1
|
Karner D, Kvestak D, Kucan Brlic P, Cokaric Brdovcak M, Lisnic B, Brizic I, Juranic Lisnic V, Golemac M, Tomac J, Krmpotic A, Karkeni E, Libri V, Mella S, Legname G, Altmeppen HC, Hasan M, Jonjic S, Lenac Rovis T. Prion protein alters viral control and enhances pathology after perinatal cytomegalovirus infection. Nat Commun 2024; 15:7754. [PMID: 39237588 PMCID: PMC11377837 DOI: 10.1038/s41467-024-51931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
Cytomegalovirus (CMV) infection poses risks to newborns, necessitating effective therapies. Given that the damage includes both viral infection of brain cells and immune system-related damage, here we investigate the involvement of cellular prion protein (PrP), which plays vital roles in neuroprotection and immune regulation. Using a murine model, we show the role of PrP in tempering neonatal T cell immunity during CMV infection. PrP-null mice exhibit enhanced viral control through elevated virus-specific CD8 T cell responses, leading to reduced viral titers and pathology. We further unravel the molecular mechanisms by showing CMV-induced upregulation followed by release of PrP via the metalloproteinase ADAM10, impairing CD8 T cell response specifically in neonates. Additionally, we confirm PrP downregulation in human CMV (HCMV)-infected fibroblasts, underscoring the broader relevance of our observations beyond the murine model. Furthermore, our study highlights how PrP, under the stress of viral pathogenesis, reveals its impact on neonatal immune modulation.
Collapse
Affiliation(s)
- Dubravka Karner
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Daria Kvestak
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Paola Kucan Brlic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | | | - Berislav Lisnic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Ilija Brizic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Vanda Juranic Lisnic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Mijo Golemac
- Department of Histology and Embryology; Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Tomac
- Department of Histology and Embryology; Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Astrid Krmpotic
- Department of Histology and Embryology; Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Esma Karkeni
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Valentina Libri
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Sebastien Mella
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Giuseppe Legname
- Department of Neuroscience, Prion Biology Laboratory, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Milena Hasan
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Stipan Jonjic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Tihana Lenac Rovis
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
2
|
Mantuano E, Zampieri C, Azmoon P, Gunner CB, Heye KR, Gonias SL. An LRP1-binding motif in cellular prion protein replicates cell-signaling activities of the full-length protein. JCI Insight 2023; 8:e170121. [PMID: 37368488 PMCID: PMC10445690 DOI: 10.1172/jci.insight.170121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023] Open
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) functions as a receptor for nonpathogenic cellular prion protein (PrPC), which is released from cells by ADAM (a disintegrin and metalloproteinase domain) proteases or in extracellular vesicles. This interaction activates cell signaling and attenuates inflammatory responses. We screened 14-mer PrPC-derived peptides and identified a putative LRP1 recognition motif in the PrPC sequence spanning residues 98-111. A synthetic peptide (P3) corresponding to this region replicated the cell-signaling and biological activities of full-length shed PrPC. P3 blocked LPS-elicited cytokine expression in macrophages and microglia and rescued the heightened sensitivity to LPS in mice in which the PrPC gene (Prnp) had been deleted. P3 activated ERK1/2 and induced neurite outgrowth in PC12 cells. The response to P3 required LRP1 and the NMDA receptor and was blocked by the PrPC-specific antibody, POM2. P3 has Lys residues, which are typically necessary for LRP1 binding. Converting Lys100 and Lys103 into Ala eliminated the activity of P3, suggesting that these residues are essential in the LRP1-binding motif. A P3 derivative in which Lys105 and Lys109 were converted into Ala retained activity. We conclude that the biological activities of shed PrPC, attributed to interaction with LRP1, are retained in synthetic peptides, which may be templates for therapeutics development.
Collapse
|
3
|
Cellular prion protein offers neuroprotection in astrocytes submitted to amyloid β oligomer toxicity. Mol Cell Biochem 2022:10.1007/s11010-022-04631-w. [PMID: 36576715 DOI: 10.1007/s11010-022-04631-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022]
Abstract
The cellular prion protein (PrPC), in its native conformation, performs numerous cellular and cognitive functions in brain tissue. However, despite the cellular prion research in recent years, there are still questions about its participation in oxidative and neurodegenerative processes. This study aims to elucidate the involvement of PrPC in the neuroprotection cascade in the presence of oxidative stressors. For that, astrocytes from wild-type mice and knockout to PrPC were subjected to the induction of oxidative stress with hydrogen peroxide (H2O2) and with the toxic oligomer of the amyloid β protein (AβO). We observed that the presence of PrPC showed resistance in the cell viability of astrocytes. It was also possible to monitor changes in basic levels of metals and associate them with an induced damage condition, indicating the precise role of PrPC in metal homeostasis, where the absence of PrPC leads to metallic unbalance, culminating in cellular vulnerability to oxidative stress. Increased caspase 3, p-Tau, p53, and Bcl2 may establish a relationship between a PrPC and an induced damage condition. Complementarily, it has been shown that PrPC prevents the internalization of AβO and promotes its degradation under oxidative stress induction, thus preventing protein aggregation in astrocytes. It was also observed that the presence of PrPC can be related to translocating SOD1 to cell nuclei under oxidative stress, probably controlling DNA damage. The results of this study suggest that PrPC acts against oxidative stress activating the cellular response and defense by displaying neuroprotection to neurons and ensuring the functionality of astrocytes.
Collapse
|
4
|
Grimaldi I, Leser FS, Janeiro JM, da Rosa BG, Campanelli AC, Romão L, Lima FRS. The multiple functions of PrP C in physiological, cancer, and neurodegenerative contexts. J Mol Med (Berl) 2022; 100:1405-1425. [PMID: 36056255 DOI: 10.1007/s00109-022-02245-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
Cellular prion protein (PrPC) is a highly conserved glycoprotein, present both anchored in the cell membrane and soluble in the extracellular medium. It has a diversity of ligands and is variably expressed in numerous tissues and cell subtypes, most notably in the central nervous system (CNS). Its importance has been brought to light over the years both under physiological conditions, such as embryogenesis and immune system homeostasis, and in pathologies, such as cancer and neurodegenerative diseases. During development, PrPC plays an important role in CNS, participating in axonal growth and guidance and differentiation of glial cells, but also in other organs such as the heart, lung, and digestive system. In diseases, PrPC has been related to several types of tumors, modulating cancer stem cells, enhancing malignant properties, and inducing drug resistance. Also, in non-neoplastic diseases, such as Alzheimer's and Parkinson's diseases, PrPC seems to alter the dynamics of neurotoxic aggregate formation and, consequently, the progression of the disease. In this review, we explore in detail the multiple functions of this protein, which proved to be relevant for understanding the dynamics of organism homeostasis, as well as a promising target in the treatment of both neoplastic and degenerative diseases.
Collapse
Affiliation(s)
- Izabella Grimaldi
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Felipe Saceanu Leser
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - José Marcos Janeiro
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bárbara Gomes da Rosa
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Clara Campanelli
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luciana Romão
- Cell Morphogenesis Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Flavia Regina Souza Lima
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
5
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
6
|
Mantuano E, Azmoon P, Banki MA, Sigurdson CJ, Campana WM, Gonias SL. A Soluble PrP C Derivative and Membrane-Anchored PrP C in Extracellular Vesicles Attenuate Innate Immunity by Engaging the NMDA-R/LRP1 Receptor Complex. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:85-96. [PMID: 34810220 PMCID: PMC8702456 DOI: 10.4049/jimmunol.2100412] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023]
Abstract
Nonpathogenic cellular prion protein (PrPC) demonstrates anti-inflammatory activity; however, the responsible mechanisms are incompletely defined. PrPC exists as a GPI-anchored membrane protein in diverse cells; however, PrPC may be released from cells by ADAM proteases or when packaged into extracellular vesicles (EVs). In this study, we show that a soluble derivative of PrPC (S-PrP) counteracts inflammatory responses triggered by pattern recognition receptors in macrophages, including TLR2, TLR4, TLR7, TLR9, NOD1, and NOD2. S-PrP also significantly attenuates the toxicity of LPS in mice. The response of macrophages to S-PrP is mediated by a receptor assembly that includes the N-methyl-d-aspartate receptor (NMDA-R) and low-density lipoprotein receptor-related protein-1 (LRP1). PrPC was identified in EVs isolated from human plasma. These EVs replicated the activity of S-PrP, inhibiting cytokine expression and IκBα phosphorylation in LPS-treated macrophages. The effects of plasma EVs on LPS-treated macrophages were blocked by PrPC-specific Ab, by antagonists of LRP1 and the NMDA-R, by deleting Lrp1 in macrophages, and by inhibiting Src family kinases. Phosphatidylinositol-specific phospholipase C dissociated the LPS-regulatory activity from EVs, rendering the EVs inactive as LPS inhibitors. The LPS-regulatory activity that was lost from phosphatidylinositol-specific phospholipase C-treated EVs was recovered in solution. Collectively, these results demonstrate that GPI-anchored PrPC is the essential EV component required for the observed immune regulatory activity of human plasma EVs. S-PrP and EV-associated PrPC regulate innate immunity by engaging the NMDA-R/LRP1 receptor system in macrophages. The scope of pattern recognition receptors antagonized by S-PrP suggests that released forms of PrPC may have broad anti-inflammatory activity.
Collapse
Affiliation(s)
| | - Pardis Azmoon
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Michael A Banki
- Department of Pathology, University of California San Diego, La Jolla, CA
| | | | - Wendy M Campana
- Department of Anesthesiology and Program in Neurosciences, University of California San Diego, La Jolla, CA; and
- Veterans Administration San Diego Healthcare System, San Diego, CA
| | - Steven L Gonias
- Department of Pathology, University of California San Diego, La Jolla, CA;
| |
Collapse
|
7
|
Scalabrino G. New Epidermal-Growth-Factor-Related Insights Into the Pathogenesis of Multiple Sclerosis: Is It Also Epistemology? Front Neurol 2021; 12:754270. [PMID: 34899572 PMCID: PMC8664554 DOI: 10.3389/fneur.2021.754270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
Recent findings showing that epidermal growth factor (EGF) is significantly decreased in the cerebrospinal fluid (CSF) and spinal cord (SC) of living or deceased multiple sclerosis (MS) patients, and that its repeated administration to rodents with chemically- or virally-induced demyelination of the central nervous system (CNS) or experimental allergic encephalomyelitis (EAE) prevents demyelination and inflammatory reactions in the CNS, have led to a critical reassessment of the MS pathogenesis, partly because EGF is considered to have little or no role in immunology. EGF is the only myelinotrophic factor that has been tested in the CSF and spinal cord of MS patients, and it has been shown there is a good correspondence between liquid and tissue levels. This review: (a) briefly summarises the positive EGF effects on neural stem cells, oligodendrocyte cell lineage, and astrocytes in order to explain, at least in part, the biological basis of the myelin loss and remyelination failure in MS; and (b) after a short analysis of the evolution of the principle of cause-effect in the history of Western philosophy, highlights the lack of any experimental immune-, toxin-, or virus-mediated model that precisely reproduces the histopathological features and “clinical” symptoms of MS, thus underlining the inapplicability of Claude Bernard's crucial sequence of “observation, hypothesis, and hypothesis testing.” This is followed by a discussion of most of the putative non-immunologically-linked points of MS pathogenesis (abnormalities in myelinotrophic factor CSF levels, oligodendrocytes (ODCs), astrocytes, extracellular matrix, and epigenetics) on the basis of Popper's falsification principle, and the suggestion that autoimmunity and phologosis reactions (surely the most devasting consequences of the disease) are probably the last links in a chain of events that trigger the reactions. As it is likely that there is a lack of other myelinotrophic growth factors because myelinogenesis is controlled by various CNS and extra-CNS growth factors and other molecules within and outside ODCs, further studies are needed to investigate the role of non-immunological molecules at the time of the onset of the disease. In the words of Galilei, the human mind should be prepared to understand what nature has created.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Martin D, Reine F, Herzog L, Igel-Egalon A, Aron N, Michel C, Moudjou M, Fichet G, Quadrio I, Perret-Liaudet A, Andréoletti O, Rezaei H, Béringue V. Prion potentiation after life-long dormancy in mice devoid of PrP. Brain Commun 2021; 3:fcab092. [PMID: 33997785 PMCID: PMC8111064 DOI: 10.1093/braincomms/fcab092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/26/2022] Open
Abstract
Prions are neurotropic pathogens composed of misfolded assemblies of the host-encoded prion protein PrPC which replicate by recruitment and conversion of further PrPC by an autocatalytic seeding polymerization process. While it has long been shown that mouse-adapted prions cannot replicate and are rapidly cleared in transgenic PrP0/0 mice invalidated for PrPC, these experiments have not been done with other prions, including from natural resources, and more sensitive methods to detect prion biological activity. Using transgenic mice expressing human PrP to bioassay prion infectivity and RT-QuIC cell-free assay to measure prion seeding activity, we report that prions responsible for the most prevalent form of sporadic Creutzfeldt-Jakob disease in human (MM1-sCJD) can persist indefinitely in the brain of intra-cerebrally inoculated PrP0/0 mice. While low levels of seeding activity were measured by RT-QuIC in the brain of the challenged PrP0/0 mice, the bio-indicator humanized mice succumbed at a high attack rate, suggesting relatively high levels of persistent infectivity. Remarkably, these humanized mice succumbed with delayed kinetics as compared to MM1-sCJD prions directly inoculated at low doses, including the limiting one. Yet, the disease that did occur in the humanized mice on primary and subsequent back-passage from PrP0/0 mice shared the neuropathological and molecular characteristics of MM1-sCJD prions, suggesting no apparent strain evolution during lifelong dormancy in PrP0/0 brain. Thus, MM1-sCJD prions can persist for the entire life in PrP0/0 brain with potential disease potentiation on retrotransmission to susceptible hosts. These findings highlight the capacity of prions to persist and rejuvenate in non-replicative environments, interrogate on the type of prion assemblies at work and alert on the risk of indefinite prion persistence with PrP-lowering therapeutic strategies.
Collapse
Affiliation(s)
- Davy Martin
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78 350 Jouy-en-Josas, France
| | - Fabienne Reine
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78 350 Jouy-en-Josas, France
| | - Laetitia Herzog
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78 350 Jouy-en-Josas, France
| | | | - Naima Aron
- INRAE, École Nationale Vétérinaire de Toulouse, IHAP, 31 000 Toulouse, France
| | - Christel Michel
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78 350 Jouy-en-Josas, France
| | - Mohammed Moudjou
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78 350 Jouy-en-Josas, France
| | - Guillaume Fichet
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78 350 Jouy-en-Josas, France
| | - Isabelle Quadrio
- Neurobiology Laboratory, Biochemistry and Molecular Biology Department, Hôpitaux de Lyon, 69 000 Lyon, France.,University of Lyon 1, CNRS UMR5292, INSERM U1028, BioRan, 69 000 Lyon, France
| | - Armand Perret-Liaudet
- Neurobiology Laboratory, Biochemistry and Molecular Biology Department, Hôpitaux de Lyon, 69 000 Lyon, France.,University of Lyon 1, CNRS UMR5292, INSERM U1028, BioRan, 69 000 Lyon, France
| | - Olivier Andréoletti
- INRAE, École Nationale Vétérinaire de Toulouse, IHAP, 31 000 Toulouse, France
| | - Human Rezaei
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78 350 Jouy-en-Josas, France
| | - Vincent Béringue
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78 350 Jouy-en-Josas, France
| |
Collapse
|
9
|
Schneider B, Baudry A, Pietri M, Alleaume-Butaux A, Bizingre C, Nioche P, Kellermann O, Launay JM. The Cellular Prion Protein-ROCK Connection: Contribution to Neuronal Homeostasis and Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:660683. [PMID: 33912016 PMCID: PMC8072021 DOI: 10.3389/fncel.2021.660683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/15/2021] [Indexed: 01/10/2023] Open
Abstract
Amyloid-based neurodegenerative diseases such as prion, Alzheimer's, and Parkinson's diseases have distinct etiologies and clinical manifestations, but they share common pathological events. These diseases are caused by abnormally folded proteins (pathogenic prions PrPSc in prion diseases, β-amyloids/Aβ and Tau in Alzheimer's disease, α-synuclein in Parkinson's disease) that display β-sheet-enriched structures, propagate and accumulate in the nervous central system, and trigger neuronal death. In prion diseases, PrPSc-induced corruption of the physiological functions exerted by normal cellular prion proteins (PrPC) present at the cell surface of neurons is at the root of neuronal death. For a decade, PrPC emerges as a common cell surface receptor for other amyloids such as Aβ and α-synuclein, which relays, at least in part, their toxicity. In lipid-rafts of the plasma membrane, PrPC exerts a signaling function and controls a set of effectors involved in neuronal homeostasis, among which are the RhoA-associated coiled-coil containing kinases (ROCKs). Here we review (i) how PrPC controls ROCKs, (ii) how PrPC-ROCK coupling contributes to neuronal homeostasis, and (iii) how the deregulation of the PrPC-ROCK connection in amyloid-based neurodegenerative diseases triggers a loss of neuronal polarity, affects neurotransmitter-associated functions, contributes to the endoplasmic reticulum stress cascade, renders diseased neurons highly sensitive to neuroinflammation, and amplifies the production of neurotoxic amyloids.
Collapse
Affiliation(s)
- Benoit Schneider
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Anne Baudry
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Mathéa Pietri
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Aurélie Alleaume-Butaux
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France.,Université de Paris - BioMedTech Facilities- INSERM US36
- CNRS UMS2009 - Structural and Molecular Analysis Platform, Paris, France
| | - Chloé Bizingre
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Pierre Nioche
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France.,Université de Paris - BioMedTech Facilities- INSERM US36
- CNRS UMS2009 - Structural and Molecular Analysis Platform, Paris, France
| | - Odile Kellermann
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Jean-Marie Launay
- Inserm UMR 942, Hôpital Lariboisière, Paris, France.,Pharma Research Department, Hoffmann-La-Roche Ltd., Basel, Switzerland
| |
Collapse
|
10
|
Marques CMS, Pedron T, Batista BL, Cerchiaro G. Cellular prion protein activates Caspase 3 for apoptotic defense mechanism in astrocytes. Mol Cell Biochem 2021; 476:2149-2158. [PMID: 33547547 DOI: 10.1007/s11010-021-04078-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/25/2021] [Indexed: 12/31/2022]
Abstract
The cellular prion protein (PrPC) is anchored in the plasma membrane of cells, and it is highly present in cells of brain tissue, exerting numerous cellular and cognitive functions. The present study proves the importance of PrPC in the cellular defense mechanism and metal homeostasis in astrocytes cells. Through experimental studies using cell lines of immortalized mice astrocytes (wild type and knockout for PrPC), we showed that PrPc is involved in the apoptosis cell death process by the activation of Caspase 3, downregulation of p53, and cell cycle maintenance. Metal homeostasis was determined by inductively coupled plasma mass spectrometry technique, indicating the crucial role of PrPC to lower intracellular calcium. The lowered calcium concentration and the Caspase 3 downregulation in the PrPC-null astrocytes resulted in a faster growth rate in cells, comparing with PrPC wild-type one. The presence of PrPC shows to be essential to cell death and healthy growth. In conclusion, our results show for the first time that astrocyte knockout cells for the cellular prion protein could modulate apoptosis-dependent cell death pathways.
Collapse
Affiliation(s)
- Caroline M S Marques
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Avenida dos Estados, 5001, Bl.B, Santo André, SP, 09210-580, Brazil
| | - Tatiana Pedron
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Avenida dos Estados, 5001, Bl.B, Santo André, SP, 09210-580, Brazil
| | - Bruno L Batista
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Avenida dos Estados, 5001, Bl.B, Santo André, SP, 09210-580, Brazil
| | - Giselle Cerchiaro
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Avenida dos Estados, 5001, Bl.B, Santo André, SP, 09210-580, Brazil.
| |
Collapse
|
11
|
Microglia in Prion Diseases: Angels or Demons? Int J Mol Sci 2020; 21:ijms21207765. [PMID: 33092220 PMCID: PMC7589037 DOI: 10.3390/ijms21207765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Prion diseases are rare transmissible neurodegenerative disorders caused by the accumulation of a misfolded isoform (PrPSc) of the cellular prion protein (PrPC) in the central nervous system (CNS). Neuropathological hallmarks of prion diseases are neuronal loss, astrogliosis, and enhanced microglial proliferation and activation. As immune cells of the CNS, microglia participate both in the maintenance of the normal brain physiology and in driving the neuroinflammatory response to acute or chronic (e.g., neurodegenerative disorders) insults. Microglia involvement in prion diseases, however, is far from being clearly understood. During this review, we summarize and discuss controversial findings, both in patient and animal models, suggesting a neuroprotective role of microglia in prion disease pathogenesis and progression, or—conversely—a microglia-mediated exacerbation of neurotoxicity in later stages of disease. We also will consider the active participation of PrPC in microglial functions, by discussing previous reports, but also by presenting unpublished results that support a role for PrPC in cytokine secretion by activated primary microglia.
Collapse
|
12
|
Huang YM, Hong XZ, Shen J, Geng LJ, Pan YH, Ling W, Zhao HL. Amyloids in Site-Specific Autoimmune Reactions and Inflammatory Responses. Front Immunol 2020; 10:2980. [PMID: 31993048 PMCID: PMC6964640 DOI: 10.3389/fimmu.2019.02980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Amyloid deposition is a histological hallmark of common human disorders including Alzheimer's disease (AD) and type 2 diabetes. Although some reports highlight that amyloid fibrils might activate the innate immunity system via pattern recognition receptors, here, we provide multiple lines of evidence for the protection by site-specific amyloid protein analogs and fibrils against autoimmune attacks: (1) strategies targeting clearance of the AD-related brain amyloid plaque induce high risk of deadly autoimmune destructions in subjects with cognitive dysfunction; (2) administration of amyloidogenic peptides with either full length or core hexapeptide structure consistently ameliorates signs of experimental autoimmune encephalomyelitis; (3) experimental autoimmune encephalomyelitis is exacerbated following genetic deletion of amyloid precursor proteins; (4) absence of islet amyloid coexists with T-cell-mediated insulitis in autoimmune diabetes and autoimmune polyendocrine syndrome; (5) use of islet amyloid polypeptide agonists rather than antagonists improves diabetes care; and (6) common suppressive signaling pathways by regulatory T cells are activated in both local and systemic amyloidosis. These findings indicate dual modulation activity mediated by amyloid protein monomers, oligomers, and fibrils to maintain immune homeostasis. The protection from autoimmune destruction by amyloid proteins offers a novel therapeutic approach to regenerative medicine for common degenerative diseases.
Collapse
Affiliation(s)
- Yan-Mei Huang
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China
| | - Xue-Zhi Hong
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Department of Rheumatology and Immunology, The First Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jian Shen
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Department of Pathology, The First Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Li-Jun Geng
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China
| | - Yan-Hong Pan
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China
| | - Wei Ling
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Department of Endocrinology, Xiangya Medical School, Central South University, Changsha, China
| | - Hai-Lu Zhao
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China.,Institute of Basic Medical Sciences, Faculty of Basic Medicine, Guilin Medical University, Guilin, China
| |
Collapse
|
13
|
Kong C, Xie H, Gao Z, Shao M, Li H, Shi R, Cai L, Gao S, Sun T, Li C. Binding between Prion Protein and Aβ Oligomers Contributes to the Pathogenesis of Alzheimer's Disease. Virol Sin 2019; 34:475-488. [PMID: 31093882 DOI: 10.1007/s12250-019-00124-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/26/2019] [Indexed: 12/26/2022] Open
Abstract
A plethora of evidence suggests that protein misfolding and aggregation are underlying mechanisms of various neurodegenerative diseases, such as prion diseases and Alzheimer's disease (AD). Like prion diseases, AD has been considered as an infectious disease in the past decades as it shows strain specificity and transmission potential. Although it remains elusive how protein aggregation leads to AD, it is becoming clear that cellular prion protein (PrPC) plays an important role in AD pathogenesis. Here, we briefly reviewed AD pathogenesis and focused on recent progresses how PrPC contributed to AD development. In addition, we proposed a potential mechanism to explain why infectious agents, such as viruses, conduce AD pathogenesis. Microbe infections cause Aβ deposition and upregulation of PrPC, which lead to high affinity binding between Aβ oligomers and PrPC. The interaction between PrPC and Aβ oligomers in turn activates the Fyn signaling cascade, resulting in neuron death in the central nervous system (CNS). Thus, silencing PrPC expression may turn out be an effective treatment for PrPC dependent AD.
Collapse
Affiliation(s)
- Chang Kong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Hao Xie
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhenxing Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ming Shao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Huan Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Run Shi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lili Cai
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shanshan Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Chaoyang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China. .,Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| |
Collapse
|
14
|
Salvesen Ø, Tatzelt J, Tranulis MA. The prion protein in neuroimmune crosstalk. Neurochem Int 2018; 130:104335. [PMID: 30448564 DOI: 10.1016/j.neuint.2018.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/04/2018] [Accepted: 11/14/2018] [Indexed: 01/11/2023]
Abstract
The cellular prion protein (PrPC) is a medium-sized glycoprotein, attached to the cell surface by a glycosylphosphatidylinositol anchor. PrPC is encoded by a single-copy gene, PRNP, which is abundantly expressed in the central nervous system and at lower levels in non-neuronal cells, including those of the immune system. Evidence from experimental knockout of PRNP in rodents, goats, and cattle and the occurrence of a nonsense mutation in goat that prevents synthesis of PrPC, have shown that the molecule is non-essential for life. Indeed, no easily recognizable phenotypes are associate with a lack of PrPC, except the potentially advantageous trait that animals without PrPC cannot develop prion disease. This is because, in prion diseases, PrPC converts to a pathogenic "scrapie" conformer, PrPSc, which aggregates and eventually induces neurodegeneration. In addition, endogenous neuronal PrPC serves as a toxic receptor to mediate prion-induced neurotoxicity. Thus, PrPC is an interesting target for treatment of prion diseases. Although loss of PrPC has no discernable effect, alteration of its normal physiological function can have very harmful consequences. It is therefore important to understand cellular processes involving PrPC, and research of this topic has advanced considerably in the past decade. Here, we summarize data that indicate the role of PrPC in modulating immune signaling, with emphasis on neuroimmune crosstalk both under basal conditions and during inflammatory stress.
Collapse
Affiliation(s)
- Øyvind Salvesen
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway.
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany.
| | - Michael A Tranulis
- Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway.
| |
Collapse
|
15
|
Mahapatra S, Ying L, Ho PPK, Kurnellas M, Rothbard J, Steinman L, Cornfield DN. An amyloidogenic hexapeptide derived from amylin attenuates inflammation and acute lung injury in murine sepsis. PLoS One 2018; 13:e0199206. [PMID: 29990318 PMCID: PMC6039005 DOI: 10.1371/journal.pone.0199206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/04/2018] [Indexed: 12/03/2022] Open
Abstract
Although the accumulation of amyloidogenic proteins in neuroinflammatory conditions is generally considered pathologic, in a murine model of multiple sclerosis, amyloid-forming fibrils, comprised of hexapeptides, are anti-inflammatory. Whether these molecules modulate systemic inflammatory conditions remains unknown. We hypothesized that an amylin hexapeptide that forms fibrils can attenuate the systemic inflammatory response in a murine model of sepsis. To test this hypothesis, mice were pre-treated with either vehicle or amylin hexapeptide (20 μg) at 12 hours and 6 hours prior to intraperitoneal (i.p.) lipopolysaccharide (LPS, 20 mg/kg) administration. Illness severity and survival were monitored every 6 hours for 3 days. Levels of pro- (IL-6, TNF-α, IFN-γ) and anti-inflammatory (IL-10) cytokines were measured via ELISA at 1, 3, 6, 12, and 24 hours after LPS (i.p.). As a metric of lung injury, pulmonary artery endothelial cell (PAEC) barrier function was tested 24 hours after LPS administration by comparing lung wet-to-dry ratios, Evan’s blue dye (EBD) extravasation, lung histology and caspase-3 activity. Compared to controls, pretreatment with amylin hexapeptide significantly reduced mortality (p<0.05 at 72 h), illness severity (p<0.05), and pro-inflammatory cytokine levels, while IL-10 levels were elevated (p<0.05). Amylin pretreatment attenuated LPS-induced lung injury, as demonstrated by decreased lung water and caspase-3 activity (p<0.05, versus PBS). Hence, in a murine model of systemic inflammation, pretreatment with amylin hexapeptide reduced mortality, disease severity, and preserved lung barrier function. Amylin hexapeptide may represent a novel therapeutic tool to mitigate sepsis severity and lung injury.
Collapse
Affiliation(s)
- Sidharth Mahapatra
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| | - Lihua Ying
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Peggy Pui-Kay Ho
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | | | - Jonathan Rothbard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - David N. Cornfield
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
16
|
Reiten MR, Malachin G, Kommisrud E, Østby GC, Waterhouse KE, Krogenæs AK, Kusnierczyk A, Bjørås M, Jalland CMO, Nekså LH, Røed SS, Stenseth EB, Myromslien FD, Zeremichael TT, Bakkebø MK, Espenes A, Tranulis MA. Stress Resilience of Spermatozoa and Blood Mononuclear Cells without Prion Protein. Front Mol Biosci 2018; 5:1. [PMID: 29417049 PMCID: PMC5787566 DOI: 10.3389/fmolb.2018.00001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/08/2018] [Indexed: 11/19/2022] Open
Abstract
The cellular prion protein PrPC is highly expressed in neurons, but also present in non-neuronal tissues, including the testicles and spermatozoa. Most immune cells and their bone marrow precursors also express PrPC. Clearly, this protein operates in highly diverse cellular contexts. Investigations into putative stress-protective roles for PrPC have resulted in an array of functions, such as inhibition of apoptosis, stimulation of anti-oxidant enzymes, scavenging roles, and a role in nuclear DNA repair. We have studied stress resilience of spermatozoa and peripheral blood mononuclear cells (PBMCs) derived from non-transgenic goats that lack PrPC (PRNPTer/Ter) compared with cells from normal (PRNP+/+) goats. Spermatozoa were analyzed for freeze tolerance, DNA integrity, viability, motility, ATP levels, and acrosome intactness at rest and after acute stress, induced by Cu2+ ions, as well as levels of reactive oxygen species (ROS) after exposure to FeSO4 and H2O2. Surprisingly, PrPC-negative spermatozoa reacted similarly to normal spermatozoa in all read-outs. Moreover, in vitro exposure of PBMCs to Doxorubicin, H2O2 and methyl methanesulfonate (MMS), revealed no effect of PrPC on cellular survival or global accumulation of DNA damage. Similar results were obtained with human neuroblastoma (SH-SY5Y) cell lines stably expressing varying levels of PrPC. RNA sequencing of PBMCs (n = 8 of PRNP+/+ and PRNPTer/Ter) showed that basal level expression of genes encoding DNA repair enzymes, ROS scavenging, and antioxidant enzymes were unaffected by the absence of PrPC. Data presented here questions the in vitro cytoprotective roles previously attributed to PrPC, although not excluding such functions in other cell types or tissues during inflammatory stress.
Collapse
Affiliation(s)
- Malin R Reiten
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Giulia Malachin
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Elisabeth Kommisrud
- Faculty of Education and Natural Sciences, Inland University of Applied Sciences, Hamar, Norway
| | - Gunn C Østby
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Karin E Waterhouse
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway.,Spermvital AS Holsetgata, Hamar, Norway
| | - Anette K Krogenæs
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Anna Kusnierczyk
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Clara M O Jalland
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Liv Heidi Nekså
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Susan S Røed
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Else-Berit Stenseth
- Faculty of Education and Natural Sciences, Inland University of Applied Sciences, Hamar, Norway
| | - Frøydis D Myromslien
- Faculty of Education and Natural Sciences, Inland University of Applied Sciences, Hamar, Norway
| | - Teklu T Zeremichael
- Faculty of Education and Natural Sciences, Inland University of Applied Sciences, Hamar, Norway
| | - Maren K Bakkebø
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Arild Espenes
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Michael A Tranulis
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
17
|
Abstract
Currently all prion diseases are without effective treatment and are universally fatal. It is increasingly being recognized that the pathogenesis of many neurodegenerative diseases, such as Alzheimer disease (AD), includes "prion-like" properties. Hence, any effective therapeutic intervention for prion disease could have significant implications for other neurodegenerative diseases. Conversely, therapies that are effective in AD might also be therapeutically beneficial for prion disease. AD-like prion disease has no effective therapy. However, various vaccine and immunomodulatory approaches have shown great success in animal models of AD, with numerous ongoing clinical trials of these potential immunotherapies. More limited evidence suggests that immunotherapies may be effective in prion models and in naturally occurring prion disease. In particular, experimental data suggest that mucosal vaccination against prions can be effective for protection against orally acquired prion infection. Many prion diseases, including natural sheep scrapie, bovine spongiform encephalopathy, chronic wasting disease, and variant Creutzfeldt-Jakob disease, are thought to be acquired peripherally, mainly by oral exposure. Mucosal vaccination would be most applicable to this form of transmission. In this chapter we review various immunologically based strategies which are under development for prion infection.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Center for Cognitive Neurology, New York University School of Medicine, New York, NY, United States; Department of Neurology, New York University School of Medicine, New York, NY, United States; Department of Pathology, New York University School of Medicine, New York, NY, United States; Department of Psychiatry, New York University School of Medicine, New York, NY, United States.
| | - Fernando Goñi
- Center for Cognitive Neurology, New York University School of Medicine, New York, NY, United States; Department of Neurology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
18
|
Salvesen Ø, Reiten MR, Kamstra JH, Bakkebø MK, Espenes A, Tranulis MA, Ersdal C. Goats without Prion Protein Display Enhanced Proinflammatory Pulmonary Signaling and Extracellular Matrix Remodeling upon Systemic Lipopolysaccharide Challenge. Front Immunol 2017; 8:1722. [PMID: 29270176 PMCID: PMC5723645 DOI: 10.3389/fimmu.2017.01722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022] Open
Abstract
A naturally occurring mutation in the PRNP gene of Norwegian dairy goats terminates synthesis of the cellular prion protein (PrPC), rendering homozygous goats (PRNPTer/Ter) devoid of the protein. Although PrPC has been extensively studied, particularly in the central nervous system, the biological role of PrPC remains incompletely understood. Here, we examined whether loss of PrPC affects the initial stage of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Acute pulmonary inflammation was induced by intravenous injection of LPS (Escherichia coli O26:B6) in 16 goats (8 PRNPTer/Ter and 8 PRNP+/+). A control group of 10 goats (5 PRNPTer/Ter and 5 PRNP+/+) received sterile saline. Systemic LPS challenge induced sepsis-like clinical signs including tachypnea and respiratory distress. Microscopic examination of lungs revealed multifocal areas with alveolar hemorrhages, edema, neutrophil infiltration, and higher numbers of alveolar macrophages, with no significant differences between PRNP genotypes. A total of 432 (PRNP+/+) and 596 (PRNPTer/Ter) genes were differentially expressed compared with the saline control of the matching genotype. When assigned to gene ontology categories, biological processes involved in remodeling of the extracellular matrix (ECM), were exclusively enriched in PrPC-deficient goats. These genes included a range of collagen-encoding genes, and proteases such as matrix metalloproteinases (MMP1, MMP2, MMP14, ADAM15) and cathepsins. Several proinflammatory upstream regulators (TNF-α, interleukin-1β, IFN-γ) showed increased activation scores in goats devoid of PrPC. In conclusion, LPS challenge induced marked alterations in the lung tissue transcriptome that corresponded with histopathological and clinical findings in both genotypes. The increased activation of upstream inflammatory regulators and enrichment of ECM components could reflect increased inflammation in the absence of PrPC. Further studies are required to elucidate whether these alterations may affect the later reparative phase of ALI.
Collapse
Affiliation(s)
- Øyvind Salvesen
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
| | - Malin R Reiten
- Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Jorke H Kamstra
- Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Maren K Bakkebø
- Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Arild Espenes
- Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Michael A Tranulis
- Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Cecilie Ersdal
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
| |
Collapse
|
19
|
Lee JY, Kim MJ, Li L, Velumian AA, Aui PM, Fehlings MG, Petratos S. Nogo receptor 1 regulates Caspr distribution at axo-glial units in the central nervous system. Sci Rep 2017; 7:8958. [PMID: 28827698 PMCID: PMC5567129 DOI: 10.1038/s41598-017-09405-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/24/2017] [Indexed: 11/09/2022] Open
Abstract
Axo-glial units are highly organised microstructures propagating saltatory conduction and are disrupted during multiple sclerosis (MS). Nogo receptor 1 (NgR1) has been suggested to govern axonal damage during the progression of disease in the MS-like mouse model, experimental autoimmune encephalomyelitis (EAE). Here we have identified that adult ngr1 -/- mice, previously used in EAE and spinal cord injury experiments, display elongated paranodes, and nodes of Ranvier. Unstructured paranodal regions in ngr1 -/- mice are matched with more distributed expression pattern of Caspr. Compound action potentials of optic nerves and spinal cords from naïve ngr1 -/- mice are delayed and reduced. Molecular interaction studies revealed enhanced Caspr cleavage. Our data suggest that NgR1 may regulate axo-myelin ultrastructure through Caspr-mediated adhesion, regulating the electrophysiological signature of myelinated axons of central nervous system (CNS).
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia
- ToolGen, Inc., #1204, Byucksan Digital Valley 6-cha, Seoul, South Korea
| | - Min Joung Kim
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia
| | - Lijun Li
- Krembil Research Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Alexander A Velumian
- Krembil Research Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Krembil Neuroscience Centre, University Health Network, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Pei Mun Aui
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia
| | - Michael G Fehlings
- Krembil Research Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Krembil Neuroscience Centre, University Health Network, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Steven Petratos
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia.
| |
Collapse
|
20
|
Salvesen Ø, Reiten MR, Espenes A, Bakkebø MK, Tranulis MA, Ersdal C. LPS-induced systemic inflammation reveals an immunomodulatory role for the prion protein at the blood-brain interface. J Neuroinflammation 2017; 14:106. [PMID: 28532450 PMCID: PMC5441080 DOI: 10.1186/s12974-017-0879-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/09/2017] [Indexed: 02/06/2023] Open
Abstract
Background The cellular prion protein (PrPC) is an evolutionary conserved protein abundantly expressed not only in the central nervous system but also peripherally including the immune system. A line of Norwegian dairy goats naturally devoid of PrPC (PRNPTer/Ter) provides a novel model for studying PrPC physiology. Methods In order to explore putative roles for PrPC in acute inflammatory responses, we performed a lipopolysaccharide (LPS, Escherichia coli O26:B6) challenge of 16 goats (8 PRNP+/+ and 8 PRNPTer/Ter) and included 10 saline-treated controls (5 of each PRNP genotype). Clinical examinations were performed continuously, and blood samples were collected throughout the trial. Genome-wide transcription profiles of the choroid plexus, which is at the blood-brain interface, and the hippocampus were analyzed by RNA sequencing, and the same tissues were histologically evaluated. Results All LPS-treated goats displayed clinical signs of sickness behavior, which were of significantly (p < 0.01) longer duration in animals without PrPC. In the choroid plexus, a substantial alteration of the transcriptome and activation of Iba1-positive cells were observed. This response included genotype-dependent differential expression of several genes associated with the immune response, such as ISG15, CXCL12, CXCL14, and acute phase proteins, among others. Activation of cytokine-responsive genes was skewed towards a more profound type I interferon response, and a less obvious type II response, in PrPC-deficient goats. The magnitude of gene expression in response to LPS was smaller in the hippocampus than in the choroid plexus. Resting state expression profiles revealed a few differences between the PRNP genotypes. Conclusions Our data suggest that PrPC acts as a modulator of certain pathways of innate immunity signaling, particularly downstream of interferons, and probably contributes to protection of vulnerable tissues against inflammatory damage. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0879-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ø Salvesen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sandnes, Norway
| | - M R Reiten
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sandnes, Norway
| | - A Espenes
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sandnes, Norway
| | - M K Bakkebø
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sandnes, Norway
| | - M A Tranulis
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sandnes, Norway
| | - C Ersdal
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sandnes, Norway.
| |
Collapse
|
21
|
Castle AR, Gill AC. Physiological Functions of the Cellular Prion Protein. Front Mol Biosci 2017; 4:19. [PMID: 28428956 PMCID: PMC5382174 DOI: 10.3389/fmolb.2017.00019] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/22/2017] [Indexed: 01/09/2023] Open
Abstract
The prion protein, PrPC, is a small, cell-surface glycoprotein notable primarily for its critical role in pathogenesis of the neurodegenerative disorders known as prion diseases. A hallmark of prion diseases is the conversion of PrPC into an abnormally folded isoform, which provides a template for further pathogenic conversion of PrPC, allowing disease to spread from cell to cell and, in some circumstances, to transfer to a new host. In addition to the putative neurotoxicity caused by the misfolded form(s), loss of normal PrPC function could be an integral part of the neurodegenerative processes and, consequently, significant research efforts have been directed toward determining the physiological functions of PrPC. In this review, we first summarise important aspects of the biochemistry of PrPC before moving on to address the current understanding of the various proposed functions of the protein, including details of the underlying molecular mechanisms potentially involved in these functions. Over years of study, PrPC has been associated with a wide array of different cellular processes and many interacting partners have been suggested. However, recent studies have cast doubt on the previously well-established links between PrPC and processes such as stress-protection, copper homeostasis and neuronal excitability. Instead, the functions best-supported by the current literature include regulation of myelin maintenance and of processes linked to cellular differentiation, including proliferation, adhesion, and control of cell morphology. Intriguing connections have also been made between PrPC and the modulation of circadian rhythm, glucose homeostasis, immune function and cellular iron uptake, all of which warrant further investigation.
Collapse
|
22
|
Genetic background modulates outcome of therapeutic amyloid peptides in treatment of neuroinflammation. J Neuroimmunol 2016; 298:42-50. [PMID: 27609274 DOI: 10.1016/j.jneuroim.2016.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/27/2016] [Accepted: 06/22/2016] [Indexed: 12/17/2022]
Abstract
Amyloid hexapeptide molecules are effective in the treatment of the murine model of neuroinflammation, known as experimental autoimmune encephalomyelitis (EAE). Efficacy however differs between two inbred mouse strains, C57BL/6J (B6) and C57BL/10SnJ (B10). Amyloid hexapeptide treatments improved the clinical outcomes of B6, but not B10 mice, indicating that genetic background influences therapeutic efficacy. Moreover, although previous studies indicated that prion protein deficiency results in more severe EAE in B6 mice, we observed no such effect in B10 mice. In addition, we found that amyloid hexapeptide treatments of B10 and B6 mice elicited differential IL4 responses. Thus, the modulatory potential of prion protein and related treatments with other amyloid hexapeptides in EAE depends on mouse strain.
Collapse
|
23
|
Steinman L. A Journey in Science: The Privilege of Exploring the Brain and the Immune System. Mol Med 2016; 22:molmed.2015.00263. [PMID: 27652378 PMCID: PMC5004718 DOI: 10.2119/molmed.2015.00263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 11/06/2022] Open
Abstract
Real innovations in medicine and science are historic and singular; the stories behind each occurrence are precious. At Molecular Medicine we have established the Anthony Cerami Award in Translational Medicine to document and preserve these histories. The monographs recount the seminal events as told in the voice of the original investigators who provided the crucial early insight. These essays capture the essence of discovery, chronicling the birth of ideas that created new fields of research; and launched trajectories that persisted and ultimately influenced how disease is prevented, diagnosed, and treated. In this volume, the Cerami Award Monograph is by Lawrence Steinman, MD, of Stanford University in California. A visionary in the field of neurology, this is the story of Dr. Steinman's scientific journey.
Collapse
Affiliation(s)
- Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California
| |
Collapse
|
24
|
Veber D, Scalabrino G. Are PrPCs involved in some human myelin diseases? Relating experimental studies to human pathology. J Neurol Sci 2015; 359:396-403. [DOI: 10.1016/j.jns.2015.09.365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/04/2015] [Accepted: 09/23/2015] [Indexed: 11/29/2022]
|
25
|
Bakkebø MK, Mouillet-Richard S, Espenes A, Goldmann W, Tatzelt J, Tranulis MA. The Cellular Prion Protein: A Player in Immunological Quiescence. Front Immunol 2015; 6:450. [PMID: 26388873 PMCID: PMC4557099 DOI: 10.3389/fimmu.2015.00450] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/19/2015] [Indexed: 01/09/2023] Open
Abstract
Despite intensive studies since the 1990s, the physiological role of the cellular prion protein (PrP(C)) remains elusive. Here, we present a novel concept suggesting that PrP(C) contributes to immunological quiescence in addition to cell protection. PrP(C) is highly expressed in diverse organs that by multiple means are particularly protected from inflammation, such as the brain, eye, placenta, pregnant uterus, and testes, while at the same time it is expressed in most cells of the lymphoreticular system. In this paradigm, PrP(C) serves two principal roles: to modulate the inflammatory potential of immune cells and to protect vulnerable parenchymal cells against noxious insults generated through inflammation. Here, we review studies of PrP(C) physiology in view of this concept.
Collapse
Affiliation(s)
- Maren K. Bakkebø
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Arild Espenes
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Wilfred Goldmann
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Jörg Tatzelt
- Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Michael A. Tranulis
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway,*Correspondence: Michael A. Tranulis, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Campus Adamstuen, Oslo 0033, Norway,
| |
Collapse
|
26
|
Reiten MR, Bakkebø MK, Brun-Hansen H, Lewandowska-Sabat AM, Olsaker I, Tranulis MA, Espenes A, Boysen P. Hematological shift in goat kids naturally devoid of prion protein. Front Cell Dev Biol 2015. [PMID: 26217662 PMCID: PMC4495340 DOI: 10.3389/fcell.2015.00044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The physiological role of the cellular prion protein (PrPC) is incompletely understood. The expression of PrPC in hematopoietic stem cells and immune cells suggests a role in the development of these cells, and in PrPC knockout animals altered immune cell proliferation and phagocytic function have been observed. Recently, a spontaneous nonsense mutation at codon 32 in the PRNP gene in goats of the Norwegian Dairy breed was discovered, rendering homozygous animals devoid of PrPC. Here we report hematological and immunological analyses of homozygous goat kids lacking PrPC (PRNPTer/Ter) compared to heterozygous (PRNP+/Ter) and normal (PRNP+/+) kids. Levels of cell surface PrPC and PRNP mRNA in peripheral blood mononuclear cells (PBMCs) correlated well and were very low in PRNPTer/Ter, intermediate in PRNP+/Ter and high in PRNP+/+ kids. The PRNPTer/Ter animals had a shift in blood cell composition with an elevated number of red blood cells (RBCs) and a tendency toward a smaller mean RBC volume (P = 0.08) and an increased number of neutrophils (P = 0.068), all values within the reference ranges. Morphological investigations of blood smears and bone marrow imprints did not reveal irregularities. Studies of relative composition of PBMCs, phagocytic ability of monocytes and T-cell proliferation revealed no significant differences between the genotypes. Our data suggest that PrPC has a role in bone marrow physiology and warrant further studies of PrPC in erythroid and immune cell progenitors as well as differentiated effector cells also under stressful conditions. Altogether, this genetically unmanipulated PrPC-free animal model represents a unique opportunity to unveil the enigmatic physiology and function of PrPC.
Collapse
Affiliation(s)
- Malin R Reiten
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| | - Maren K Bakkebø
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| | - Hege Brun-Hansen
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| | - Anna M Lewandowska-Sabat
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| | - Ingrid Olsaker
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| | - Michael A Tranulis
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| | - Arild Espenes
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| | - Preben Boysen
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| |
Collapse
|
27
|
Guillot F, Garcia A, Salou M, Brouard S, Laplaud DA, Nicot AB. Transcript analysis of laser capture microdissected white matter astrocytes and higher phenol sulfotransferase 1A1 expression during autoimmune neuroinflammation. J Neuroinflammation 2015; 12:130. [PMID: 26141738 PMCID: PMC4501186 DOI: 10.1186/s12974-015-0348-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 06/04/2015] [Indexed: 11/17/2022] Open
Abstract
Background Astrocytes, the most abundant cell population in mammal central nervous system (CNS), contribute to a variety of functions including homeostasis, metabolism, synapse formation, and myelin maintenance. White matter (WM) reactive astrocytes are important players in amplifying autoimmune demyelination and may exhibit different changes in transcriptome profiles and cell function in a disease-context dependent manner. However, their transcriptomic profile has not yet been defined because they are difficult to purify, compared to gray matter astrocytes. Here, we isolated WM astrocytes by laser capture microdissection (LCM) in a murine model of multiple sclerosis to better define their molecular profile focusing on selected genes related to inflammation. Based on previous data indicating anti-inflammatory effects of estrogen only at high nanomolar doses, we also examined mRNA expression for enzymes involved in steroid inactivation. Methods Experimental autoimmune encephalomyelitis (EAE) was induced in female C57BL6 mice with MOG35–55 immunization. Fluorescence activated cell sorting (FACS) analysis of a portion of individual spinal cords at peak disease was used to assess the composition of immune cell infiltrates. Using custom Taqman low-density-array (TLDA), we analyzed mRNA expression of 40 selected genes from immuno-labeled laser-microdissected WM astrocytes from lumbar spinal cord sections of EAE and control mice. Immunohistochemistry and double immunofluorescence on control and EAE mouse spinal cord sections were used to confirm protein expression in astrocytes. Results The spinal cords of EAE mice were infiltrated mostly by effector/memory T CD4+ cells and macrophages. TLDA-based profiling of LCM-astrocytes identified EAE-induced gene expression of cytokines and chemokines as well as inflammatory mediators recently described in gray matter reactive astrocytes in other murine CNS disease models. Strikingly, SULT1A1, but not other members of the sulfotransferase family, was expressed in WM spinal cord astrocytes. Moreover, its expression was further increased in EAE. Immunohistochemistry on spinal cord tissues confirmed preferential expression of this enzyme in WM astrocytic processes but not in gray matter astrocytes. Conclusions We described here for the first time the mRNA expression of several genes in WM astrocytes in a mouse model of multiple sclerosis. Besides expected pro-inflammatory chemokines and specific inflammatory mediators increased during EAE, we evidenced relative high astrocytic expression of the cytoplasmic enzyme SULT1A1. As the sulfonation activity of SULT1A1 inactivates estradiol among other phenolic substrates, its high astrocytic expression may account for the relative resistance of this cell population to the anti-neuroinflammatory effects of estradiol. Blocking the activity of this enzyme during neuroinflammation may thus help the injured CNS to maintain the anti-inflammatory activity of endogenous estrogens or limit the dose of estrogen co-regimens for therapeutical purposes. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0348-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Flora Guillot
- INSERM UMR 1064, CHU Hôtel-Dieu, 30 Bvd Jean Monnet, 44093, Nantes, France. .,Université de Nantes, Faculté de Médecine, Nantes, France.
| | - Alexandra Garcia
- INSERM UMR 1064, CHU Hôtel-Dieu, 30 Bvd Jean Monnet, 44093, Nantes, France. .,CESTI/ITUN, CHU de Nantes, Nantes, France.
| | - Marion Salou
- INSERM UMR 1064, CHU Hôtel-Dieu, 30 Bvd Jean Monnet, 44093, Nantes, France. .,Université de Nantes, Faculté de Médecine, Nantes, France.
| | - Sophie Brouard
- INSERM UMR 1064, CHU Hôtel-Dieu, 30 Bvd Jean Monnet, 44093, Nantes, France. .,Université de Nantes, Faculté de Médecine, Nantes, France. .,CESTI/ITUN, CHU de Nantes, Nantes, France.
| | - David A Laplaud
- INSERM UMR 1064, CHU Hôtel-Dieu, 30 Bvd Jean Monnet, 44093, Nantes, France. .,Université de Nantes, Faculté de Médecine, Nantes, France. .,Service de Neurologie, CHU de Nantes, Nantes, France.
| | - Arnaud B Nicot
- INSERM UMR 1064, CHU Hôtel-Dieu, 30 Bvd Jean Monnet, 44093, Nantes, France. .,Université de Nantes, Faculté de Médecine, Nantes, France.
| |
Collapse
|
28
|
Abstract
The brain under immunological attack does not surrender quietly. Investigation of brain lesions in multiple sclerosis (MS) reveals a coordinated molecular response involving various proteins and small molecules ranging from heat shock proteins to small lipids, neurotransmitters, and even gases, which provide protection and foster repair. Reduction of inflammation serves as a necessary prerequisite for effective recovery and regeneration. Remarkably, many lesion-resident molecules activate pathways leading to both suppression of inflammation and promotion of repair mechanisms. These guardian molecules and their corresponding physiologic pathways could potentially be exploited to silence inflammation and repair the injured and degenerating brain and spinal cord in both relapsing-remitting and progressive forms of MS and may be beneficial in other neurologic and psychiatric conditions.
Collapse
|
29
|
Ballerini C, Aldinucci A, Luccarini I, Galante A, Manuelli C, Blandina P, Katebe M, Chazot PL, Masini E, Passani MB. Antagonism of histamine H4 receptors exacerbates clinical and pathological signs of experimental autoimmune encephalomyelitis. Br J Pharmacol 2014; 170:67-77. [PMID: 23735232 DOI: 10.1111/bph.12263] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/17/2013] [Accepted: 05/29/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE The histamine H4 receptor has a primary role in inflammatory functions, making it an attractive target for the treatment of asthma and refractory inflammation. These observations suggested a facilitating action on autoimmune diseases. Here we have assessed the role of H4 receptors in experimental autoimmune encephalomyelitis (EAE) a model of multiple sclerosis (MS). EXPERIMENTAL APPROACH We induced EAE with myelin oligodendrocyte glycoprotein (MOG35-55 ) in C57BL/6 female mice as a model of MS. The histamine H4 receptor antagonist 5-chloro-2-[(4-methylpiperazin-1-yl)carbonyl]-1H-indole (JNJ7777120) was injected i.p. daily starting at day 10 post-immunization (D10 p.i.). Disease severity was monitored by clinical and histopathological evaluation of inflammatory cells infiltrating into the spinal cord, anti-MOG35-55 antibody production, assay of T-cell proliferation by [(3) H]-thymidine incorporation, mononucleate cell phenotype by flow cytometry, cytokine production by elisa assay and transcription factor quantification of mRNA expression. KEY RESULTS Treatment with JNJ7777120 exacerbated EAE, increased inflammation and demyelination in the spinal cord of EAE mice and increased IFN-γ expression in lymph nodes, whereas it suppressed IL-4 and IL-10, and augmented expression of the transcription factors Tbet, FOXP3 and IL-17 mRNA in lymphocytes. JNJ7777120 did not affect proliferation of anti-MOG35-55 T-cells, anti-MOG35-55 antibody production or mononucleate cell phenotype. CONCLUSIONS AND IMPLICATIONS H4 receptor blockade was detrimental in EAE. Given the interest in the development of H4 receptor antagonists as anti-inflammatory compounds, it is important to understand the role of H4 receptors in immune diseases to anticipate clinical benefits and also predict possible detrimental effects.
Collapse
Affiliation(s)
- C Ballerini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Neurology, Universita' di Firenze, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Friedman-Levi Y, Binyamin O, Frid K, Ovadia H, Gabizon R. Genetic prion disease: no role for the immune system in disease pathogenesis? Hum Mol Genet 2014; 23:4134-41. [PMID: 24667414 DOI: 10.1093/hmg/ddu134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Prion diseases, which can manifest by transmissible, sporadic or genetic etiologies, share several common features, such as a fatal neurodegenerative outcome and the aberrant accumulation of proteinase K (PK)-resistant PrP forms in the CNS. In infectious prion diseases, such as scrapie in mice, prions first replicate in immune organs, then invade the CNS via ascending peripheral tracts, finally causing death. Accelerated neuroinvasion and death occurs when activated prion-infected immune cells infiltrate into the CNS, as is the case for scrapie-infected mice induced for experimental autoimmune encephalomyelitis (EAE), a CNS inflammatory insult. To establish whether the immune system plays such a central role also in genetic prion diseases, we induced EAE in TgMHu2ME199K mice, a line mimicking for late onset genetic Creutzfeldt Jacob disease (gCJD), a human prion disease. We show here that EAE induction of TgMHu2ME199K mice neither accelerated nor aggravated prion disease manifestation. Concomitantly, we present evidence that PK-resistant PrP forms were absent from CNS immune infiltrates, and most surprisingly also from lymph nodes and spleens of TgMHu2ME199K mice at all ages and stages of disease. These results imply that the mechanism of genetic prion disease differs widely from that of the infectious presentation, and that the conversion of mutant PrPs into PK resistant forms occurs mostly/only in the CNS. If the absence of pathogenic PrP forms form immune organs is also true for gCJD patients, it may suggest their blood is devoid of prion infectivity.
Collapse
Affiliation(s)
- Yael Friedman-Levi
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | - Orli Binyamin
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | - Kati Frid
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | - Haim Ovadia
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | - Ruth Gabizon
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| |
Collapse
|
31
|
Kurnellas MP, Schartner JM, Fathman CG, Jagger A, Steinman L, Rothbard JB. Mechanisms of action of therapeutic amyloidogenic hexapeptides in amelioration of inflammatory brain disease. ACTA ACUST UNITED AC 2014; 211:1847-56. [PMID: 25073790 PMCID: PMC4144739 DOI: 10.1084/jem.20140107] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Amyloid fibrils composed of peptides as short as six amino acids are effective therapeutics for experimental autoimmune encephalomyelitis (EAE). Immunosuppression arises from at least two pathways: (1) expression of type 1 IFN by pDCs, which were induced by neutrophil extracellular traps arising from the endocytosis of the fibrils; and (2) the reduced expression of IFN-γ, TNF, and IL-6. The two independent pathways stimulated by the fibrils can act in concert to be immunosuppressive in Th1 indications, or in opposition, resulting in inflammation when Th17 T lymphocytes are predominant. The generation of type 1 IFN can be minimized by using polar, nonionizable, amyloidogenic peptides, which are effective in both Th1 and Th17 polarized EAE.
Collapse
Affiliation(s)
- Michael P Kurnellas
- Department of Neurology and Neurological Sciences and Department of Medicine, Division of Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jill M Schartner
- Department of Neurology and Neurological Sciences and Department of Medicine, Division of Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - C Garrison Fathman
- Department of Neurology and Neurological Sciences and Department of Medicine, Division of Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Ann Jagger
- Department of Neurology and Neurological Sciences and Department of Medicine, Division of Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences and Department of Medicine, Division of Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jonathan B Rothbard
- Department of Neurology and Neurological Sciences and Department of Medicine, Division of Immunology, Stanford University School of Medicine, Stanford, CA 94305 Department of Neurology and Neurological Sciences and Department of Medicine, Division of Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
32
|
Steinman L, Rothbard JB, Kurnellas MP. Janus faces of amyloid proteins in neuroinflammation. J Clin Immunol 2014; 34 Suppl 1:S61-3. [PMID: 24711007 DOI: 10.1007/s10875-014-0034-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/20/2022]
Abstract
Amyloid forming molecules are generally considered harmful. In Alzheimer's Disease two amyloid molecules Aβ A4 and tau vie for consideration as the main pathogenic culprit. But molecules obey the laws of chemistry and defy the way we categorize them as humans with our well-known proclivities to bias in our reasoning. We have been exploring the brains of multiple sclerosis patients to identify molecules that are associated with protection from inflammation and degeneration. In 2001 we noted that aB crystallin (cryab) was the most abundant transcript found in MS lesions, but not in healthy brains. Cryab can reverse paralysis and attenuate inflammation in several models of inflammation including experimental autoimmune encephalomyelitis (EAE), and various models of ischemia. Cryab is an amyloid forming molecule. We have identified a core structure common to many amyloids including amyloid protein Aβ A4, tau, amylin, prion protein, serum amyloid protein P, and cryab. The core hexapeptide structure is highly immune suppressive and can reverse paralysis in EAE when administered systemically. Administration of this amyloid forming hexapeptide quickly lowers inflammatory cytokines in plasma like IL-6 and IL-2. The hexapeptide bind a set of proinflammatory mediators in plasma, including acute phase reactants and complement components. The beneficial properties of amyloid forming hexapeptides provide a potential new therapeutic direction. These experiments indicate that amyloid forming molecules have Janus faces, providing unexpected benefit for neuroinflammatory conditions.
Collapse
Affiliation(s)
- Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA,
| | | | | |
Collapse
|
33
|
Affiliation(s)
- Lawrence Steinman
- Departments of Pediatrics, Neurology and Neurological Sciences, Stanford University, Stanford, California 94305;
| |
Collapse
|
34
|
Calderón-Garcidueñas L, Cross JV, Franco-Lira M, Aragón-Flores M, Kavanaugh M, Torres-Jardón R, Chao CK, Thompson C, Chang J, Zhu H, D'Angiulli A. Brain immune interactions and air pollution: macrophage inhibitory factor (MIF), prion cellular protein (PrP(C)), Interleukin-6 (IL-6), interleukin 1 receptor antagonist (IL-1Ra), and interleukin-2 (IL-2) in cerebrospinal fluid and MIF in serum differentiate urban children exposed to severe vs. low air pollution. Front Neurosci 2013; 7:183. [PMID: 24133408 PMCID: PMC3794301 DOI: 10.3389/fnins.2013.00183] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/23/2013] [Indexed: 02/05/2023] Open
Abstract
Mexico City Metropolitan Area children chronically exposed to high concentrations of air pollutants exhibit an early brain imbalance in genes involved in oxidative stress, inflammation, innate and adaptive immune responses along with accumulation of misfolded proteins observed in the early stages of Alzheimer and Parkinson's diseases. A complex modulation of serum cytokines and chemokines influences children's brain structural and gray/white matter volumetric responses to air pollution. The search for biomarkers associating systemic and CNS inflammation to brain growth and cognitive deficits in the short term and neurodegeneration in the long-term is our principal aim. We explored and compared a profile of cytokines, chemokines (Multiplexing LASER Bead Technology) and Cellular prion protein (PrP(C)) in normal cerebro-spinal-fluid (CSF) of urban children with high vs. low air pollution exposures. PrP(C) and macrophage inhibitory factor (MIF) were also measured in serum. Samples from 139 children ages 11.91 ± 4.2 years were measured. Highly exposed children exhibited significant increases in CSF MIF (p = 0.002), IL6 (p = 0.006), IL1ra (p = 0.014), IL-2 (p = 0.04), and PrP(C) (p = 0.039) vs. controls. MIF serum concentrations were higher in exposed children (p = 0.009). Our results suggest CSF as a MIF, IL6, IL1Ra, IL-2, and PrP(C) compartment that can possibly differentiate air pollution exposures in children. MIF, a key neuro-immune mediator, is a potential biomarker bridge to identify children with CNS inflammation. Fine tuning of immune-to-brain communication is crucial to neural networks appropriate functioning, thus the short and long term effects of systemic inflammation and dysregulated neural immune responses are of deep concern for millions of exposed children. Defining the linkage and the health consequences of the brain / immune system interactions in the developing brain chronically exposed to air pollutants ought to be of pressing importance for public health.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- Department of Biomedical Sciences, The Center for Structural and Functional Neurosciences, The University of Montana Missoula, MT, USA ; Hospital Central Militar, Secretaria de la Defensa Nacional Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kurnellas MP, Adams CM, Sobel RA, Steinman L, Rothbard JB. Amyloid fibrils composed of hexameric peptides attenuate neuroinflammation. Sci Transl Med 2013; 5:179ra42. [PMID: 23552370 DOI: 10.1126/scitranslmed.3005681] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The amyloid-forming proteins tau, αB crystallin, and amyloid P protein are all found in lesions of multiple sclerosis (MS). Our previous work established that amyloidogenic peptides from the small heat shock protein αB crystallin (HspB5) and from amyloid β fibrils, characteristic of Alzheimer's disease, were therapeutic in experimental autoimmune encephalomyelitis (EAE), reflecting aspects of the pathology of MS. To understand the molecular basis for the therapeutic effect, we showed a set of amyloidogenic peptides composed of six amino acids, including those from tau, amyloid β A4, major prion protein (PrP), HspB5, amylin, serum amyloid P, and insulin B chain, to be anti-inflammatory and capable of reducing serological levels of interleukin-6 and attenuating paralysis in EAE. The chaperone function of the fibrils correlates with the therapeutic outcome. Fibrils composed of tau 623-628 precipitated 49 plasma proteins, including apolipoprotein B-100, clusterin, transthyretin, and complement C3, supporting the hypothesis that the fibrils are active biological agents. Amyloid fibrils thus may provide benefit in MS and other neuroinflammatory disorders.
Collapse
Affiliation(s)
- Michael P Kurnellas
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5316, USA
| | | | | | | | | |
Collapse
|
36
|
Treatment of a relapse-remitting model of multiple sclerosis with opioid growth factor. Brain Res Bull 2013; 98:122-31. [DOI: 10.1016/j.brainresbull.2013.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/31/2013] [Accepted: 08/03/2013] [Indexed: 12/30/2022]
|
37
|
Steinman L, Axtell RC, Barbieri D, Bhat R, Brownell SE, de Jong BA, Dunn SE, Grant JL, Han MH, Ho PP, Kuipers HF, Kurnellas MP, Ousman SS, Rothbard JB. Piet Mondrian’s trees and the evolution in understanding multiple sclerosis, Charcot Prize Lecture 2011. Mult Scler 2013; 19:5-14. [DOI: 10.1177/1352458512470730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Four questions were posed about multiple sclerosis (MS) at the 2011 Charcot Lecture, Oct. 22, 2011. 1. The Male/Female Disparity: Why are women developing MS so much more frequently than men? 2. Neuronal and Glial Protection: Are there guardian molecules that protect the nervous system in MS? 3. Predictive Medicine: With all the approved drugs, how can we rationally decide which one to use? 4. The Precise Scalpel vs. the Big Hammer for Therapy: Is antigen-specific therapy for demyelinating disease possible? To emphasize how our views on the pathogenesis and treatment of MS are evolving, and given the location of the talk in Amsterdam, Piet Mondrian’s progressive interpretations of trees serve as a heuristic.
Collapse
Affiliation(s)
- Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University, USA
| | - Robert C Axtell
- Department of Neurology and Neurological Sciences, Stanford University, USA
| | - Donald Barbieri
- Department of Neurology and Neurological Sciences, Stanford University, USA
| | - Roopa Bhat
- Department of Neurology and Neurological Sciences, Stanford University, USA
| | - Sara E Brownell
- Department of Neurology and Neurological Sciences, Stanford University, USA
| | - Brigit A de Jong
- Department of Neurology (HP935), Radboud University Nijmegen Medical Centre, The Netherlands
| | | | - Jacqueline L Grant
- Department of Neurology and Neurological Sciences, Stanford University, USA
| | - May H Han
- Department of Neurology and Neurological Sciences, Stanford University, USA
| | - Peggy P Ho
- Department of Neurology and Neurological Sciences, Stanford University, USA
| | - Hedwich F Kuipers
- Department of Neurology and Neurological Sciences, Stanford University, USA
| | | | - Shalina S Ousman
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Canada
| | | |
Collapse
|
38
|
Campbell AM, Zagon IS, McLaughlin PJ. Opioid growth factor arrests the progression of clinical disease and spinal cord pathology in established experimental autoimmune encephalomyelitis. Brain Res 2012; 1472:138-48. [PMID: 22820301 DOI: 10.1016/j.brainres.2012.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/18/2012] [Accepted: 07/05/2012] [Indexed: 11/25/2022]
Abstract
An endogenous neuropeptide, opioid growth factor (OGF), chemically termed [Met(5)]-enkephalin, arrested the progression of established disease in a mouse model of multiple sclerosis (MS) called experimental autoimmune encephalomyelitis (EAE). This study treated mice who demonstrated 2 consecutive days of behavioral decline following injections of myelin oligodendrocyte glycoprotein (MOG) with daily injections of OGF (10mg/kg) or saline (0.1ml) for 40 days. Within 6 days of OGF treatment, mice initially demonstrating clinical signs of EAE had significant reductions (45% reduction) in their behavioral scores relative to EAE mice receiving saline. Behavior was attenuated for the entire 40-day period with mice receiving OGF showing only limp tails and wobbly gait in comparison to saline-treated EAE mice who displayed paralysis of one or more limbs. Neuropathological studies revealed that OGF treatment initiated after the appearance of disease reduced the number of activated astrocytes and damaged neurons, decreased demyelination, and inhibited T cell proliferation. These results demonstrate that OGF can halt the progression of established EAE, return aberrant pain sensitivity to normal levels, inhibit proliferation of T cells and astrocytes, and prevent further spinal cord pathology. The data extend our observations that OGF given at the time of disease induction prevented disease onset, reduced the severity of clinical signs of disease, and reversed neurological deficits in a non-toxic manner. Our data substantiate the role of the OGF-OGFr axis in EAE and support the use of OGF as a biotherapy for MS.
Collapse
Affiliation(s)
- Anna M Campbell
- Department of Neural & Behavioral Science Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, United States
| | | | | |
Collapse
|