1
|
Zhu L, Shang J, Li Y, Zhang Z, Fu P, Zong Y, Chen S, Wang J, Zhang J, Wang J, Jiang C. Toll-Like Receptors Mediate Opposing Dendritic Cell Effects on Treg/Th17 Balance in Mice With Intracerebral Hemorrhage. Stroke 2024; 55:2126-2138. [PMID: 38920054 DOI: 10.1161/strokeaha.124.046394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Dendritic cells (DCs) regulate the immune response associated with T lymphocytes, but their role in stroke remains unclear. In this study, we investigated the causal relationship between DCs and T-cell response in intracerebral hemorrhage (ICH) by focusing on TLRs (toll-like receptors) that may modulate the function of DCs. METHODS We studied the effects of TLR4, TLR2, and TLR9 on DC-mediated T-cell response and the outcomes of ICH using male C57BL/6 and CD11c-DTx (diphtheria toxin) receptor mice. We administered specific agents intraperitoneally or orally and evaluated the results using flow cytometry, real-time polymerase chain reaction, Western blotting, immunofluorescence staining, histopathology, and behavioral tests. RESULTS TLR4 and TLR2 activation induces DC maturation and reduces the ratio of regulatory T to T-helper 17 cells in the brain and periphery after ICH. When either of these receptors is activated, it can worsen neuroinflammation and exacerbate ICH outcomes. TLR9 also promotes DC maturation, stabilizing the number of DCs, particularly conventional DCs. TLR9 has the opposite effects on regulatory T/T-helper 17 balance, neuroinflammation, and ICH outcomes compared with TLR4 and TLR2. Upon stimulation, TLR4 and TLR9 may achieve these effects through the p38-MAPK (p38-mitogen-activated protein kinase)/MyD88 (myeloid differentiation primary response gene 88) and indoleamine 2,3-dioxygenase 1 (IDO1)/GCN2 (general control nonderepressible 2) signaling pathways, respectively. DCs act as intermediaries for TLR-mediated T-cell response. CONCLUSIONS TLR-mediated opposing effects of DCs on T-cell response may provide novel strategies to treat ICH.
Collapse
Affiliation(s)
- Li Zhu
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Junkui Shang
- Department of Neurology, People's Hospital of Zhengzhou University, China (J.S., J.Z., C.J.)
| | - Yinuo Li
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Zhiying Zhang
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Peiji Fu
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Yan Zong
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Shuai Chen
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Junmin Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, China (Junmin Wang, Jian Wang)
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, China (J.S., J.Z., C.J.)
| | - Jian Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, China (Junmin Wang, Jian Wang)
| | - Chao Jiang
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- Department of Neurology, People's Hospital of Zhengzhou University, China (J.S., J.Z., C.J.)
| |
Collapse
|
2
|
Bi K, Lei Y, Kong D, Li Y, Fan X, Luo X, Yang J, Wang G, Li X, Xu Y, Luo H. Progress in the study of intestinal microbiota involved in morphine tolerance. Heliyon 2024; 10:e27187. [PMID: 38533077 PMCID: PMC10963202 DOI: 10.1016/j.heliyon.2024.e27187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Morphine is a widely used opioid for treatment of pain. The attendant problems including morphine tolerance and morphine dependence pose a major public health challenge. In recent years, there has been increasing interest in the gastrointestinal microbiota in many physiological and pathophysiological processes. The connectivity network between the gut microbiota and the brain is involved in multiple biological systems, and bidirectional communication between them is critical in gastrointestinal tract homeostasis, the central nervous system, and the microbial system. Many research have previously shown that morphine has a variety of effects on the gastrointestinal tract, but none have determined the function of intestinal microbiota in morphine tolerance. This study reviewed the mechanisms of morphine tolerance from the perspective of dysregulation of microbiota-gut-brain axis homeostasis, by summarizing the possible mechanisms originating from the gut that may affect morphine tolerance and the improvement of morphine tolerance through the gut microbiota.
Collapse
Affiliation(s)
- Ke Bi
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Yi Lei
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Deshenyue Kong
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Yuansen Li
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Xuan Fan
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Xiao Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Jiqun Yang
- Third People's Hospital of Kunming City/Drug Rehabilitation Hospital of Kunming City, Kunming, 650041, China
| | - Guangqing Wang
- Drug Rehabilitation Administration of Yunnan Province, Kunming, 650032, China
| | - Xuejun Li
- Drug Rehabilitation Administration of Yunnan Province, Kunming, 650032, China
| | - Yu Xu
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Huayou Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| |
Collapse
|
3
|
Wu B, Gan A, Wang R, Lin F, Yan T, Jia Y. Alpinia oxyphylla Miq. volatile oil ameliorates depressive behaviors and inhibits neuroinflammation in CUMS-exposed mice by inhibiting the TLR4-medicated MyD88/NF-κB signaling pathway. J Chem Neuroanat 2023; 130:102270. [PMID: 37001682 DOI: 10.1016/j.jchemneu.2023.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023]
Abstract
This study aimed to explore the antidepressant effect and underlying mechanism of the Alpinia oxyphylla Miq. volatile oil (AOVO) in mice exposed to chronic unpredictable mild stress (CUMS). C57BL/6 mice were grouped and administered with different dosages of AOVO (0.25, 0.50, 1.00, or 2.00 mL/kg body weight, i.g.), TAK242 (a TLR4 inhibitor, 0.75 mg/kg body weight, i.p.), or TAK242 (0.75 mg/kg body weight, i.p.) + AOVO (0.50 mL/kg body weight, i.g.) for 21 days. Depression-like symptoms in the mice were then evaluated through their body weight gain (BW), the open field test (OFT), the sucrose preference test (SPT), the novelty-suppressed feeding test (NSFT), and forced swimming test (FST). The concentrations of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and 5-hydroxytyrptamine (5-HT) in the mice were determined using ELISA kits. Hematoxylin and eosin (HE) dying were performed for histopathological examination. The expression of inflammatory proteins was assessed through western blotting (WB) and immunofluorescence staining. AOVO was found to improve the behavioral indexes of CUMS-exposed mice behavioral and synergize TAK242 to mitigate both their depressive symptoms and neuroinflammation. Moreover, AOVO was found to inhibit the hippocampal damage, decrease inflammatory cytokines (Reduced IL-1β, IL-6, and TNF-α by 19.97 %, 22.87 %, and 24.13 %, respectively), and downregulate the expression of TLR4/MyD88/NF-κB signaling pathway-related proteins in the hippocampus of CUMS-exposed mice (Reduced TLR4, MyD88, and NF-κB by 46.14 %, 42.48 %, and 38.08 %, respectively). These findings demonstrate that AOVO can ameliorate depressive behaviors and mitigate neuroinflammation in the CUMS-exposed mice via suppressing the TLR4-medicated MyD88/NF-κB signaling pathway.
Collapse
|
4
|
Dos Santos RAL, de Lima Reis SR, Gibbert PC, de Arruda CM, Doneda DL, de Matos YAV, Viola GG, Rios Santos F, de Lima E, da Silva Buss Z, Vandresen-Filho S. Guanosine treatment prevents lipopolysaccharide-induced depressive-like behavior in mice. J Psychiatr Res 2023; 164:296-303. [PMID: 37392719 DOI: 10.1016/j.jpsychires.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
Guanosine is a purinergic nucleoside that has been shown to have neuroprotective effects, mainly through its ability to modulate the glutamatergic system. An increase in pro-inflammatory cytokine levels triggers the activation of the enzyme indoleamine 2,3-dioxygenase 1 (IDO-1), leading to glutamatergic excitotoxicity, which has important roles in the pathophysiology of depression. The aim of this study was to investigate the possible antidepressant-like effects and underlying mechanisms of action of guanosine against lipopolysaccharide (LPS)-induced depression in a mouse model. Mice were orally pre-treated with saline (0.9% NaCl), guanosine (8 or 16 mg/kg), or fluoxetine (30 mg/kg) for 7 days before LPS (0.5 mg/kg, intraperitoneal) injection. One day after LPS injection, mice were subjected to the forced swim test (FST), tail suspension test (TST), and open field test (OFT). After the behavioral tests, mice were euthanized and the levels of tumor necrosis factor-α (TNF-α), IDO-1, glutathione, and malondialdehyde in the hippocampus were measured. Pretreatment with guanosine was able to prevent LPS- induced depressive-like behaviors in the TST and FST. In the OFT, no locomotor changes were observed with any treatment. Both guanosine (8 and 16 mg/kg/day) and fluoxetine treatment prevented the LPS-induced increase in TNF-α and IDO expression and lipid peroxidation as well as decrease of reduced glutathione levels in the hippocampus. Taken together, our findings suggest that guanosine may have neuroprotective effects against LPS-induced depressive-like behavior through preventing oxidative stress and the expression of IDO-1 and TNF-α in the hippocampus.
Collapse
Affiliation(s)
- Rozielly Aparecida Lemes Dos Santos
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Silvia Regina de Lima Reis
- Laboratório de Investigação, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Patrícia Cristiane Gibbert
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Cristina Maria de Arruda
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Diego Luiz Doneda
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Yohan Alves Victor de Matos
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | | | - Fabrício Rios Santos
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Eliângela de Lima
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Ziliani da Silva Buss
- Laboratório de Pesquisa em Imunologia, Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Samuel Vandresen-Filho
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil.
| |
Collapse
|
5
|
Suleymanova EM, Karan AA, Borisova MA, Volobueva MN, Bolshakov AP. Expression of Cytokines and Neurodegeneration in the Rat Hippocampus and Cortex in the Lithium-Pilocarpine Model of Status Epilepticus and the Role of Modulation of Endocannabinoid System. Int J Mol Sci 2023; 24:ijms24076509. [PMID: 37047481 PMCID: PMC10095234 DOI: 10.3390/ijms24076509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
A significant body of evidence shows that neuroinflammation is one of the key processes in the development of brain pathology in trauma, neurodegenerative disorders, and epilepsy. Various brain insults, including severe and prolonged seizure activity during status epilepticus (SE), trigger proinflammatory cytokine release. We investigated the expression of the proinflammatory cytokines interleukin-1β (Il1b) and interleukin-6 (Il6), and anti-inflammatory fractalkine (Cx3cl1) in the hippocampus, entorhinal cortex, and neocortex of rats 24 h, 7 days, and 5 months after lithium-pilocarpine SE. We studied the relationship between cytokine expression and neuronal death in the hippocampus and evaluated the effect of modulation of endocannabinoid receptors on neuroinflammation and neurodegeneration after SE. The results of the present study showed that inhibition of endocannabinoid CB1 receptors with AM251 early after SE had a transient neuroprotective effect that was absent in the chronic period and did not affect the development of spontaneous seizures after SE. At the same time, AM251 reduced the expression of Il6 in the chronic period after SE. Higher Cx3cl1 levels were found in rats with more prominent hippocampal neurodegeneration.
Collapse
|
6
|
Cai L, He Q, Luo H, Gui X, Wei L, Lu Y, Liu J, Sun A. Is depression in patients with temporal lobe epilepsy related to hippocampal sclerosis? A meta-analysis. Clin Neurol Neurosurg 2023; 225:107602. [PMID: 36689793 DOI: 10.1016/j.clineuro.2023.107602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To systematically evaluate the association between hippocampal sclerosis (HS) and depression in patients with temporal lobe epilepsy (TLE) through a meta-analysis. METHODS Chinese and English databases, such as the China National Knowledge Infrastructure (CNKI), Chinese Scientific Journals (VIP), WanFang, the Chinese Biomedical Literature Service System (SinoMed), PubMed and the Web of Science, were searched. RESULTS Two evaluators independently screened the literature, extracted data and evaluated the risk of bias in the included studies in accordance with the inclusion and exclusion criteria. RevMan 5.1 was used to analyze the data. A total of 786 patients with epilepsy were included in the study, including 82 depressive patients with HS and 64 depressive patients without HS. The results showed that the TLE patients with HS were more likely to develop depression than those without HS (odds ratio (OR)= 2.14, 95% confidence interval (CI) [1.45, 3.16], Z = 3.85, p = 0.0001). CONCLUSION HS can be considered a high-risk factor for depression in patients with TLE, and the correlation is significant. However, the sample size included in the study was small; additional high-quality studies are needed in the future.
Collapse
Affiliation(s)
- Lun Cai
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530023, PR China
| | - Qianchao He
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530023, PR China
| | - Huazheng Luo
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530023, PR China
| | - Xiongbin Gui
- Department of Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530023, PR China.
| | - Liping Wei
- Department of Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530023, PR China
| | - Yongjing Lu
- Department of Nuclear Medicine, Guangxi Minzu Hospital, Nanning 530001, PR China
| | - Jie Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530023, PR China
| | - Anna Sun
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530023, PR China
| |
Collapse
|
7
|
Indoleamine 2,3 dioxygenase 1 immobilization on magnetic nanoparticles for screening inhibitors from coffee. Food Chem X 2023; 17:100591. [PMID: 36845477 PMCID: PMC9945408 DOI: 10.1016/j.fochx.2023.100591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
In this study, a ligand fishing method was developed to screen potential indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors from coffee extracts by immobilization of IDO1 enzyme on amino-modified magnetic nanoparticles combined with UHPLC-Q-TOF-MS/MS analysis. Parameters including enzyme concentration, immobilization time, the pH of glutaraldehyde and the amount of magnetic nanoparticles were optimized. The results indicated that immobilized IDO1 could be reused 5 times and was stable during storage for 7 days. Several IDO1 ligands were captured by incubating immobilized IDO1 with coffee extract, of which 10 showed an obvious difference comparing to non-conjugated bare nanoparticles. In vitro inhibitory activity was further performed by CE analysis, in which ferulic acid and chlorogenic acid had better IDO1 inhibitory activity, with IC50 value of 113.7 μM and 307.5 μM. These results demonstrate that this method provides an effective platform for identifying and screening IDO1 inhibitors from natural products.
Collapse
|
8
|
Wang C, Gong B, Liu Y, Chen D, Wu Y, Wei J. Agarwood essential oil inhalation exerts antianxiety and antidepressant effects via the regulation of Glu/GABA system homeostasis. Biomed Rep 2023; 18:16. [PMID: 36776581 PMCID: PMC9892967 DOI: 10.3892/br.2023.1598] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
Depression and anxiety are common diseases that endanger the physical and mental health of individuals. Agarwood incense inhalation has been used as a traditional Chinese medicine for relaxation and to improve sleep for centuries. In a previous study by the authors it was demonstrated that agarwood essential oil (AEO) injection exerted anxiolytic and antidepressant effects. Therefore the present study further investigated the anxiolytic and antidepressant effects of AEO inhalation on anxiolytic mice induced by M-chlorophenylpiperazine and depressive mice induced by chronic unpredictable mild stress. The results demonstrated that AEO exerted a significant anxiolytic effect, whereby autonomous movements were inhibited during the light dark exploration test and open field test. Furthermore, the tail suspension test and the forced swimming test demonstrated that AEO also exerted an antidepressant effect, whereby the immobility times were decreased. Moreover, AEO was determined to increase the levels of 5-hydroxytryptamine, γ-aminobutyric acid (GABA) A receptor (GABAA) and glutamate (Glu) in anxiolytic mice and inhibit the levels of GABAA and Glu in depressive mice. Further investigations into how AEO affected the Glu/GABA system demonstrated that AEO markedly increased the protein expression levels of GABA transaminase (GABAT), glutamate metabotropic receptor 5 (GRM5), glutamate ionotropic receptor AMPA type subunit 1 (GluR1) and vesicular glutamate transporter 1 (VGluT1). Furthermore, AEO reduced the expression levels of GABAT, glutamate ionotropic receptor NMDA type subunit 2B and GRM5, and enhanced the expression levels of GluR1 and VGluT1. These results demonstrated that AEO potentially possesses antianxiety and antidepressant properties. The present study determined that the mechanism was related to the regulation of Glu/GABA neurotransmitter system homeostasis.
Collapse
Affiliation(s)
- Canhong Wang
- Hainan Branch of The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, Hainan 570311, P.R. China,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, Maoming 525099, P.R. China,Correspondence to: Dr Canhong Wang or Professor Jianhe Wei, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 4 Yaogu 4th Road, Haikou, Hainan 570311, P.R. China
| | - Bao Gong
- Hainan Branch of The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, Hainan 570311, P.R. China
| | - Yangyang Liu
- Hainan Branch of The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, Hainan 570311, P.R. China
| | - Deli Chen
- Hainan Branch of The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, Hainan 570311, P.R. China
| | - Yulan Wu
- Hainan Branch of The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, Hainan 570311, P.R. China
| | - Jianhe Wei
- Hainan Branch of The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, Hainan 570311, P.R. China,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, P.R. China,Correspondence to: Dr Canhong Wang or Professor Jianhe Wei, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 4 Yaogu 4th Road, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
9
|
Qin W, Shi Y, Chen W, Jia X, Asakawa T. Can kynurenine pathway be considered as a next-generation therapeutic target for Parkinson's disease? An update information. Biosci Trends 2022; 16:249-256. [PMID: 36002303 DOI: 10.5582/bst.2022.01352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
By far, no revolutionary breakthrough in the treatment of Parkinson's disease (PD) was found. It is indeed a knotty problem to select a satisfactory strategy for treating some patients with advanced stage PD. Development of novel therapeutic targets against PD has been an urgent task faced by global PD researchers. Targets in the tryptophan-kynurenine pathway (KP) were then considered. Metabolites in the KP are liposoluble. Some neurotoxic metabolites, including 3-hydroxykynurenine and its downstream 3-hydroxyanthranilic acid and quinolinic acid, are mainly produced peripherally. They can easily cross the blood-brain barrier (BBB) and exert their neurotoxic effects in the central neuron system (CNS), which is considered as a potential pathophysiological mechanism of neurodegenerative diseases. Hence, agents against the targets in the KP have two characteristics: (1) being independent from the dopaminergic system and (2) being seldom affected by the BBB. Inspiringly, one agent, namely, the inhibitor of indoleamine 2,3-dioxygenase 1, has been currently reported to present satisfactory efficacy comparable to levodopa, implying that the KP might be a potential novel target for PD. This review collected and summarized the updated information regarding the association of the KP with PD, which is helpful for understanding the clinical value of the KP in the PD scenario.
Collapse
Affiliation(s)
- Wei Qin
- Department of Rehabilitation, Enshi Central Hospital, Enshi, Hubei, China
| | - Yirong Shi
- Department of Nursing, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Weimei Chen
- Department of Nursing, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Xiaokang Jia
- Department of Neurology, the Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Tetsuya Asakawa
- Institute of Neurology, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Iftikhar A, Nausheen R, Muzaffar H, Naeem MA, Farooq M, Khurshid M, Almatroudi A, Alrumaihi F, Allemailem KS, Anwar H. Potential Therapeutic Benefits of Honey in Neurological Disorders: The Role of Polyphenols. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103297. [PMID: 35630774 PMCID: PMC9143627 DOI: 10.3390/molecules27103297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
Abstract
Honey is the principal premier product of beekeeping familiar to Homo for centuries. In every geological era and culture, evidence can be traced to the potential usefulness of honey in several ailments. With the advent of recent scientific approaches, honey has been proclaimed as a potent complementary and alternative medicine for the management and treatment of several maladies including various neurological disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and multiple sclerosis, etc. In the literature archive, oxidative stress and the deprivation of antioxidants are believed to be the paramount cause of many of these neuropathies. Since different types of honey are abundant with certain antioxidants, primarily in the form of diverse polyphenols, honey is undoubtedly a strong pharmaceutic candidate against multiple neurological diseases. In this review, we have indexed and comprehended the involved mechanisms of various constituent polyphenols including different phenolic acids, flavonoids, and other phytochemicals that manifest multiple antioxidant effects in various neurological disorders. All these mechanistic interpretations of the nutritious components of honey explain and justify the potential recommendation of sweet nectar in ameliorating the burden of neurological disorders that have significantly increased across the world in the last few decades.
Collapse
Affiliation(s)
- Arslan Iftikhar
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
| | - Rimsha Nausheen
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
| | - Humaira Muzaffar
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
| | - Muhammad Ahsan Naeem
- Department of Basic Sciences, KBCMA College of Veterinary and Animal Sciences, Narowal 51600, Pakistan;
| | - Muhammad Farooq
- Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang 35200, Pakistan;
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.); (F.A.)
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.); (F.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.); (F.A.)
- Correspondence: (H.A.); (K.S.A.)
| | - Haseeb Anwar
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
- Correspondence: (H.A.); (K.S.A.)
| |
Collapse
|
11
|
Stress induced microglial activation contributes to depression. Pharmacol Res 2022; 179:106145. [DOI: 10.1016/j.phrs.2022.106145] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023]
|
12
|
Mu C, Choudhary A, Mayengbam S, Barrett KT, Rho JM, Shearer J, Scantlebury MH. Seizure modulation by the gut microbiota and tryptophan-kynurenine metabolism in an animal model of infantile spasms. EBioMedicine 2022; 76:103833. [PMID: 35090836 PMCID: PMC8883001 DOI: 10.1016/j.ebiom.2022.103833] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The infantile spasms syndrome is an early-onset epileptic encephalopathy presenting in the first 2 years of life, often with severe developmental consequences. The role of the gut microbiota and metabolism in infantile spasms remains unexplored. METHODS Employing a brain injury neonatal rat model of infantile spasms intractable to anticonvulsant medication treatments, we determined how the ketogenic diet and antibiotics affected specific microbial communities and the resultant circulating factors that confer spasms protection in the infantile spasms model. To confirm a role of kynurenine metabolism pathway in spasms protection, indoleamine 2,3-dioxygenase 1 was pharmacologically inhibited and comprehensive metabolomics was applied. FINDINGS We show that antibiotics reduced spasms and improved the effectiveness of the ketogenic diet when given in combination. Examination of the gut microbiota and metabolomics showed the downregulation of indoleamine 2,3-dioxygenase 1 and upregulation of hippocampal kynurenic acid, a metabolite with antiepileptic effects. To further test the involvement of indoleamine 2,3-dioxygenase 1, a specific antagonist 1-methyltryptophan and minocycline, an antibiotic and inhibitor of kynurenine formation from tryptophan, were administered, respectively. Both treatments were effective in reducing spasms and elevating hippocampal kynurenic acid. A fecal microbiota transplant experiment was then performed to examine the contribution of the gut microbiota on spasm mitigation. Transplant of feces of ketogenic diet animals into normal diet animals was effective in reducing spasms. INTERPRETATION These results highlight the importance of tryptophan-kynurenine metabolism in infantile spasms and provide evidence for new-targeted therapies such as indoleamine 2,3-dioxygenase 1 inhibition or microbiota manipulation to promote kynurenic acid production as a strategy to reduce spasms in infantile spasms. FUNDING This study was funded by the Alberta Children's Hospital Research Institute and the Owerko Centre.
Collapse
Affiliation(s)
- Chunlong Mu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Anamika Choudhary
- Department of Pediatrics, University of Calgary, Calgary, AB T2N 1N4, Canada; Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute & Owerko Centre, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Shyamchand Mayengbam
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Karlene T Barrett
- Department of Pediatrics, University of Calgary, Calgary, AB T2N 1N4, Canada; Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute & Owerko Centre, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jong M Rho
- Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute & Owerko Centre, University of Calgary, Calgary, AB T2N 1N4, Canada; Department of Neurosciences, Division of Pediatric Neurology, Rady Children's Hospital-San Diego, University of California, San Diego, CA 92123, United States
| | - Jane Shearer
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute & Owerko Centre, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Morris H Scantlebury
- Department of Pediatrics, University of Calgary, Calgary, AB T2N 1N4, Canada; Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute & Owerko Centre, University of Calgary, Calgary, AB T2N 1N4, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
13
|
Reconnoitering the transformative journey of minocycline from an antibiotic to an antiepileptic drug. Life Sci 2022; 293:120346. [PMID: 35065989 DOI: 10.1016/j.lfs.2022.120346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 12/20/2022]
Abstract
Minocycline, a second-generation tetracycline antibiotic is being widely tested in animals as well as clinical settings for the management of multiple neurological disorders. The drug has shown to exert protective action in a multitude of neurological disorders including spinal-cord injury, stroke, multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, and Parkinson's disease. Being highly lipophilic, minocycline easily penetrates the blood brain barrier and is claimed to have excellent oral absorption (~100% bioavailability). Minocycline possesses anti-inflammatory, immunomodulatory, and anti-apoptotic properties, thereby supporting its use in treating neurological disorders. The article henceforth reviews all the recent advances in the transformation of this antibiotic into a potential antiepileptic/antiepileptogenic agent. The article also gives an account of all the clinical trials undertaken till now validating the antiepileptic potential of minocycline. Based on the reported studies, minocycline seems to be an important molecule for treating epilepsy. However, the practical therapeutic implementations of this molecule require extensive mechanism-based in-vitro (cell culture) and in-vivo (animal models) studies followed by its testing in randomized, placebo controlled and double-blind clinical trials in large population as well as in different form of epilepsies.
Collapse
|
14
|
Berberine alleviates visceral hypersensitivity in rats by altering gut microbiome and suppressing spinal microglial activation. Acta Pharmacol Sin 2021; 42:1821-1833. [PMID: 33558654 PMCID: PMC8563748 DOI: 10.1038/s41401-020-00601-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence shows that agents targeting gut dysbiosis are effective for improving symptoms of irritable bowel syndrome (IBS). However, the potential mechanisms remain unclear. In this study we investigated the effects of berberine on the microbiota-gut-brain axis in two rat models of visceral hypersensitivity, i.e., specific pathogen-free SD rats subjected to chronic water avoidance stress (WAS) and treated with berberine (200 mg· kg-1 ·d-1, ig, for 10 days) as well as germ-free (GF) rats subjected to fecal microbiota transplantation (FMT) from a patient with IBS (designated IBS-FMT) and treated with berberine (200 mg· kg-1 ·d-1, ig, for 2 weeks). Before the rats were sacrificed, visceral sensation and depressive behaviors were evaluated. Then colonic tryptase was measured and microglial activation in the dorsal lumbar spinal cord was assessed. The fecal microbiota was profiled using 16S rRNA sequencing, and short chain fatty acids (SCFAs) were measured. We showed that berberine treatment significantly alleviated chronic WAS-induced visceral hypersensitivity and activation of colonic mast cells and microglia in the dorsal lumbar spinal cord. Transfer of fecal samples from berberine-treated stressed donors to GF rats protected against acute WAS. FMT from a patient with IBS induced visceral hypersensitivity and pro-inflammatory phenotype in microglia, while berberine treatment reversed the microglial activation and altered microbial composition and function and SCFA profiles in stools of IBS-FMT rats. We demonstrated that berberine did not directly influence LPS-induced microglial activation in vitro. In both models, several SCFA-producing genera were enriched by berberine treatment, and positively correlated to the morphological parameters of microglia. In conclusion, activation of microglia in the dorsal lumbar spinal cord was involved in the pathogenesis of IBS caused by dysregulation of the microbiota-gut-brain axis, and the berberine-altered gut microbiome mediated the modulatory effects of the agent on microglial activation and visceral hypersensitivity, providing a potential option for the treatment of IBS.
Collapse
|
15
|
Singh T, Mishra A, Goel RK. PTZ kindling model for epileptogenesis, refractory epilepsy, and associated comorbidities: relevance and reliability. Metab Brain Dis 2021; 36:1573-1590. [PMID: 34427842 DOI: 10.1007/s11011-021-00823-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/14/2021] [Indexed: 12/13/2022]
Abstract
Pentylenetetrazole (PTZ)-induced seizure is one of the gold standard mouse models for rapid evaluation of novel anticonvulsants. Synchronically, PTZ induced kindling in mice is also a simple and well accepted model of chronic epilepsy. PTZ kindling has been explored for studying epileptogenesis, epilepsy-associated comorbidities, and refractory epilepsy. This review summarizes the potential of PTZ kindling in mice and its modifications for its face, construct, and predictive validity to screen antiepileptogenic drugs, combined or add on novel and safe therapies for treatment of epilepsy-associated depression and cognitive impairment as well as effective interventions for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Awanish Mishra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India
- Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research , Guwahati , Changsari, Kamrup , 781101 , Assam , India
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India.
| |
Collapse
|
16
|
Mejía-Granados DM, Villasana-Salazar B, Lozano-García L, Cavalheiro EA, Striano P. Gut-microbiota-directed strategies to treat epilepsy: clinical and experimental evidence. Seizure 2021; 90:80-92. [DOI: 10.1016/j.seizure.2021.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/18/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
|
17
|
Mithaiwala MN, Santana-Coelho D, Porter GA, O’Connor JC. Neuroinflammation and the Kynurenine Pathway in CNS Disease: Molecular Mechanisms and Therapeutic Implications. Cells 2021; 10:1548. [PMID: 34205235 PMCID: PMC8235708 DOI: 10.3390/cells10061548] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
Diseases of the central nervous system (CNS) remain a significant health, social and economic problem around the globe. The development of therapeutic strategies for CNS conditions has suffered due to a poor understanding of the underlying pathologies that manifest them. Understanding common etiological origins at the cellular and molecular level is essential to enhance the development of efficacious and targeted treatment options. Over the years, neuroinflammation has been posited as a common link between multiple neurological, neurodegenerative and neuropsychiatric disorders. Processes that precipitate neuroinflammatory conditions including genetics, infections, physical injury and psychosocial factors, like stress and trauma, closely link dysregulation in kynurenine pathway (KP) of tryptophan metabolism as a possible pathophysiological factor that 'fuel the fire' in CNS diseases. In this study, we aim to review emerging evidence that provide mechanistic insights between different CNS disorders, neuroinflammation and the KP. We provide a thorough overview of the different branches of the KP pertinent to CNS disease pathology that have therapeutic implications for the development of selected and efficacious treatment strategies.
Collapse
Affiliation(s)
- Mustafa N. Mithaiwala
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Danielle Santana-Coelho
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Grace A. Porter
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Jason C. O’Connor
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
- Department of Research, Audie L. Murphy VA Hospital, South Texas Veterans Heath System, San Antonio, TX 78229, USA
| |
Collapse
|
18
|
Gangar K, Bhatt LK. Therapeutic Targets for the Treatment of Comorbidities Associated with Epilepsy. Curr Mol Pharmacol 2021; 13:85-93. [PMID: 31793425 DOI: 10.2174/1874467212666191203101606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/03/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
Abstract
One of the most common neurological disorders, which occurs among 1% of the population worldwide, is epilepsy. Therapeutic failure is common with epilepsy and nearly about 30% of patients fall in this category. Seizure suppression should not be the only goal while treating epilepsy but associated comorbidities, which can further worsen the condition, should also be considered. Treatment of such comorbidities such as depression, anxiety, cognition, attention deficit hyperactivity disorder and, various other disorders which co-exist with epilepsy or are caused due to epilepsy should also be treated. Novel targets or the existing targets are needed to be explored for the dual mechanism which can suppress both the disease and the comorbidity. New therapeutic targets such as IDO, nNOS, PAR1, NF-κb are being explored for their role in epilepsy and various comorbidities. This review explores recent therapeutic targets for the treatment of comorbidities associated with epilepsy.
Collapse
Affiliation(s)
- Kinjal Gangar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, India
| |
Collapse
|
19
|
Li R, Ma C, Xiong Y, Zhao H, Yang Y, Xue L, Wang B, Xiao T, Chen J, Lei X, Ma B, Zhang J. An Antagonistic Peptide of Gpr1 Ameliorates LPS-Induced Depression through the Hypothalamic-Pituitary-Ovarian Axis. Biomolecules 2021. [DOI: doi.org/10.3390/biom11060857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Depression affects the reproductive axis at the hypothalamus and pituitary levels, which has a significant impact on female fertility. It has been reported that G protein-coupled receptor 1 (Gpr1) mRNA is expressed in both the hypothalamus and ovaries. However, it is unclear whether there is a relationship between Gpr1 and depression, and its role in ovarian function is unknown. Here, the expression of Gpr1 was recorded in the hypothalamus of normal female mice, and co-localized with gonadotrophin-releasing hormone (GnRH) and corticotropin-releasing factor (CRF). We established a depression mouse model to evaluate the antidepressant effect of G5, an antagonistic peptide of Gpr1. The results show that an intraperitoneal injection of G5 improves depressant–like behaviors remarkably, including increased sucrose intake in the sucrose preference test and decreased immobility time in the forced swimming tests. Moreover, G5 treatment increased the release of reproductive hormone and the expression of ovarian gene caused by depression. Together, our findings reveal a link between depression and reproductive diseases through Gpr1 signaling, and suggest antagonistic peptide of Gpr1 as a potential therapeutic application for hormone-modulated depression in women.
Collapse
|
20
|
Li R, Ma C, Xiong Y, Zhao H, Yang Y, Xue L, Wang B, Xiao T, Chen J, Lei X, Ma B, Zhang J. An Antagonistic Peptide of Gpr1 Ameliorates LPS-Induced Depression through the Hypothalamic-Pituitary-Ovarian Axis. Biomolecules 2021; 11:857. [PMID: 34207497 PMCID: PMC8228953 DOI: 10.3390/biom11060857] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/23/2022] Open
Abstract
Depression affects the reproductive axis at the hypothalamus and pituitary levels, which has a significant impact on female fertility. It has been reported that G protein-coupled receptor 1 (Gpr1) mRNA is expressed in both the hypothalamus and ovaries. However, it is unclear whether there is a relationship between Gpr1 and depression, and its role in ovarian function is unknown. Here, the expression of Gpr1 was recorded in the hypothalamus of normal female mice, and co-localized with gonadotrophin-releasing hormone (GnRH) and corticotropin-releasing factor (CRF). We established a depression mouse model to evaluate the antidepressant effect of G5, an antagonistic peptide of Gpr1. The results show that an intraperitoneal injection of G5 improves depressant-like behaviors remarkably, including increased sucrose intake in the sucrose preference test and decreased immobility time in the forced swimming tests. Moreover, G5 treatment increased the release of reproductive hormone and the expression of ovarian gene caused by depression. Together, our findings reveal a link between depression and reproductive diseases through Gpr1 signaling, and suggest antagonistic peptide of Gpr1 as a potential therapeutic application for hormone-modulated depression in women.
Collapse
Affiliation(s)
- Rongrong Li
- Key Laboratory of Animal Biotechnology College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture, Yangling 712100, China;
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (C.M.); (Y.X.); (H.Z.); (Y.Y.); (L.X.); (B.W.); (T.X.); (J.C.)
| | - Chiyuan Ma
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (C.M.); (Y.X.); (H.Z.); (Y.Y.); (L.X.); (B.W.); (T.X.); (J.C.)
| | - Yue Xiong
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (C.M.); (Y.X.); (H.Z.); (Y.Y.); (L.X.); (B.W.); (T.X.); (J.C.)
| | - Huashan Zhao
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (C.M.); (Y.X.); (H.Z.); (Y.Y.); (L.X.); (B.W.); (T.X.); (J.C.)
| | - Yali Yang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (C.M.); (Y.X.); (H.Z.); (Y.Y.); (L.X.); (B.W.); (T.X.); (J.C.)
| | - Li Xue
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (C.M.); (Y.X.); (H.Z.); (Y.Y.); (L.X.); (B.W.); (T.X.); (J.C.)
| | - Baobei Wang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (C.M.); (Y.X.); (H.Z.); (Y.Y.); (L.X.); (B.W.); (T.X.); (J.C.)
| | - Tianxia Xiao
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (C.M.); (Y.X.); (H.Z.); (Y.Y.); (L.X.); (B.W.); (T.X.); (J.C.)
| | - Jie Chen
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (C.M.); (Y.X.); (H.Z.); (Y.Y.); (L.X.); (B.W.); (T.X.); (J.C.)
| | - Xiaohua Lei
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (C.M.); (Y.X.); (H.Z.); (Y.Y.); (L.X.); (B.W.); (T.X.); (J.C.)
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture, Yangling 712100, China;
| | - Jian Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (C.M.); (Y.X.); (H.Z.); (Y.Y.); (L.X.); (B.W.); (T.X.); (J.C.)
| |
Collapse
|
21
|
Zádor F, Joca S, Nagy-Grócz G, Dvorácskó S, Szűcs E, Tömböly C, Benyhe S, Vécsei L. Pro-Inflammatory Cytokines: Potential Links between the Endocannabinoid System and the Kynurenine Pathway in Depression. Int J Mol Sci 2021; 22:ijms22115903. [PMID: 34072767 PMCID: PMC8199129 DOI: 10.3390/ijms22115903] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Substance use/abuse is one of the main causes of depressive symptoms. Cannabis and synthetic cannabinoids in particular gained significant popularity in the past years. There is an increasing amount of clinical data associating such compounds with the inflammatory component of depression, indicated by the up-regulation of pro-inflammatory cytokines. Pro-inflammatory cytokines are also well-known to regulate the enzymes of the kynurenine pathway (KP), which is responsible for metabolizing tryptophan, a precursor in serotonin synthesis. Enhanced pro-inflammatory cytokine levels may over-activate the KP, leading to tryptophan depletion and reduced serotonin levels, which can subsequently precipitate depressive symptoms. Therefore, such mechanism might represent a possible link between the endocannabinoid system (ECS) and the KP in depression, via the inflammatory and dysregulated serotonergic component of the disorder. This review will summarize the data regarding those natural and synthetic cannabinoids that increase pro-inflammatory cytokines. Furthermore, the data on such cytokines associated with KP activation will be further reviewed accordingly. The interaction of the ECS and the KP has been postulated and demonstrated in some studies previously. This review will further contribute to this yet less explored connection and propose the KP to be the missing link between cannabinoid-induced inflammation and depressive symptoms.
Collapse
Affiliation(s)
- Ferenc Zádor
- Institute of Biochemistry, Biological Research Center, H-6726 Szeged, Hungary; (F.Z.); (S.D.); (E.S.); (C.T.); (S.B.)
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark;
| | - Gábor Nagy-Grócz
- Faculty of Health Sciences and Social Studies, University of Szeged, H-6726 Szeged, Hungary;
- Albert Szent-Györgyi Clinical Center, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - Szabolcs Dvorácskó
- Institute of Biochemistry, Biological Research Center, H-6726 Szeged, Hungary; (F.Z.); (S.D.); (E.S.); (C.T.); (S.B.)
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Center, H-6726 Szeged, Hungary; (F.Z.); (S.D.); (E.S.); (C.T.); (S.B.)
- Doctoral School of Theoretical Medicine, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Csaba Tömböly
- Institute of Biochemistry, Biological Research Center, H-6726 Szeged, Hungary; (F.Z.); (S.D.); (E.S.); (C.T.); (S.B.)
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Center, H-6726 Szeged, Hungary; (F.Z.); (S.D.); (E.S.); (C.T.); (S.B.)
| | - László Vécsei
- Albert Szent-Györgyi Clinical Center, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, University of Szeged, H-6725 Szeged, Hungary
- Department of Neurology, Interdisciplinary Excellence Center, University of Szeged, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-351
| |
Collapse
|
22
|
Singh T, Goel RK. Epilepsy Associated Depression: An Update on Current Scenario, Suggested Mechanisms, and Opportunities. Neurochem Res 2021; 46:1305-1321. [PMID: 33665775 DOI: 10.1007/s11064-021-03274-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022]
Abstract
Depression is one of the most frequent psychiatric comorbidities associated with epilepsy having a major impact on the patient's quality of life. Several screening tools are available to identify and follow up psychiatric disorders in epilepsy. Out of various psychiatric disorders, people with epilepsy (PWE) are at greater risk of developing depression. This bidirectional relationship further hinders pharmacotherapy of comorbid depression in PWE as some antiepileptic drugs (AEDs) worsen associated depression and coadministration of existing antidepressants (ADs) to alleviate comorbid depression has been reported to worsen seizures. Selective serotonin reuptake inhibitors (SSRIs) and selective serotonin and norepinephrine reuptake inhibitors (SNRIs) are first choice of ADs and are considered safe in PWE, but there are no high-quality evidences. Similar to observations in people with depression, PWE also showed pharmacoresistant to available SSRI/SNRIs, which further complicates the disease prognosis. Randomized double-blind placebo-controlled clinical trials are necessary to report efficacy and safety of available ADs in PWE. We should also move beyond ADs, and therefore, we reviewed common pathological mechanisms such as neuroinflammation, dysregulated hypothalamus pituitary adrenal (HPA) axis, altered neurogenesis, and altered tryptophan metabolism responsible for coexistent relationship of epilepsy and depression. Based on these common pertinent pathways involved in the genesis of epilepsy and depression, we suggested novel targets and therapeutic approaches for safe management of comorbid depression in epilepsy.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
23
|
Deng N, Hu J, Hong Y, Ding Y, Xiong Y, Wu Z, Xie W. Indoleamine-2,3-Dioxygenase 1 Deficiency Suppresses Seizures in Epilepsy. Front Cell Neurosci 2021; 15:638854. [PMID: 33679331 PMCID: PMC7935521 DOI: 10.3389/fncel.2021.638854] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Indoleamine-2,3-dioxygenase 1 (IDO1) is the initial and rate-limiting enzyme in the metabolism of tryptophan (TRP) to kynurenine (KYN). IDO1-dependent neurotoxic KYN metabolism plays a crucial role in the pathogenesis of many neurodegenerative disorders. However, the function of IDO1 in epilepsy is still unclear. Objective: In this study, we investigated whether IDO1 deficiency could affect epilepsy in a lithium-pilocarpine-induced model. Methods: Patients with epilepsy and controls were enrolled. Male C57BL/6 mice and IDO1 knockout (KO, IDO1-/-) mice were subjected to intraperitoneal injection of lithium and pilocarpine to induce epilepsy. The levels of IDO1 and concentrations of TRP and KYN in patients with epilepsy and epileptic mice were evaluated by enzyme-linked immunosorbent assay (ELISA) and liquid chromatography-mass spectrometry (LC-MS), respectively. Then, behavioral phenotypes related to epileptic seizures and neuronal damage were compared between KO and wild-type (WT) mice with lithium-pilocarpine-induced epilepsy. To explore the underlying pathways involved in the effects of IDO1 deficiency, the concentrations of kynurenic acid (KYNA) and quinolinic acid (QUIN), glial cell activation, the levels of major pro-inflammatory cytokines, and antioxidant enzyme activity were measured by LC-MS, immunohistochemistry, and ELISA. Results: In this study, IDO1 levels and the KYN/TRP ratio in the sera and cerebrospinal fluid (CSF) were increased in patients with epilepsy. Also, IDO1 levels, the KYN/TRP ratio, and the levels of pro-inflammatory cytokines in the sera and hippocampi were increased in mice during the acute phase and chronic phase after status epilepticus (SE). Furthermore, IDO1 was localized in microglial cells in epileptic mice. IDO1 deficiency delayed SE onset and attenuated the frequency, duration, and severity of spontaneous recurrent seizures (SRSs). Moreover, IDO1 deficiency improved neuronal survival. Additionally, IDO1-/- epileptic mice showed progressive declines in QUIN production, glial cell activation and pro-inflammatory cytokines levels, and enhanced antioxidant enzyme activity. Conclusions: IDO1 deletion suppressed seizures and alleviated neuronal damage by reducing the IDO1-dependent production of neurotoxic metabolites, which finally inhibited glial cell activation and pro-inflammatory cytokine production and improved antioxidant enzyme activity. Our study demonstrates that IDO1 may be involved in the pathogenesis of epilepsy and has the potential to be a therapeutic target for epilepsy treatment.
Collapse
Affiliation(s)
- Ning Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jiao Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yu Hong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuewen Ding
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yifan Xiong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhiyong Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Gao L, Gao T, Zeng T, Huang P, Wong NK, Dong Z, Li Y, Deng G, Wu Z, Lv Z. Blockade of Indoleamine 2, 3-dioxygenase 1 ameliorates hippocampal neurogenesis and BOLD-fMRI signals in chronic stress precipitated depression. Aging (Albany NY) 2021; 13:5875-5891. [PMID: 33591947 PMCID: PMC7950278 DOI: 10.18632/aging.202511] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/08/2020] [Indexed: 04/13/2023]
Abstract
Indoleamine 2, 3-dioxygenase 1 (IDO1) has been implicated in the pathogenesis of depression, though its molecular mechanism is still poorly understood. We investigated the molecular mechanism of IDO1 in depression by using the chronic unpredictable mild stress (CUMS) model in Ido1-/- mice and WT mice. The brain blood oxygen level dependent (BOLD) signals in mice were collected by functional magnetic resonance imaging (fMRI) technology. IDO1 inhibitor INCB024360 was intervened in dorsal raphe nucleus (DRN) through stereotactic injection. We found an elevation of serum IDO1 activity and decreased 5-HT in CUMS mice, and the serum IDO1 activity was negatively correlated with 5-HT level. Consistently, IDO1 was increased in hippocampus and DRN regions, accompanied by a reduction of hippocampal BDNF levels in mice with CUMS. Specifically, pharmacological inhibition of IDO1 activity in the DRN alleviated depressive-like behaviour with improving hippocampal BDNF expression and neurogenesis in CUMS mice. Furthermore, ablation of Ido1 exerted stress resistance and decreased the sensitivity of depression in CUMS mice with the stable BOLD signals, BDNF expression and neurogenesis in hippocampus. Thus, IDO1 hyperactivity played crucial roles in modulating 5-HT metabolism and BDNF function thereby impacting outcomes of hippocampal neurogenesis and BOLD signals in depressive disorder.
Collapse
Affiliation(s)
- Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Tingting Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Foshan Maternal and Child Health Research Institute, Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China
| | - Nai-Kei Wong
- State Key Discipline of Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhaoyang Dong
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yunjia Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Guanghui Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiyong Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Zhang S, Zong Y, Ren Z, Hu J, Wu X, Xiao H, Qin S, Zhou G, Ma Y, Zhang Y, Yu J, Wang K, Lu G, Liu Q. Regulation of indoleamine 2, 3-dioxygenase in hippocampal microglia by NLRP3 inflammasome in lipopolysaccharide-induced depressive-like behaviors. Eur J Neurosci 2020; 52:4586-4601. [PMID: 33098156 DOI: 10.1111/ejn.15016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/28/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022]
Abstract
In the brain, NLRP3 (Nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin-domain-containing 3) inflammasome is mainly expressed in microglia located in the hippocampus and other mood-regulated regions, which are particularly susceptible to stress. The activation of NLRP3 inflammasome and production of the activation products may contribute to the development of depressive disorder and memory deficits. Indoleamine 2, 3-dioxygenase (IDO) is a key factor mediating inflammation and major depressive disorder (MDD). We here generated NLRP3 and apoptosis-associated speck-like protein containing caspase recruitment domain (ASC)-knockout mice, respectively, to verify the effects of NLRP3 or ASC deficiency on lipopolysaccharide (LPS)-induced depressive-like behaviors, neuroinflammation, and regulation of IDO expression. Furthermore, we treated these mice with the antidepressant clomipramine (CLO) to observe its effect on depressive-like behaviors and the expression of the NLRP3 inflammasome and LPS-induced IDO. We found that intraperitoneal LPS administration led to marked depressive-like behavior and neuroinflammation. NLRP3 or ASC deficiency attenuated LPS-induced depressive-like symptoms and increased IDO gene expression, which was accompanied by inhibition of LPS-induced microglial activation, suggesting that IDO may be a downstream mediator of the NLRP3 inflammasome in inflammation-mediated depressive-like behaviors. Clomipramine administration ameliorated depressive-like behavior in LPS-treated mice by regulating the expression of ASC and IDO. In conclusion, NLRP3 inflammasome is involved in LPS-induced depressive-like behaviors, and that NLRP3 and ASC may play roles in regulating IDO expression in microglia. This may be a potential mechanism for its involvement in MDD. The antidepressant effect of clomipramine may be exerted through the regulation of ASC-mediated expression of IDO.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Zong
- Department of Health Toxicology, College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, China.,Suzhou CTI Biotechnology Co., Ltd., Jiangsu, China
| | - Zhonggan Ren
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Juntao Hu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xinyuan Wu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Honglei Xiao
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| | - Guomin Zhou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| | - Yuanyuan Ma
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yaodong Zhang
- Henan Neural Development Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Henan, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology School of Basic Medical Sciences, Shanghai, China
| | - Kaidi Wang
- Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guocai Lu
- Department of Health Toxicology, College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, China.,Suzhou CTI Biotechnology Co., Ltd., Jiangsu, China
| | - Qiong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| |
Collapse
|
26
|
The Impact of Chronic Mild Stress and Agomelatine Treatment on the Expression Level and Methylation Status of Genes Involved in Tryptophan Catabolic Pathway in PBMCs and Brain Structures. Genes (Basel) 2020; 11:genes11091093. [PMID: 32962062 PMCID: PMC7563711 DOI: 10.3390/genes11091093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 01/11/2023] Open
Abstract
Depression is the serious mental disorder. Previous studies suggest that the development mechanism of depression may be associated with disorders of the tryptophan catabolic pathway (TRYCAT). Thus, this study investigates the effect of agomelatine treatment on the expression and methylation status of genes involved in TRYCAT in the brain and blood of rats exposed to a chronic mild stress (CMS). Separate groups of rats were exposed to CMS for two or seven weeks; the second group received vehicle or agomelatine for five weeks. After completion of both stress conditions and treatment, the expression levels of messenger RNA (mRNA) and protein, as well as the methylation status of promoters, were measured in peripheral blood mononuclear cells (PBMCs) and in brain structures with the use of TaqMan Gene Expression Assay, Western blot, and methylation-sensitive high-resolution melting techniques. In PBMCs, Kmo mRNA expression increased in the group after CMS, while this effect was normalized by agomelatine therapy. In brain, KatI and KatII expression changed following CMS exposure. Moreover, CMS decreased the methylation status of the second Tdo2 promoter in the amygdala. Protein expression of Tph1, Tph2, Ido1, and KatII changed in the group after CMS and agomelatine administration, most prominently in the basal ganglia, cerebral cortex, hippocampus, and amygdala. The results indicate that CMS and agomelatine affect the mRNA and protein expression, as well as the methylation of promoters of genes involved in the tryptophan catabolic pathway.
Collapse
|
27
|
Alahdal M, Duan L, Ouyang H, Wang D. The role of indoleamine 2,3 dioxygenase 1 in the osteoarthritis. Am J Transl Res 2020; 12:2322-2343. [PMID: 32655775 PMCID: PMC7344072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease and a leading cause of disability. It involves articular cartilage destruction and a whole joint inflammation. In spite of OA pathogenesis is still unclear, new studies on the OA pathophysiological aetiology and immunomodulation therapy continuously achieve significant advances with new concepts. Here, we focus on the indoleamine-2,3-dioxygenase1 (IDO1) activity in the osteoarthritis (OA), which is one of the noticeable enzymes in the synovial fluid of arthritis patients. It was recognized as an essential mediator of autoreactive B and T cell responses in rheumatoid arthritis (RA) and an interesting therapeutic target against RA. However, the role IDO1 plays in the OA pathogenesis hasn't been discussed. The new OA experimental analysis evidenced IDO1 overexpression in the synovial fluid of OA patients, and recent studies reported that IDO1 metabolites were found higher in the OA synovial fluid than RA and spondyloarthropathies (SpA) patients. Moreover, the positive relation of IDO1 metabolites with OA pain and joint stiffness has been confirmed. Thus, the IDO1 plays a pivotal role in the pathogenesis of OA. In this review, the role IDO1 plays in the OA pathogenesis has been deeply discussed. It could be a promising target in the immunotherapy of OA disease.
Collapse
Affiliation(s)
- Murad Alahdal
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)Shenzhen 518035, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of MedicineHangzhou, P. R. China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, P. R. China
| | - Li Duan
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)Shenzhen 518035, P. R. China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, P. R. China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of MedicineHangzhou, P. R. China
| | - Daping Wang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)Shenzhen 518035, P. R. China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, P. R. China
| |
Collapse
|
28
|
Hong S, Xin Y, JiaWen W, ShuQin Z, GuiLian Z, HaiQin W, Zhen G, HongWei R, YongNan L. The P2X7 receptor in activated microglia promotes depression- and anxiety-like behaviors in lithium -pilocarpine induced epileptic rats. Neurochem Int 2020; 138:104773. [PMID: 32531197 DOI: 10.1016/j.neuint.2020.104773] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Depressive and anxious behaviors are the most common psychiatric symptoms of epilepsy, and may aggravate the epileptic condition and affect the patient's quality of life. Accumulating data obtained from both experimental animal models and patients have convincingly shown a critical role of P2X7 receptor (P2X7R) during depression and anxiety. Our study showed for the first time that the P2X7R is involved in promoting depression- and anxiety-like behaviors in lithium pilocarpine-induced epileptic rats. More importantly, direct anti-depressive and anti-anxiety effects were produced by the P2X7R antagonist Brilliant Blue G (BBG) is in this study, and the effect was similar to that of the classic anti-depressant and anti-anxiety drug fluoxetine. We also found that BBG did not affect the development of spontaneous recurrent seizures (SRS) and had a neuroprotective effect via inhibition of microglial activation after status epilepticus (SE). Thus, our data provide evidence that the P2X7R in activated microglia promotes depression- and anxiety-like behaviors in lithium-pilocarpine induced epileptic rats. Since previous studies have indicated that some anti-depression and anti-anxiety drugs may exacerbate seizures, our data support that the P2X7R is a promising therapeutic target for epilepsy associated with depression and anxiety.
Collapse
Affiliation(s)
- Sun Hong
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Yu Xin
- Department of Neurology, People's Liberation Army 401 Hospital, Qingdao, Shandong, 266071, China
| | - Wu JiaWen
- Department of Dermatology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Zhan ShuQin
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Zhang GuiLian
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Wu HaiQin
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Gao Zhen
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Reng HongWei
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Li YongNan
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| |
Collapse
|
29
|
Opioid system influences gut-brain axis: Dysbiosis and related alterations. Pharmacol Res 2020; 159:104928. [PMID: 32504837 DOI: 10.1016/j.phrs.2020.104928] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/24/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
Opioid drugs are widely used to treat chronic pain, but their misuse can lead to tolerance, dependence, and addiction and have created a significant public health problem. In addition, food-derived opioid peptides, known as exorphins, like gluten exorphins have been shown to have harmful effects in certain pathologies like celiac disease, for example. Several studies support the involvement of the opioid system in the development of disorders such as autism spectrum syndrome. Moreover, bidirectional communication between the intestine and brain has been shown to be altered in various neurodegenerative diseases including Alzheimer´s and Parkinson´s. The presence of opioid receptors in both the digestive tract and the central nervous system (CNS) suggests that opioid drugs and exorphins may modulate the gut-brain axis. Morphine, for example, has shown a dysbiotic effect on the bacterial microbiota in addition to inducing an increase in intestinal permeability facilitating bacterial translocation. Furthermore, certain components of bacteria can modify the expression of opioid receptors at the central level increasing sensitivity to pain. Strategies based on use of probiotics have resulted in improvements in symptoms of autism and Parkinson´s disease. In this manuscript, we review the role of the opioid system in disorders and CNS pathologies and the involvement of the gut-brain axis.
Collapse
|
30
|
Wei N, Zhang H, Wang J, Wang S, Lv W, Luo L, Xu Z. The Progress in Diagnosis and Treatment of Exosomes and MicroRNAs on Epileptic Comorbidity Depression. Front Psychiatry 2020; 11:405. [PMID: 32528321 PMCID: PMC7247821 DOI: 10.3389/fpsyt.2020.00405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
The occurrence of epilepsy can increase the incidence of depression, and the risk of epilepsy in the patients with depression is also high, both of which have an adverse effect on the life and the psychology of the patient, which is not conducive to the prognosis of the patients with epilepsy. With lucubrating the function of exosomes and microRNAs, some scholars found that the exosomes and its microRNAs have development prospect in the diagnosis and treatment of the disease. MicroRNAs are involved in the regulation of seizures and depression, as biomarkers, that can significantly improve the management of epileptic patients and play a preventive role in the occurrence of epilepsy and epilepsy depressive disorder. Moreover, due to its regulation to genes, appropriate application of microRNAs may have therapeutic effect on epilepsy and depression with the characteristics of long distance transmission and stability of exosomes, to a certain extent. This provides a great convenience for the diagnosis and treatment of epileptic comorbidity depression.
Collapse
Affiliation(s)
- Nian Wei
- Zunyi Medical University, Zunyi, China
| | - Haiqing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jing Wang
- Prevention and Health Care, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shen Wang
- Zunyi Medical University, Zunyi, China
| | - Wenbo Lv
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Limei Luo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| |
Collapse
|
31
|
Nahomi RB, Nam MH, Rankenberg J, Rakete S, Houck JA, Johnson GC, Stankowska DL, Pantcheva MB, MacLean PS, Nagaraj RH. Kynurenic Acid Protects Against Ischemia/Reperfusion-Induced Retinal Ganglion Cell Death in Mice. Int J Mol Sci 2020; 21:ijms21051795. [PMID: 32151061 PMCID: PMC7084183 DOI: 10.3390/ijms21051795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/21/2020] [Accepted: 03/02/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Glaucoma is an optic neuropathy and involves the progressive degeneration of retinal ganglion cells (RGCs), which leads to blindness in patients. We investigated the role of the neuroprotective kynurenic acid (KYNA) in RGC death against retinal ischemia/reperfusion (I/R) injury. Methods: We injected KYNA intravenously or intravitreally to mice. We generated a knockout mouse strain of kynurenine 3-monooxygenase (KMO), an enzyme in the kynurenine pathway that produces neurotoxic 3-hydroxykynurenine. To test the effect of mild hyperglycemia on RGC protection, we used streptozotocin (STZ) induced diabetic mice. Retinal I/R injury was induced by increasing intraocular pressure for 60 min followed by reperfusion and RGC numbers were counted in the retinal flat mounts. Results: Intravenous or intravitreal administration of KYNA protected RGCs against I/R injury. The I/R injury caused a greater loss of RGCs in wild type than in KMO knockout mice. KMO knockout mice had mildly higher levels of fasting blood glucose than wild type mice. Diabetic mice showed significantly lower loss of RGCs when compared with non-diabetic mice subjected to I/R injury. Conclusion: Together, our study suggests that the absence of KMO protects RGCs against I/R injury, through mechanisms that likely involve higher levels of KYNA and glucose.
Collapse
Affiliation(s)
- Rooban B. Nahomi
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado, Aurora, CO 80045, USA; (M.-H.N.); (J.R.); (S.R.); (M.B.P.)
- Correspondence: (R.B.N.); (R.H.N.); Tel.: +1-303-724-8824 (R.H.N.)
| | - Mi-Hyun Nam
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado, Aurora, CO 80045, USA; (M.-H.N.); (J.R.); (S.R.); (M.B.P.)
| | - Johanna Rankenberg
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado, Aurora, CO 80045, USA; (M.-H.N.); (J.R.); (S.R.); (M.B.P.)
| | - Stefan Rakete
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado, Aurora, CO 80045, USA; (M.-H.N.); (J.R.); (S.R.); (M.B.P.)
| | - Julie A. Houck
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado, Aurora, CO 80045, USA; (J.A.H.); (G.C.J.); (P.S.M.)
| | - Ginger C. Johnson
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado, Aurora, CO 80045, USA; (J.A.H.); (G.C.J.); (P.S.M.)
| | - Dorota L. Stankowska
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Mina B. Pantcheva
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado, Aurora, CO 80045, USA; (M.-H.N.); (J.R.); (S.R.); (M.B.P.)
| | - Paul S. MacLean
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado, Aurora, CO 80045, USA; (J.A.H.); (G.C.J.); (P.S.M.)
| | - Ram H. Nagaraj
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado, Aurora, CO 80045, USA; (M.-H.N.); (J.R.); (S.R.); (M.B.P.)
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
- Correspondence: (R.B.N.); (R.H.N.); Tel.: +1-303-724-8824 (R.H.N.)
| |
Collapse
|
32
|
Lanser L, Kink P, Egger EM, Willenbacher W, Fuchs D, Weiss G, Kurz K. Inflammation-Induced Tryptophan Breakdown is Related With Anemia, Fatigue, and Depression in Cancer. Front Immunol 2020; 11:249. [PMID: 32153576 PMCID: PMC7047328 DOI: 10.3389/fimmu.2020.00249] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Many patients with cancer suffer from anemia, depression, and an impaired quality of life (QoL). These patients often also show decreased plasma tryptophan levels and increased kynurenine concentrations in parallel with elevated concentrations of Th1 type immune activation marker neopterin. In the course of anti-tumor immune response, the pro-inflammatory cytokine interferon gamma (IFN-γ) induces both, the enzyme indoleamine 2,3-dioxygenase (IDO) to degrade tryptophan and the enzyme GTP-cyclohydrolase I to form neopterin. High neopterin concentrations as well as an increased kynurenine to tryptophan ratio (Kyn/Trp) in the blood of cancer patients are predictive for a worse outcome. Inflammation-mediated tryptophan catabolism along the kynurenine pathway is related to fatigue and anemia as well as to depression and a decreased QoL in patients with solid tumors. In fact, enhanced tryptophan breakdown might greatly contribute to the development of anemia, fatigue, and depression in cancer patients. IDO activation and stimulation of the kynurenine pathway exert immune regulatory mechanisms, which may impair anti-tumor immune responses. In addition, tumor cells can degrade tryptophan to weaken immune responses directed against them. High IDO expression in the tumor tissue is associated with a poor prognosis of patients. The efficiency of IDO-inhibitors to inhibit cancer progression is currently tested in combination with established chemotherapies and with immune checkpoint inhibitors. Inflammation-mediated tryptophan catabolism and its possible influence on the development and persistence of anemia, fatigue, and depression in cancer patients are discussed.
Collapse
Affiliation(s)
- Lukas Lanser
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Patricia Kink
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Eva Maria Egger
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Wolfgang Willenbacher
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
- Oncotyrol Centre for Personalized Cancer Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Guenter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Kurz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
33
|
Cai L, He Q, Lu Y, Hu Y, Chen W, Wei L, Hu Y. Comorbidity of Pain and Depression in a Lumbar Disc Herniation Model: Biochemical Alterations and the Effects of Fluoxetine. Front Neurol 2019; 10:1022. [PMID: 31616368 PMCID: PMC6768967 DOI: 10.3389/fneur.2019.01022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/09/2019] [Indexed: 11/14/2022] Open
Abstract
Summary of Background Data: Depression is one of the most common comorbidities in patients with chronic low back pain. However, the mechanisms of depression in chronic low back pain patients and the effect of antidepressants on the comorbidity of pain and depression need to be further explored. The establishment of the appropriate animal models and of more effective therapies is critical for this comorbidity. Lumbar disc herniation (LDH) is the most common disease that causes low back pain. The current study examined whether an LDH model shows behavioral and biochemical alterations that are in accordance with the characteristics of the comorbidity of pain and depression and tested the effect of fluoxetine (FLX) on these measures. Objective: The current study examined whether an LDH model showed the behavioral and biochemical alterations that were in accordance with the characteristics of the comorbidity of pain and depression and tested the effect of FLX on these measures. Methods: The LDH animal model was generated by the implantation of the autologous nucleus pulposus on the left L5 nerve root just proximal to the dorsal root ganglion in Wistar rats. Pain intensity was evaluated by mechanical allodynia and thermal hyperalgesia, and changes in depressive behavior were examined by the taste preference and forced swim tests. Hippocampal serotonin (5-HT) levels were measured by liquid chromatography-mass spectrometry, and tumor necrosis factor-α (TNF-α) mRNA was quantified using real-time reverse transcriptase PCR. Results: LDH resulted in chronic pain, which further induced depressive behavior that persisted for 6 weeks after surgery. There were decreased 5-HT concentrations and upregulated TNF-α mRNA levels that were accompanied by behavioral changes. FLX treatment improved depressive behavior and moderately alleviated pain through increased 5-HT concentrations, and inhibited TNF-α mRNA expression. Conclusions: In summary, our studies provide initial evidence that the LDH chronic pain model might serve as a model of the comorbidity of low back pain and depression. The finding that FLX improved depressive behavior and pain through normalized 5-HT concentrations and TNF-α mRNA expression establishes the initial mechanism of the comorbidity of pain and depression.
Collapse
Affiliation(s)
- Lun Cai
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Qianchao He
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Yongjing Lu
- Department of Nuclear Medicine, Minzu Hospital of Guangxi, Nanning, China
| | - Yuying Hu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Liping Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Yueqiang Hu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
34
|
Juda MB, Brooks AK, Towers AE, Freund GG, McCusker RH, Steelman AJ. Indoleamine 2,3-dioxygenase 1 deletion promotes Theiler's virus-induced seizures in C57BL/6J mice. Epilepsia 2019; 60:626-635. [PMID: 30770561 DOI: 10.1111/epi.14675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Viral encephalitis increases the risk for developing seizures and epilepsy. Indoleamine 2,3-dioxygenase 1 (Ido1) is induced by inflammatory cytokines and functions to metabolize tryptophan to kynurenine. Kynurenine can be further metabolized to produce kynurenic acid and the N-methyl-d-aspartate receptor agonist quinolinic acid (QuinA). In the present study, we sought to determine the role of Ido1 in promoting seizures in an animal model of viral encephalitis. METHODS C57BL/6J and Ido1 knockout mice (Ido1-KO) were infected with Theiler's murine encephalomyelitis virus (TMEV). Quantitative real-time polymerase chain reaction was used to evaluate hippocampal expression of proinflammatory cytokines, Ido1, and viral RNA. Body weights and seizure scores were recorded daily. Elevated zero maze was used to assess differences in behavior, and hippocampal pathology was determined by immunohistochemistry. RESULTS Infected C57BL/6J mice up-regulated proinflammatory cytokines, Ido1, and genes encoding the enzymatic cascade responsible for QuinA production in the kynurenine pathway prior to the onset of seizures. Seizure incidence was elevated in Ido1-KO compared to C57BL/6J mice. Infection increased locomotor activity in Ido1-KO compared to C57BL/6J mice. Furthermore, the occurrence of seizures was associated with hyperexcitability. Neither expression of proinflammatory cytokines nor viral RNA was altered as a result of genotype. Immunohistochemical analysis revealed increased hippocampal pathology in Ido1-KO mice. SIGNIFICANCE Our findings suggest that Ido1 deletion promotes seizures and neuropathogenesis during acute TMEV encephalitis.
Collapse
Affiliation(s)
- Michal B Juda
- Department of Animal Sciences, College of Agricultural, Consumer, and Environmental Sciences, Urbana, Illinois
| | - Alexandra K Brooks
- Neuroscience Program, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Albert E Towers
- Division of Nutritional Sciences, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Gregory G Freund
- Department of Animal Sciences, College of Agricultural, Consumer, and Environmental Sciences, Urbana, Illinois.,Division of Nutritional Sciences, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois.,Department of Pathology, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Robert H McCusker
- Department of Animal Sciences, College of Agricultural, Consumer, and Environmental Sciences, Urbana, Illinois.,Neuroscience Program, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois.,Department of Pathology, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Andrew J Steelman
- Department of Animal Sciences, College of Agricultural, Consumer, and Environmental Sciences, Urbana, Illinois.,Neuroscience Program, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois.,Division of Nutritional Sciences, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
35
|
Wang Y, Wang Y, Sun R, Wu X, Chu X, Zhou S, Hu X, Gao L, Kong Q. The treatment value of IL-1β monoclonal antibody under the targeting location of alpha-methyl-L-tryptophan and superparamagnetic iron oxide nanoparticles in an acute temporal lobe epilepsy model. J Transl Med 2018; 16:337. [PMID: 30514296 PMCID: PMC6280459 DOI: 10.1186/s12967-018-1712-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Temporal lobe epilepsy (TLE) is a common and often refractory brain disease that is closely correlated with inflammation. Alpha-methyl-L-tryptophan (AMT) is recognized as a surrogate marker for epilepsy, characterized by high uptake in the epileptic focus. There are many advantages of using the magnetic targeting drug delivery system of superparamagnetic iron oxide nanoparticles (SPIONs) to treat many diseases, including epilepsy. We hypothesized that AMT and an IL-1β monoclonal antibody (anti-IL-1β mAb) chelated to SPIONs would utilize the unique advantages of SPIONs and AMT to deliver the anti-IL-1β mAb across the blood-brain barrier (BBB) as a targeted therapy. METHODS Acute TLE was induced in 30 rats via treatment with lithium-chloride pilocarpine. The effects of plain-SPIONs, anti-IL-1β-mAb-SPIONs, or AMT-anti-IL-1β-mAb-SPIONs on seizure onset were assessed 48 h later. Perl's iron staining, Nissl staining, immunofluorescence staining and western blotting were performed after magnetic resonance imaging examination. RESULTS The imaging and histopathology in combination with the molecular biology findings showed that AMT-anti-IL-1β-mAb-SPIONs were more likely to penetrate the BBB in the acute TLE model to reach the targeting location and deliver a therapeutic effect than plain-SPIONs and anti-IL-1β-mAb-SPIONs. CONCLUSIONS This study demonstrated the significance of anti-IL-1β-mAb treatment in acute TLE with respect to the unique advantages of SPIONs and the active location-targeting characteristic of AMT.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yanling Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ran Sun
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xingrao Wu
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xu Chu
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Shuhu Zhou
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xibin Hu
- Department of Magnetic Resonance Imaging, Affiliated Hospital of Jining Medical University, Jining, China
| | - Lingyun Gao
- Department of Magnetic Resonance Imaging, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qingxia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China.
| |
Collapse
|
36
|
Hong Y, Deng N, Jin HN, Xuan ZZ, Qian YX, Wu ZY, Xie W. Saikosaponin A modulates remodeling of Kv4.2-mediated A-type voltage-gated potassium currents in rat chronic temporal lobe epilepsy. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2945-2958. [PMID: 30254424 PMCID: PMC6141107 DOI: 10.2147/dddt.s166408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Chronic temporal lobe epilepsy (cTLE) is the most common intractable epilepsy. Recent studies have shown that saikosaponin A (SSa) could inhibit epileptiform discharges induced by 4 action potentials and selectively increase the transient inactivating K+ currents (IA). However, the mechanisms of SSa on IA remain unclear. In this study, we comprehensively evaluated the anticonvulsant activities of SSa and explored whether or not it plays an anti-epileptic role in a Li-pilocarpine induced epilepsy rat model via remodeling Kv4.2-mediated A-type voltage-gated potassium currents (Kv4.2-mediated IA). Materials and methods All in vitro spontaneous recurrent seizures (SRS) were recorded with continuous video monitoring. Nissl’s staining was used to evaluate the SSa protection of neurons and immunohistochemistry, Western blot, and quantitative reverse transcription PCR were used to quantify the expression of Kchip1 and Kv4.2 in the hippocampal CA1 field and the adjacent cortex following Li-pilocarpine induced status epilepticus. We used whole-cell current-clamp recordings to evaluate the anticonvulsant activities of SSa in a hippocampal neuronal culture model of cTLE, while whole-cell voltage-clamp recordings were used to evaluate the modulatory effects of SSa on Kv4.2-mediated IA. Results SSa treatment significantly reduced the frequency and duration of SRS over the course of eight weeks and increased the production of Kchip1 and Kv4.2. In addition, SSa attenuated spontaneous recurrent epileptiform discharges (SREDs) in the hippocampal neuronal model and up-regulated Kv4.2-mediated IA. Conclusions SSa exerted a disease-modifying effect in our cTLE rat model both in vivo and in vitro; the increase in Kv4.2-mediated IA may contribute to the anticonvulsant mechanisms of SSa.
Collapse
Affiliation(s)
- Yu Hong
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China, .,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China,
| | - Ning Deng
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China,
| | - Han-Na Jin
- Department of Internal Neurology, People's Hospital of Huizhou Zhongkai Hi-tech Industrial Development Zone, Huizhou, China
| | - Zheng-Zheng Xuan
- Neuroelectrophysiological Examination Room, Traditional Chinese Medicine Hospital of Guangdong Province, Guangzhou, China
| | - Yi-Xiao Qian
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China,
| | - Zhi-Yong Wu
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China, .,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China,
| | - Wei Xie
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China, .,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China,
| |
Collapse
|
37
|
Crespo M, León-Navarro DA, Martín M. Early-life hyperthermic seizures upregulate adenosine A 2A receptors in the cortex and promote depressive-like behavior in adult rats. Epilepsy Behav 2018; 86:173-178. [PMID: 30017837 DOI: 10.1016/j.yebeh.2018.06.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/07/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
Febrile seizures (FS) represent one of the most frequent convulsive disorders in children which can be classified into simple and prolonged depending on the duration. Although simple FS are generally considered as benign, there is controversy about the outcome of prolonged FS. Here, we have used an animal model of prolonged FS to investigate persistent neurochemical and behavioral alterations in adult rats. Hyperthermic seizures were induced in 12-day-old rats using a warmed air stream from a hair dryer. Neonates exhibited arrest of heat-induced hyperkinesis followed by body flexion and rearing and falling over associated with hindlimb clonus seizures (stage 5 on Racine scale criteria) after hyperthermic induction. After 48 days, the animals were assayed on dark-light box and forced swim tests in order to detect if rats will show signs of anxiety or depression. Finally, animals were sacrificed 56 days after hyperthermia-induced seizures (HIS), and their effects on adenosine A2A receptor signaling and 5'-nucleotidase activity were studied in plasma membranes from the cerebral cortex by using radioligand-binding assay and by measuring the activities of adenylate cyclase and 5'-nucleotidase. Results obtained have shown that adult rats submitted to HIS during the neonatal period showed depressive-like behavior. Furthermore, animals exposed to hyperthermic insult showed an increase in A2A receptor level which was also accompanied by an increase in A2A receptor functionality.
Collapse
Affiliation(s)
- María Crespo
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas/Facultad de Medicina de Ciudad Real, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain
| | - David Agustín León-Navarro
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas/Facultad de Medicina de Ciudad Real, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain.
| | - Mairena Martín
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas/Facultad de Medicina de Ciudad Real, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain
| |
Collapse
|
38
|
Paudel YN, Shaikh MF, Shah S, Kumari Y, Othman I. Role of inflammation in epilepsy and neurobehavioral comorbidities: Implication for therapy. Eur J Pharmacol 2018; 837:145-155. [PMID: 30125565 DOI: 10.1016/j.ejphar.2018.08.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
Epilepsy is a devastating condition affecting around 70 million people worldwide. Moreover, the quality of life of people with epilepsy (PWE) is worsened by a series of comorbidities. The neurobehavioral comorbidities discussed herein share a reciprocal and complex relationship with epilepsy, which ultimately complicates the treatment process in PWE. Understanding the mechanistic pathway by which these comorbidities are associated with epilepsy might be instrumental in developing therapeutic interventions. Inflammatory cytokine signaling in the brain regulates important brain functions including neurotransmitter metabolism, neuroendocrine function, synaptic plasticity, dopaminergic transmission, the kynurenine pathway, and affects neurogenesis as well as the neural circuitry of moods. In this review, we hypothesize that the complex relationship between epilepsy and its related comorbidities (cognitive impairment, depression, anxiety, autism, and schizophrenia) can be unraveled through the inflammatory mechanism that plays a prominent role in all these individual conditions. An ample amount of evidence is available reporting the role of inflammation in epilepsy and all individual comorbid condition but their complex relationship with epilepsy has not yet been explored through the prospective of inflammatory pathway. Our review suggests that epilepsy and its neurobehavioral comorbidities are associated with elevated levels of several key inflammatory markers. This review also sheds light on the mechanistic association between epilepsy and its neurobehavioral comorbidities. Moreover, we analyzed several anti-inflammatory therapies available for epilepsy and its neurobehavioral comorbidities. We suggest, these anti-inflammatory therapies might be a possible intervention and could be a promising strategy for preventing epileptogenesis and its related neurobehavioral comorbidities.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia.
| | - Sadia Shah
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
39
|
Vancassel S, Capuron L, Castanon N. Brain Kynurenine and BH4 Pathways: Relevance to the Pathophysiology and Treatment of Inflammation-Driven Depressive Symptoms. Front Neurosci 2018; 12:499. [PMID: 30140200 PMCID: PMC6095005 DOI: 10.3389/fnins.2018.00499] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022] Open
Abstract
The prevalence of depressive disorders is growing worldwide, notably due to stagnation in the development of drugs with greater antidepressant efficacy, the continuous large proportion of patients who do not respond to conventional antidepressants, and the increasing rate of chronic medical conditions associated with an increased vulnerability to depressive comorbidities. Accordingly, better knowledge on the pathophysiology of depression and mechanisms underlying depressive comorbidities in chronic medical conditions appears urgently needed, in order to help in the development of targeted therapeutic strategies. In this review, we present evidence pointing to inflammatory processes as key players in the pathophysiology and treatment of depressive symptoms. In particular, we report preclinical and clinical findings showing that inflammation-driven alterations in specific metabolic pathways, namely kynurenine and tetrahydrobiopterin (BH4) pathways, leads to substantial alterations in the metabolism of serotonin, glutamate and dopamine that are likely to contribute to the development of key depressive symptom dimensions. Accordingly, anti-inflammatory interventions targeting kynurenine and BH4 pathways may be effective as novel treatment or as adjuvants of conventional medications rather directed to monoamines, notably when depressive symptomatology and inflammation are comorbid in treated patients. This notion is discussed in the light of recent findings illustrating the tight interactions between known antidepressant drugs and inflammatory processes, as well as their therapeutic implications. Altogether, this review provides valuable findings for moving toward more adapted and personalized therapeutic strategies to treat inflammation-related depressive symptoms.
Collapse
Affiliation(s)
- Sylvie Vancassel
- UMR 1286, Laboratory of Nutrition and Integrative Neurobiology (NutriNeuro), INRA, Bordeaux, France
- UMR 1286, Laboratory of Nutrition and Integrative Neurobiology (NutriNeuro), Bordeaux University, Bordeaux, France
| | - Lucile Capuron
- UMR 1286, Laboratory of Nutrition and Integrative Neurobiology (NutriNeuro), INRA, Bordeaux, France
- UMR 1286, Laboratory of Nutrition and Integrative Neurobiology (NutriNeuro), Bordeaux University, Bordeaux, France
| | - Nathalie Castanon
- UMR 1286, Laboratory of Nutrition and Integrative Neurobiology (NutriNeuro), INRA, Bordeaux, France
- UMR 1286, Laboratory of Nutrition and Integrative Neurobiology (NutriNeuro), Bordeaux University, Bordeaux, France
| |
Collapse
|
40
|
Microglia Polarization and Endoplasmic Reticulum Stress in Chronic Social Defeat Stress Induced Depression Mouse. Neurochem Res 2018; 43:985-994. [PMID: 29574669 DOI: 10.1007/s11064-018-2504-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/30/2018] [Accepted: 02/23/2018] [Indexed: 12/27/2022]
Abstract
Inflammation recently has been considered to be participated in the pathogenesis of major depressive disorder (MDD). However, the detailed mechanism of inflammation in depression has not been completely understood yet. In the present study, depression mice model was established by chronic social defeat stress (CSDS) method and confirmed by behavior examinations including forced swimming test and sucrose preference test. The decrease of spine density and postsynaptic density protein 95 (PSD95) in hippocampus further verified the depression model. Then, the microglia polarization state and endoplasmic reticulum (ER) stress were investigated. At transcriptional level, M1 marker (inducible nitric oxide synthase (iNOS), CD16, CD86, CXCL10) in CSDS mice was higher than that in control group while there was no difference in M2 marker (Arginase and CD206) between two groups. And it was observed in the hippocampus of CSDS induced depression mice that increased activated microglia was merged with iNOS instead of arginase by immunofluorescence staining. Furthermore, the M1 marker Interleukin (IL)-1β and tumor necrosis factor (TNF)-α were increased in depression mice while the M1 marker IL-6 and M2 marker IL-10 remained unchanged. The expression of ER stress signaling factors, including protein kinase RNA-like ER kinase (PERK), Phosphorylated α-subunit of eukaryotic translation initiation factor 2(p-eIF2α), C/EBP homologous protein (CHOP), and X-box binding protein 1(XBP1) were significantly higher in CSDS-induced depression mice than in control mice. In all, our results suggest that M1 polarization and ER stress play a vital role in MDD pathogenesis.
Collapse
|
41
|
Mansour HA, Hassan WA, Georgy GS. Neuroinflammatory reactions in sickness behavior induced by bacterial infection: Protective effect of minocycline. J Biochem Mol Toxicol 2017; 32. [PMID: 29243859 DOI: 10.1002/jbt.22020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/26/2022]
Abstract
The neurological changes elicited by bacterial infection are called sickness behavior. Minocycline (MIN) is neuroprotective with a remarkable brain tissue penetration. MIN was orally administered at a dose 90 mg/kg for 3 days, whereas Escherichia coli was given as a single intraperitoneal injection (0.2 mL of 24 h growth) on the third day. After 24 h of bacterial infection, behavioral tests namely open field and forced swimming were carried out, then animals were decapitated. Rats infected with E. coli displayed reduced struggling time in forced swimming test, as well as, exploration and locomotion in open field test with reduction in neurotransmitters (norepinephrine, dopamine, and serotonin) versus elevation in the inflammatory (tumor necrosis factor-alpha, interferon-gamma) and oxidative stress (thiobarbituric acid reactive substance, reduced glutathione) biomarkers. Inflammatory infiltrates of nuclear cells were observed in brains of infected rats. MIN administration prevented the deleterious effects of E. coli infection, thus protects against sickness behavior possibly via defending from neuroinflammation.
Collapse
Affiliation(s)
- Hanaa A Mansour
- Department of Pharmacology, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| | - Wedad A Hassan
- Department of Pharmacology, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| | - Gehan S Georgy
- Department of Pharmacology, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| |
Collapse
|
42
|
Depression and Epilepsy: Comorbidity, Pathogenetic Similarity, and Principles of Treatment. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11055-017-0534-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
43
|
Lasoń W, Ślusarczyk J, Regulska M, Leśkiewicz M, Basta-Kaim A. Do minocycline and other suppressors of microglia reactivity have a future in prevention or treatment of epilepsy? JOURNAL OF EPILEPTOLOGY 2017. [DOI: 10.1515/joepi-2017-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
SummaryIntroduction.An increasing body of evidence points to an important role of neuroinflammatory processes in the pathomechanism of epilepsy. This hypothesis is mainly supported by data showing an increase of pro-inflammatory cytokine levels and glia activation in animal models of epilepsy and in brain tissue of epileptic patients. On the other hand, less emphasis has been put on pharmacological verification of this hypothesis.Aim.The aim of this review is to summarize current knowledge on potential usefulness of microglia regulators and anti-inflammatory agents in designing antiepileptic/antiepileptogenic drugs, with the primary mechanism of action based on the inhibition of neuroinflammation.Methods.We reviewed PubMed and MEDLINE databases to select publications in the topic: epilepsy, neuroinflammation, microglia and microglia regulators with antiepileptic properties. We searched the databases up to April 2017 with no date restrictions.Review and Discussion.In the present paper, we will discuss new concepts of epileptogenesis which focus not only on changes in neurons but also take into consideration the role of activation of glial cells: microglia and astrocytes. Neuroinflammation, mainly through increased production of pro-inflammatory factors such as cytokines or chemokines, may play an important role in the development of epilepsy. Drugs regulating glial cells activation and consequently inflammatory status in the central nervous system have beneficial effects in different animal models of epilepsy as well as in clinical study in patients. The most promising compound seems to be minocycline which in some studies has been shown to possess antiepileptogenetic action. On the other hand, some antiepileptic drugs exhibit marked anti-inflammatory potency.Conclusions.There are much data to suggest that there is significant opportunity for designing new antiepileptic drugs whose primary mechanism of action entails the inhibition of neuroinflammatory processes.
Collapse
|
44
|
Mazarati AM, Lewis ML, Pittman QJ. Neurobehavioral comorbidities of epilepsy: Role of inflammation. Epilepsia 2017; 58 Suppl 3:48-56. [DOI: 10.1111/epi.13786] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Andrey M. Mazarati
- Neurology Division; Department of Pediatrics; David Geffen School of Medicine; University of California Los Angeles; Los Angeles California U.S.A
| | - Megan L. Lewis
- Department of Physiology & Pharmacology; Hotchkiss Brain Institute; University of Calgary; Calgary Alberta Canada
| | - Quentin J. Pittman
- Department of Physiology & Pharmacology; Hotchkiss Brain Institute; University of Calgary; Calgary Alberta Canada
| |
Collapse
|
45
|
Souza LC, Jesse CR, de Gomes MG, Del Fabbro L, Goes ATR, Donato F, Boeira SP. Activation of Brain Indoleamine-2,3-dioxygenase Contributes to Depressive-Like Behavior Induced by an Intracerebroventricular Injection of Streptozotocin in Mice. Neurochem Res 2017. [PMID: 28631232 DOI: 10.1007/s11064-017-2329-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is a lack of information concerning the molecular events underlying the depressive-like effect of an intracerebroventricular injection of streptozotocin (ICV-STZ) in mice. The elevated activity of the tryptophan-degrading enzyme indoleamine-2,3-dioxygenase (IDO) has been proposed to mediate depression in inflammatory disorders. In the present study, we reported that ICV-STZ activates IDO in the hippocampus of mice and culminates in depressive-like behaviors, as measured by the increased duration of immobility in the tail suspension test and decreased sucrose intake in the sucrose preference test. The blockade of IDO activation by the IDO inhibitor 1-methyltryptophan (1-MT) prevents the development of depressive-like behaviors and attenuates STZ-induced up-regulation of proinflammatory cytokines in the hippocampus. 1-MT abrogates kynurenine production and normalizes brain-derived neurotrophic factor (BDNF) and the kynurenine/tryptophan ratio, but does not protect the biomarkers of the serotonin (5-HT) system in the hippocampus of STZ-injected mice. These results implicate IDO as a critical molecular mediator of STZ-induced depressive-like behavior, likely through activation of the kynurenine pathway and subsequent reduction of BDNF levels. Impairment of the 5-HT system may reflect the inflammatory response induced by STZ and also contributes to observed depression symptoms. The present study not only provides evidence that IDO plays a critical role in mediating inflammation-induced depression but also supports the notion that neuroinflammation and the kynurenine pathway are important targets for novel therapeutic drugs for depression. In addition, this study provides new insights on the neurobiological mechanisms underlying ICV-STZ and indicates that this model could be employed in preclinical research of depression.
Collapse
Affiliation(s)
- Leandro Cattelan Souza
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Cristiano R Jesse
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil.
| | - Marcelo Gomes de Gomes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Lucian Del Fabbro
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - André Tiago Rossito Goes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Franciele Donato
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Silvana Peterini Boeira
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil
| |
Collapse
|
46
|
Singh T, Kaur T, Goel RK. Ferulic Acid Supplementation for Management of Depression in Epilepsy. Neurochem Res 2017; 42:2940-2948. [DOI: 10.1007/s11064-017-2325-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/23/2017] [Accepted: 06/06/2017] [Indexed: 01/02/2023]
|
47
|
Monoamine oxidase A upregulated by chronic intermittent hypoxia activates indoleamine 2,3-dioxygenase and neurodegeneration. PLoS One 2017; 12:e0177940. [PMID: 28599322 PMCID: PMC5466431 DOI: 10.1371/journal.pone.0177940] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/05/2017] [Indexed: 12/02/2022] Open
Abstract
Co-morbid depression is prevalent in patients with obstructive sleep apnea. Here we report that monoamine oxidase A (MAO-A) plays pathogenic roles in the comorbidity. We found that chronic intermittent hypoxia significantly increased the MAO-A expression in the rat hippocampus and markedly decreased the dendritic length and spine density in the pyramidal neurons with less pre- and post-synaptic proteins. The MAO-A upregulation resulted in increased 5-hydroxyindoleacetic acid/serotonin ratio, oxidative stress, leading to NF-κB activation, inflammation and apoptosis. Also, the expression of cytokine-responsive indoleamine 2,3-dioxygenase-1 (IDO-1) was significantly augmented in hypoxia, resulting in increased kynurenine/tryptophan ratio and lowered serotonin level in the hippocampus. Moreover, depressive-like behaviors were observed in the hypoxic rat. Administration of M30, a brain-selective MAO-A inhibitor with iron-chelating properties, prior to hypoxic treatment prevented the aberrant changes in the hippocampus and depressive behavior. In human SH-SY5Y cells expressing MAO-A but not MAO-B, hypoxia significantly increased the MAO-A expression, which was blocked by M30 or clorgyline. Collectively, the MAO-A upregulation induced by chronic intermittent hypoxia plays significant pathogenic role in oxidative stress, inflammation and IDO-1 activation resulting in serotonin depletion and neurodegeneration.
Collapse
|
48
|
Singh T, Bagga N, Kaur A, Kaur N, Gawande DY, Goel RK. Agmatine for combined treatment of epilepsy, depression and cognitive impairment in chronic epileptic animals. Biomed Pharmacother 2017; 92:720-725. [PMID: 28586743 DOI: 10.1016/j.biopha.2017.05.085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is fourth most common neurological disorders associated with depression and cognitive deficits. As per present scenario, none of the antiseizure drugs have been reported successful to have ameliorative effect on epilepsy associated depression and cognitive deficits. Thus, the study was envisioned to assess an ameliorative potential of agmatine on epilepsy and its efficacy and safety for management of associated depression and cognitive deficits. The animals were made epileptic employing pentylenetetrazole (35mg/kg i.p. every 48±2h) kindling model of epilepsy and subsequently were treated with vehicle, valproic acid (300mg/kg/day i.p.) and agmatine (2.5, 5, and 10mg/kg)/day/i.p. for 15days. Except naïve, all the groups were challenged with same pentylenetetrazole dose as employed during kindling on days 5, 10, and 15 to evaluate seizure severity. Two hours after seizure severity test, tail suspension test and passive shock avoidance paradigm was employed to evaluate depression and cognitive behavior respectively. Results suggested that epileptic animals were significantly associated with depression and cognitive impairment. Chronic valproate treatment significantly reduced seizure severity, but was found unable to mitigate depression and cognitive deficits. However, agmatine treatment dose dependently ameliorated seizure severity as well as associated depression and cognitive deficits. On 15th day, animals were euthanized and pertinent neurochemical estimations were carried out in cortical and hippocampal areas of the mice brain. Thus, study concluded that agmatine ameliorated seizure severity, depression and cognitive impairment in epileptic animals, possibly via restoring glutamate-GABA neurotransmission and serotonin synthesis with decreased nitrosative stress.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Neetu Bagga
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Anureet Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Navjot Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Dinesh Yugraj Gawande
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India; Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
49
|
Soczynska JK, Kennedy SH, Alsuwaidan M, Mansur RB, Li M, McAndrews MP, Brietzke E, Woldeyohannes HO, Taylor VH, McIntyre RS. A pilot, open-label, 8-week study evaluating the efficacy, safety and tolerability of adjunctive minocycline for the treatment of bipolar I/II depression. Bipolar Disord 2017; 19:198-213. [PMID: 28599348 DOI: 10.1111/bdi.12496] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/04/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The objectives of the study were to determine if adjunctive minocycline mitigates depressive symptom severity and improves cognitive function in individuals with bipolar I/II disorder (BD). The study also aimed to determine if changes in depressive and/or cognitive symptoms over the course of treatment were associated with changes in circulating inflammatory cytokine levels. METHODS A total of 29 (intention-to-treat: n=27) adults meeting DSM-IV-TR criteria for a major depressive episode as part of bipolar I or II disorder (i.e. Hamilton Depression Rating Scale 17-item [HAMD-17] ≥20) were enrolled in an 8-week, open-label study with adjunctive minocycline (100 mg bid). The primary outcome measure was the Montgomery-Åsberg Depression Rating Scale (MADRS). The HAMD-17, Clinical Global Impression-Severity (CGI-S), cognitive test composite scores and plasma cytokines were secondary outcome measures. Plasma cytokines were measured with the 30 V-Plex Immunoassay from Meso Scale Discovery. RESULTS Adjunctive minocycline was associated with a reduction in depressive symptom severity from baseline to week 8 on the MADRS (P<.001, d=0.835), HAMD-17 (P<.001, d=0.949) and CGI-S (P<.001, d=1.09). Improvement in psychomotor speed, but not verbal memory or executive function, was observed only amongst individuals exhibiting a reduction in depression severity (P=.007, d=0.826). Levels of interleukin (IL)-12/23p40 (P=.002) were increased, while levels of IL-12p70 (P=.001) and C-C motif chemokine ligand 26 (CCL26) (P<.001) were reduced from baseline to week 8. A reduction in CCL26 levels was associated with a less favourable treatment response (P<.001). CONCLUSIONS Results from the pilot study suggest that adjunctive minocycline may exert antidepressant effects in individuals with bipolar depression, possibly by targeting inflammatory cytokines.
Collapse
Affiliation(s)
- Joanna K Soczynska
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Sidney H Kennedy
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Mohammad Alsuwaidan
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, Kuwait University, Kuwait City, Kuwait
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Madeline Li
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Psychosocial Oncology Clinic, University Health Network, Toronto, ON, Canada
| | - Mary Pat McAndrews
- Department of Psychology, University of Toronto, Toronto, ON, Canada.,Neuropsychology Clinic, University Health Network, Toronto, ON, Canada
| | - Elisa Brietzke
- Research Group in Molecular and Behavioral Neuroscience of Bipolar Disorder, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Hanna O Woldeyohannes
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Valerie H Taylor
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, Women's College Hospital, Toronto, ON, Canada
| | - Roger S McIntyre
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Toxicology and Pharmacology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
50
|
Involvement of Host Defense Mechanisms against Toxoplasma gondii Infection in Anhedonic and Despair-Like Behaviors in Mice. Infect Immun 2017; 85:IAI.00007-17. [PMID: 28138019 DOI: 10.1128/iai.00007-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
Toxoplasma gondii is a pathogen relevant to psychiatric disorders. We recently showed that reactivation of chronic T. gondii infection induced depression-like behaviors in mice. Furthermore, it has been hypothesized that depression-like behaviors are mediated via a host defense mechanism against invading pathogens; proximate mechanisms of this behavioral hypothesis remain unclear. In the present study, we investigate the contribution of indoleamine 2,3-dioxygenase (IDO), inflammation, and interferon gamma (IFN-γ) to anhedonic and despair-related behaviors in T. gondii-infected mice by using sucrose preference and forced-swim tests, respectively. First, we confirmed that BALB/c mice exhibited both sickness and depression-like behaviors during acute infection. Treatment of infected wild-type mice with minocycline (anti-inflammatory drug) abated sickness and anhedonic and despair-like behaviors, whereas in T. gondii-infected mice, treatment normalized kynurenine/tryptophan (Kyn/Trp) ratios in both plasma and brain tissue. Additionally, T. gondii infection failed to induce anhedonic and despair-like behaviors or increase the Kyn/Trp ratio in immunocompromised (IFN-γ-/-) mice, whereas sickness behavior was observed in both immunocompetent and IFN-γ-/- mice following infection. Furthermore, treatment with 1-methyl tryptophan (an IDO inhibitor) did not affect locomotor activity, attenuated clinical scores and anhedonic and despair-like behaviors, and resulted in normal Kyn/Trp ratios in T. gondii-infected wild-type mice. Although low levels of serotonin and dopamine were observed in the brain during acute and chronic infections, anhedonic and despair-like behaviors were not detected in the chronic stage of infection. Collectively, our results demonstrated that immune enhancement in response to infection with T. gondii resulted in IFN-γ production, IDO activation, and inflammation associated with anhedonic and despair-like behaviors.
Collapse
|