medicine, Nankai University, Tianjin 300071, PR China
| | - Jianting Cao
- Graduate School of Engineering, Saitama Institute of Technology, Fukaya 369-0217, Japan
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
2
|
D’Adamo CR, Nelson JL, Miller SN, Rickert Hong M, Lambert E, Tallman Ruhm H. Reversal of Autism Symptoms among Dizygotic Twins through a Personalized Lifestyle and Environmental Modification Approach: A Case Report and Review of the Literature. J Pers Med 2024; 14:641. [PMID: 38929862 PMCID: PMC11205016 DOI: 10.3390/jpm14060641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of autism has been increasing at an alarming rate. Even accounting for the expansion of autism spectrum disorder diagnostic (ASD) criteria throughout the 1990's, there has been an over 300% increase in ASD prevalence since the year 2000. The often debilitating personal, familial, and societal sequelae of autism are generally believed to be lifelong. However, there have been several encouraging case reports demonstrating the reversal of autism diagnoses, with a therapeutic focus on addressing the environmental and modifiable lifestyle factors believed to be largely underlying the condition. This case report describes the reversal of autism symptoms among dizygotic, female twin toddlers and provides a review of related literature describing associations between modifiable lifestyle factors, environmental exposures, and various clinical approaches to treating autism. The twins were diagnosed with Level 3 severity ASD "requiring very substantial support" at approximately 20 months of age following concerns of limited verbal and non-verbal communication, repetitive behaviors, rigidity around transitions, and extensive gastrointestinal symptoms, among other common symptoms. A parent-driven, multidisciplinary, therapeutic intervention involving a variety of licensed clinicians focusing primarily on addressing environmental and modifiable lifestyle factors was personalized to each of the twin's symptoms, labs, and other outcome measures. Dramatic improvements were noted within several months in most domains of the twins' symptoms, which manifested in reductions of Autism Treatment Evaluation Checklist (ATEC) scores from 76 to 32 in one of the twins and from 43 to 4 in the other twin. The improvement in symptoms and ATEC scores has remained relatively stable for six months at last assessment. While prospective studies are required, this case offers further encouraging evidence of ASD reversal through a personalized, multidisciplinary approach focusing predominantly on addressing modifiable environmental and lifestyle risk factors.
Collapse
Affiliation(s)
- Christopher R. D’Adamo
- Department of Family and Community Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | - Josephine L. Nelson
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | - Sara N. Miller
- Department of Family and Community Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Maria Rickert Hong
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | - Elizabeth Lambert
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | | |
Collapse
|
3
|
Rappeneau V, Castillo Díaz F. Convergence of oxytocin and dopamine signalling in neuronal circuits: Insights into the neurobiology of social interactions across species. Neurosci Biobehav Rev 2024; 161:105675. [PMID: 38608828 DOI: 10.1016/j.neubiorev.2024.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 04/14/2024]
Abstract
Social behaviour is essential for animal survival, and the hypothalamic neuropeptide oxytocin (OXT) critically impacts bonding, parenting, and decision-making. Dopamine (DA), is released by ventral tegmental area (VTA) dopaminergic neurons, regulating social cues in the mesolimbic system. Despite extensive exploration of OXT and DA roles in social behaviour independently, limited studies investigate their interplay. This narrative review integrates insights from human and animal studies, particularly rodents, emphasising recent research on pharmacological manipulations of OXT or DA systems in social behaviour. Additionally, we review studies correlating social behaviour with blood/cerebral OXT and DA levels. Behavioural facets include sociability, cooperation, pair bonding and parental care. In addition, we provide insights into OXT-DA interplay in animal models of social stress, autism, and schizophrenia. Emphasis is placed on the complex relationship between the OXT and DA systems and their collective influence on social behaviour across physiological and pathological conditions. Understanding OXT and DA imbalance is fundamental for unravelling the neurobiological underpinnings of social interaction and reward processing deficits observed in psychiatric conditions.
Collapse
Affiliation(s)
- Virginie Rappeneau
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, Regensburg 93053, Germany.
| | - Fernando Castillo Díaz
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, Regensburg 93053, Germany
| |
Collapse
|
4
|
Esposito D, Cruciani G, Zaccaro L, Di Carlo E, Spitoni GF, Manti F, Carducci C, Fiori E, Leuzzi V, Pascucci T. A Systematic Review on Autism and Hyperserotonemia: State-of-the-Art, Limitations, and Future Directions. Brain Sci 2024; 14:481. [PMID: 38790459 PMCID: PMC11119126 DOI: 10.3390/brainsci14050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Hyperserotonemia is one of the most studied endophenotypes in autism spectrum disorder (ASD), but there are still no unequivocal results about its causes or biological and behavioral outcomes. This systematic review summarizes the studies investigating the relationship between blood serotonin (5-HT) levels and ASD, comparing diagnostic tools, analytical methods, and clinical outcomes. A literature search on peripheral 5-HT levels and ASD was conducted. In total, 1104 publications were screened, of which 113 entered the present systematic review. Of these, 59 articles reported hyperserotonemia in subjects with ASD, and 26 presented correlations between 5-HT levels and ASD-core clinical outcomes. The 5-HT levels are increased in about half, and correlations between hyperserotonemia and clinical outcomes are detected in a quarter of the studies. The present research highlights a large amount of heterogeneity in this field, ranging from the characterization of ASD and control groups to diagnostic and clinical assessments, from blood sampling procedures to analytical methods, allowing us to delineate critical topics for future studies.
Collapse
Affiliation(s)
- Dario Esposito
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Gianluca Cruciani
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, 00185 Rome, Italy; (G.C.); (G.F.S.)
| | - Laura Zaccaro
- Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Rome, Italy; (L.Z.); (T.P.)
| | - Emanuele Di Carlo
- Department of Experimental Medicine, Sapienza University, Viale del Policlinico 155, 00161 Rome, Italy; (E.D.C.); (C.C.)
| | - Grazia Fernanda Spitoni
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, 00185 Rome, Italy; (G.C.); (G.F.S.)
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Filippo Manti
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza University, Viale del Policlinico 155, 00161 Rome, Italy; (E.D.C.); (C.C.)
| | - Elena Fiori
- Rome Technopole Foundation, P.le Aldo Moro, 5, 00185 Rome, Italy;
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Tiziana Pascucci
- Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Rome, Italy; (L.Z.); (T.P.)
- Centro “Daniel Bovet”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Via Ardeatina 306, 00179 Rome, Italy
| |
Collapse
|
5
|
Song Y, Hupfeld KE, Davies-Jenkins CW, Zöllner HJ, Murali-Manohar S, Mumuni AN, Crocetti D, Yedavalli V, Oeltzschner G, Alessi N, Batschelett MA, Puts NA, Mostofsky SH, Edden RA. Brain glutathione and GABA+ levels in autistic children. Autism Res 2024; 17:512-528. [PMID: 38279628 PMCID: PMC10963146 DOI: 10.1002/aur.3097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/28/2023] [Indexed: 01/28/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Altered neurometabolite levels, including glutathione (GSH) and gamma-aminobutyric acid (GABA), have been proposed as potential contributors to the biology underlying ASD. This study investigated whether cerebral GSH or GABA levels differ between a cohort of children aged 8-12 years with ASD (n = 52) and typically developing children (TDC, n = 49). A comprehensive analysis of GSH and GABA levels in multiple brain regions, including the primary motor cortex (SM1), thalamus (Thal), medial prefrontal cortex (mPFC), and supplementary motor area (SMA), was conducted using single-voxel HERMES MR spectroscopy at 3T. The results revealed no significant differences in cerebral GSH or GABA levels between the ASD and TDC groups across all examined regions. These findings suggest that the concentrations of GSH (an important antioxidant and neuromodulator) and GABA (a major inhibitory neurotransmitter) do not exhibit marked alterations in children with ASD compared to TDC. A statistically significant positive correlation was observed between GABA levels in the SM1 and Thal regions with ADHD inattention scores. No significant correlation was found between metabolite levels and hyper/impulsive scores of ADHD, measures of core ASD symptoms (ADOS-2, SRS-P) or adaptive behavior (ABAS-2). While both GSH and GABA have been implicated in various neurological disorders, the current study provides valuable insights into the specific context of ASD and highlights the need for further research to explore other neurochemical alterations that may contribute to the pathophysiology of this complex disorder.
Collapse
Affiliation(s)
- Yulu Song
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Kathleen E. Hupfeld
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Christopher W. Davies-Jenkins
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Helge J. Zöllner
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Saipavitra Murali-Manohar
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | | | - Deana Crocetti
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Vivek Yedavalli
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Georg Oeltzschner
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Natalie Alessi
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Mitchell A. Batschelett
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Nicolaas A.J. Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
- MRC Center for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Stewart H. Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard A.E. Edden
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
6
|
Lin P, Zhang Q, Sun J, Li Q, Li D, Zhu M, Fu X, Zhao L, Wang M, Lou X, Chen Q, Liang K, Zhu Y, Qu C, Li Z, Ma P, Wang R, Liu H, Dong K, Guo X, Cheng X, Sun Y, Sun J. A comparison between children and adolescents with autism spectrum disorders and healthy controls in biomedical factors, trace elements, and microbiota biomarkers: a meta-analysis. Front Psychiatry 2024; 14:1318637. [PMID: 38283894 PMCID: PMC10813399 DOI: 10.3389/fpsyt.2023.1318637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a multifaceted developmental condition that commonly appears during early childhood. The etiology of ASD remains multifactorial and not yet fully understood. The identification of biomarkers may provide insights into the underlying mechanisms and pathophysiology of the disorder. The present study aimed to explore the causes of ASD by investigating the key biomedical markers, trace elements, and microbiota factors between children with autism spectrum disorder (ASD) and control subjects. Methods Medline, PubMed, ProQuest, EMBASE, Cochrane Library, PsycINFO, Web of Science, and EMBSCO databases have been searched for publications from 2012 to 2023 with no language restrictions using the population, intervention, control, and outcome (PICO) approach. Keywords including "autism spectrum disorder," "oxytocin," "GABA," "Serotonin," "CRP," "IL-6," "Fe," "Zn," "Cu," and "gut microbiota" were used for the search. The Joanna Briggs Institute (JBI) critical appraisal checklist was used to assess the article quality, and a random model was used to assess the mean difference and standardized difference between ASD and the control group in all biomedical markers, trace elements, and microbiota factors. Results From 76,217 records, 43 studies met the inclusion and exclusion criteria and were included in this meta-analysis. The pooled analyses showed that children with ASD had significantly lower levels of oxytocin (mean differences, MD = -45.691, 95% confidence interval, CI: -61.667, -29.717), iron (MD = -3.203, 95% CI: -4.891, -1.514), and zinc (MD = -6.707, 95% CI: -12.691, -0.722), lower relative abundance of Bifidobacterium (MD = -1.321, 95% CI: -2.403, -0.238) and Parabacteroides (MD = -0.081, 95% CI: -0.148, -0.013), higher levels of c-reactive protein, CRP (MD = 0.401, 95% CI: 0.036, 0.772), and GABA (MD = 0.115, 95% CI: 0.045, 0.186), and higher relative abundance of Bacteroides (MD = 1.386, 95% CI: 0.717, 2.055) and Clostridium (MD = 0.281, 95% CI: 0.035, 0.526) when compared with controls. The results of the overall analyses were stable after performing the sensitivity analyses. Additionally, no substantial publication bias was observed among the studies. Interpretation Children with ASD have significantly higher levels of CRP and GABA, lower levels of oxytocin, iron, and zinc, lower relative abundance of Bifidobacterium and Parabacteroides, and higher relative abundance of Faecalibacterium, Bacteroides, and Clostridium when compared with controls. These results suggest that these indicators may be a potential biomarker panel for the diagnosis or determining therapeutic targets of ASD. Furthermore, large, sample-based, and randomized controlled trials are needed to confirm these results.
Collapse
Affiliation(s)
- Ping Lin
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianwen Zhang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
- Hangzhou Calibra Diagnostics, Hangzhou, China
| | - Junyu Sun
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Qingtian Li
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyuan Zhu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomei Fu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhao
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxia Wang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Lou
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Chen
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kangyi Liang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxin Zhu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caiwei Qu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenhua Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peijun Ma
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renyu Wang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huafen Liu
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
- Hangzhou Calibra Diagnostics, Hangzhou, China
| | - Ke Dong
- Institute for Global Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaokui Guo
- Institute for Global Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yang Sun
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
| | - Jing Sun
- School of Medicine and Dentistry, Institute for Integrated Intelligence and Systems, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
- Charles Sturt University, Orange, NSW, Australia
| |
Collapse
|
7
|
Alasmari M, Alduais A, Qasem F. A thematic review of autism spectrum disorder research in Saudi Arabia: Insights into diagnosis, assessment, and language considerations. APPLIED NEUROPSYCHOLOGY. CHILD 2023:1-15. [PMID: 37983315 DOI: 10.1080/21622965.2023.2283718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
This study reviews the crucial role of language in Autism Spectrum Disorder (ASD) diagnosis and assessment in Saudi Arabia. Using tailored search strings, 206 relevant documents were retrieved from the Web of Science and Scopus databases. An increasing trend in ASD research in Saudi Arabia was observed through temporal analysis. Keyword analysis identified key themes including "autism," "language," "assessment," "diagnosis," "Saudi Arabia," and "children." The focus of research has shifted over the years, from pure clinical and diagnostic aspects to a more comprehensive approach that includes language and cultural factors in ASD evaluation. The findings underscore the need for culturally and linguistically sensitive assessment tools, acknowledging the impact of bilingualism on language development, and the importance of language difficulties in diagnostic decision-making. The study highlights the necessity for further research, especially longitudinal studies examining the influence of language and cultural factors on ASD outcomes. The findings are significant for clinical practice, emphasizing the need for linguistically sensitive approaches in ASD diagnosis and assessment. This research serves as a guide for future studies by identifying the gaps in existing literature and areas of focus. The study identifies crucial gaps in existing literature, particularly the need for longitudinal studies examining the influence of language and cultural factors on ASD outcomes. The findings underscore the importance of culturally and linguistically sensitive approaches in ASD diagnosis and assessment, providing a novel insight for future research and clinical practice in Saudi Arabia.
Collapse
Affiliation(s)
- Mohamed Alasmari
- Department of English Language and Literature, College of Letters and Arts, University of Bisha, Bisha, Saudi Arabia
| | - Ahmed Alduais
- Department of Human Sciences (Psychology), University of Verona, Verona, Italy
- Department of English and Communication, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Fawaz Qasem
- Fawaz Ali Ahmed Qasem, College of Arts, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
8
|
Song Y, Hupfeld KE, Davies-Jenkins CW, Zöllner HJ, Murali-Manohar S, Mumuni AN, Crocetti D, Yedavalli V, Oeltzschner G, Alessi N, Batschelett MA, Puts NAJ, Mostofsky SH, Edden RAE. Brain Glutathione and GABA+ levels in autistic children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559718. [PMID: 37808813 PMCID: PMC10557661 DOI: 10.1101/2023.09.28.559718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Altered neurometabolite levels, including glutathione (GSH) and gamma-aminobutyric acid (GABA), have been proposed as potential contributors to the biology underlying ASD. This study investigated whether cerebral GSH or GABA levels differ between a large cohort of children aged 8-12 years with ASD (n=52) and typically developing children (TDC, n=49). A comprehensive analysis of GSH and GABA levels in multiple brain regions, including the primary motor cortex (SM1), thalamus (Thal), medial prefrontal cortex (mPFC), and supplementary motor area (SMA), was conducted using single-voxel HERMES MR spectroscopy at 3T. The results revealed no significant differences in cerebral GSH or GABA levels between the ASD and TDC groups across all examined regions. These findings suggest that the concentrations of GSH (an important antioxidant and neuromodulator) and GABA (a major inhibitory neurotransmitter) do not exhibit marked alterations in children with ASD compared to TDC. A statistically significant positive correlation was observed between GABA levels in the SM1 and Thal regions with ADHD inattention scores. No significant correlation was found between metabolite levels and hyper/impulsive scores of ADHD, measures of core ASD symptoms (ADOS-2, SRS-P) or adaptive behavior (ABAS-2). While both GSH and GABA have been implicated in various neurological disorders, the current study provides valuable insights into the specific context of ASD and highlights the need for further research to explore other neurochemical alterations that may contribute to the pathophysiology of this complex disorder.
Collapse
Affiliation(s)
- Yulu Song
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Kathleen E Hupfeld
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Christopher W Davies-Jenkins
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Helge J Zöllner
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Saipavitra Murali-Manohar
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | | | - Deana Crocetti
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Vivek Yedavalli
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Georg Oeltzschner
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Natalie Alessi
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Mitchell A Batschelett
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Nicolaas A J Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- MRC Center for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard A E Edden
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
9
|
Post Z, Manfready RA, Keshavarzian A. Overview of the Gut-Brain Axis: From Gut to Brain and Back Again. Semin Neurol 2023; 43:506-517. [PMID: 37562457 DOI: 10.1055/s-0043-1771464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The gut-brain axis refers to a bidirectional communication pathway linking the gastrointestinal system to the central nervous system. The hardware of this multifaceted pathway takes many forms, at once structural (neurons, microglia, intestinal epithelial cell barrier), chemical (neurotransmitters, enteroendocrine hormones, bacterial metabolites), and cellular (immune signaling, inflammatory pathways). The gut-brain axis is exquisitely influenced by our environment, diet, and behaviors. Here, we will describe recent progress in understanding the gut-brain axis in neurological disease, using Parkinson's disease as a guide. We will see that each component of the gut-brain axis is heavily mediated by intestinal microbiota and learn how gut-brain communication can go awry in microbial dysbiosis.
Collapse
Affiliation(s)
- Zoë Post
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Richard A Manfready
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois
- Departments of Physiology and Anatomy & Cell Biology, Rush University Medical Center, Chicago, Illinois
| | - Ali Keshavarzian
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois
- Departments of Physiology and Anatomy & Cell Biology, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
10
|
Jin Y, Song D, Yan Y, Quan Z, Qing H. The Role of Oxytocin in Early-Life-Stress-Related Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:10430. [PMID: 37445607 DOI: 10.3390/ijms241310430] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Early-life stress during critical periods of brain development can have long-term effects on physical and mental health. Oxytocin is a critical social regulator and anti-inflammatory hormone that modulates stress-related functions and social behaviors and alleviates diseases. Oxytocin-related neural systems show high plasticity in early postpartum and adolescent periods. Early-life stress can influence the oxytocin system long term by altering the expression and signaling of oxytocin receptors. Deficits in social behavior, emotional control, and stress responses may result, thus increasing the risk of anxiety, depression, and other stress-related neuropsychiatric diseases. Oxytocin is regarded as an important target for the treatment of stress-related neuropsychiatric disorders. Here, we describe the history of oxytocin and its role in neural circuits and related behaviors. We then review abnormalities in the oxytocin system in early-life stress and the functions of oxytocin in treating stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yue Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yan Yan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
11
|
Artık A, Çengel Kültür SE, Portakal O, Karaboncuk AY. The association between autistic traits and serum testosterone, oxytocin, and androstenedione levels in prepubertal male drug naive children with attention-deficit/hyperactivity disorder. Int J Dev Neurosci 2023; 83:98-107. [PMID: 36398591 DOI: 10.1002/jdn.10241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/14/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Children with attention-deficit/hyperactivity disorder (ADHD) might have similar problems as in autism spectrum disorder (ASD) and show impairment in social behaviour. Also, there is a relationship between social relationship skills and ToM (theory of mind) skills of children with ADHD. Besides, ASD is associated with prenatal exposure to high levels of androgens, and oxytocin plays a role in the modulation of emotions, coping with stress, and social behaviour like ASD. In this study, the relationship between autistic traits and serum oxytocin, testosterone, and androstenedione levels in prepubertal male drug naive children with ADHD has been investigated. METHOD Eighty-three prepubertal children, who were diagnosed with ADHD between the ages of 6-10 years old, are included in the study. For the study, intelligence levels were evaluated by using WISC-4, and autistic traits were measured by using both social responsiveness scale and theory of mind tests. In addition, serum oxytocin, testosterone, and androstenedione levels were measured by using ELISA. RESULTS It has been found that serum testosterone levels of patients with lower autistic traits are significantly lower than those with moderate and severe autistic traits, while the serum oxytocin levels are significantly higher. Also, patients with severe autistic traits have had significantly higher serum androstenedione levels than those with lower and moderate autistic traits. CONCLUSION This study suggests that patients who have higher autistic traits have elevated testosterone and androstenedione levels and lower serum oxytocin levels. Further studies are needed to clarify this relationship.
Collapse
Affiliation(s)
- Abdulbaki Artık
- Faculty of Medicine, Child and Adolescent Mental Health Department, Uşak University, Uşak, Turkey
| | - Sadriye Ebru Çengel Kültür
- Faculty of Medicine, Child and Adolescent Mental Health Department, Hacettepe University, Ankara, Turkey
| | - Oytun Portakal
- Faculty of Medicine, Department of Medical Biochemistry, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
12
|
Wang Y, Meng W, Liu Z, An Q, Hu X. Cognitive impairment in psychiatric diseases: Biomarkers of diagnosis, treatment, and prevention. Front Cell Neurosci 2022; 16:1046692. [DOI: 10.3389/fncel.2022.1046692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Psychiatric diseases, such as schizophrenia, bipolar disorder, autism spectrum disorder, and major depressive disorder, place a huge health burden on society. Cognitive impairment is one of the core characteristics of psychiatric disorders and a vital determinant of social function and disease recurrence in patients. This review thus aims to explore the underlying molecular mechanisms of cognitive impairment in major psychiatric disorders and identify valuable biomarkers for diagnosis, treatment and prevention of patients.
Collapse
|
13
|
The role of maternal immune activation in the immunological and neurological pathogenesis of autism. JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Marazziti D, Diep PT, Carter S, Carbone MG. Oxytocin: An Old Hormone, A Novel Psychotropic Drug And Possible Use In Treating Psychiatric Disorders. Curr Med Chem 2022; 29:5615-5687. [PMID: 35894453 DOI: 10.2174/0929867329666220727120646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oxytocin is a nonapeptide synthesized in the paraventricular and supraoptic nuclei of the hypothalamus. Historically, this molecule has been involved as a key factor in the formation of infant attachment, maternal behavior and pair bonding and, more generally, in linking social signals with cognition, behaviors and reward. In the last decades, the whole oxytocin system has gained a growing interest as it was proposed to be implicated in etiopathogenesis of several neurodevelopmental and neuropsychiatric disorders. METHODS With the main goal of an in-depth understanding of the oxytocin role in the regulation of different functions and complex behaviors as well as its intriguing implications in different neuropsychiatric disorders, we performed a critical review of the current state of art. We carried out this work through PubMed database up to June 2021 with the search terms: 1) "oxytocin and neuropsychiatric disorders"; 2) "oxytocin and neurodevelopmental disorders"; 3) "oxytocin and anorexia"; 4) "oxytocin and eating disorders"; 5) "oxytocin and obsessive-compulsive disorder"; 6) "oxytocin and schizophrenia"; 7) "oxytocin and depression"; 8) "oxytocin and bipolar disorder"; 9) "oxytocin and psychosis"; 10) "oxytocin and anxiety"; 11) "oxytocin and personality disorder"; 12) "oxytocin and PTSD". RESULTS Biological, genetic, and epigenetic studies highlighted quality and quantity modifications in the expression of oxytocin peptide or in oxytocin receptor isoforms. These alterations would seem to be correlated with a higher risk of presenting several neuropsychiatric disorders belonging to different psychopathological spectra. Collaterally, the exogenous oxytocin administration has shown to ameliorate many neuropsychiatric clinical conditions. CONCLUSION Finally, we briefly analyzed the potential pharmacological use of oxytocin in patient with severe symptomatic SARS-CoV-2 infection due to its anti-inflammatory, anti-oxidative and immunoregulatory properties.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy.,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Phuoc-Tan Diep
- Department of Histopathology, Royal Lancaster Infirmary, University Hospitals of Morecambe Bay NHS Foundation Trust, Lancaster, United Kingdom
| | - Sue Carter
- Director Kinsey Institute, Indiana University, Bloomington, IN, USA
| | - Manuel G Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
15
|
Alfawaz HA, El-Ansary A, Al-Ayadhi L, Bhat RS, Hassan WM. Protective Effects of Bee Pollen on Multiple Propionic Acid-Induced Biochemical Autistic Features in a Rat Model. Metabolites 2022; 12:metabo12070571. [PMID: 35888695 PMCID: PMC9323335 DOI: 10.3390/metabo12070571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders that clinically presented as impaired social interaction, repetitive behaviors, and weakened communication. The use of bee pollen as a supplement rich in amino acids amino acids, vitamins, lipids, and countless bioactive substances may lead to the relief of oxidative stress, neuroinflammation, glutamate excitotoxicity, and impaired neurochemistry as etiological mechanisms autism. Thirty young male Western albino rats were randomly divided as: Group I-control; Group II, in which autism was induced by the oral administration of 250 mg propionic acid/kg body weight/day for three days followed by orally administered saline until the end of experiment and Group III, the bee pollen-treated group, in which the rats were treated with 250 mg/kg body weight of bee pollen for four weeks before autism was induced as described for Group II. Markers related to oxidative stress, apoptosis, inflammation, glutamate excitotoxicity, and neurochemistry were measured in the brain tissue. Our results indicated that while glutathione serotonin, dopamine, gamma-aminobutyric acid (GABA), GABA/Glutamate ratio, and vitamin C were significantly reduced in propionic acid-treated group (p < 0.05), glutamate, IFN-γ, IL-1A, IL-6, caspase-3, and lipid peroxide levels were significantly elevated (p < 0.05). Bee pollen supplementation demonstrates protective potency presented as amelioration of most of the measured variables with significance range between (p < 0.05)−(p < 0.001).
Collapse
Affiliation(s)
- Hanan A. Alfawaz
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Afaf El-Ansary
- Central Research Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, Riyadh 11495, Saudi Arabia
- Correspondence: ; Tel.: +966-508462529; Fax: +966-11-4682184
| | - Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh 11461, Saudi Arabia;
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Sciences, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Wail M. Hassan
- Department of Biomedical Sciences, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA;
| |
Collapse
|
16
|
Zhao P, Fu H, Cheng H, Zheng R, Yuan D, Yang J, Li S, Li E, Li L. Acupuncture at ST36 Alleviates the Behavioral Disorder of Autistic Rats by Inhibiting TXNIP-Mediated Activation of NLRP3. J Neuropathol Exp Neurol 2022; 81:127-134. [PMID: 35015875 DOI: 10.1093/jnen/nlab132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Autism is a common neurodevelopmental disorder that severely affects patients' quality of life. We aimed to investigate whether acupuncture at Zusanli (ST36) could alleviate the behavior disorder of autistic rats by inhibiting thioredoxin-interacting protein (TXNIP)-mediated activation of NLRP3. An autism model was induced by intraperitoneal injection of pregnant rats with valproic acid (VPA). The pups' behaviors were analyzed using hot plate, open field, Morris water maze, and 3-chamber social interaction tests. Nissl staining was used to visualize neurons in prefrontal cortex. Levels of TXNIP, NLRP3, interleukin (IL)-1β, and caspase were determined by Western blot or quantitative real-time PCR. After ST36 acupuncture, pain sensitivity, autonomous activity, sociability index, sociability preference index, and learning and memory were improved in the autism model rats. Levels of TXNIP, NLRP3, IL-1β, and caspase 1 were decreased after acupuncture. Interference with TXNIP alleviated the behavior disorders and inhibited NLRP3, caspase 1, and IL-1β levels. In summary, ST36 acupuncture reduced TXNIP expression, inhibited the activation of the NLRP3 inflammasome, and alleviated the behavior disorder related to the prefrontal cortex of the autistic rats. These results point to a potential mechanism for acupuncture-induced improvement of autistic behavioral disorders.
Collapse
Affiliation(s)
- Pengju Zhao
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongguang Fu
- Institute of Health Engineering, Zhengzhou Health Vocational College, Zhengzhou, China
| | - Hui Cheng
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruijuan Zheng
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Yuan
- Institute of Health Engineering, Zhengzhou Health Vocational College, Zhengzhou, China
| | - Jianquan Yang
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sheng Li
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Enyao Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liguo Li
- Institute of Health Engineering, Zhengzhou Health Vocational College, Zhengzhou, China
| |
Collapse
|
17
|
Erbescu A, Papuc SM, Budisteanu M, Arghir A, Neagu M. Re-emerging concepts of immune dysregulation in autism spectrum disorders. Front Psychiatry 2022; 13:1006612. [PMID: 36339838 PMCID: PMC9626859 DOI: 10.3389/fpsyt.2022.1006612] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by communication and social interaction deficits, and by restricted interests and stereotyped, repetitive behavior patterns. ASD has a strong genetic component and a complex architecture characterized by the interplay of rare and common genetic variants. Recently, increasing evidence suggest a significant contribution of immune system dysregulation in ASD. The present paper reviews the latest updates regarding the altered immune landscape of this complex disorder highlighting areas with potential for biomarkers discovery as well as personalization of therapeutic approaches. Cross-talk between the central nervous system and immune system has long been envisaged and recent evidence brings insights into the pathways connecting the brain to the immune system. Disturbance of cytokine levels plays an important role in the establishment of a neuroinflammatory milieu in ASD. Several other immune molecules involved in antigen presentation and inflammatory cellular phenotypes are also at play in ASD. Maternal immune activation, the presence of brain-reactive antibodies and autoimmunity are other potential prenatal and postnatal contributors to ASD pathophysiology. The molecular players involved in oxidative-stress response and mitochondrial system function, are discussed as contributors to the pro-inflammatory pattern. The gastrointestinal inflammation pathways proposed to play a role in ASD are also discussed. Moreover, the body of evidence regarding some of the genetic factors linked to the immune system dysregulation is reviewed and discussed. Last, but not least, the epigenetic traits and their interactions with the immune system are reviewed as an expanding field in ASD research. Understanding the immune-mediated pathways that influence brain development and function, metabolism, and intestinal homeostasis, may lead to the identification of robust diagnostic or predictive biomarkers for ASD individuals. Thus, novel therapeutic approaches could be developed, ultimately aiming to improve their quality of life.
Collapse
Affiliation(s)
- Alina Erbescu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Faculty of Biology, Doctoral School, University of Bucharest, Bucharest, Romania
| | | | - Magdalena Budisteanu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, Bucharest, Romania.,Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Aurora Arghir
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Monica Neagu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Faculty of Biology, Doctoral School, University of Bucharest, Bucharest, Romania.,Colentina Clinical Hospital, Bucharest, Romania
| |
Collapse
|
18
|
Moerkerke M, Peeters M, de Vries L, Daniels N, Steyaert J, Alaerts K, Boets B. Endogenous Oxytocin Levels in Autism-A Meta-Analysis. Brain Sci 2021; 11:1545. [PMID: 34827545 PMCID: PMC8615844 DOI: 10.3390/brainsci11111545] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/03/2022] Open
Abstract
Oxytocin (OT) circuitry plays a major role in the mediation of prosocial behavior. Individuals with autism spectrum disorder (ASD) are characterized by impairments in social interaction and communication and have been suggested to display deficiencies in central OT mechanisms. The current preregistered meta-analysis evaluated potential group differences in endogenous OT levels between individuals with ASD and neurotypical (NT) controls. We included 18 studies comprising a total of 1422 participants. We found that endogenous OT levels are lower in children with ASD as compared to NT controls (n = 1123; g = -0.60; p = 0.006), but this effect seems to disappear in adolescent (n = 152; g = -0.20; p = 0.53) and adult populations (n = 147; g = 0.27; p = 0.45). Secondly, while no significant subgroup differences were found in regard to sex, the group difference in OT levels of individuals with versus without ASD seems to be only present in the studies with male participants (n = 814; g = -0.44; p = 0.08) and not female participants (n = 192; g = 0.11; p = 0.47). More research that employs more homogeneous methods is necessary to investigate potential developmental changes in endogenous OT levels, both in typical and atypical development, and to explore the possible use of OT level measurement as a diagnostic marker of ASD.
Collapse
Affiliation(s)
- Matthijs Moerkerke
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium; (M.P.); (L.d.V.); (J.S.); (B.B.)
- Leuven Autism Research (LAuRes), KU Leuven, 3000 Leuven, Belgium; (N.D.); (K.A.)
| | - Mathieu Peeters
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium; (M.P.); (L.d.V.); (J.S.); (B.B.)
| | - Lyssa de Vries
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium; (M.P.); (L.d.V.); (J.S.); (B.B.)
- Leuven Autism Research (LAuRes), KU Leuven, 3000 Leuven, Belgium; (N.D.); (K.A.)
| | - Nicky Daniels
- Leuven Autism Research (LAuRes), KU Leuven, 3000 Leuven, Belgium; (N.D.); (K.A.)
- Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Jean Steyaert
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium; (M.P.); (L.d.V.); (J.S.); (B.B.)
- Leuven Autism Research (LAuRes), KU Leuven, 3000 Leuven, Belgium; (N.D.); (K.A.)
| | - Kaat Alaerts
- Leuven Autism Research (LAuRes), KU Leuven, 3000 Leuven, Belgium; (N.D.); (K.A.)
- Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Bart Boets
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium; (M.P.); (L.d.V.); (J.S.); (B.B.)
- Leuven Autism Research (LAuRes), KU Leuven, 3000 Leuven, Belgium; (N.D.); (K.A.)
| |
Collapse
|
19
|
Friuli M, Eramo B, Valenza M, Scuderi C, Provensi G, Romano A. Targeting the Oxytocinergic System: A Possible Pharmacological Strategy for the Treatment of Inflammation Occurring in Different Chronic Diseases. Int J Mol Sci 2021; 22:10250. [PMID: 34638587 PMCID: PMC8508899 DOI: 10.3390/ijms221910250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
Unresolved inflammation represents a central feature of different human pathologies including neuropsychiatric, cardiovascular, and metabolic diseases. The epidemiologic relevance of such disorders justifies the increasing interest in further understanding the mechanisms underpinning the inflammatory process occurring in such chronic diseases to provide potential novel pharmacological approaches. The most common and effective therapies for controlling inflammation are glucocorticoids; however, a variety of other molecules have been demonstrated to have an anti-inflammatory potential, including neuropeptides. In recent years, the oxytocinergic system has seen an explosion of scientific studies, demonstrating its potential to contribute to a variety of physiological processes including inflammation. Therefore, the aim of the present review was to understand the role of oxytocin in the modulation of inflammation occurring in different chronic diseases. The criterion we used to select the diseases was based on the emerging literature showing a putative involvement of the oxytocinergic system in inflammatory processes in a variety of pathologies including neurological, gastrointestinal and cardiovascular disorders, diabetes and obesity. The evidence reviewed here supports a beneficial role of oxytocin in the control of both peripheral and central inflammatory response happening in the aforementioned pathologies. Although future studies are necessary to elucidate the mechanistic details underlying such regulation, this review supports the idea that the modulation of the endogenous oxytocinergic system might represent a new potential pharmacological approach for the treatment of inflammation.
Collapse
Affiliation(s)
- Marzia Friuli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| | - Barbara Eramo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| | - Marta Valenza
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| | - Gustavo Provensi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology of Toxicology, University of Florence, 50139 Florence, Italy;
| | - Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| |
Collapse
|
20
|
Anashkina AA, Erlykina EI. Molecular Mechanisms of Aberrant Neuroplasticity in Autism Spectrum Disorders (Review). Sovrem Tekhnologii Med 2021; 13:78-91. [PMID: 34513070 PMCID: PMC8353687 DOI: 10.17691/stm2021.13.1.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 01/03/2023] Open
Abstract
This review presents the analysis and systematization of modern data on the molecular mechanisms of autism spectrum disorders (ASD) development. Polyetiology and the multifactorial nature of ASD have been proved. The attempt has been made to jointly review and systematize current hypotheses of ASD pathogenesis at the molecular level from the standpoint of aberrant brain plasticity. The mechanism of glutamate excitotoxicity formation, the effect of imbalance of neuroactive amino acids and their derivatives, neurotransmitters, and hormones on the ASD formation have been considered in detail. The strengths and weaknesses of the proposed hypotheses have been analyzed from the standpoint of evidence-based medicine. The conclusion has been drawn on the leading role of glutamate excitotoxicity as a biochemical mechanism of aberrant neuroplasticity accompanied by oxidative stress and mitochondrial dysfunction. The mechanism of aberrant neuroplasticity has also been traced at the critical moments of the nervous system development taking into account the influence of various factors of the internal and external environment. New approaches to searching for ASD molecular markers have been considered.
Collapse
Affiliation(s)
- A A Anashkina
- Senior Teacher, Department of Biochemistry named after G.Y. Gorodisskaya; Senior Researcher, Central Scientific Research Laboratory, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - E I Erlykina
- Professor, Head of the Department of Biochemistry named after G.Y. Gorodisskaya, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
21
|
John S, Jaeggi AV. Oxytocin levels tend to be lower in autistic children: A meta-analysis of 31 studies. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2021; 25:2152-2161. [PMID: 34308675 DOI: 10.1177/13623613211034375] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
LAY ABSTRACT Oxytocin is a hormone that mediates interpersonal relationships through enhancing social recognition, social memory, and reducing stress. It is released centrally into the cerebrospinal fluid, as well as peripherally into the blood, where it can easily be measured. Some studies indicate that the oxytocin system with its social implications might be different in people with autism spectrum disorder. With summarizing evidence of 31 studies, this meta-analysis suggests that children with autism spectrum disorder have lower blood oxytocin levels compared to neurotypical individuals. This might not be the case for adults with autism spectrum disorder, where we could not find a difference. Our findings motivate further exploration of the oxytocin system in children with autism spectrum disorder. This could lead to therapeutic options in treating autism spectrum disorder in childhood.
Collapse
|
22
|
Neuroinflammation in autism spectrum disorders: Exercise as a "pharmacological" tool. Neurosci Biobehav Rev 2021; 129:63-74. [PMID: 34310976 DOI: 10.1016/j.neubiorev.2021.07.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/26/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023]
Abstract
The worldwide prevalence of ASD is around 1%. Although the pathogenesis of ASD is not entirely understood, it is recognized that a combination of genetic, epigenetics, environmental factors and immune system dysfunction can play an essential role in its development. It has been suggested that autism results from the central nervous system derangements due to low-grade chronic inflammatory reactions associated with the immune system activation. ASD individuals have increased microglial activation, density, and increased proinflammatory cytokines in the several brain regions. Autism has no available pharmacological treatments, however there are pedagogical and psychotherapeutic therapies, and pharmacological treatment, that help to control behavioral symptoms. Recent data indicate that exercise intervention programs may improve cognitive and behavioral symptoms in children with ASD. Exercise can also modify inflammatory profiles that will ameliorate associated metabolic disorders. This review highlights the involvement of neuroinflammation in ASD and the beneficial effects of physical exercise on managing ASD symptoms and associated comorbidities.
Collapse
|
23
|
Manosso LM, Lin J, Carlessi AS, Recco KCC, Quevedo J, Gonçalves CL, Réus GZ. Sex-related patterns of the gut-microbiota-brain axis in the neuropsychiatric conditions. Brain Res Bull 2021; 171:196-208. [PMID: 33838211 DOI: 10.1016/j.brainresbull.2021.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022]
Abstract
Sex differences are often observed in psychiatric patients, especially major depressive disorders (MDD), schizophrenia, and developmental disorders, including autism spectrum disorders (ASDs). The prevalence rates between males and females seem variate according to the clinical condition. Although the findings are still incipient, it is suggested that these differences can involve neuroanatomical, neurochemical, and physiological sex differences. In this context, the microbiota-gut-brain axis hypothesis arises to explain some aspects of the complex pathophysiology of neuropsychiatric disorders. The microbiota composition is host-specific and can change conforming to age, sex, diet, medication, exercise, and others. The communication between the brain and the gut is bidirectional and may impact the entire system homeostasis. Many pathways appear to be involved, including neuroanatomic communication, neuroendocrine pathways, immune system, bacteria-derived metabolites, hormones, neurotransmitters, and neurotrophic factors. Although the clinical and preclinical studies are sparse and not very consistent, they suggest that sex differences in the gut microbiota may play an essential role in some neuropsychiatric conditions. Thus, this narrative review has as a mainly aim to show the points sex-related patterns associated to the gut-microbiota-brain axis in the MDD, ASDs, and schizophrenia.
Collapse
Affiliation(s)
- Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jaime Lin
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Anelise S Carlessi
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Kelen C C Recco
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Cinara L Gonçalves
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
24
|
Castejon AM, Spaw JA, Rozenfeld I, Sheinberg N, Kabot S, Shaw A, Hardigan P, Faillace R, Packer EE. Improving Antioxidant Capacity in Children With Autism: A Randomized, Double-Blind Controlled Study With Cysteine-Rich Whey Protein. Front Psychiatry 2021; 12:669089. [PMID: 34658941 PMCID: PMC8514994 DOI: 10.3389/fpsyt.2021.669089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/16/2021] [Indexed: 12/27/2022] Open
Abstract
Previous studies indicate that children with autism spectrum disorder (ASD) have lower levels of glutathione. Nutritional interventions aim to increase glutathione levels suggest a positive effect on ASD behaviors, but findings are mixed or non-significant. A commercially available nutritional supplement comprising a cysteine-rich whey protein isolate (CRWP), a potent precursor of glutathione, was previously found to be safe and effective at raising glutathione in several conditions associated with low antioxidant capacity. Therefore, we investigated the effectiveness of a 90-day CRWP intervention in children with ASD and examined whether intracellular reduced and oxidized glutathione improvements correlated with behavioral changes. We enrolled 46 (of 81 screened) 3-5-year-old preschool children with confirmed ASD. Using a double-blind, randomized, placebo-controlled design, we evaluated the effectiveness of daily CRWP (powder form: 0.5 g/kg for children <20 kg or a 10-g dose for those >20 kg), compared with placebo (rice protein mimicking the protein load in the intervention group), on glutathione levels and ASD behaviors assessed using different behavioral scales such as Childhood Autism Rated Scale, Preschool Language Scale, Social Communication Questionnaire, Childhood Behavioral Checklist and the parent-rated Vineland Adaptive Behavior Scale, 2nd edition (VABS-II). Forty children (CRWP, 21; placebo, 19) completed the 90-day treatment period. Improvements observed in some behavioral scales were comparable. However, the VABS-II behavioral assessment, demonstrated significant changes only in children receiving CRWP compared to those observed in the placebo group in the composite score (effect size 0.98; 95% confidence intervals 1.42-4.02; p = 0.03). Further, several VABS-II domain scores such as adaptive behavior (p = 0.03), socialization (p = 0.03), maladaptive behavior (p = 0.04) and internalizing behavior (p = 0.02) also indicated significant changes. Children assigned to the CRWP group showed significant increases in glutathione levels (p = 0.04) compared to those in the placebo group. A subanalysis of the VABS-II scale results comparing responders (>1 SD change from baseline to follow up) and non-responders in the CRWP group identified older age and higher levels of total and reduced glutathione as factors associated with a response. CRWP nutritional intervention in children with ASD significantly improved both glutathione levels and some behaviors associated with ASD. Further studies are needed to confirm these results. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/study/NCT01366859, identifier: NCT01366859.
Collapse
Affiliation(s)
- Ana Maria Castejon
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Jordan Ashley Spaw
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Irina Rozenfeld
- Center for Collaborative Research, Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Nurit Sheinberg
- Mailman Segal Center, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Susan Kabot
- Mailman Segal Center, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Alexander Shaw
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Patrick Hardigan
- Statistical Consulting Center, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Rogerio Faillace
- Department of Pediatrics, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Edward E Packer
- Department of Pediatrics, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
25
|
Healing autism spectrum disorder with cannabinoids: a neuroinflammatory story. Neurosci Biobehav Rev 2020; 121:128-143. [PMID: 33358985 DOI: 10.1016/j.neubiorev.2020.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a multifactorial etiology. Latest researches are raising the hypothesis of a link between the onset of the main behavioral symptoms of ASD and the chronic neuroinflammatory condition of the autistic brain; increasing evidence of this connection is shedding light on new possible players in the pathogenesis of ASD. The endocannabinoid system (ECS) has a key role in neurodevelopment as well as in normal inflammatory responses and it is not surprising that many preclinical and clinical studies account for alterations of the endocannabinoid signaling in ASD. These findings lay the foundation for a better understanding of the neurochemical mechanisms underlying ASD and for new therapeutic attempts aimed at exploiting the renowned anti-inflammatory properties of cannabinoids to treat pathologies encompassed in the autistic spectrum. This review discusses the current preclinical and clinical evidence supporting a key role of the ECS in the neuroinflammatory state that characterizes ASD, providing hints to identify new biomarkers in ASD and promising therapies for the future.
Collapse
|
26
|
Metabolomics analysis of microbiota-gut-brain axis in neurodegenerative and psychiatric diseases. J Pharm Biomed Anal 2020; 194:113681. [PMID: 33279302 DOI: 10.1016/j.jpba.2020.113681] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/30/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022]
Abstract
Gut microbiota represents a complex physiological ecosystem that influences the host health. Alterations in the microbiome metabolism affect the body homeostasis and they have been associated with the development of different human neurodegenerative and neuropsychiatric disorders, such as Alzheimer's disease, autism spectrum disorder, bipolar disorder, depression, Huntington's disease, Parkinson's disease, posttraumatic stress disorder and schizophrenia. The development of these complex diseases is influenced by various factors, including genetic predisposition and environmental triggers. Gut microbiota has recently emerged as an important actor in their physiopathology that has been shown to play a role in inflammation, oxidative stress, and gut permeability. Therefore, targeting the metabolites that are produced by or associated with the gut microbiota may help us understand how imbalance in the gut-brain axis affects human health. This review offers a comprehensive overview of the literature on this matter, offering the readers an insight in the state-of-art metabolic measurements of the gut-brain axis in various brain-related diseases.
Collapse
|
27
|
Carpita B, Marazziti D, Palego L, Giannaccini G, Betti L, Dell'Osso L. Microbiota, Immune System and Autism Spectrum Disorders: An Integrative Model towards Novel Treatment Options. Curr Med Chem 2020; 27:5119-5136. [PMID: 31448708 DOI: 10.2174/0929867326666190328151539] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a condition strongly associated with genetic predisposition and familial aggregation. Among ASD patients, different levels of symptoms severity are detectable, while the presence of intermediate autism phenotypes in close relatives of ASD probands is also known in literature. Recently, increasing attention has been paid to environmental factors that might play a role in modulating the relationship between genomic risk and development and severity of ASD. Within this framework, an increasing body of evidence has stressed a possible role of both gut microbiota and inflammation in the pathophysiology of neurodevelopment. The aim of this paper is to review findings about the link between microbiota dysbiosis, inflammation and ASD. METHODS Articles ranging from 1990 to 2018 were identified on PUBMED and Google Scholar databases, with keyword combinations as: microbiota, immune system, inflammation, ASD, autism, broad autism phenotype, adult. RESULTS Recent evidence suggests that microbiota alterations, immune system and neurodevelopment may be deeply intertwined, shaping each other during early life. However, results from both animal models and human samples are still heterogeneous, while few studies focused on adult patients and ASD intermediate phenotypes. CONCLUSION A better understanding of these pathways, within an integrative framework between central and peripheral systems, might not only shed more light on neural basis of ASD symptoms, clarifying brain pathophysiology, but it may also allow to develop new therapeutic strategies for these disorders, still poorly responsive to available treatments.
Collapse
Affiliation(s)
- Barbara Carpita
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma, 6756100 Pisa, Italy
| | - Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma, 6756100 Pisa, Italy
| | - Lionella Palego
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma, 6756100 Pisa, Italy
| | - Gino Giannaccini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma, 6756100 Pisa, Italy
| | - Laura Betti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma, 6756100 Pisa, Italy
| | - Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma, 6756100 Pisa, Italy
| |
Collapse
|
28
|
Al‐Salem HS, Al‐Yousef HM, Ashour AE, Ahmed AF, Amina M, Issa IS, Bhat RS. Antioxidant and hepatorenal protective effects of bee pollen fractions against propionic acid-induced autistic feature in rats. Food Sci Nutr 2020; 8:5114-5127. [PMID: 32994972 PMCID: PMC7500755 DOI: 10.1002/fsn3.1813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 01/08/2023] Open
Abstract
In the brain, propionic acid (PA) can cross cell membranes and accumulate within cells, leading to intracellular acidification, which may alter neurotransmitter release (NT), communication between neurons, and behavior. Such elevation in levels of PA constitutes a neurodevelopmental metabolic disorder called propionic acidemia, which could clinically manifest as autism. The purpose of this study was to investigate the protective effects of different fractions of bee pollen (BP) on PA-induced autism in rats, and to evaluate their effects on the expression of liver and renal biomarkers. Groups of rats received treatments of different fractions of BP at a dose of 250 mg/kg of body weight/day for a period of 1 month. Normal control group I and group II were orally administered with phosphate-buffered saline and propionic acid, respectively, for 3 days. BP contains various health-promoting phenolic components. Different fractions of BP administered pre- and post-treatment with PA showed significant reduction in the levels of liver and renal biomarkers (p < .05). Also, a significant enhancement in the levels of glutathione S-transferase (GST), catalase CAT), and ascorbic acid (VIT C) was observed. Supplementation with BP significantly reduced biochemical changes in the liver, kidneys, and brain of rats with PA-induced toxicity. It exhibited protective effects against oxidative damage and reactive oxygen species produced by PA-induced adverse reactions in rats. Taken together, our study shows that BP possesses protective effects in PA-induced liver and kidney damage.
Collapse
Affiliation(s)
- Huda S. Al‐Salem
- Pharmaceutical Chemistry DepartmentCollege of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Hanan M. Al‐Yousef
- Pharmacognosy DepartmentCollege of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Abdelkader E. Ashour
- Department of Basic Medical SciencesKulliyyah of MedicineInternational Islamic University MalaysiaKuantanMalaysia
| | - Atallah F. Ahmed
- Pharmacognosy DepartmentCollege of PharmacyKing Saud UniversityRiyadhSaudi Arabia
- Department of PharmacognosyFaculty of PharmacyMansoura UniversityMansouraEgypt
| | - Musarat Amina
- Pharmacognosy DepartmentCollege of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Iman S. Issa
- Pharmaceutical Chemistry DepartmentCollege of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry DepartmentScience CollegeKing Saud UniversityRiyadhSaudi Arabia
| |
Collapse
|
29
|
Spanos M, Chandrasekhar T, Kim SJ, Hamer RM, King BH, McDougle CJ, Sanders KB, Gregory SG, Kolevzon A, Veenstra-VanderWeele J, Sikich L. Rationale, design, and methods of the Autism Centers of Excellence (ACE) network Study of Oxytocin in Autism to improve Reciprocal Social Behaviors (SOARS-B). Contemp Clin Trials 2020; 98:106103. [PMID: 32777383 DOI: 10.1016/j.cct.2020.106103] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To describe the rationale, design, and methods of the Autism Centers of Excellence (ACE) network Study of Oxytocin in Autism to improve Reciprocal Social Behaviors (SOARS-B). METHOD This phase 2 clinical trial was designed to evaluate the use of intranasal oxytocin treatment to improve social difficulties in individuals with autism spectrum disorder (ASD). In total, 290 participants ages 3 to 17 years with a DSM-5 diagnosis of ASD were enrolled to receive 24 weeks of treatment with either oxytocin or a matched placebo at one of seven collaborating sites. Participants were subsequently treated with open-label oxytocin for 24 additional weeks. Post-treatment assessments were done approximately 4 weeks after treatment discontinuation. Plasma oxytocin and oxytocin receptor gene (OXTR) methylation level were measured at baseline, and week 8, 24 and 36 to explore potential relationships between these biomarkers and treatment response. RESULTS This report describes the rationale, design, and methods of the SOARS-B clinical trial. CONCLUSIONS There is a tremendous unmet need for safe and effective pharmacological treatment options that target the core symptoms of ASD. Several studies support the hypothesis that intranasal oxytocin could improve social orienting and the salience of social rewards in ASD, thereby enhancing reciprocal social behaviors. However, due to conflicting results from a number of pilot studies on the prosocial effects of exogenous oxytocin, this hypothesis remains controversial and inconclusive. SOARS-B is the best powered study to date to address this hypothesis and promises to improve our understanding of the safety and efficacy of intranasal oxytocin in the treatment of social deficits in children with ASD.
Collapse
Affiliation(s)
- Marina Spanos
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States of America.
| | - Tara Chandrasekhar
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States of America
| | - Soo-Jeong Kim
- Seattle Children's Autism Center, Department of Psychiatry and Behavioral Sciences, University of Washington; Seattle, WA, United States of America
| | - Robert M Hamer
- Departments of Psychiatry and Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Bryan H King
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, UCSF Benioff Children's Hospitals, San Francisco, CA, United States of America
| | - Christopher J McDougle
- Lurie Center for Autism, Massachusetts General Hospital; Department of Psychiatry, Harvard Medical School, Boston, MA, United States of America
| | - Kevin B Sanders
- Neuroscience Product Development, F. Hoffmann-La Roche, Basel, Switzerland
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States of America; Department of Neurology, Duke University School of Medicine, Durham, NC, United States of America
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute; Center for Autism and the Developing Brain, New York-Presbyterian Hospital, United States of America
| | - Linmarie Sikich
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States of America
| |
Collapse
|
30
|
Ritz B, Yan Q, Uppal K, Liew Z, Cui X, Ling C, Inoue K, von Ehrenstein O, Walker DI, Jones DP. Untargeted Metabolomics Screen of Mid-pregnancy Maternal Serum and Autism in Offspring. Autism Res 2020; 13:1258-1269. [PMID: 32496662 DOI: 10.1002/aur.2311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/24/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022]
Abstract
Discovering pathophysiologic networks in a blood-based approach may help to generate valuable tools for early treatment or preventive measures in autism. To date targeted or untargeted metabolomics approaches to identify metabolic features and pathways affecting fetal neurodevelopment have rarely been applied to pregnancy samples, that is, an early period potentially relevant for the development of autism spectrum disorders (ASD). We conducted a population-based study relying on autism diagnoses retrieved from California Department of Developmental Services record. After linking cases to and sampling controls from birth certificates, we retrieved stored maternal mid-pregnancy serum samples collected as part of the California Prenatal Screening Program from the California Biobank for children born 2004 to 2010 in the central valley of California. We retrieved serum for 52 mothers whose children developed autism and 62 population controls originally selected from all eligible children matched by birth year and child's sex. Also, we required that these mothers were relatively low or unexposed to air pollution and select pesticides during early pregnancy. We identified differences in metabolite levels in several metabolic pathways, including glycosphingolipid biosynthesis and metabolism, N-glycan and pyrimidine metabolism, bile acid pathways and, importantly, C21-steroid hormone biosynthesis and metabolism. Disturbances in these pathways have been shown to be relevant for neurodevelopment in rare genetic syndromes or implicated in previous studies of autism. This study provides new insight into maternal mid-pregnancy metabolic features possibly related to the development of autism and an incentive to explore whether these pathways and metabolites are useful for early diagnosis, treatment, or prevention. LAY SUMMARY: This study found that in mid-pregnancy the blood of mothers who give birth to a child that develops autism has some characteristic features that are different from those of blood samples taken from control mothers. These features are related to biologic mechanisms that can affect fetal brain development. In the future, these insights may help identify biomarkers for early autism diagnosis and treatment or preventive measures. Autism Res 2020, 13: 1258-1269. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Beate Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA.,Department of Neurology, UCLA School of Medicine, Los Angeles, California, USA
| | - Qi Yan
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA.,Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA
| | - Xin Cui
- Perinatal Epidemiology and Health Outcomes Research Unit, Division of Neonatology, Department of Pediatrics, Stanford University School of Medicine and Lucile Packard Children's Hospital, Palo Alto, California, USA.,California Perinatal Quality Care Collaborative, Palo Alto, California, USA
| | - Chenxiao Ling
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Kosuke Inoue
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Ondine von Ehrenstein
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
31
|
Averina OV, Kovtun AS, Polyakova SI, Savilova AM, Rebrikov DV, Danilenko VN. The bacterial neurometabolic signature of the gut microbiota of young children with autism spectrum disorders. J Med Microbiol 2020; 69:558-571. [DOI: 10.1099/jmm.0.001178] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Introduction. The human gut microbiota is currently seen as an important factor that can promote autism spectrum disorder (ASD) development in children.
Aim. This study aimed to detect differences in the taxonomic composition and content of bacterial genes encoding key enzymes involved in the metabolism of neuroactive biomarker compounds in the metagenomes of gut microbiota of children with ASD and neurotypical children.
Methodology. A whole metagenome sequencing approach was used to obtain metagenomic data on faecal specimens of 36 children with ASD and 21 healthy neurotypical children of 3–5 years old. Taxonomic analysis was conducted using MetaPhlAn2. The developed bioinformatics algorithm and created catalogue of the orthologues were applied to identify bacterial genes of neuroactive compounds in the metagenomes. For the identification of metagenomic signatures of children with ASD, Wilcoxon's test and adjustment for multiple comparisons were used.
Results. Statistically significant differences with decreases in average abundance in the microbiota of ASD children were found for the genera
Barnesiella
and
Parabacteroides
and species
Alistipes putredinis
,
B. caccae
, Bacteroides intestinihominis,
Eubacterium rectale
,
Parabacteroides distasonis
and
Ruminococcus lactaris
. Average relative abundances of the detected genes and neurometabolic signature approach did not reveal many significant differences in the metagenomes of the groups that were compared. We noted decreases in the abundance of genes linked to production of GABA, melatonine and butyric acid in the ASD metagenomes.
Conclusion. For the first time, the neurometabolic signature of the gut microbiota of young children with ASD is presented. The data can help to provide a comparative assessment of the transcriptional and metabolomic activity of the identified genes.
Collapse
Affiliation(s)
- Olga V. Averina
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey S. Kovtun
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow oblast 141701, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | | | | | - Denis V. Rebrikov
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Valery N. Danilenko
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow oblast 141701, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
32
|
Inflammation (IL-1β) Modifies the Effect of Vitamin D and Omega-3 Long Chain Polyunsaturated Fatty Acids on Core Symptoms of Autism Spectrum Disorder-An Exploratory Pilot Study ‡. Nutrients 2020; 12:nu12030661. [PMID: 32121236 PMCID: PMC7146497 DOI: 10.3390/nu12030661] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The role of vitamin D and omega-3 long chain polyunsaturated fatty acids (omega-3 LCPUFA) in improving core symptoms of autism spectrum disorder (ASD) in children has been investigated by a few randomised controlled trials and the results are mixed and inconclusive. The response to treatment with these nutrients is heterogenous and may be influenced by inflammatory state. As an exploratory analysis, we investigated whether inflammatory state would modulate the effect of these nutrients on core symptoms of ASD. Methods: Seventy-three New Zealand children with ASD (2.5-8.0 years) completed a 12-month randomised, double-blind, placebo-controlled trial of vitamin D (VID, 2000 IU/day), omega-3 LCPUFA; (OM, 722 mg/day docosahexaenoic acid), or both (VIDOM). Non-fasting baseline plasma interleukin-1β (IL-1β) was available for 67 children (VID = 15, OM = 21, VIDOM = 15, placebo = 16). Children were categorised as having undetectable/normal IL-1β (<3.2 pg/ml, n=15) or elevated IL-1β (≥3.2 pg/mL, n = 52). The Social Responsiveness Scale (SRS) questionnaire was used to assess core symptoms of ASD (baseline, 12-month). Mixed model repeated measure analyses (including all children or only children with elevated IL-1β) were used. RESULTS We found evidence for an interaction between baseline IL-1β and treatment response for SRS-total, SRS-social communicative functioning, SRS-awareness and SRS-communication (all Pinteraction < 0.10). When all children were included in the analysis, two outcome comparisons (treatments vs. placebo) showed greater improvements: VID, no effect (all P > 0.10); OM and VIDOM (P = 0.01) for SRS-awareness. When only children with elevated IL-1β were included, five outcomes showed greater improvements: OM (P = 0.01) for SRS-total; OM (P = 0.03) for SRS-social communicative functioning; VID (P = 0.01), OM (P = 0.003) and VIDOM (P = 0.01) for SRS-awareness. CONCLUSION Inflammatory state may have modulated responses to vitamin D and omega-3 LCPUFA intervention in children with ASD, suggesting children with elevated inflammation may benefit more from daily vitamin D and omega-3 LCPUFA supplementation.
Collapse
|
33
|
Guerini FR, Bolognesi E, Chiappedi M, Mensi MM, Fumagalli O, Rogantini C, Zanzottera M, Ghezzo A, Zanette M, Agliardi C, Costa AS, Sotgiu S, Carta A, Al Daghri N, Clerici M. Vitamin D Receptor Polymorphisms Associated with Autism Spectrum Disorder. Autism Res 2020; 13:680-690. [PMID: 32083397 DOI: 10.1002/aur.2279] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/14/2020] [Accepted: 01/28/2020] [Indexed: 12/15/2022]
Abstract
Vitamin D is endowed with a number of biological properties, including down-regulation of inflammation, and might contribute to the pathogenesis of autism spectrum disorders (ASD). Vitamin D binds to the vitamin D Receptor (VDR); the biological activity of the ensuing complex depends on VDR FokI, BsmI, ApaI, and TaqI gene polymorphisms. We evaluated such Single Nucletoide Polymorphismsm (SNPs) in a cohort of 100 Italian families with ASD children. FokI genotype distribution was skewed in ASD children compared with their healthy sibs (Pc = 0.03 2 df) and to a group of 170 Italian healthy women (HC) (Pc = 0.04 2 df). FokI genotype and allelic distribution skewing were also observed in mothers of ASD children compared to HC (Pc = 0.04 2 df). Both Transmission Disequilibrium Test for single loci and haplotype analysis distribution revealed a major FokI (C) allele-mediated protective effect, which was more frequently transmitted (73%) than not transmitted to healthy sibs (P = 0.02). A protective FokI-, BsmI-, ApaI-, and TaqI (CCAG) haplotype was more frequently carried by healthy sibs than by ASD children (P = 1 × 10-4 ; OR: 0.1, 95% CI: 0.03-0.4) too. Finally, a strong gene-dose association of FokI (T) allele with both higher Childhood Autism Rating Scale score (Pc = 0.01) and, particularly, with hyperactivity behavior (Pc = 0.006) emerged in ASD children. Because the protein produced by the FokI (T) allele is transcriptionally less active than that produced by the FokI (C) allele, the reduced biological activity of the vitamin D/VDR complex prevalent in ASD could favor ASD- and maternal immune activation- associated inflammation. Vitamin D supplementation might be useful in preventative and rehabilitation protocols for ASD. Autism Res 2020, 13: 680-690. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Vitamin D deficiency and Vitamin D receptor (VDR) polymorphisms are associated with structural and functional brain abnormalities and behavioral disorders. We analyzed the association of VDR gene polymorphisms in a cohort of 100 Italian families with ASD children. A strong correlation between one of the VDR polymorphisms and hyperactivity behavior was evidenced in ASD children. In healthy mothers, the same VDR polymorphism was also correlated with an increased risk of giving birth to children with ASD.
Collapse
Affiliation(s)
| | | | - Matteo Chiappedi
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | | | | | - Chiara Rogantini
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Alessandro Ghezzo
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | | | | | - Stefano Sotgiu
- Section of Child Neuropsychiatry, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Alessandra Carta
- Section of Child Neuropsychiatry, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy.,Child Psychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nasser Al Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| |
Collapse
|
34
|
Fujioka T, Fujisawa TX, Inohara K, Okamoto Y, Matsumura Y, Tsuchiya KJ, Katayama T, Munesue T, Tomoda A, Wada Y, Kosaka H. Attenuated relationship between salivary oxytocin levels and attention to social information in adolescents and adults with autism spectrum disorder: a comparative study. Ann Gen Psychiatry 2020; 19:38. [PMID: 32518579 PMCID: PMC7275403 DOI: 10.1186/s12991-020-00287-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 05/23/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Previous research studies have assessed the relationship between attention to social information and peripheral (e.g., plasma and salivary) oxytocin (OT) levels in typically developing (TD) children and children with autism spectrum disorder (ASD). A relationship between them was observed in TD children, but not in children with ASD. However, this relationship remains unexamined in other age groups. To clarify whether this lack of association is maintained throughout development in individuals with ASD, we aimed to assess the relationship between salivary OT levels and attention to social information in adolescents and adults with and without ASD. METHODS We recruited male adolescents and adults with ASD (n = 17) and TD participants (n = 24). Using the all-in-one eye-tracking system Gazefinder, we measured the percentage fixation time allocated to social information. We also measured the salivary OT levels and Autism Spectrum Quotient (AQ) of participants. Subsequently, we confirmed group differences and conducted a correlation analysis to investigate the relationships between these three measures. RESULTS Salivary OT levels did not show any significant difference between the ASD and TD groups and were negatively correlated with the AQ in the whole-group analysis, but not in within-group analysis. Individuals with ASD had significantly lower percentage fixation times than did TD individuals for eye regions in human faces with/without mouth motion, for upright biological motion, and for people regions in the people and geometry movies. The percentage of fixation for geometric shapes in the people and geometry movies was significantly higher in the ASD than in the TD group. In the TD group, salivary OT levels were positively correlated with percentage fixation times for upright biological motion and people and negatively correlated with inverted biological motion and geometry. However, no significant correlations were found in the ASD group. CONCLUSIONS Our exploratory results suggest that salivary OT levels in adolescents and adults with ASD are less indicative of attention to social stimuli than they are in TD adolescents and adults. It is suggested that their association is slightly weaker in adolescents and adults with ASD and that this attenuated relationship appears to be maintained throughout development.
Collapse
Affiliation(s)
- T Fujioka
- Faculty of Education, University of Fukui, Fukui, Fukui Japan.,Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka Japan.,Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui Japan
| | - T X Fujisawa
- Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka Japan.,Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui Japan
| | - K Inohara
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa, Japan.,Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui Japan
| | - Y Okamoto
- Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka Japan.,Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui Japan.,Waseda Institute for Advanced Study, Waseda University, Shinjuku, Tokyo Japan
| | - Y Matsumura
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui Japan
| | - K J Tsuchiya
- Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka Japan.,Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka Japan.,Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka Japan
| | - T Katayama
- Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka Japan
| | - T Munesue
- Kaga Mental Hospital, Kaga, Ishikawa Japan
| | - A Tomoda
- Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka Japan.,Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui Japan
| | - Y Wada
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui Japan.,Kaga Mental Hospital, Kaga, Ishikawa Japan
| | - H Kosaka
- Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka Japan.,Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui Japan.,Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui Japan
| |
Collapse
|
35
|
Lasheras I, Seral P, Latorre E, Barroso E, Gracia-García P, Santabárbara J. Microbiota and gut-brain axis dysfunction in autism spectrum disorder: Evidence for functional gastrointestinal disorders. Asian J Psychiatr 2020; 47:101874. [PMID: 31785441 DOI: 10.1016/j.ajp.2019.101874] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The high frequency of functional gastrointestinal disorders (FGIDs) in autism spectrum disorders (ASD) has drawn attention to the composition of gut microbiota as a possible factor in ASD pathogenesis. However, characterization of a distinctive ASD microbial pattern is still unclear. OBJECTIVE To conduct a narrative review on ASD microbial profile and diversity changes relative to NT children and FGID comorbidity and ASD pathogenesis. METHODOLOGY First, we searched the PubMed database in peer-reviewed journals for evidence regarding the current epidemiological evidence on FGID comorbidity. For the identification of a microbial profile in ASD children, only original studies examining gut bacterial and fungal abundances and diversity in ASD children and adolescents were included. Lastly, research on the role of microbial dysbiosis as an interface between genetic and environmental risk factors in the pathogenesis of neuropsychiatric disorders, and specifically ASD, was examined. RESULTS Prevalence and risk of FGIDs is significantly higher in ASD children and correlates with the severity of ASD. Bacterial and fungal diversity differ between ASD and NT children, indicating a difference in taxonomic abundance profiles, which have been reported at all bacterial phylogenetic levels. However, studies analyzing gut microbiota have a heterogeneous methodology and several limitations that could account for the variety of findings for each taxon. Also, covariate analysis reveals influence of demographics, diet, disease severity, GI comorbidity and allergies. Integration of these findings with changes in metabolome and genetic risk factors allowed for a better understanding of microbiota involvement in ASD pathogenesis for future research.
Collapse
Affiliation(s)
- I Lasheras
- Department of Preventive Medicine and Public Health, Universidad de Zaragoza, Zaragoza, Spain
| | - P Seral
- Department of Preventive Medicine and Public Health, Universidad de Zaragoza, Zaragoza, Spain
| | - E Latorre
- Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2- (Universidad de Zaragoza - CITA), Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.
| | - E Barroso
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Madrid, Spain
| | - P Gracia-García
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Psychiatry Service, Hospital Clínico Universitario Miguel Servet, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Ministry of Science and Innovation, Madrid, Spain
| | - J Santabárbara
- Department of Preventive Medicine and Public Health, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Ministry of Science and Innovation, Madrid, Spain
| |
Collapse
|
36
|
Ansel A, Posen Y, Ellis R, Deutsch L, Zisman PD, Gesundheit B. Biomarkers for Autism Spectrum Disorders (ASD): A Meta-analysis. Rambam Maimonides Med J 2019; 10:RMMJ.10375. [PMID: 31675302 PMCID: PMC6824829 DOI: 10.5041/rmmj.10375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To compare the reported accuracy and sensitivity of the various modalities used to diagnose autism spectrum disorders (ASD) in efforts to help focus further biomarker research on the most promising methods for early diagnosis. METHODS The Medline scientific literature database was searched to identify publications assessing potential clinical ASD biomarkers. Reports were categorized by the modality used to assess the putative markers, including protein, genetic, metabolic, or objective imaging methods. The reported sensitivity, specificity, area under the curve, and overall agreement were summarized and analyzed to determine weighted averages for each diagnostic modality. Heterogeneity was measured using the I2 test. RESULTS Of the 71 papers included in this analysis, each belonging to one of five modalities, protein-based followed by metabolite-based markers provided the highest diagnostic accuracy, each with a pooled overall agreement of 83.3% and respective weighted area under the curve (AUC) of 89.5% and 88.3%. Sensitivity provided by protein markers was highest (85.5%), while metabolic (85.9%) and protein markers (84.7%) had the highest specificity. Other modalities showed degrees of sensitivity, specificity, and overall agreements in the range of 73%-80%. CONCLUSIONS Each modality provided for diagnostic accuracy and specificity similar or slightly higher than those reported for the gold-standard Autism Diagnostic Observation Schedule (ADOS) instrument. Further studies are required to identify the most predictive markers within each modality and to evaluate biological pathways or clustering with possible etiological relevance. Analyses will also be necessary to determine the potential of these novel biomarkers in diagnosing pediatric patients, thereby enabling early intervention.
Collapse
Affiliation(s)
| | - Yehudit Posen
- Cell-El Therapeutics Ltd, Jerusalem, Israel
- PSW Ltd, Rehovot, Israel
| | - Ronald Ellis
- Cell-El Therapeutics Ltd, Jerusalem, Israel
- Biotech & Biopharma Consulting, Jerusalem, Israel
| | - Lisa Deutsch
- Biostats Statistical Consulting Ltd, Modiin, Israel
| | | | - Benjamin Gesundheit
- Cell-El Therapeutics Ltd, Jerusalem, Israel
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
An association study of severity of intellectual disability with peripheral biomarkers of disabled children in a rehabilitation home, Kolkata, India. Sci Rep 2019; 9:13652. [PMID: 31541143 PMCID: PMC6754507 DOI: 10.1038/s41598-019-49728-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
The current investigation has identified the biomarkers associated with severity of disability and correlation among plethora of systemic, cellular and molecular parameters of intellectual disability (ID) in a rehabilitation home. The background of study lies with the recent clinical evidences which identified complications in ID. Various indicators from blood and peripheral system serve as potential surrogates for disability related changes in brain functions. ID subjects (Male, age 10 ± 5 yrs, N = 45) were classified as mild, moderate and severe according to the severity of disability using standard psychometric analysis. Clinical parameters including stress biomarkers, neurotransmitters, RBC morphology, expressions of inflammatory proteins and neurotrophic factor were estimated from PBMC, RBC and serum. The lipid peroxidation of PBMC and RBC membranes, levels of serum glutamate, serotonin, homocysteine, ROS, lactate and LDH-A expression increased significantly with severity of ID whereas changes in RBC membrane β-actin, serum BDNF, TNF-α and IL-6 was found non-significant. Structural abnormalities of RBC were more in severely disabled children compared to mildly affected ones. The oxidative stress remained a crucial factor with severity of disability. This is confirmed not only by RBC alterations but also with other cellular dysregulations. The present article extends unique insights of how severity of disability is correlated with various clinical, cellular and molecular markers of blood. This unique study primarily focuses on the strong predictors of severity of disability and their associations via brain-blood axis.
Collapse
|
38
|
Wilczyński KM, Zasada I, Siwiec A, Janas-Kozik M. Differences in oxytocin and vasopressin levels in individuals suffering from the autism spectrum disorders vs general population - a systematic review. Neuropsychiatr Dis Treat 2019; 15:2613-2620. [PMID: 31571878 PMCID: PMC6750159 DOI: 10.2147/ndt.s207580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interactions, communication, and the presence of stereotyped, repetitive behaviors. Oxytocin (OXT) and arginine-vasopressin are neuropeptides produced in hypothalamus and they are related to processing emotions and social behavior. In the light of a growing number of scientific reports related to this issue, the two neurohormones started to be linked with the basis of neurodevelopmental disorders, including the ASD. The aim of this study was a systematic review of previous studies regarding the differences in OXT and vasopressin levels in ASD and neurotypical persons. MATERIALS AND METHODS Literature review focused on publications in the last 10 years located via the MEDLINE/PubMed database as well as the Google Scholar browser. Selection was made by assumptive criteria of inclusion and exclusion. RESULTS From the 487 studies qualified to the initial abstract analysis, 12 met the six inclusion criteria and were included in the full-text review. CONCLUSION Currently, available study reports still do not provide unequivocal answers as to the differences in concentrations of those neuropeptides between children with ASD and neurotypical control. Therefore, it is necessary to continue the research taking into account necessity of proper homogenization of study groups, utilization of objective and quantifiable tools for ASD diagnosis and broadening the range of biochemical and molecular factors analyzed.
Collapse
Affiliation(s)
- Krzysztof M Wilczyński
- Clinical Ward of Developmental Age Psychiatry and Psychotherapy, Department of Psychiatry and Psychotherapy, Medical University of Silesia, Katowice, Poland
- John Paul II’s Pediatric Centre in Sosnowiec, Sosnowiec, Poland
| | - Ida Zasada
- Clinical Ward of Developmental Age Psychiatry and Psychotherapy, Department of Psychiatry and Psychotherapy, Medical University of Silesia, Katowice, Poland
- John Paul II’s Pediatric Centre in Sosnowiec, Sosnowiec, Poland
| | - Andrzej Siwiec
- John Paul II’s Pediatric Centre in Sosnowiec, Sosnowiec, Poland
| | - Małgorzata Janas-Kozik
- Clinical Ward of Developmental Age Psychiatry and Psychotherapy, Department of Psychiatry and Psychotherapy, Medical University of Silesia, Katowice, Poland
- John Paul II’s Pediatric Centre in Sosnowiec, Sosnowiec, Poland
| |
Collapse
|
39
|
Rangel-Huerta OD, Gomez-Fernández A, de la Torre-Aguilar MJ, Gil A, Perez-Navero JL, Flores-Rojas K, Martín-Borreguero P, Gil-Campos M. Metabolic profiling in children with autism spectrum disorder with and without mental regression: preliminary results from a cross-sectional case-control study. Metabolomics 2019; 15:99. [PMID: 31250215 DOI: 10.1007/s11306-019-1562-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/20/2019] [Indexed: 01/22/2023]
Abstract
INTRODUCTION It is challenging to establish the mechanisms involved in the variety of well-defined clinical phenotypes in autism spectrum disorder (ASD) and the pathways involved in their pathogeneses. OBJECTIVES The aim of the present study was to evaluate the metabolomic profiles of children with ASD subclassified by mental regression (AR) phenotype and with no regression (ANR). METHODS The present study was a cross-sectional case-control study. Thirty children aged 2-6 years with ASD were included: 15 with ANR and 15 with AR. In addition, a control group of 30 normally developing children was selected and matched to the ASD group by sex and age. Plasma samples were analyzed with a metabolomics single platform methodology based on liquid chromatography-mass spectrometry. Univariate and multivariate analysis, including orthogonal partial least squares-discriminant analysis modeling and Shared-and-Unique-Structures plots, were performed using MetaboAnalyst 4.0 and SIMCA-P 15. The primary endpoint was the metabolic signature profiling among healthy children and autistic children and their subgroups. RESULTS Metabolomic profiles of 30 healthy children, 15 ANR and 15 AR were compared. Several differences between healthy children and children with ASD were detected, involving mainly amino acid, lipid and nicotinamide metabolism. Furthermore, we report subtle differences between the ANR and AR groups. CONCLUSIONS In this study, we report, for the first time, the plasmatic metabolomic profiles of children with ASD, including two different phenotypes based on mental regression status. The use of a liquid chromatography-mass spectrometry platform approach for metabolomics in ASD children using plasma appears to be very efficient and adds further support to previous findings in urine. Furthermore, the present study documents several changes related to amino acid, NAD+ and lipid metabolism that, in some cases, such as arginine and glutamate pathway alterations, seem to be associated with the AR phenotype. Further targeted analyses are needed in a larger cohort to validate the results presented herein.
Collapse
Affiliation(s)
- O D Rangel-Huerta
- Department of Nutrition, University of Oslo, Oslo, Norway
- Norwegian Veterinary Institute, Oslo, Norway
| | - A Gomez-Fernández
- Department of Pediatrics, Reina Sofia University Hospital, University of Córdoba, IMIBIC, Córdoba, Spain
| | - M J de la Torre-Aguilar
- Department of Pediatrics, Reina Sofia University Hospital, University of Córdoba, IMIBIC, Córdoba, Spain
| | - A Gil
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix", Centre for Biomedical Research, University of Granada, Granada, Spain
- CIBEROBN, Madrid, Spain
| | - J L Perez-Navero
- Department of Pediatrics, Reina Sofia University Hospital, University of Córdoba, IMIBIC, Córdoba, Spain
| | - K Flores-Rojas
- Department of Pediatrics, Reina Sofia University Hospital, University of Córdoba, IMIBIC, Córdoba, Spain
- Paediatric Metabolism Unit, CIBEROBN, Madrid, Spain
| | | | - M Gil-Campos
- Department of Pediatrics, Reina Sofia University Hospital, University of Córdoba, IMIBIC, Córdoba, Spain.
- Paediatric Metabolism Unit, CIBEROBN, Madrid, Spain.
| |
Collapse
|
40
|
Ichinose W, Cherepanov SM, Shabalova AA, Yokoyama S, Yuhi T, Yamaguchi H, Watanabe A, Yamamoto Y, Okamoto H, Horike S, Terakawa J, Daikoku T, Watanabe M, Mano N, Higashida H, Shuto S. Development of a Highly Potent Analogue and a Long-Acting Analogue of Oxytocin for the Treatment of Social Impairment-Like Behaviors. J Med Chem 2019; 62:3297-3310. [PMID: 30896946 DOI: 10.1021/acs.jmedchem.8b01691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The nonapeptide hormone oxytocin (OT) has pivotal brain roles in social recognition and interaction and is thus a promising therapeutic drug for social deficits. Because of its peptide structure, however, OT is rapidly eliminated from the bloodstream, which decreases its potential therapeutic effects in the brain. We found that newly synthesized OT analogues in which the Pro7 of OT was replaced with N-( p-fluorobenzyl)glycine (2) or N-(3-hydroxypropyl)glycine (5) exhibited highly potent binding affinities for OT receptors and Ca2+ mobilization effects by selectively activating OT receptors over vasopressin receptors in HEK cells, where 2 was identified as a superagonist ( EMax = 131%) for OT receptors. Furthermore, the two OT analogues had a remarkably long-acting effect, up to 16-24 h, on recovery from impaired social behaviors in two strains of CD38 knockout mice that exhibit autism spectrum disorder-like social behavioral deficits, whereas the effect of OT itself rapidly diminished.
Collapse
Affiliation(s)
| | | | | | | | | | - Hiroaki Yamaguchi
- Faculty of Pharmaceutical Sciences, Tohoku University and Department of Pharmaceutical Sciences , Tohoku University Hospital , Sendai 980-8574 , Japan
| | - Ayu Watanabe
- Faculty of Pharmaceutical Sciences, Tohoku University and Department of Pharmaceutical Sciences , Tohoku University Hospital , Sendai 980-8574 , Japan
| | | | | | - Shinichi Horike
- Kanazawa University Advanced Science Research Center , Kanazawa 920-8640 , Japan
| | - Junpei Terakawa
- Kanazawa University Advanced Science Research Center , Kanazawa 920-8640 , Japan
| | - Takiko Daikoku
- Kanazawa University Advanced Science Research Center , Kanazawa 920-8640 , Japan
| | | | - Nariyasu Mano
- Faculty of Pharmaceutical Sciences, Tohoku University and Department of Pharmaceutical Sciences , Tohoku University Hospital , Sendai 980-8574 , Japan
| | | | | |
Collapse
|
41
|
Aita C, Mizoguchi Y, Yamamoto M, SeguchI Y, Yatsuga C, Nishimura T, Sugimoto Y, Takahashi D, Nishihara R, Ueno T, Nakayama M, Kuroki T, Nabeta H, Imamura Y, Monji A. Oxytocin levels and sex differences in autism spectrum disorder with severe intellectual disabilities. Psychiatry Res 2019; 273:67-74. [PMID: 30640053 DOI: 10.1016/j.psychres.2018.12.139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 12/25/2018] [Accepted: 12/26/2018] [Indexed: 01/20/2023]
Abstract
There were few reports of oxytocin (OXT) concentrations of autism spectrum disorder (ASD) patients with severe intellectual disabilities. We measured serum OXT concentrations in 79 hospitalized patients with severe intellectual disabilities (16-60 years old, 50 males and 29 females, 54 ASD patients) and investigated the associations between serum OXT concentration, symptom scores, sex differences, and autism spectrum disorder. There were no significant effects of diagnosis, severity of intellectual disabilities, and total score of the Japanese version of the Aberrant Behavior Checklist (ABC-J), the Childhood Autism Rating Scale-Tokyo Version (CARS-TV), and the Japanese version of the Repetitive Behavior Scale-Revised (RBS-R). However, there were sex differences in the correlations between OXT concentrations and subscale scores in the ASD group. The male ASD group (n = 39) showed negative correlations between RBS-R Self-injurious and Sameness subscale scores and serum OXT concentrations. In the female ASD group(n = 15), CARS-TV Nonverbal communication subscale scores and RBS-R Compulsive subscale scores were seen to positively correlate with serum OXT concentrations. These findings suggest that OXT functions differ in males and females with severe intellectual disabilities and that OXT partly affects autism and related to some of the repetitive behaviors and nonverbal communication, in ASD patients with severe intellectual disabilities.
Collapse
Affiliation(s)
- Chie Aita
- National Hospital Organization Hizen Psychiatric Center, 160 Mitsu Yoshinogari, Kanzaki, Saga 842-0192, Japan.
| | - Yoshito Mizoguchi
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| | - Miwako Yamamoto
- National Hospital Organization Hizen Psychiatric Center, 160 Mitsu Yoshinogari, Kanzaki, Saga 842-0192, Japan
| | - Yasuhisa SeguchI
- National Hospital Organization Hizen Psychiatric Center, 160 Mitsu Yoshinogari, Kanzaki, Saga 842-0192, Japan
| | - Chiho Yatsuga
- National Hospital Organization Hizen Psychiatric Center, 160 Mitsu Yoshinogari, Kanzaki, Saga 842-0192, Japan
| | - Taisuke Nishimura
- National Hospital Organization Hizen Psychiatric Center, 160 Mitsu Yoshinogari, Kanzaki, Saga 842-0192, Japan
| | - Yoshiki Sugimoto
- National Hospital Organization Hizen Psychiatric Center, 160 Mitsu Yoshinogari, Kanzaki, Saga 842-0192, Japan
| | - Daiki Takahashi
- National Hospital Organization Hizen Psychiatric Center, 160 Mitsu Yoshinogari, Kanzaki, Saga 842-0192, Japan
| | - Reiko Nishihara
- National Hospital Organization Hizen Psychiatric Center, 160 Mitsu Yoshinogari, Kanzaki, Saga 842-0192, Japan
| | - Takefumi Ueno
- National Hospital Organization Hizen Psychiatric Center, 160 Mitsu Yoshinogari, Kanzaki, Saga 842-0192, Japan
| | | | - Toshihide Kuroki
- Department of Human Sciences, Faculty of Human-Environment Studies, Kyushu University, Fukuoka, Japan
| | | | - Yoshiomi Imamura
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| | - Akira Monji
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
42
|
Kruppa JA, Gossen A, Oberwelland Weiß E, Kohls G, Großheinrich N, Cholemkery H, Freitag CM, Karges W, Wölfle E, Sinzig J, Fink GR, Herpertz-Dahlmann B, Konrad K, Schulte-Rüther M. Neural modulation of social reinforcement learning by intranasal oxytocin in male adults with high-functioning autism spectrum disorder: a randomized trial. Neuropsychopharmacology 2019; 44:749-756. [PMID: 30390065 PMCID: PMC6372686 DOI: 10.1038/s41386-018-0258-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/06/2018] [Accepted: 10/15/2018] [Indexed: 01/05/2023]
Abstract
Reduced social motivation is a hallmark of individuals with autism spectrum disorders (ASDs). Although the exact neural mechanisms are unclear, oxytocin has been shown to enhance motivation and attention to social stimuli, suggesting a potential to augment social reinforcement learning as the central mechanism of behavioral interventions in ASD. We tested how reinforcement learning in social contexts and associated reward prediction error (RPE) signals in the nucleus accumbens (NAcc) were modulated by intranasal oxytocin. Male adults with a childhood diagnosis of ASD (n = 15) and healthy controls (n = 24; aged 18-26 years) performed a probabilistic reinforcement learning task during functional magnetic resonance imaging in a single-center (research center in Germany), randomized double-blind, placebo-controlled cross-over trial. The interventions were intranasal oxytocin (Syntocinon®, Novartis; 10 puffs = 20 international units (IUs) per treatment) and placebo spray. Using computational modeling of behavioral data, trial-by-trial RPE signals were assessed and related to brain activation in NAcc during reinforcing feedback in social and non-social contexts. The order of oxytocin/placebo was randomized for 60 participants. Twenty-one participants were excluded from analyses, leaving 39 for the final analysis. Behaviorally, individuals with ASD showed enhanced learning under oxytocin when the learning target as well as feedback was social as compared to non-social (social vs. non-social target: 87.09% vs. 71.29%, 95% confidence interval (CI): 7.28-24.33, p = .003; social vs. non-social feedback: 81.00% vs. 71.29%, 95% CI: 2.81-16.61, p = .027). Correspondingly, oxytocin enhanced the correlation of the RPE signal with NAcc activation during social (vs. non-social) feedback in ASD (3.48 vs. -1.12, respectively, 95% CI: 2.98-6.22, p = .000), whereas in controls, this effect was found in the placebo condition (2.90 vs. -1.14, respectively, 95% CI: 1.07-7.01, p = .010). In ASD, a similar pattern emerged when the learning target was social (3.00 vs. -0.64, respectively, 95% CI: -0.13 to 7.41, p = .057), whereas controls showed a reduced correlation for social learning targets under oxytocin (-0.70 vs. 2.72, respectively, 95% CI: -5.86 to 0.98, p = .008). The current data suggest that intranasal oxytocin has the potential to enhance social reinforcement learning in ASD. Future studies are warranted that investigate whether oxytocin can potentiate social learning when combined with behavioral therapies, resulting in greater treatment benefits than traditional behavior-only approaches.
Collapse
Affiliation(s)
- Jana A. Kruppa
- 0000 0000 8653 1507grid.412301.5Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany ,grid.494742.8JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), RWTH Aachen and Jülich Research Center, Jülich, Germany ,Institute of Neuroscience and Medicine (INM-3), Jülich Research Center, Jülich, Germany
| | - Anna Gossen
- 0000 0000 8653 1507grid.412301.5Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany ,Institute of Neuroscience and Medicine (INM-3), Jülich Research Center, Jülich, Germany
| | - Eileen Oberwelland Weiß
- 0000 0000 8653 1507grid.412301.5Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany ,grid.494742.8JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), RWTH Aachen and Jülich Research Center, Jülich, Germany ,Institute of Neuroscience and Medicine (INM-3), Jülich Research Center, Jülich, Germany
| | - Gregor Kohls
- 0000 0000 8653 1507grid.412301.5Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Nicola Großheinrich
- 0000 0000 8653 1507grid.412301.5Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany ,Institute of Neuroscience and Medicine (INM-3), Jülich Research Center, Jülich, Germany
| | - Hannah Cholemkery
- 0000 0004 0578 8220grid.411088.4Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Christine M. Freitag
- 0000 0004 0578 8220grid.411088.4Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Wolfram Karges
- 0000 0000 8653 1507grid.412301.5Division of Endocrinology and Diabetes, University Hospital RWTH Aachen, Aachen, Germany
| | - Elke Wölfle
- 0000 0000 8653 1507grid.412301.5Division of Endocrinology and Diabetes, University Hospital RWTH Aachen, Aachen, Germany
| | - Judith Sinzig
- 0000 0000 9702 9846grid.491992.eDepartment of Child and Adolescent Psychiatry and Psychotherapy, LVR-Klinik Bonn, Bonn, Germany
| | - Gereon R. Fink
- Institute of Neuroscience and Medicine (INM-3), Jülich Research Center, Jülich, Germany ,0000 0000 8852 305Xgrid.411097.aDepartment of Neurology, University Hospital Cologne, Cologne, Germany
| | - Beate Herpertz-Dahlmann
- 0000 0000 8653 1507grid.412301.5Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Kerstin Konrad
- 0000 0000 8653 1507grid.412301.5Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany ,grid.494742.8JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), RWTH Aachen and Jülich Research Center, Jülich, Germany
| | - Martin Schulte-Rüther
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany. .,JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), RWTH Aachen and Jülich Research Center, Jülich, Germany. .,Institute of Neuroscience and Medicine (INM-3), Jülich Research Center, Jülich, Germany.
| |
Collapse
|
43
|
Lopatina OL, Komleva YK, Gorina YV, Olovyannikova RY, Trufanova LV, Hashimoto T, Takahashi T, Kikuchi M, Minabe Y, Higashida H, Salmina AB. Oxytocin and excitation/inhibition balance in social recognition. Neuropeptides 2018; 72:1-11. [PMID: 30287150 DOI: 10.1016/j.npep.2018.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
Social recognition is the sensitive domains of complex behavior critical for identification, interpretation and storage of socially meaningful information. Social recognition develops throughout childhood and adolescent, and is affected in a wide variety of psychiatric disorders. Recently, new data appeared on the molecular mechanisms of these processes, particularly, the excitatory-inhibitory (E/I) ratio which is modified during development, and then E/I balance is established in the adult brain. While E/I imbalance has been proposed as a mechanism for schizophrenia, it also seems to be the common mechanism in autism spectrum disorder (ASD). In addition, there is a strong suggestion that the oxytocinergic system is related to GABA-mediated E/I control in the context of brain socialization. In this review, we attempt to summarize the underpinning molecular mechanisms of E/I balance and its imbalance, and related biomarkers in the brain in healthiness and pathology. In addition, because there are increasing interest on oxytocin in the social neuroscience field, we will pay intensive attention to the role of oxytocin in maintaining E/I balance from the viewpoint of its effects on improving social impairment in psychiatric diseases, especially in ASD.
Collapse
Affiliation(s)
- Olga L Lopatina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yulia K Komleva
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Yana V Gorina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Raisa Ya Olovyannikova
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Lyudmila V Trufanova
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Takanori Hashimoto
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Tetsuya Takahashi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Mitsuru Kikuchi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yoshio Minabe
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Haruhiro Higashida
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Alla B Salmina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| |
Collapse
|
44
|
Drozd HP, Karathanasis SF, Molosh AI, Lukkes JL, Clapp DW, Shekhar A. From bedside to bench and back: Translating ASD models. PROGRESS IN BRAIN RESEARCH 2018; 241:113-158. [PMID: 30447753 DOI: 10.1016/bs.pbr.2018.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorders (ASD) represent a heterogeneous group of disorders defined by deficits in social interaction/communication and restricted interests, behaviors, or activities. Models of ASD, developed based on clinical data and observations, are used in basic science, the "bench," to better understand the pathophysiology of ASD and provide therapeutic options for patients in the clinic, the "bedside." Translational medicine creates a bridge between the bench and bedside that allows for clinical and basic science discoveries to challenge one another to improve the opportunities to bring novel therapies to patients. From the clinical side, biomarker work is expanding our understanding of possible mechanisms of ASD through measures of behavior, genetics, imaging modalities, and serum markers. These biomarkers could help to subclassify patients with ASD in order to better target treatments to a more homogeneous groups of patients most likely to respond to a candidate therapy. In turn, basic science has been responding to developments in clinical evaluation by improving bench models to mechanistically and phenotypically recapitulate the ASD phenotypes observed in clinic. While genetic models are identifying novel therapeutics targets at the bench, the clinical efforts are making progress by defining better outcome measures that are most representative of meaningful patient responses. In this review, we discuss some of these challenges in translational research in ASD and strategies for the bench and bedside to bridge the gap to achieve better benefits to patients.
Collapse
Affiliation(s)
- Hayley P Drozd
- Program in Medical Neurobiology, Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sotirios F Karathanasis
- Program in Medical Neurobiology, Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrei I Molosh
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jodi L Lukkes
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - D Wade Clapp
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anantha Shekhar
- Program in Medical Neurobiology, Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Indiana Clinical and Translation Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
45
|
Oxytocin improves animal behaviors and ameliorates oxidative stress and inflammation in autistic mice. Biomed Pharmacother 2018; 107:262-269. [DOI: 10.1016/j.biopha.2018.07.148] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/20/2018] [Accepted: 07/30/2018] [Indexed: 12/28/2022] Open
|
46
|
Abdulamir HA, Abdul-Rasheed OF, Abdulghani EA. Serotonin and serotonin transporter levels in autistic children. Saudi Med J 2018; 39:487-494. [PMID: 29738009 PMCID: PMC6118182 DOI: 10.15537/smj.2018.5.21751] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES To assess the possible correlation between serotonin and serotonin transporter (SERT) with the autism severity and investigate the association between these parameters in autistic children to assess their possible role for diagnosis of autism severity. METHODS A comparative cross-sectional study was carried out in the Chemistry and Biochemistry Department, College of Medicine, Al-Nahrain University, Baghdad, Iraq while the samples were taken from 60 male autistic children recruited to the Department of Pediatrics at Al-Sader Hospital, Baghdad, Iraq between November 2014 amd April 2015. Levels of serotonin and serotonin transporters (SERT) were determined in 60 male autistic Iraqi patients classified into mild, moderate and severe (20 for each). These levels were compared with those of 26 healthy control children. Results: Levels of serotonin and SERT were significantly increased in autistic children than that of gender and age-matched controls. Serotonin levels were 80.63± 21.83 ng/ml in mild, 100.39±23.07 ng/ml moderate, and 188.7±31.72 ng/ml severe autistic patients. Serotonin transporter levels were 10.13±4.51 ng/ml in mild, 13.15±4.71 ng/ml moderate, and 16.32±6.7 ng/ml in severe autistic patients. The increase of both serotonin and SERT levels were associated with severity of autism. Receiver operating characteristic (ROC) analysis can be used for diagnostic and prognostic purposes. CONCLUSIONS High serotonin and SERT levels may indicate that these biomarkers have a role in the autism pathogenesis and support the possibility of using serotonin and SERT to diagnose autism severity.
Collapse
Affiliation(s)
- Haidar A Abdulamir
- Department of Chemistry and Biochemistry, College of Medicine, Al-Nahrain University, Baghdad, Iraq. E-mail.
| | | | | |
Collapse
|
47
|
Diagnostic and Severity-Tracking Biomarkers for Autism Spectrum Disorder. J Mol Neurosci 2018; 66:492-511. [DOI: 10.1007/s12031-018-1192-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/25/2018] [Indexed: 01/06/2023]
|
48
|
Study the Impact of Cytomegalovirus (CMV) Infection and the Risk Factor for Liver Dysfunction in Saudi Patients. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.3.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Xu C, Cao H, Zhang F, Cheadle C. Comprehensive literature data-mining analysis reveals a broad genetic network functionally associated with autism spectrum disorder. Int J Mol Med 2018; 42:2353-2362. [PMID: 30226572 PMCID: PMC6192781 DOI: 10.3892/ijmm.2018.3845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/01/2018] [Indexed: 01/02/2023] Open
Abstract
Previous studies have indicated that genetic factors are the predominate cause of Autism spectrum disorder (ASD). Nevertheless, to the best of our knowledge, to date no systematic study has summarized these data and provided an objective, complete list of genes with demonstrated associations with ASD. The present study included a literature data mining analysis of >2,064 articles including publications from January 2000 to April 2016, which identified 488 ASD target genes. Gene set enrichment analysis (GSEA), sub-network enrichment analysis (SNEA) and network connectivity analysis (NCA) were conducted to assess the functional profile and pathogenic significance of these genes. A total of 2 literature metrics were proposed to prioritize the curated ASD genes with specific significance. This approach resulted in the development of an ASD genetic database. Subsequent analysis indicated that 391 of the 488 genes were enriched in 97 biological pathways (P<1×10−8), demonstrating significant functional associations with each other. The majority of these curated ASD genes also serve significant roles in the pathogenesis of other neuropsychiatric disorders. These results suggest that the genetic causes of ASD are within a large network composed of functionally-associated genes. The genetic database, together with the metric scores developed in the present study, provides a basis for future biological/genetic modeling in the field.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Magnetic Resonance Imaging, Shanxi Province People's Hospital, Taiyuan, Shanxi 030001, P.R China
| | - Hongbao Cao
- Department of Genomics Research, Elsevier R&D Solutions, Elsevier Inc., Rockville, MD 20852, USA
| | - Fuquan Zhang
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu 214151, P.R China
| | - Chris Cheadle
- Department of Genomics Research, Elsevier R&D Solutions, Elsevier Inc., Rockville, MD 20852, USA
| |
Collapse
|
50
|
The Use of Multi-parametric Biomarker Profiles May Increase the Accuracy of ASD Prediction. J Mol Neurosci 2018; 66:85-101. [PMID: 30112624 DOI: 10.1007/s12031-018-1136-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022]
Abstract
Effective biomarkers are urgently needed to facilitate early diagnosis of autism spectrum disorder (ASD), permitting early intervention, and consequently improving prognosis. In this study, we evaluate the usefulness of nine biomarkers and their association (combination) in predicting ASD onset and development. Data were analyzed using multiple independent mathematical and statistical approaches to verify the suitability of obtained results as predictive parameters. All biomarkers tested appeared useful in predicting ASD, particularly vitamin E, glutathione-S-transferase, and dopamine. Combining biomarkers into profiles improved the accuracy of ASD prediction but still failed to distinguish between participants with severe versus mild or moderate ASD. Library-based identification was effective in predicting the occurrence of disease. Due to the small sample size and wide participant age variation in this study, we conclude that the use of multi-parametric biomarker profiles directly related to autism phenotype may help predict the disease occurrence more accurately, but studies using larger, more age-homogeneous populations are needed to corroborate our findings.
Collapse
|