1
|
Wong B, Birtch R, Rezaei R, Jamieson T, Crupi MJF, Diallo JS, Ilkow CS. Optimal delivery of RNA interference by viral vectors for cancer therapy. Mol Ther 2023; 31:3127-3145. [PMID: 37735876 PMCID: PMC10638062 DOI: 10.1016/j.ymthe.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
In recent years, there has been a surge in the innovative modification and application of the viral vector-based gene therapy field. Significant and consistent improvements in the engineering, delivery, and safety of viral vectors have set the stage for their application as RNA interference (RNAi) delivery tools. Viral vector-based delivery of RNAi has made remarkable breakthroughs in the treatment of several debilitating diseases and disorders (e.g., neurological diseases); however, their novelty has yet to be fully applied and utilized for the treatment of cancer. This review highlights the most promising and emerging viral vector delivery tools for RNAi therapeutics while discussing the variables limiting their success and suitability for cancer therapy. Specifically, we outline different integrating and non-integrating viral platforms used for gene delivery, currently employed RNAi targets for anti-cancer effect, and various strategies used to optimize the safety and efficacy of these RNAi therapeutics. Most importantly, we provide great insight into what challenges exist in their application as cancer therapeutics and how these challenges can be effectively navigated to advance the field.
Collapse
Affiliation(s)
- Boaz Wong
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rayanna Birtch
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Reza Rezaei
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Taylor Jamieson
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mathieu J F Crupi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Carolina S Ilkow
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
2
|
Dutta RK, Chinnapaiyan S, Santiago MJ, Rahman I, Unwalla HJ. Gene-specific MicroRNA antagonism protects against HIV Tat and TGF-β-mediated suppression of CFTR mRNA and function. Biomed Pharmacother 2021; 142:112090. [PMID: 34463266 PMCID: PMC9100877 DOI: 10.1016/j.biopha.2021.112090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND MicroRNAs play an important role in health and disease. TGF-β signaling, upregulated by HIV Tat, and in chronic airway diseases and smokers upregulates miR-145-5p to suppress cystic fibrosis transmembrane conductance regulator (CFTR). CFTR suppression in chronic airway diseases like Cystic Fibrosis, COPD and smokers has been associated with suppressed MCC and recurrent lung infections and inflammation. This can explain the emergence of recurrent lung infections and inflammation in people living with HIV. METHODS Tat-induced aberrant microRNAome was identified by miRNA expression analysis. microRNA mimics and antagomirs were used to validate the identified miRNAs involved in Tat mediated CFTR mRNA suppression. CRISPR-based editing of the miRNA target sites in CFTR 3'UTR was used to determine rescue of CFTR mRNA and function in airway epithelial cell lines and in primary human bronchial epithelial cells exposed to TGF-β and Tat. FINDINGS HIV Tat upregulates miR-145-5p and miR-509-3p. The two miRNAs demonstrate co-operative effects in suppressing CFTR. CRISPR-based editing of the miRNA target site preserves CFTR mRNA and function in airway epithelial cells INTERPRETATION: Given the important roles of TGF-β signaling and the multitude of genes regulated by miRNAs, we demonstrate that CRISPR-based gene-specific microRNA antagonism approach can preserve CFTR mRNA and function in the context of HIV Tat and TGF-β signaling without suppressing expression of other genes regulated by miR-145-5p.
Collapse
Affiliation(s)
- R K Dutta
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - S Chinnapaiyan
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - M J Santiago
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - I Rahman
- University of Rochester Medical Center, Departments of Environmental Medicine and Pulmonary Medicine, Rochester, NY 14642, USA
| | - H J Unwalla
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|
3
|
Srinivasa S, Garcia-Martin R, Torriani M, Fitch KV, Carlson AR, Kahn CR, Grinspoon SK. Altered pattern of circulating miRNAs in HIV lipodystrophy perturb key adipose differentiation and inflammation pathways. JCI Insight 2021; 6:e150399. [PMID: 34383714 PMCID: PMC8492307 DOI: 10.1172/jci.insight.150399] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
We identified a microRNA (miRNA) profile characterizing HIV lipodystrophy and explored the downstream mechanistic implications with respect to adipocyte biology and the associated clinical phenotype. miRNA profiles were extracted from small extracellular vesicles (sEVs) of HIV-infected individuals with and without lipodystrophic changes and individuals without HIV, among whom we previously showed significant reductions in adipose Dicer expression related to HIV. miR-20a-3p was increased and miR-324-5p and miR-186 were reduced in sEVs from HIV lipodystrophic individuals. Changes in these miRNAs correlated with adipose Dicer expression and clinical markers of lipodystrophy, including fat redistribution, insulin resistance, and hypertriglyceridemia. Human preadipocytes transfected with mimic miR-20a-3p, anti–miR-324-5p, or anti–miR-186 induced consistent changes in latent transforming growth factor beta binding protein 2 (Ltbp2), Wisp2, and Nebl expression. Knockdown of Ltbp2 downregulated markers of adipocyte differentiation (Fabp4, Pparγ, C/ebpa, Fasn, adiponectin, Glut4, CD36), and Lamin C, and increased expression of genes involved in inflammation (IL1β, IL6, and Ccl20). Our studies suggest a likely unique sEV miRNA signature related to dysregulation of Dicer in adipose tissue in HIV. Enhanced miR-20a-3p or depletion of miR-186 and miR-324-5p may downregulate Ltbp2 in HIV, leading to dysregulation in adipose differentiation and inflammation, which could contribute to acquired HIV lipodystrophy and associated metabolic and inflammatory perturbations.
Collapse
Affiliation(s)
- Suman Srinivasa
- Metabolic Unit, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
| | - Ruben Garcia-Martin
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, boston, United States of America
| | - Martin Torriani
- Division of Musculoskeletal Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
| | - Kathleen V Fitch
- Metabolic Unit, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
| | - Anna R Carlson
- Metabolic Unit, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, boston, United States of America
| | - Steven K Grinspoon
- Metabolic Unit, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
| |
Collapse
|
4
|
Ali A, Mishra R, Kaur H, Chandra Banerjea A. HIV-1 Tat: An update on transcriptional and non-transcriptional functions. Biochimie 2021; 190:24-35. [PMID: 34242726 DOI: 10.1016/j.biochi.2021.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 01/05/2023]
Abstract
Over the past decades, much have been learned about HIV-1 virus and its molecular strategies for pathogenesis. However, HIV-1 still remains an enigmatic virus, particularly because of its unique proteins. Establishment of latency and reactivation is still a puzzling question and various temporal and spatial dynamics between HIV-1 proteins itself have given us new way of thinking about its pathogenesis. HIV-1 replication depends on Tat which is a small unstructured protein and subjected to various post-translational modifications for its myriad of functions. HIV-1 Tat protein modulates the functions of various strategic cellular pathways like proteasomal machinery and inflammatory pathways to aid in HIV-1 pathogenesis. Many of the recent findings have shown that Tat is associated with exosomes, cleared from HIV-1 infected cells through its degradation by diverse routes ranging from lysosomal to proteasomal pathways. HIV-1 Tat was also found to be associated with other HIV-1 proteins including Vpr, Nef, Nucleocapsid (NC) and Rev. Interaction of Tat with Vpr and Nef increases its transactivation function, whereas, interaction of Tat with NC or Rev leads to Tat protein degradation and hence suppression of Tat functions. Research in the recent years has established that Tat is not only important for HIV-1 promoter transactivation and virus replication but also modulating multiple cellular and molecular functions leading to HIV-1 pathogenicity. In this review we discussed various transcriptional and non-transcriptional HIV-1 Tat functions which modulate host cell metabolism during HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Amjad Ali
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Ritu Mishra
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Harsimrut Kaur
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201310, India.
| | - Akhil Chandra Banerjea
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
5
|
Paturi S, Deshmukh MV. A Glimpse of "Dicer Biology" Through the Structural and Functional Perspective. Front Mol Biosci 2021; 8:643657. [PMID: 34026825 PMCID: PMC8138440 DOI: 10.3389/fmolb.2021.643657] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/07/2021] [Indexed: 01/05/2023] Open
Abstract
The RNA interference pathway (RNAi) is executed by two core enzymes, Dicer and Argonaute, for accomplishing a tailored transcriptional and post-transcriptional gene regulation. Dicer, an RNase III enzyme, initiates the RNAi pathway, plays a pivotal role in fighting infection against pathogens, and acts as a housekeeping enzyme for cellular homeostasis. Here, we review structure-based functional insights of Dicer and its domains present in a diverse group of organisms. Although Dicer and its domains are evolutionarily conserved from microsporidian parasites to humans, recent cryo-electron microscopy structures of Homo sapiens Dicer and Drosophila melanogaster Dicer-2 suggest characteristic variations in the mechanism of the dsRNA substrate recognition. Interestingly, the necessity for more than one functionally distinct Dicer paralogs in insects and plants compared with a single Dicer in other eukaryotic life forms implies Dicer’s role in the interplay of RNAi and other defense mechanisms. Based on the structural and mechanistic information obtained during the last decade, we aim to highlight the significance of key Dicer domains that are crucial to Dicer specific recognition and precise cleavage of dsRNA substrates. Further, the role of Dicer in the formation of Argonaute-based RNA-induced silencing complex (RISC) assembly formation, Dicer’s ability to regulate a complex protein interaction network, and its role in other cellular processes, as well as its therapeutic potentials, are emphasized.
Collapse
Affiliation(s)
- Sneha Paturi
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | - Mandar V Deshmukh
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| |
Collapse
|
6
|
Mukhopadhyay U, Chanda S, Patra U, Mukherjee A, Komoto S, Chawla-Sarkar M. Biphasic regulation of RNA interference during rotavirus infection by modulation of Argonaute2. Cell Microbiol 2019; 21:e13101. [PMID: 31424151 PMCID: PMC7162324 DOI: 10.1111/cmi.13101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/29/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022]
Abstract
RNA interference (RNAi) is an evolutionary ancient innate immune response in plants, nematodes, and arthropods providing natural protection against viral infection. Viruses have also gained counter‐defensive measures by producing virulence determinants called viral‐suppressors‐of‐RNAi (VSRs). Interestingly, in spite of dominance of interferon‐based immunity over RNAi in somatic cells of higher vertebrates, recent reports are accumulating in favour of retention of the antiviral nature of RNAi in mammalian cells. The present study focuses on the modulation of intracellular RNAi during infection with rotavirus (RV), an enteric virus with double‐stranded RNA genome. Intriguingly, a time point‐dependent bimodal regulation of RNAi was observed in RV‐infected cells, where short interfering RNA (siRNA)‐based RNAi was rendered non‐functional during early hours of infection only to be reinstated fully beyond that early infection stage. Subsequent investigations revealed RV nonstructural protein 1 to serve as a putative VSR by associating with and triggering degradation of Argonaute2 (AGO2), the prime effector of siRNA‐mediated RNAi, via ubiquitin–proteasome pathway. The proviral significance of AGO2 degradation was further confirmed when ectopic overexpression of AGO2 significantly reduced RV infection. Cumulatively, the current study presents a unique modulation of host RNAi during RV infection, highlighting the importance of antiviral RNAi in mammalian cells.
Collapse
Affiliation(s)
- Urbi Mukhopadhyay
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shampa Chanda
- Department of Biotechnology, GITAM Institute of Science, Visakhapatnam, India
| | - Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Anupam Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Satoshi Komoto
- Department of Virology and Parasitology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
7
|
HIV-1 infection increases microRNAs that inhibit Dicer1, HRB and HIV-EP2, thereby reducing viral replication. PLoS One 2019; 14:e0211111. [PMID: 30682089 PMCID: PMC6347224 DOI: 10.1371/journal.pone.0211111] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 01/08/2019] [Indexed: 01/18/2023] Open
Abstract
HIV-1 is the causative agent of AIDS (Autoimmune Deficiency Syndrome). HIV-1 infection results in systemic CD4+ T cell depletion, thereby impairing cell-mediated immunity. MicroRNAs are short (~22 nucleotides long), endogenous single-stranded RNA molecules that regulate gene expression by binding to the 3' untranslated regions (3' UTR) of mRNA transcripts. The relation between HIV-1 infection and human miRNA expression profile has been previously investigated, and studies have shown that the virus can alter miRNA expression and vice versa. Here, we broaden the understanding of the HIV-1 infection process, and show that miRNA-186, 210 and 222 are up-regulated following HIV-1 infection of human Sup-T1 cells. As a result, the host miRNA target genes: Dicer1 (Double-Stranded RNA-Specific Endoribonuclease), HRB (HIV-1 Rev-binding protein) and HIV-EP2 (Human Immunodeficiency Virus Type I Enhancer Binding Protein 2), are down-regulated. Moreover, testing the miRNA-gene anti- correlation on the Jurkat and the HeLa-MAGI cell lines demonstrated the ability of the miRNAs to down-regulate viral expression as well. To conclude, we found that human miR-186, 210 and 222 directly regulate the human genes Dicer1, HRB and HIV-EP2, thus may be filling key roles during HIV-1 replication and miRNA biogenesis. This finding may contribute to the development of new therapeutic strategies.
Collapse
|
8
|
Bernier A, Sagan SM. The Diverse Roles of microRNAs at the Host⁻Virus Interface. Viruses 2018; 10:v10080440. [PMID: 30126238 PMCID: PMC6116274 DOI: 10.3390/v10080440] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression at the post-transcriptional level. Through this activity, they are implicated in almost every cellular process investigated to date. Hence, it is not surprising that miRNAs play diverse roles in regulation of viral infections and antiviral responses. Diverse families of DNA and RNA viruses have been shown to take advantage of cellular miRNAs or produce virally encoded miRNAs that alter host or viral gene expression. MiRNA-mediated changes in gene expression have been demonstrated to modulate viral replication, antiviral immune responses, viral latency, and pathogenesis. Interestingly, viruses mediate both canonical and non-canonical interactions with miRNAs to downregulate specific targets or to promote viral genome stability, translation, and/or RNA accumulation. In this review, we focus on recent findings elucidating several key mechanisms employed by diverse virus families, with a focus on miRNAs at the host–virus interface during herpesvirus, polyomavirus, retroviruses, pestivirus, and hepacivirus infections.
Collapse
Affiliation(s)
- Annie Bernier
- Department of Microbiology & Immunology, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montréal, QC H3G 1Y6, Canada.
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
9
|
Bastin D, Aitken AS, Pelin A, Pikor LA, Crupi MJF, Huh MS, Bourgeois-Daigneault MC, Bell JC, Ilkow CS. Enhanced susceptibility of cancer cells to oncolytic rhabdo-virotherapy by expression of Nodamura virus protein B2 as a suppressor of RNA interference. J Immunother Cancer 2018; 6:62. [PMID: 29921327 PMCID: PMC6008949 DOI: 10.1186/s40425-018-0366-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022] Open
Abstract
Antiviral responses are barriers that must be overcome for efficacy of oncolytic virotherapy. In mammalian cells, antiviral responses involve the interferon pathway, a protein-signaling cascade that alerts the immune system and limits virus propagation. Tumour-specific defects in interferon signaling enhance viral infection and responses to oncolytic virotherapy, but many human cancers are still refractory to oncolytic viruses. Given that invertebrates, fungi and plants rely on RNA interference pathways for antiviral protection, we investigated the potential involvement of this alternative antiviral mechanism in cancer cells. Here, we detected viral genome-derived small RNAs, indicative of RNAi-mediated antiviral responses, in human cancer cells. As viruses may encode suppressors of the RNA interference pathways, we engineered an oncolytic vesicular stomatitis virus variant to encode the Nodamura virus protein B2, a known inhibitor of RNAi-mediated immune responses. B2-expressing oncolytic virus showed enhanced viral replication and cytotoxicity, impaired viral genome cleavage and altered microRNA processing in cancer cells. Our data establish the improved therapeutic potential of our novel virus which targets the RNAi-mediated antiviral defense of cancer cells.
Collapse
Affiliation(s)
- Donald Bastin
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - Amelia S Aitken
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - Adrian Pelin
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - Larissa A Pikor
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - Mathieu J F Crupi
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - Michael S Huh
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - Marie-Claude Bourgeois-Daigneault
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - John C Bell
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - Carolina S Ilkow
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada .,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| |
Collapse
|
10
|
Mele AR, Marino J, Chen K, Pirrone V, Janetopoulos C, Wigdahl B, Klase Z, Nonnemacher MR. Defining the molecular mechanisms of HIV-1 Tat secretion: PtdIns(4,5)P 2 at the epicenter. Traffic 2018; 19:10.1111/tra.12578. [PMID: 29708629 PMCID: PMC6207469 DOI: 10.1111/tra.12578] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/18/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) transactivator of transcription (Tat) protein functions both intracellularly and extracellularly. Intracellularly, the main function is to enhance transcription of the viral promoter. However, this process only requires a small amount of intracellular Tat. The majority of Tat is secreted through an unconventional mechanism by binding to phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2 ), a phospholipid in the inner leaflet of the plasma membrane that is required for secretion. This interaction is mediated by the basic domain of Tat (residues 48-57) and a conserved tryptophan (residue 11). After binding to PtdIns(4,5)P2 , Tat secretion diverges into multiple pathways, which we categorized as oligomerization-mediated pore formation, spontaneous translocation and incorporation into exosomes. Extracellular Tat has been shown to be neurotoxic and toxic to other cells of the central nervous system (CNS) and periphery, able to recruit immune cells to the CNS and cerebrospinal fluid, and alter the gene expression and morphology of uninfected cells. The effects of extracellular Tat have been examined in HIV-1-associated neurocognitive disorders (HAND); however, only a small number of studies have focused on the mechanisms underlying Tat secretion. In this review, the molecular mechanisms of Tat secretion will be examined in a variety of biologically relevant cell types.
Collapse
Affiliation(s)
- Anthony R Mele
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Jamie Marino
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Kenneth Chen
- Department of Biology, University of the Sciences, Philadelphia, Pennsylvania
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Chris Janetopoulos
- Department of Biology, University of the Sciences, Philadelphia, Pennsylvania
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Zachary Klase
- Department of Biology, University of the Sciences, Philadelphia, Pennsylvania
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Clark E, Nava B, Caputi M. Tat is a multifunctional viral protein that modulates cellular gene expression and functions. Oncotarget 2018; 8:27569-27581. [PMID: 28187438 PMCID: PMC5432358 DOI: 10.18632/oncotarget.15174] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/24/2017] [Indexed: 12/02/2022] Open
Abstract
The human immunodeficiency virus type I (HIV-1) has developed several strategies to condition the host environment to promote viral replication and spread. Viral proteins have evolved to perform multiple functions, aiding in the replication of the viral genome and modulating the cellular response to the infection. Tat is a small, versatile, viral protein that controls transcription of the HIV genome, regulates cellular gene expression and generates a permissive environment for viral replication by altering the immune response and facilitating viral spread to multiple tissues. Studies carried out utilizing biochemical, cellular, and genomic approaches show that the expression and activity of hundreds of genes and multiple molecular networks are modulated by Tat via multiple mechanisms.
Collapse
Affiliation(s)
- Evan Clark
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Brenda Nava
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Massimo Caputi
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
12
|
Noncoding RNAs in Retrovirus Replication. RETROVIRUS-CELL INTERACTIONS 2018. [PMCID: PMC7173536 DOI: 10.1016/b978-0-12-811185-7.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although a limited percentage of the genome produces proteins, approximately 90% is transcribed, indicating important roles for noncoding RNA (ncRNA). It is now known that these ncRNAs have a multitude of cellular functions ranging from the regulation of gene expression to roles as structural elements in ribonucleoprotein complexes. ncRNA is also represented at nearly every step of viral life cycles. This chapter will focus on ncRNAs of both host and viral origin and their roles in retroviral life cycles. Cellular ncRNA represents a significant portion of material packaged into retroviral virions and includes transfer RNAs, 7SL RNA, U RNA, and vault RNA. Initially thought to be random packaging events, these host RNAs are now proposed to contribute to viral assembly and infectivity. Within the cell, long ncRNA and endogenous retroviruses have been found to regulate aspects of the retroviral life cycle in diverse ways. Additionally, the HIV-1 transactivating response element RNA is thought to impact viral infection beyond the well-characterized role as a transcription activator. RNA interference, thought to be an early version of the innate immune response to viral infection, can still be observed in plants and invertebrates today. The ability of retroviral infection to manipulate the host RNAi pathway is described here. Finally, RNA-based therapies, including gene editing approaches, are being explored as antiretroviral treatments and are discussed.
Collapse
|
13
|
Changes in the cellular microRNA profile by the intracellular expression of HIV-1 Tat regulator: A potential mechanism for resistance to apoptosis and impaired proliferation in HIV-1 infected CD4+ T cells. PLoS One 2017; 12:e0185677. [PMID: 28968466 PMCID: PMC5624617 DOI: 10.1371/journal.pone.0185677] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 08/28/2017] [Indexed: 12/13/2022] Open
Abstract
HIV-1 induces changes in the miRNA expression profile of infected CD4+ T cells that could improve viral replication. HIV-1 regulator Tat modifies the cellular gene expression and has been appointed as an RNA silencing suppressor. Tat is a 101-residue protein codified by two exons that regulates the elongation of viral transcripts. The first exon of Tat (amino acids 1–72) forms the transcriptionally active protein Tat72, but the presence of the second exon (amino acids 73–101) results in a more competent regulatory protein (Tat101) with additional functions. Intracellular, full-length Tat101 induces functional and morphological changes in CD4+ T cells that contribute to HIV-1 pathogenesis such as delay in T-cell proliferation and protection against FasL-mediated apoptosis. But the precise mechanism by which Tat produces these changes remains unknown. We analyzed how the stable expression of intracellular Tat101 and Tat72 modified the miRNA expression profile in Jurkat cells and if this correlated with changes in apoptotic pathways and cell cycle observed in Tat-expressing cells. Specifically, the enhanced expression of hsa-miR-21 and hsa-miR-222 in Jurkat-Tat101 cells was associated with the reduced expression of target mRNAs encoding proteins related to apoptosis and cell cycle such as PTEN, PDCD4 and CDKN1B. We developed Jurkat cells with stable expression of hsa-miR-21 or hsa-miR-222 and observed a similar pattern to Jurkat-Tat101 in resistance to FasL-mediated apoptosis, cell cycle arrest in G2/M and altered cell morphology. Consequently, upregulation of hsa-miR-21 and hsa-miR-222 by Tat may contribute to protect against apoptosis and to anergy observed in HIV-infected CD4+ T cells.
Collapse
|
14
|
Rahimian P, He JJ. HIV/neuroAIDS biomarkers. Prog Neurobiol 2017; 157:117-132. [PMID: 27084354 PMCID: PMC5705228 DOI: 10.1016/j.pneurobio.2016.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/01/2016] [Accepted: 04/08/2016] [Indexed: 12/12/2022]
Abstract
HIV infection often causes neurological symptoms including cognitive and motor dysfunction, which have been collectively termed HIV/neuroAIDS. Neuropsychological assessment and clinical symptoms have been the primary diagnostic criteria for HIV/neuroAIDS, even for the mild cognitive and motor disorder, the most prevalent form of HIV/neuroAIDS in the era of combination antiretroviral therapy. Those performance-based assessments and symptoms are generally descriptive and do not have the sensitivity and specificity to monitor the diagnosis, progression, and treatment response of the disease when compared to objective and quantitative laboratory-based biological markers, or biomarkers. In addition, effects of demographics and comorbidities such as substance abuse, psychiatric disease, nutritional deficiencies, and co-infection on HIV/neuroAIDS could be more readily determined using biomarkers than using neuropsychological assessment and clinical symptoms. Thus, there have been great efforts in identification of HIV/neuroAIDS biomarkers over the past two decades. The need for reliable biomarkers of HIV/neuroAIDS is expected to increase as the HIV-infected population ages and their vulnerability to neurodegenerative diseases, particularly Alzheimer's disease increases. Currently, three classes of HIV/neuroAIDS biomarkers are being pursued to establish objective laboratory-based definitions of HIV-associated neurologic injury: cerebrospinal fluid biomarkers, blood biomarkers, and neuroimaging biomarkers. In this review, we will focus on the current knowledge in the field of HIV/neuroAIDS biomarker discovery.
Collapse
Affiliation(s)
- Pejman Rahimian
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Johnny J He
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
15
|
Molecular mechanisms of Dicer: endonuclease and enzymatic activity. Biochem J 2017; 474:1603-1618. [PMID: 28473628 PMCID: PMC5415849 DOI: 10.1042/bcj20160759] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022]
Abstract
The enzyme Dicer is best known for its role as a riboendonuclease in the small RNA pathway. In this canonical role, Dicer is a critical regulator of the biogenesis of microRNA and small interfering RNA, as well as a growing number of additional small RNAs derived from various sources. Emerging evidence demonstrates that Dicer's endonuclease role extends beyond the generation of small RNAs; it is also involved in processing additional endogenous and exogenous substrates, and is becoming increasingly implicated in regulating a variety of other cellular processes, outside of its endonuclease function. This review will describe the canonical and newly identified functions of Dicer.
Collapse
|
16
|
MicroRNA miR-126-5p Enhances the Inflammatory Responses of Monocytes to Lipopolysaccharide Stimulation by Suppressing Cylindromatosis in Chronic HIV-1 Infection. J Virol 2017; 91:JVI.02048-16. [PMID: 28250134 DOI: 10.1128/jvi.02048-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/24/2017] [Indexed: 02/02/2023] Open
Abstract
Persistent immune activation during chronic human immunodeficiency virus type 1 (HIV-1) infection facilitates immune dysfunction and thereby fuels disease progression. The translocation of bacterial derivatives into blood and the hyperinflammatory responsiveness of monocytes have been considered important causative factors for persistent immune activation. Whether microRNAs (miRNAs) are involved in regulating monocyte-mediated inflammatory responses during chronic HIV-1 infection remains elusive. In this study, we show that miR-126-5p functions as a positive regulator of monocyte-mediated inflammatory responses. Significantly increased miRNA miR-126-5p and decreased cylindromatosis (CYLD) were observed in primary monocytes from chronic HIV-1 patients. Inhibition of miR-126-5p in monocytes from chronic HIV-1 patients attenuated the responsiveness of these cells to lipopolysaccharide (LPS) stimulation. Gain-of-function assays confirmed that miR-126-5p could downregulate CYLD, which in turn caused an upregulation of phosphorylation of JNK protein (pJNK) and enhanced inflammatory responses of monocytes to LPS stimulation. Overall, miR-126-5p upregulates the responsiveness of monocytes to LPS stimulation in chronic HIV-1 infection, and the suppression of miR-126-5p and the promotion of CYLD expression in primary monocytes may represent a practical immune intervention strategy to contain persistent inflammation in chronic HIV-1 infection.IMPORTANCE Monocyte-mediated hyperinflammatory responses during chronic HIV-1 infection are important causative factors driving AIDS progression; however, the underlying mechanism has not been fully addressed. We demonstrated that miR-126-5p, one of the most upregulated miRNAs during chronic HIV-1 infection, could enhance the inflammatory responses of monocytes to LPS by suppressing the inhibitory protein CYLD and thereby unleashing the expression of pJNK in the LPS/Toll-like receptor 4/mitogen-activated protein kinase pathway. This observation reveals a new mechanism for HIV-1 pathogenesis, which could be targeted by immune intervention.
Collapse
|
17
|
Abstract
Nullbasic is a derivative of the HIV-1 transactivator of transcription (Tat) protein that strongly inhibits HIV-1 replication in lymphocytes. Here we show that lentiviral vectors that constitutively express a Nullbasic-ZsGreen1 (NB-ZSG1) fusion protein by the eEF1α promoter led to robust long-term inhibition of HIV-1 replication in Jurkat cells. Although Jurkat-NB-ZSG1 cells were infected by HIV-1, no virus production could be detected and addition of phorbol ester 12-myristate 13-acetate (PMA) and JQ1 had no effect, while suberanilohydroxamic acid (SAHA) modestly stimulated virus production but at levels 300-fold lower than those seen in HIV-1-infected Jurkat-ZSG1 cells. Virus replication was not recovered by coculture of HIV-1-infected Jurkat-NB-ZSG1 cells with uninfected Jurkat cells. Latently infected Jurkat latent 6.3 and ACH2 cells treated with latency-reversing agents produced measurable viral capsid (CA), but little or none was made when they expressed NB-ZSG1. When Jurkat cells chronically infected with HIV-1 were transduced with lentiviral virus-like particles conveying NB-ZSG1, a >3-log reduction in CA production was observed. Addition of PMA increased virus CA production but at levels 500-fold lower than those seen in nontransduced Jurkat cells. Transcriptome sequencing analysis confirmed that HIV-1 mRNA was strongly inhibited by NB-ZSG1 but indicated that full-length viral mRNA was made. Analysis of HIV-1-infected Jurkat cells expressing NB-ZSG1 by chromatin immunoprecipitation assays indicated that recruitment of RNA polymerase II (RNAPII) and histone 3 lysine 9 acetylation were inhibited. The reduction of HIV-1 promoter-associated RNAPII and epigenetic changes in viral nucleosomes indicate that Nullbasic can inhibit HIV-1 replication by enforcing viral silencing in cells. HIV-1 infection is effectively controlled by antiviral therapy that inhibits virus replication and reduces measurable viral loads in patients below detectable levels. However, therapy interruption leads to viral rebound due to latently infected cells that serve as a source of continued viral infection. Interest in strategies leading to a functional cure of HIV infection by permanent viral suppression, which may be achievable, is growing. Here we show that a mutant form of the HIV-1 Tat protein, referred to as Nullbasic, can inhibit HIV-1 transcription in infected Jurkat T cell to undetectable levels. Analysis shows that Nullbasic alters the epigenetic state of the HIV-1 long terminal repeat promoter, inhibiting its association with RNA polymerase II. This study indicates that key cellular proteins and pathways targeted here can silence HIV-1 transcription. Further elucidation could lead to functional-cure strategies by suppression of HIV transcription, which may be achievable by a pharmacological method.
Collapse
|
18
|
First Evidence for the Disease-Stage, Cell-Type, and Virus Specificity of microRNAs during Human Immunodeficiency Virus Type-1 Infection. Med Sci (Basel) 2016; 4:medsci4020010. [PMID: 29083374 PMCID: PMC5635779 DOI: 10.3390/medsci4020010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/29/2016] [Accepted: 04/15/2016] [Indexed: 01/08/2023] Open
Abstract
The potential involvement of host microRNAs (miRNAs) in HIV infection is well documented, and evidence suggests that HIV modulates and also dysregulates host miRNAs involved in maintaining the host innate immune system. Moreover, the dysregulation of host miRNAs by HIV also effectively interferes directly with the host gene expression. In this study, we have simultaneously evaluated the expression of host miRNAs in both CD4+ and CD8+ T-cells derived from HIV-positive (HIV+) individuals (viremic and aviremic individuals while receiving highly active antiretroviral therapy (HAART), therapy-naïve long-term non-progressors (LTNP), and HIV-negative (HIV-) healthy controls. miRNAs were run on Affymetrix V2 chips, and the differential expression between HIV+ and HIV- samples, along with intergroup comparisons, was derived using PARTEK software, using an FDR of 5% and an adjusted p-value < 0.05. The miR-199a-5p was found to be HIV-specific and expressed in all HIV+ groups as opposed to HIV- controls. Moreover, these are the first studies to reveal clearly the highly discriminatory miRNAs at the level of the disease state, cell type, and HIV-specific miRNAs.
Collapse
|
19
|
Sardo L, Vakil PR, Elbezanti W, El-Sayed A, Klase Z. The inhibition of microRNAs by HIV-1 Tat suppresses beta catenin activity in astrocytes. Retrovirology 2016; 13:25. [PMID: 27060080 PMCID: PMC4826512 DOI: 10.1186/s12977-016-0256-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/23/2016] [Indexed: 12/15/2022] Open
Abstract
Background
Long term infection with HIV-1, even in the context of therapy, leads to chronic health problems including an array of neurocognitive dysfunctions. The viral Tat protein has previously been implicated in neuropathogenesis through its effect on astrocytes. Tat has also been shown to inhibit the biogenesis of miRNAs by inhibiting the activity of the cellular Dicer protein in an RNA dependent fashion. Whether there is a mechanistic connection between the ability of HIV-1 Tat to alter miRNAs and its observed effects on cells of the central nervous system has not been well examined. Results Here, we examined the ability of HIV-1 Tat to bind to and inhibit the production of over 300 cellular miRNAs. We found that the Tat protein only binds to and inhibits a fraction of the total cellular miRNAs. By mapping the downstream targets of these miRNAs we have determined a possible role for Tat alterations of miRNAs in the development of neuropathogenesis. Specifically, this work points to suppression of miRNAs function as the mechanism for Tat suppression of β-catenin activity. Conclusions The discovery that HIV-1 Tat inhibits only a fraction of miRNAs opens new areas of research regarding changes in cellular pathways through suppression of RNA interference. Our initial analysis strongly suggests that these pathways may contribute to HIV-1 disruption of the central nervous system. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0256-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luca Sardo
- Department of Biological Sciences, McNeil Science and Technology Center Room 273, University of the Sciences, 600 S 43rd Street, Philadelphia, PA, 19104, USA
| | - Priyal R Vakil
- Department of Biological Sciences, McNeil Science and Technology Center Room 273, University of the Sciences, 600 S 43rd Street, Philadelphia, PA, 19104, USA
| | - Weam Elbezanti
- Department of Biological Sciences, McNeil Science and Technology Center Room 273, University of the Sciences, 600 S 43rd Street, Philadelphia, PA, 19104, USA
| | - Anas El-Sayed
- Department of Biological Sciences, McNeil Science and Technology Center Room 273, University of the Sciences, 600 S 43rd Street, Philadelphia, PA, 19104, USA
| | - Zachary Klase
- Department of Biological Sciences, McNeil Science and Technology Center Room 273, University of the Sciences, 600 S 43rd Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Kurzynska-Kokorniak A, Koralewska N, Pokornowska M, Urbanowicz A, Tworak A, Mickiewicz A, Figlerowicz M. The many faces of Dicer: the complexity of the mechanisms regulating Dicer gene expression and enzyme activities. Nucleic Acids Res 2015; 43:4365-80. [PMID: 25883138 PMCID: PMC4482082 DOI: 10.1093/nar/gkv328] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/31/2015] [Indexed: 12/14/2022] Open
Abstract
There is increasing evidence indicating that the production of small regulatory RNAs is not the only process in which ribonuclease Dicer can participate. For example, it has been demonstrated that this enzyme is also involved in chromatin structure remodelling, inflammation and apoptotic DNA degradation. Moreover, it has become increasingly clear that cellular transcript and protein levels of Dicer must be strictly controlled because even small changes in their accumulation can initiate various pathological processes, including carcinogenesis. Accordingly, in recent years, a number of studies have been performed to identify the factors regulating Dicer gene expression and protein activity. As a result, a large amount of complex and often contradictory data has been generated. None of these data have been subjected to an exhaustive review or critical discussion. This review attempts to fill this gap by summarizing the current knowledge of factors that regulate Dicer gene transcription, primary transcript processing, mRNA translation and enzyme activity. Because of the high complexity of this topic, this review mainly concentrates on human Dicer. This review also focuses on an additional regulatory layer of Dicer activity involving the interactions of protein and RNA factors with Dicer substrates.
Collapse
Affiliation(s)
| | - Natalia Koralewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Maria Pokornowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Anna Urbanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Aleksander Tworak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Agnieszka Mickiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland Institute of Computing Science, Poznan University of Technology, Poznan 60-965, Poland
| |
Collapse
|
21
|
Patel P, Ansari MY, Bapat S, Thakar M, Gangakhedkar R, Jameel S. The microRNA miR-29a is associated with human immunodeficiency virus latency. Retrovirology 2014; 11:108. [PMID: 25486977 PMCID: PMC4269869 DOI: 10.1186/s12977-014-0108-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 11/11/2014] [Indexed: 01/12/2023] Open
Abstract
Background Latent reservoirs of HIV-1 provide a major challenge to its cure. There are increasing reports of interplay between HIV-1 replication and host miRNAs. Several host miRNAs, which potentially target the nef-3′LTR region of HIV-1 RNA, including miR-29a, are proposed to promote latency. Findings We used two established cellular models of HIV-1 latency – the U1 monocytic and J1.1 CD4+ T cell lines to show an inverse relationship between HIV-1 replication and miR-29a levels, which was mediated by the HIV-1 Nef protein. Using a miR-29a responsive luciferase reporter plasmid, an expression plasmid and an anti-miR29a LNA, we further demonstrate increased miR-29a levels during latency and reduced levels following active HIV replication. Finally, we show that miR-29a levels in the PBMCs and plasma of HIV infected persons also correlate inversely with latency and active viral replication. Conclusions The levels of miR-29a correlate inversely with active HIV-1 replication in cell culture models and in HIV infected persons. This links miR-29a to viral latency and suggests another approach to activate and destroy latent HIV-1 reservoirs. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0108-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paresh Patel
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | - Mohammad Yunus Ansari
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | | | | | | | - Shahid Jameel
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India. .,Current Address: The Wellcome Trust/DBT India Alliance, Plot No. 19, 8-2-684/3 K/19, Road No. 12, Banjara Hills, Hyderabad, 500034, India.
| |
Collapse
|
22
|
Bouwman RD, Palser A, Parry CM, Coulter E, Rasaiyaah J, Kellam P, Jenner RG. Human immunodeficiency virus Tat associates with a specific set of cellular RNAs. Retrovirology 2014; 11:53. [PMID: 24990269 PMCID: PMC4086691 DOI: 10.1186/1742-4690-11-53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/18/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Human Immunodeficiency Virus 1 (HIV-1) exhibits a wide range of interactions with the host cell but whether viral proteins interact with cellular RNA is not clear. A candidate interacting factor is the trans-activator of transcription (Tat) protein. Tat is required for expression of virus genes but activates transcription through an unusual mechanism; binding to an RNA stem-loop, the transactivation response element (TAR), with the host elongation factor P-TEFb. HIV-1 Tat has also been shown to alter the expression of host genes during infection, contributing to viral pathogenesis but, whether Tat also interacts with cellular RNAs is unknown. RESULTS Using RNA immunoprecipitation coupled with microarray analysis, we have discovered that HIV-1 Tat is associated with a specific set of human mRNAs in T cells. mRNAs bound by Tat share a stem-loop structural element and encode proteins with common biological roles. In contrast, we do not find evidence that Tat associates with microRNAs or the RNA-induced silencing complex (RISC). The interaction of Tat with cellular RNA requires an intact RNA binding domain and Tat RNA binding is linked to an increase in RNA abundance in cell lines and during infection of primary CD4+ T cells by HIV. CONCLUSIONS We conclude that Tat interacts with a specific set of human mRNAs in T cells, many of which show changes in abundance in response to Tat and HIV infection. This work uncovers a previously unrecognised interaction between HIV and its host that may contribute to viral alteration of the host cellular environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Richard G Jenner
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London WC1E 6BT, UK.
| |
Collapse
|
23
|
Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Vet Pathol 2014; 51:759-74. [PMID: 24045890 PMCID: PMC4013251 DOI: 10.1177/0300985813502820] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of microRNAs (miRNAs) in 1993 followed by developments and discoveries in small RNA biology have redefined the biological landscape by significantly altering the longstanding dogmas that defined gene regulation. These small RNAs play a significant role in modulation of an array of physiological and pathological processes ranging from embryonic development to neoplastic progression. Unique miRNA signatures of various inherited, metabolic, infectious, and neoplastic diseases have added a new dimension to the studies that look at their pathogenesis and highlight their potential to be reliable biomarkers. Also, altering miRNA functionality and the development of novel in vivo delivery systems to achieve targeted modulation of specific miRNA function are being actively pursued as novel approaches for therapeutic intervention in many diseases. Here we review the current body of knowledge on the role of miRNAs in development and disease and discuss future implications.
Collapse
Affiliation(s)
- M Bhaskaran
- Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - M Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| |
Collapse
|
24
|
Swaminathan G, Navas-Martín S, Martín-García J. MicroRNAs and HIV-1 infection: antiviral activities and beyond. J Mol Biol 2013; 426:1178-97. [PMID: 24370931 DOI: 10.1016/j.jmb.2013.12.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/03/2013] [Accepted: 12/17/2013] [Indexed: 02/07/2023]
Abstract
Cellular microRNAs (miRNAs) are an important class of small, non-coding RNAs that bind to host mRNAs based on sequence complementarity and regulate protein expression. They play important roles in controlling key cellular processes including cellular inception, differentiation and death. While several viruses have been shown to encode for viral miRNAs, controversy persists over the expression of a functional miRNA encoded in the human immunodeficiency virus type 1 (HIV-1) genome. However, it has been reported that HIV-1 infectivity is influenced by cellular miRNAs. Either through directly targeting the viral genome or by targeting host cellular proteins required for successful virus replication, multiple cellular miRNAs seem to modulate HIV-1 infection and replication. Perhaps as a survival strategy, HIV-1 may modulate proteins in the miRNA biogenesis pathway to subvert miRNA-induced antiviral effects. Global expression profiles of cellular miRNAs have also identified alterations of specific miRNAs post-HIV-1 infection both in vitro and in vivo (in various infected patient cohorts), suggesting potential roles for miRNAs in pathogenesis and disease progression. However, little attention has been devoted in understanding the roles played by these miRNAs at a cellular level. In this manuscript, we review past and current findings pertaining to the field of miRNA and HIV-1 interplay. In addition, we suggest strategies to exploit miRNAs therapeutically for curbing HIV-1 infectivity, replication and latency since they hold an untapped potential that deserves further investigation.
Collapse
Affiliation(s)
- Gokul Swaminathan
- Graduate Program in Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | - Sonia Navas-Martín
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | - Julio Martín-García
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
25
|
Börner K, Niopek D, Cotugno G, Kaldenbach M, Pankert T, Willemsen J, Zhang X, Schürmann N, Mockenhaupt S, Serva A, Hiet MS, Wiedtke E, Castoldi M, Starkuviene V, Erfle H, Gilbert DF, Bartenschlager R, Boutros M, Binder M, Streetz K, Kräusslich HG, Grimm D. Robust RNAi enhancement via human Argonaute-2 overexpression from plasmids, viral vectors and cell lines. Nucleic Acids Res 2013; 41:e199. [PMID: 24049077 PMCID: PMC3834839 DOI: 10.1093/nar/gkt836] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/21/2013] [Accepted: 08/25/2013] [Indexed: 12/31/2022] Open
Abstract
As the only mammalian Argonaute protein capable of directly cleaving mRNAs in a small RNA-guided manner, Argonaute-2 (Ago2) is a keyplayer in RNA interference (RNAi) silencing via small interfering (si) or short hairpin (sh) RNAs. It is also a rate-limiting factor whose saturation by si/shRNAs limits RNAi efficiency and causes numerous adverse side effects. Here, we report a set of versatile tools and widely applicable strategies for transient or stable Ago2 co-expression, which overcome these concerns. Specifically, we engineered plasmids and viral vectors to co-encode a codon-optimized human Ago2 cDNA along with custom shRNAs. Furthermore, we stably integrated this Ago2 cDNA into a panel of standard human cell lines via plasmid transfection or lentiviral transduction. Using various endo- or exogenous targets, we demonstrate the potential of all three strategies to boost mRNA silencing efficiencies in cell culture by up to 10-fold, and to facilitate combinatorial knockdowns. Importantly, these robust improvements were reflected by augmented RNAi phenotypes and accompanied by reduced off-targeting effects. We moreover show that Ago2/shRNA-co-encoding vectors can enhance and prolong transgene silencing in livers of adult mice, while concurrently alleviating hepatotoxicity. Our customizable reagents and avenues should broadly improve future in vitro and in vivo RNAi experiments in mammalian systems.
Collapse
Affiliation(s)
- Kathleen Börner
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany, Cluster of Excellence CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany, Department of Medicine III, University Hospital Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany, Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany, Division Signaling and Functional Genomics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany and Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| | - Dominik Niopek
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany, Cluster of Excellence CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany, Department of Medicine III, University Hospital Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany, Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany, Division Signaling and Functional Genomics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany and Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| | - Gabriella Cotugno
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany, Cluster of Excellence CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany, Department of Medicine III, University Hospital Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany, Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany, Division Signaling and Functional Genomics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany and Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| | - Michaela Kaldenbach
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany, Cluster of Excellence CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany, Department of Medicine III, University Hospital Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany, Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany, Division Signaling and Functional Genomics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany and Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| | - Teresa Pankert
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany, Cluster of Excellence CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany, Department of Medicine III, University Hospital Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany, Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany, Division Signaling and Functional Genomics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany and Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| | - Joschka Willemsen
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany, Cluster of Excellence CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany, Department of Medicine III, University Hospital Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany, Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany, Division Signaling and Functional Genomics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany and Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| | - Xian Zhang
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany, Cluster of Excellence CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany, Department of Medicine III, University Hospital Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany, Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany, Division Signaling and Functional Genomics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany and Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| | - Nina Schürmann
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany, Cluster of Excellence CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany, Department of Medicine III, University Hospital Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany, Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany, Division Signaling and Functional Genomics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany and Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| | - Stefan Mockenhaupt
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany, Cluster of Excellence CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany, Department of Medicine III, University Hospital Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany, Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany, Division Signaling and Functional Genomics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany and Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| | - Andrius Serva
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany, Cluster of Excellence CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany, Department of Medicine III, University Hospital Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany, Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany, Division Signaling and Functional Genomics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany and Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| | - Marie-Sophie Hiet
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany, Cluster of Excellence CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany, Department of Medicine III, University Hospital Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany, Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany, Division Signaling and Functional Genomics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany and Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| | - Ellen Wiedtke
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany, Cluster of Excellence CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany, Department of Medicine III, University Hospital Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany, Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany, Division Signaling and Functional Genomics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany and Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| | - Mirco Castoldi
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany, Cluster of Excellence CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany, Department of Medicine III, University Hospital Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany, Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany, Division Signaling and Functional Genomics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany and Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| | - Vytaute Starkuviene
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany, Cluster of Excellence CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany, Department of Medicine III, University Hospital Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany, Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany, Division Signaling and Functional Genomics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany and Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| | - Holger Erfle
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany, Cluster of Excellence CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany, Department of Medicine III, University Hospital Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany, Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany, Division Signaling and Functional Genomics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany and Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| | - Daniel F. Gilbert
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany, Cluster of Excellence CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany, Department of Medicine III, University Hospital Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany, Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany, Division Signaling and Functional Genomics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany and Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany, Cluster of Excellence CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany, Department of Medicine III, University Hospital Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany, Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany, Division Signaling and Functional Genomics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany and Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| | - Michael Boutros
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany, Cluster of Excellence CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany, Department of Medicine III, University Hospital Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany, Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany, Division Signaling and Functional Genomics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany and Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| | - Marco Binder
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany, Cluster of Excellence CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany, Department of Medicine III, University Hospital Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany, Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany, Division Signaling and Functional Genomics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany and Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| | - Konrad Streetz
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany, Cluster of Excellence CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany, Department of Medicine III, University Hospital Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany, Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany, Division Signaling and Functional Genomics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany and Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany, Cluster of Excellence CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany, Department of Medicine III, University Hospital Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany, Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany, Division Signaling and Functional Genomics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany and Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany, Cluster of Excellence CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany, Department of Medicine III, University Hospital Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany, Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany, Division Signaling and Functional Genomics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany and Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| |
Collapse
|
26
|
Boudier C, Humbert N, Chaminade F, Chen Y, de Rocquigny H, Godet J, Mauffret O, Fossé P, Mély Y. Dynamic interactions of the HIV-1 Tat with nucleic acids are critical for Tat activity in reverse transcription. Nucleic Acids Res 2013; 42:1065-78. [PMID: 24153111 PMCID: PMC3902927 DOI: 10.1093/nar/gkt934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The HIV-1 transactivator of transcription (Tat) protein is thought to stimulate reverse transcription (RTion). The Tat protein and, more specifically, its (44–61) domain were recently shown to promote the annealing of complementary DNA sequences representing the HIV-1 transactivation response element TAR, named dTAR and cTAR, that plays a key role in RTion. Moreover, the kinetic mechanism of the basic Tat(44–61) peptide in this annealing further revealed that this peptide constitutes a representative nucleic acid annealer. To further understand the structure–activity relationships of this highly conserved domain, we investigated by electrophoresis and fluorescence approaches the binding and annealing properties of various Tat(44–61) mutants. Our data showed that the Tyr47 and basic residues of the Tat(44–61) domain were instrumental for binding to cTAR through stacking and electrostatic interactions, respectively, and promoting its annealing with dTAR. Furthermore, the annealing efficiency of the mutants clearly correlates with their ability to rapidly associate and dissociate the complementary oligonucleotides and to promote RTion. Thus, transient and dynamic nucleic acid interactions likely constitute a key mechanistic component of annealers and the role of Tat in the late steps of RTion. Finally, our data suggest that Lys50 and Lys51 acetylation regulates Tat activity in RTion.
Collapse
Affiliation(s)
- Christian Boudier
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, Illkirch 67401, France and Laboratoire de Biologie et Pharmacologie Appliquée, UMR-CNRS 8113, Ecole Normale Supérieure de Cachan, Cachan 94235, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ponia SS, Arora S, Kumar B, Banerjea AC. Arginine rich short linear motif of HIV-1 regulatory proteins inhibits dicer dependent RNA interference. Retrovirology 2013; 10:97. [PMID: 24025624 PMCID: PMC3848888 DOI: 10.1186/1742-4690-10-97] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 08/09/2013] [Indexed: 12/29/2022] Open
Abstract
Background Arginine Rich Motif (ARM) of HIV-1 Tat and Rev are extensively studied linear motifs (LMs). They are already established as an inefficient bipartite nuclear localisation signal (NLS). The unusual passive diffusion of HIV-1 NLS tagged reporter proteins across the nucleus is due to an unknown competing functionality of ARM. Recent findings about the role of retroviral proteins as a suppressor of RNA interference (RNAi) involving their basic residues hint an interesting answer to this alternate functionality. The present work explores the role of HIV-1 ARM as a uniquely evolved viral motif to combat Dicer dependent RNAi. Results We show that RNA binding ARM of both HIV-1 Tat and Rev is a LM with a pattern RXXRRXRRR unique to viruses. Extending the in silico results to wet lab, we proved both HIV-1 Tat and Rev can suppress Dicer dependent RNA silencing process involving ARM. We show, HIV-1 Tat and Rev and their corresponding ARM can bind the RISC loading complex (RLC) components TRBP and PACT confirming ARM as an independent RNAi suppression motif. Enhancement of RNAi in infection scenario through enoxacin increases HIV-1 replication as indicated by p24 levels. Except Dicer, all other cytoplasmic RNAi components enhance HIV-1 replication, indicating crucial role of Dicer independent (Ago2 dependent) RNAi pathway in HIV-1 infection. Sequence and structural analysis of endo/exo-microRNA precursors known to be regulated in HIV-1 infection highlights differential features of microRNA biogenesis. One such set of miRNA is viral TAR encoded HIV-1-miR-TAR-5p (Tar1) and HIV-1-miR-TAR-3p (Tar2) that are known to be present throughout the HIV-1 life cycle. Our qPCR results showed that enoxacin increases Tar2 miRNA level which is interesting as Tar2 precursor shows Ago2 dependent processing features. Conclusions We establish HIV-1 ARM as a novel viral motif evolved to target the Dicer dependent RNAi pathway. The conservation of such motif in other viral proteins possibly explains the potent suppression of Dicer dependent RNAi. Our model argues that HIV-1 suppress the processing of siRNAs through inhibition of Dicer while at the same time manipulates the RNAi machinery to process miRNA involved in HIV-1 replication from Dicer independent pathways.
Collapse
Affiliation(s)
- Sanket Singh Ponia
- Virology Lab II, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | | | | | | |
Collapse
|
28
|
Harris JF, Micheva-Viteva S, Li N, Hong-Geller E. Small RNA-mediated regulation of host-pathogen interactions. Virulence 2013; 4:785-95. [PMID: 23958954 PMCID: PMC3925712 DOI: 10.4161/viru.26119] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The rise in antimicrobial drug resistance, alongside the failure of conventional research to discover new antibiotics, will inevitably lead to a public health crisis that can drastically curtail our ability to combat infectious disease. Thus, there is a great global health need for development of antimicrobial countermeasures that target novel cell molecules or processes. RNA represents a largely unexploited category of potential targets for antimicrobial design. For decades, control of cellular behavior was thought to be the exclusive purview of protein-based regulators. The recent discovery of small RNAs (sRNAs) as a universal class of powerful RNA-based regulatory biomolecules has the potential to revolutionize our understanding of gene regulation in practically all biological functions. In general, sRNAs regulate gene expression by base-pairing with multiple downstream target mRNAs to prevent translation of mRNA into protein. In this review, we will discuss recent studies that document discovery of bacterial, viral, and human sRNAs and their molecular mechanisms in regulation of pathogen virulence and host immunity. Illuminating the functional roles of sRNAs in virulence and host immunity can provide the fundamental knowledge for development of next-generation antibiotics using sRNAs as novel targets.
Collapse
Affiliation(s)
- Jennifer F Harris
- Bioscience Division; Los Alamos National Laboratory; Los Alamos, NM USA
| | | | - Nan Li
- Bioscience Division; Los Alamos National Laboratory; Los Alamos, NM USA
| | | |
Collapse
|
29
|
Gupta P, Saksena NK. miRNAs: small molecules with a big impact on HIV infection and pathogenesis. Future Virol 2013. [DOI: 10.2217/fvl.13.59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
miRNAs belong to a class of small noncoding RNAs that regulate gene expression at the post-transcriptional level. These are approximately 22-nt long sequences and control expression of 30–60% of all human genes, which has considerable significance in HIV infection, especially the way in which host–virus interaction occurs in vivo. Over the course of human evolution, viruses too have evolved, but there is still controversy surrounding the presence of miRNAs encoded by HIV. Considering the wide involvement of miRNAs in host gene regulation during infection and their association with HIV, this review provides insights into miRNAs encoded by the host and their role in host–virus interactions in addition to controlling host gene expression.
Collapse
Affiliation(s)
- Priyanka Gupta
- Retroviral Genetics Division, Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Westmead, NSW 2145, Sydney, Australia
| | - Nitin K Saksena
- Retroviral Genetics Division, Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Westmead, NSW 2145, Sydney, Australia.
| |
Collapse
|
30
|
Vlachakis D, Tsiliki G, Pavlopoulou A, Roubelakis MG, Tsaniras SC, Kossida S. Antiviral Stratagems Against HIV-1 Using RNA Interference (RNAi) Technology. Evol Bioinform Online 2013; 9:203-13. [PMID: 23761954 PMCID: PMC3662398 DOI: 10.4137/ebo.s11412] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The versatility of human immunodeficiency virus (HIV)-1 and its evolutionary potential to elude antiretroviral agents by mutating may be its most invincible weapon. Viruses, including HIV, in order to adapt and survive in their environment evolve at extremely fast rates. Given that conventional approaches which have been applied against HIV have failed, novel and more promising approaches must be employed. Recent studies advocate RNA interference (RNAi) as a promising therapeutic tool against HIV. In this regard, targeting multiple HIV sites in the context of a combinatorial RNAi-based approach may efficiently stop viral propagation at an early stage. Moreover, large high-throughput RNAi screens are widely used in the fields of drug development and reverse genetics. Computer-based algorithms, bioinformatics, and biostatistical approaches have been employed in traditional medicinal chemistry discovery protocols for low molecular weight compounds. However, the diversity and complexity of RNAi screens cannot be efficiently addressed by these outdated approaches. Herein, a series of novel workflows for both wet- and dry-lab strategies are presented in an effort to provide an updated review of state-of-the-art RNAi technologies, which may enable adequate progress in the fight against the HIV-1 virus.
Collapse
Affiliation(s)
- Dimitrios Vlachakis
- Bioinformatics and Medical Informatics Team, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | | | | | | | | |
Collapse
|
31
|
Chen CY, Liu X, Boris-Lawrie K, Sharma A, Jeang KT. Cellular RNA helicases and HIV-1: insights from genome-wide, proteomic, and molecular studies. Virus Res 2013; 171:357-65. [PMID: 22814432 PMCID: PMC3493675 DOI: 10.1016/j.virusres.2012.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 06/25/2012] [Accepted: 06/25/2012] [Indexed: 11/24/2022]
Abstract
RNA helicases are ubiquitous in plants and animals and function in many cellular processes. Retroviruses, such as human immunodeficiency virus (HIV-1), encode no RNA helicases in their genomes and utilize host cellular RNA helicases at various stages of their life cycle. Here, we briefly summarize the roles RNA helicases play in HIV-1 replication that have been identified recently, in part, through genome-wide screenings, proteomics, and molecular studies. Some of these helicases augment virus propagation while others apparently participate in antiviral defenses against viral replication.
Collapse
Affiliation(s)
- Chia-Yen Chen
- Molecular Virology Section1, Laboratory of Molecular, Microbiology, the National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA 20892
| | - Xiang Liu
- Molecular Virology Section1, Laboratory of Molecular, Microbiology, the National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA 20892
| | - Kathleen Boris-Lawrie
- Department of Veterinary Biosciences, Center for Retrovirus Research, Ohio State University, Columbus, OH USA 43210
| | - Amit Sharma
- Department of Veterinary Biosciences, Center for Retrovirus Research, Ohio State University, Columbus, OH USA 43210
| | - Kuan-Teh Jeang
- Molecular Virology Section1, Laboratory of Molecular, Microbiology, the National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA 20892
| |
Collapse
|
32
|
Libri V, Miesen P, van Rij RP, Buck AH. Regulation of microRNA biogenesis and turnover by animals and their viruses. Cell Mol Life Sci 2013; 70:3525-44. [PMID: 23354060 PMCID: PMC3771402 DOI: 10.1007/s00018-012-1257-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/27/2012] [Accepted: 12/27/2012] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are a ubiquitous component of gene regulatory networks that modulate the precise amounts of proteins expressed in a cell. Despite their small size, miRNA genes contain various recognition elements that enable specificity in when, where and to what extent they are expressed. The importance of precise control of miRNA expression is underscored by functional studies in model organisms and by the association between miRNA mis-expression and disease. In the last decade, identification of the pathways by which miRNAs are produced, matured and turned-over has revealed many aspects of their biogenesis that are subject to regulation. Studies in viral systems have revealed a range of mechanisms by which viruses target these pathways through viral proteins or non-coding RNAs in order to regulate cellular gene expression. In parallel, a field of study has evolved around the activation and suppression of antiviral RNA interference (RNAi) by viruses. Virus encoded suppressors of RNAi can impact miRNA biogenesis in cases where miRNA and small interfering RNA pathways converge. Here we review the literature on the mechanisms by which miRNA biogenesis and turnover are regulated in animals and the diverse strategies that viruses use to subvert or inhibit these processes.
Collapse
Affiliation(s)
- Valentina Libri
- Centre for Immunity, Infection and Evolution, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JT, UK
| | | | | | | |
Collapse
|
33
|
Zheng YH, Jeang KT, Tokunaga K. Host restriction factors in retroviral infection: promises in virus-host interaction. Retrovirology 2012; 9:112. [PMID: 23254112 PMCID: PMC3549941 DOI: 10.1186/1742-4690-9-112] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 12/09/2012] [Indexed: 01/19/2023] Open
Abstract
Retroviruses have an intricate life cycle. There is much to be learned from studying retrovirus-host interactions. Among retroviruses, the primate lentiviruses have one of the more complex genome structures with three categories of viral genes: structural, regulatory, and accessory genes. Over time, we have gained increasing understanding of the lentivirus life cycle from studying host factors that support virus replication. Similarly, studies on host restriction factors that inhibit viral replication have also made significant contributions to our knowledge. Here, we review recent progress on the rapidly growing field of restriction factors, focusing on the antiretroviral activities of APOBEC3G, TRIM5, tetherin, SAMHD1, MOV10, and cellular microRNAs (miRNAs), and the counter-activities of Vif, Vpu, Vpr, Vpx, and Nef.
Collapse
Affiliation(s)
- Yong-Hui Zheng
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | | | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
34
|
Klase Z, Houzet L, Jeang KT. MicroRNAs and HIV-1: complex interactions. J Biol Chem 2012; 287:40884-90. [PMID: 23043098 DOI: 10.1074/jbc.r112.415448] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNAi plays important roles in many biological processes, including cellular defense against viral infection. Components of the RNAi machinery are widely conserved in plants and animals. In mammals, microRNAs (miRNAs) represent an abundant class of cell encoded small noncoding RNAs that participate in RNAi-mediated gene silencing. Here, findings that HIV-1 replication in cells can be regulated by miRNAs and that HIV-1 infection of cells can alter cellular miRNA expression are reviewed. Lessons learned from and questions outstanding about the complex interactions between HIV-1 and cellular miRNAs are discussed.
Collapse
Affiliation(s)
- Zachary Klase
- Molecular Virology Section, Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
35
|
Tan Gana NH, Onuki T, Victoriano AFB, Okamoto T. MicroRNAs in HIV-1 infection: an integration of viral and cellular interaction at the genomic level. Front Microbiol 2012; 3:306. [PMID: 22936931 PMCID: PMC3426883 DOI: 10.3389/fmicb.2012.00306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/01/2012] [Indexed: 12/15/2022] Open
Abstract
The microRNA pathways govern complex interactions of the host and virus at the transcripts level that regulate cellular responses, viral replication and viral pathogenesis. As a group of single-stranded short non-coding ribonucleotides (ncRNAs), the microRNAs complement their messenger RNA (mRNA) targets to effect post-transcriptional or translational gene silencing. Previous studies showed the ability of human immunodeficiency virus 1 (HIV-1) to encode microRNAs which modify cellular defence mechanisms thus creating an environment favorable for viral invasion and replication. In corollary, cellular microRNAs were linked to the alteration of HIV-1 infection at different stages of replication and latency. As evidences further establish the regulatory involvement of both cellular and viral microRNA in HIV-1-host interactions, there is a necessity to organize this information. This paper would present current and emerging knowledge on these multi-dimensional interactions that may facilitate the design of microRNAs as effective antiretroviral reagents.
Collapse
Affiliation(s)
- Neil H Tan Gana
- Department of Molecular and Cell Biology, Nagoya City University Graduate School of Medical Sciences Nagoya, Japan
| | | | | | | |
Collapse
|
36
|
van der Velden GJ, Vink MA, Berkhout B, Das AT. Tat has a dual role in simian immunodeficiency virus transcription. J Gen Virol 2012; 93:2279-2289. [PMID: 22815271 DOI: 10.1099/vir.0.044511-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tat has a pivotal role in human and simian immunodeficiency virus (HIV and SIV) replication because it stimulates transcription by binding to the trans-activator response (TAR) element. In addition, several other Tat functions have been proposed. Most studies have focused on HIV-1 Tat and much less is known about SIV Tat. An SIVmac239 variant was constructed previously in which the Tat-TAR transcription mechanism is functionally replaced by the doxycycline-inducible Tet-On gene expression mechanism (SIV-rtTA). In this study, SIV-rtTA variants were used to analyse the functions of SIV Tat. It was shown that Tat-minus SIV-rtTA variants replicated efficiently in PM1 T-cells, ruling out an additional essential Tat function. Nevertheless, replication was suboptimal in other cells, and evolutionary pressure to repair Tat expression was documented. It was demonstrated that SIV-rtTA required Tat for optimal gene expression, despite the absence of the Tat-TAR axis. This Tat effect was lost upon replacement of the long terminal repeat promoter region by a non-related promoter. These results indicate that Tat can activate SIV transcription via TAR RNA and U3 DNA elements but has no other essential function in replication in cultured cells. The experiments were limited to cell lines and PBMCs, and did not exclude an accessory Tat function under specific conditions or in vivo.
Collapse
Affiliation(s)
- Gisela J van der Velden
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Monique A Vink
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
37
|
Localization and sub-cellular shuttling of HTLV-1 tax with the miRNA machinery. PLoS One 2012; 7:e40662. [PMID: 22808228 PMCID: PMC3393700 DOI: 10.1371/journal.pone.0040662] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/11/2012] [Indexed: 12/18/2022] Open
Abstract
The innate ability of the human cell to silence endogenous retroviruses through RNA sequences encoding microRNAs, suggests that the cellular RNAi machinery is a major means by which the host mounts a defense response against present day retroviruses. Indeed, cellular miRNAs target and hybridize to specific sequences of both HTLV-1 and HIV-1 viral transcripts. However, much like the variety of host immune responses to retroviral infection, the virus itself contains mechanisms that assist in the evasion of viral inhibition through control of the cellular RNAi pathway. Retroviruses can hijack both the enzymatic and catalytic components of the RNAi pathway, in some cases to produce novel viral miRNAs that can either assist in active viral infection or promote a latent state. Here, we show that HTLV-1 Tax contributes to the dysregulation of the RNAi pathway by altering the expression of key components of this pathway. A survey of uninfected and HTLV-1 infected cells revealed that Drosha protein is present at lower levels in all HTLV-1 infected cell lines and in infected primary cells, while other components such as DGCR8 were not dramatically altered. We show colocalization of Tax and Drosha in the nucleus in vitro as well as coimmunoprecipitation in the presence of proteasome inhibitors, indicating that Tax interacts with Drosha and may target it to specific areas of the cell, namely, the proteasome. In the presence of Tax we observed a prevention of primary miRNA cleavage by Drosha. Finally, the changes in cellular miRNA expression in HTLV-1 infected cells can be mimicked by the add back of Drosha or the addition of antagomiRs against the cellular miRNAs which are downregulated by the virus.
Collapse
|
38
|
Sanghvi VR, Steel LF. RNA silencing as a cellular defense against HIV-1 infection: progress and issues. FASEB J 2012; 26:3937-45. [PMID: 22751007 DOI: 10.1096/fj.12-210765] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are known to have a role in gene regulation that is closely integrated into the pathways that control virtually all fundamental cell processes of growth, differentiation, metabolism, and death. Whether silencing RNAs and the cellular pathways that generate them are also used in antiviral defense in higher eukaryotes, as they are in plants and lower eukaryotes, has been the subject of much study. Results to date point to a complex interplay between viruses and vertebrate host cells that can vary considerably among different viruses. Here, we review current knowledge regarding interactions between HIV-1 and host cell RNA silencing mechanisms. Important questions in this field remain unresolved, including whether HIV-1 itself encodes small silencing RNAs that might either promote or repress its replication, whether host cell miRNAs can directly target viral transcripts or can alter the course of infection indirectly through effects on cellular genes necessary for viral replication, and whether HIV-1 produces proteins or RNAs that suppress the host-silencing pathway. We summarize evidence and controversies related to the potential role of RNA silencing pathways as a defense against HIV-1 infection.
Collapse
Affiliation(s)
- Viraj R Sanghvi
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2245 North 15th St., MS1013A, Philadelphia, PA 19102, USA
| | | |
Collapse
|
39
|
Godet J, Boudier C, Humbert N, Ivanyi-Nagy R, Darlix JL, Mély Y. Comparative nucleic acid chaperone properties of the nucleocapsid protein NCp7 and Tat protein of HIV-1. Virus Res 2012; 169:349-60. [PMID: 22743066 PMCID: PMC7114403 DOI: 10.1016/j.virusres.2012.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
Abstract
RNA chaperones are proteins able to rearrange nucleic acid structures towards their most stable conformations. In retroviruses, the reverse transcription of the viral RNA requires multiple and complex nucleic acid rearrangements that need to be chaperoned. HIV-1 has evolved different viral-encoded proteins with chaperone activity, notably Tat and the well described nucleocapsid protein NCp7. We propose here an overview of the recent reports that examine and compare the nucleic acid chaperone properties of Tat and NCp7 during reverse transcription to illustrate the variety of mechanisms of action of the nucleic acid chaperone proteins.
Collapse
Affiliation(s)
- Julien Godet
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, Université de Strasbourg, 67401 Illkirch, France
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
The introduction of highly active antiretroviral therapy (HAART) has been an important breakthrough in the treatment of HIV-1 infection and has also a powerful tool to upset the equilibrium of viral production and HIV-1 pathogenesis. Despite the advent of potent combinations of this therapy, the long-lived HIV-1 reservoirs like cells from monocyte-macrophage lineage and resting memory CD4+ T cells which are established early during primary infection constitute a major obstacle to virus eradication. Further HAART interruption leads to immediate rebound viremia from latent reservoirs. This paper focuses on the essentials of the molecular mechanisms for the establishment of HIV-1 latency with special concern to present and future possible treatment strategies to completely purge and target viral persistence in the reservoirs.
Collapse
|
41
|
Xue B, Mizianty MJ, Kurgan L, Uversky VN. Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cell Mol Life Sci 2012; 69:1211-59. [PMID: 22033837 PMCID: PMC11114566 DOI: 10.1007/s00018-011-0859-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/28/2011] [Accepted: 10/03/2011] [Indexed: 01/19/2023]
Abstract
Many proteins and protein regions are disordered in their native, biologically active states. These proteins/regions are abundant in different organisms and carry out important biological functions that complement the functional repertoire of ordered proteins. Viruses, with their highly compact genomes, small proteomes, and high adaptability for fast change in their biological and physical environment utilize many of the advantages of intrinsic disorder. In fact, viral proteins are generally rich in intrinsic disorder, and intrinsically disordered regions are commonly used by viruses to invade the host organisms, to hijack various host systems, and to help viruses in accommodation to their hostile habitats and to manage their economic usage of genetic material. In this review, we focus on the structural peculiarities of HIV-1 proteins, on the abundance of intrinsic disorder in viral proteins, and on the role of intrinsic disorder in their functions.
Collapse
Affiliation(s)
- Bin Xue
- Department of Molecular Medicine, University of South Florida, College of Medicine, 12901 Bruce B. Downs Blvd, MDC07, Tampa, FL 33612 USA
| | - Marcin J. Mizianty
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Lukasz Kurgan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, College of Medicine, 12901 Bruce B. Downs Blvd, MDC07, Tampa, FL 33612 USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region Russia
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Macrophages play an important role in HIV-1 pathogenesis and contribute to the establishment of the viral reservoir responsible for continuous virus production. This review will discuss new insights into HIV-1 infection in macrophages and the effect of infection on immune function and pathology. RECENT FINDINGS New cellular factors interacting with various steps of the HIV-1 replication cycle, such as entry, integration, transcription, and assembly of new viral progeny, have been identified. Cellular and viral microRNAs have been shown to regulate virus replication, promote viral latency, and prolong cell survival. Interference with innate immune functions, like phagocytosis, autophagy, cytokine production, and T-cell activation by HIV-1 has been found to contribute to virus replication and latency. Growing evidence indicates an important role of infected macrophages in a variety of HIV-1-associated diseases, including neurocognitive disorders. SUMMARY Under combined antiretroviral therapy (cART), HIV-1 continues to persist in macrophages. Better understanding of HIV-1 infection in macrophages may lead to new adjunctive therapies to improve cART, specifically targeting the viral reservoir and ameliorating tissue-specific diseases.
Collapse
|
43
|
Jing XL, Fan MN, Jia G, Liu LW, Ma L, Zheng CC, Zhu XP, Liu HM, Wang XY. A multifunctional protein encoded by turkey herpesvirus suppresses RNA silencing in Nicotiana benthamiana. J Virol 2011; 85:12792-803. [PMID: 21957299 PMCID: PMC3209371 DOI: 10.1128/jvi.05565-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/14/2011] [Indexed: 12/31/2022] Open
Abstract
Many plant and animal viruses counteract RNA silencing-mediated defense by encoding diverse RNA silencing suppressors. We characterized HVT063, a multifunctional protein encoded by turkey herpesvirus (HVT), as a silencing suppressor in coinfiltration assays with green fluorescent protein transgenic Nicotiana benthamiana line 16c. Our results indicated that HVT063 could strongly suppress both local and systemic RNA silencing induced by either sense RNA or double-stranded RNA (dsRNA). HVT063 could reverse local silencing, but not systemic silencing, in newly emerging leaves. The local silencing suppression activity of HVT063 was also verified using the heterologous vector PVX. Further, single alanine substitution of arginine or lysine residues of the HVT063 protein showed that each selected single amino acid contributed to the suppression activity of HVT063 and region 1 (residues 138 to 141) was more important, because three of four single amino acid mutations in this region could abolish the silencing suppressor activity of HVT063. Moreover, HVT063 seemed to induce a cell death phenotype in the infiltrated leaf region, and the HVT063 dilutions could decrease the silencing suppressor activity and alleviate the cell death phenotype. Collectively, these results suggest that HVT063 functions as a viral suppressor of RNA silencing that targets a downstream step of the dsRNA formation in the RNA silencing process. Positively charged amino acids in HVT063, such as arginine and lysine, might contribute to the suppressor activity by boosting the interaction between HVT063 and RNA, since HVT063 has been demonstrated to be an RNA binding protein.
Collapse
Affiliation(s)
- Xiu-li Jing
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Mei-na Fan
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Gang Jia
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Lan-wei Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Lin Ma
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Cheng-chao Zheng
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Xiao-ping Zhu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Hong-mei Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Xiao-yun Wang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| |
Collapse
|
44
|
Sun G, Li H, Wu X, Covarrubias M, Scherer L, Meinking K, Luk B, Chomchan P, Alluin J, Gombart AF, Rossi JJ. Interplay between HIV-1 infection and host microRNAs. Nucleic Acids Res 2011; 40:2181-96. [PMID: 22080513 PMCID: PMC3300021 DOI: 10.1093/nar/gkr961] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Using microRNA array analyses of in vitro HIV-1-infected CD4+ cells, we find that several host microRNAs are significantly up- or downregulated around the time HIV-1 infection peaks in vitro. While microRNA-223 levels were significantly enriched in HIV-1-infected CD4+CD8− PBMCs, microRNA-29a/b, microRNA-155 and microRNA-21 levels were significantly reduced. Based on the potential for microRNA binding sites in a conserved sequence of the Nef-3′-LTR, several host microRNAs potentially could affect HIV-1 gene expression. Among those microRNAs, the microRNA-29 family has seed complementarity in the HIV-1 3′-UTR, but the potential suppressive effect of microRNA-29 on HIV-1 is severely blocked by the secondary structure of the target region. Our data support a possible regulatory circuit at the peak of HIV-1 replication which involves downregulation of microRNA-29, expression of Nef, the apoptosis of host CD4 cells and upregulation of microRNA-223.
Collapse
Affiliation(s)
- Guihua Sun
- Graduate School of Biological Science, Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sun G, Rossi JJ. MicroRNAs and their potential involvement in HIV infection. Trends Pharmacol Sci 2011; 32:675-81. [PMID: 21862142 DOI: 10.1016/j.tips.2011.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/15/2011] [Accepted: 07/21/2011] [Indexed: 12/12/2022]
Abstract
Treatment and cure of HIV-1 infection remain one of the greatest therapeutic challenges owing to its persistent infection, which often leads to AIDS. Although it has been 28 years since the discovery of the virus, the development of an effective vaccine is still years away. Relatively newly discovered miRNAs are a family of small noncoding RNAs that can regulate gene expression primarily by binding to the 3' untranslated region of targeted transcripts. An understanding of how HIV-1 infection affects the host miRNA pathway could generate new insights into the basic mechanisms underlying HIV-1-mediated pathologies and T-lymphocyte depletion. Here, we review literature on the biogenesis of HIV-1-encoded miRNAs, cellular miRNAs that can directly target HIV-1 or essential cellular factors required for HIV-1 replication. We also discuss the feasibility of using miRNAs for HIV-1 therapy.
Collapse
Affiliation(s)
- Guihua Sun
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010-3000, USA
| | | |
Collapse
|
46
|
Abstract
It is generally acknowledged that the Tat protein has a pivotal role in HIV-1 replication because it stimulates transcription from the viral long terminal repeat (LTR) promoter by binding to the TAR hairpin in the nascent RNA transcript. However, a multitude of additional Tat functions have been suggested. The importance of these functions is difficult to assess in replication studies with Tat-mutated HIV-1 variants because of the dominant negative effect on viral gene expression. We therefore used an HIV-1 construct that does not depend on the Tat-TAR interaction for transcription to reevaluate whether or not Tat has a second essential function in HIV-1 replication. This HIV-rtTA variant uses the incorporated Tet-On gene expression system for activation of transcription and replicates efficiently upon complete TAR deletion. Here we demonstrated that Tat inactivation does nevertheless severely inhibit replication. Upon long-term culturing, the Tat-minus HIV-rtTA variant acquired mutations in the U3 region that improved promoter activity and reestablished replication. We showed that in the absence of a functional TAR, Tat remains important for viral transcription via Sp1 sequence elements in the U3 promoter region. Substitution of these U3 sequences with nonrelated promoter elements created a virus that replicates efficiently without Tat in SupT1 T cells. These results indicate that Tat has a versatile role in transcription via TAR and U3 elements. The results also imply that Tat has no other essential function in viral replication in cultured T cells.
Collapse
|
47
|
Abstract
MicroRNAs (miRNAs) are a class of posttranscriptional regulators that have recently introduced an additional level of intricacy to our understanding of gene regulation. There are currently over 10,000 miRNAs that have been identified in a range of species including metazoa, mycetozoa, viridiplantae, and viruses, of which 940, to date, are found in humans. It is estimated that more than 60% of human protein-coding genes harbor miRNA target sites in their 3′ untranslated region and, thus, are potentially regulated by these molecules in health and disease. This review will first briefly describe the discovery, structure, and mode of function of miRNAs in mammalian cells, before elaborating on their roles and significance during development and pathogenesis in the various mammalian organs, while attempting to reconcile their functions with our existing knowledge of their targets. Finally, we will summarize some of the advances made in utilizing miRNAs in therapeutics.
Collapse
Affiliation(s)
- Danish Sayed
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Maha Abdellatif
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| |
Collapse
|
48
|
Vitagliano L, Fiume G, Scognamiglio PL, Doti N, Cannavò R, Puca A, Pedone C, Scala G, Quinto I, Marasco D. Structural and functional insights into IκB-α/HIV-1 Tat interaction. Biochimie 2011; 93:1592-600. [PMID: 21664225 DOI: 10.1016/j.biochi.2011.05.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 05/24/2011] [Indexed: 01/13/2023]
Abstract
Protein-protein interactions play fundamental roles in physiological and pathological biological processes. The characterization of the structural determinants of protein-protein recognition represents an important step for the development of molecular entities able to modulate these interactions. We have recently found that IκB-α (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) blocks the HIV-1 expression and replication in a NF-κB-independent manner by directly binding to the virus-encoded Tat transactivator. Here, we report the evaluation of the entity of binding of IκB-α to Tat through in vitro Surface Plasmon Resonance assay. Moreover, by designing and characterizing a set of peptides of the C-terminus region of IκB-α, we show that the peptide corresponding to the IκB-α sequence 262-287 was able to bind to Tat with high affinity (300 nM). The characterization of a number of IκB-α-based peptides also provided insights into their intrinsic folding properties. These findings have been corroborated by mutagenesis studies on the full-length IκB-α, which unveil that different IκB-α residues are involved in NF-κB or Tat recognition.
Collapse
Affiliation(s)
- Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sanghvi VR, Steel LF. A re-examination of global suppression of RNA interference by HIV-1. PLoS One 2011; 6:e17246. [PMID: 21386885 PMCID: PMC3046114 DOI: 10.1371/journal.pone.0017246] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/23/2011] [Indexed: 12/30/2022] Open
Abstract
The nature of the interaction between replicating HIV-1 and the cellular RNAi pathway has been controversial, but it is clear that it can be complex and multifaceted. It has been proposed that the interaction is bi-directional, whereby cellular silencing pathways can restrict HIV-1 replication, and in turn, HIV-1 can suppress silencing pathways. Overall suppression of RNAi has been suggested to occur via direct binding and inhibition of Dicer by the HIV-1 Tat protein or through sequestration of TRBP, a Dicer co-factor, by the structured TAR element of HIV-1 transcripts. The role of Tat as an inhibitor of Dicer has been questioned and our results support and extend the conclusion that Tat does not inhibit RNAi that is mediated by either exogenous or endogenous miRNAs. Similarly, we find no suppression of silencing pathways in cells with replicating virus, suggesting that viral products such as the TAR RNA elements also do not reduce the efficacy of cellular RNA silencing. However, knockdown of Dicer does allow increased viral replication and this occurs at a post-transcriptional level. These results support the idea that although individual miRNAs can act to restrict HIV-1 replication, the virus does not counter these effects through a global suppression of RNAi synthesis or processing.
Collapse
Affiliation(s)
- Viraj R. Sanghvi
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Laura F. Steel
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
50
|
Doetsch M, Fürtig B, Gstrein T, Stampfl S, Schroeder R. The RNA annealing mechanism of the HIV-1 Tat peptide: conversion of the RNA into an annealing-competent conformation. Nucleic Acids Res 2011; 39:4405-18. [PMID: 21297117 PMCID: PMC3105384 DOI: 10.1093/nar/gkq1339] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The annealing of nucleic acids to (partly) complementary RNA or DNA strands is involved in important cellular processes. A variety of proteins have been shown to accelerate RNA/RNA annealing but their mode of action is still mainly uncertain. In order to study the mechanism of protein-facilitated acceleration of annealing we selected a short peptide, HIV-1 Tat(44–61), which accelerates the reaction efficiently. The activity of the peptide is strongly regulated by mono- and divalent cations which hints at the importance of electrostatic interactions between RNA and peptide. Mutagenesis of the peptide illustrated the dominant role of positively charged amino acids in RNA annealing—both the overall charge of the molecule and a precise distribution of basic amino acids within the peptide are important. Additionally, we found that Tat(44–61) drives the RNA annealing reaction via entropic rather than enthalpic terms. One-dimensional-NMR data suggest that the peptide changes the population distribution of possible RNA structures to favor an annealing-prone RNA conformation, thereby increasing the fraction of colliding RNA molecules that successfully anneal.
Collapse
Affiliation(s)
- Martina Doetsch
- Max F Perutz Laboratories, Dr Bohrgasse 9/5, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|