1
|
Santana JF, Spector BM, Suarez G, Luse D, Price D. NELF focuses sites of initiation and maintains promoter architecture. Nucleic Acids Res 2024; 52:2977-2994. [PMID: 38197272 PMCID: PMC11014283 DOI: 10.1093/nar/gkad1253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
Many factors control the elongation phase of transcription by RNA polymerase II (Pol II), a process that plays an essential role in regulating gene expression. We utilized cells expressing degradation tagged subunits of NELFB, PAF1 and RTF1 to probe the effects of depletion of the factors on nascent transcripts using PRO-Seq and on chromatin architecture using DFF-ChIP. Although NELF is involved in promoter proximal pausing, depletion of NELFB had only a minimal effect on the level of paused transcripts and almost no effect on control of productive elongation. Instead, NELF depletion increased the utilization of downstream transcription start sites and caused a dramatic, genome-wide loss of H3K4me3 marked nucleosomes. Depletion of PAF1 and RTF1 both had major effects on productive transcript elongation in gene bodies and also caused initiation site changes like those seen with NELFB depletion. Our study confirmed that the first nucleosome encountered during initiation and early elongation is highly positioned with respect to the major TSS. In contrast, the positions of H3K4me3 marked nucleosomes in promoter regions are heterogeneous and are influenced by transcription. We propose a model defining NELF function and a general role of the H3K4me3 modification in blocking transcription initiation.
Collapse
Affiliation(s)
- Juan F Santana
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin M Spector
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Gustavo A Suarez
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Donal S Luse
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - David H Price
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Horvath RM, Brumme ZL, Sadowski I. Small molecule inhibitors of transcriptional cyclin-dependent kinases impose HIV-1 latency, presenting "block and lock" treatment strategies. Antimicrob Agents Chemother 2024; 68:e0107223. [PMID: 38319085 PMCID: PMC10923280 DOI: 10.1128/aac.01072-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Current antiretroviral therapy for HIV-1 infection does not represent a cure for infection as viral rebound inevitably occurs following discontinuation of treatment. The "block and lock" therapeutic strategy is intended to enforce proviral latency and durably suppress viremic reemergence in the absence of other intervention. The transcription-associated cyclin-dependent protein kinases (tCDKs) are required for expression from the 5´ HIV-1 long-terminal repeat, but the therapeutic potential of inhibiting these kinases for enforcing HIV-1 latency has not been characterized. Here, we expanded previous observations to directly compare the effect of highly selective small molecule inhibitors of CDK7 (YKL-5-124), CDK9 (LDC000067), and CDK8/19 (Senexin A), and found each of these prevented HIV-1 provirus expression at concentrations that did not cause cell toxicity. Inhibition of CDK7 caused cell cycle arrest, whereas CDK9 and CDK8/19 inhibitors did not, and could be continuously administered to establish proviral latency. Upon discontinuation of drug administration, HIV immediately rebounded in cells that had been treated with the CDK9 inhibitor, while proviral latency persisted for several days in cells that had been treated with CDK8/19 inhibitors. These results identify the mediator kinases CDK8/CDK19 as potential "block and lock" targets for therapeutic suppression of HIV-1 provirus expression.
Collapse
Affiliation(s)
- Riley M. Horvath
- Department of Biochemistry and Molecular Biology Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Wille CK, Zhang X, Haws SA, Denu JM, Sridharan R. DOT1L is a barrier to histone acetylation during reprogramming to pluripotency. SCIENCE ADVANCES 2023; 9:eadf3980. [PMID: 37976354 PMCID: PMC10656071 DOI: 10.1126/sciadv.adf3980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Embryonic stem cells (ESCs) have transcriptionally permissive chromatin enriched for gene activation-associated histone modifications. A striking exception is DOT1L-mediated H3K79 dimethylation (H3K79me2) that is considered a positive regulator of transcription. We find that ESCs are depleted for H3K79me2 at shared locations of enrichment with somatic cells, which are highly and ubiquitously expressed housekeeping genes, and have lower RNA polymerase II (RNAPII) at the transcription start site (TSS) despite greater nascent transcription. Inhibiting DOT1L increases the efficiency of reprogramming of somatic to induced pluripotent stem cells, enables an ESC-like RNAPII pattern at the TSS, and functionally compensates for enforced RNAPII pausing. DOT1L inhibition increases H3K27 methylation and RNAPII elongation-enhancing histone acetylation without changing the expression of the causal histone-modifying enzymes. Only the maintenance of elevated histone acetylation is essential for enhanced reprogramming and occurs at loci that are depleted for H3K79me2. Thus, DOT1L inhibition promotes the hyperacetylation and hypertranscription pluripotent properties.
Collapse
Affiliation(s)
- Coral K. Wille
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Xiaoya Zhang
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Spencer A. Haws
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John M. Denu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
4
|
Behrens RT, Rajashekar JK, Bruce JW, Evans EL, Hansen AM, Salazar-Quiroz N, Simons LM, Ahlquist P, Hultquist JF, Kumar P, Sherer NM. Exploiting a rodent cell block for intrinsic resistance to HIV-1 gene expression in human T cells. mBio 2023; 14:e0042023. [PMID: 37676006 PMCID: PMC10653828 DOI: 10.1128/mbio.00420-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/13/2023] [Indexed: 09/08/2023] Open
Abstract
IMPORTANCE Unlike humans, mice are unable to support HIV-1 infection. This is due, in part, to a constellation of defined minor, species-specific differences in conserved host proteins needed for viral gene expression. Here, we used precision CRISPR/Cas9 gene editing to engineer a "mousified" version of one such host protein, cyclin T1 (CCNT1), in human T cells. CCNT1 is essential for efficient HIV-1 transcription, making it an intriguing target for gene-based inactivation of virus replication. We show that isogenic cell lines engineered to encode CCNT1 bearing a single mouse-informed amino acid change (tyrosine in place of cysteine at position 261) exhibit potent, durable, and broad-spectrum resistance to HIV-1 and other pathogenic lentiviruses, and with no discernible impact on host cell biology. These results provide proof of concept for targeting CCNT1 in the context of one or more functional HIV-1 cure strategies.
Collapse
Affiliation(s)
- Ryan T. Behrens
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jyothi Krishnaswamy Rajashekar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James W. Bruce
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Edward L. Evans
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amelia M. Hansen
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Natalia Salazar-Quiroz
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lacy M. Simons
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Paul Ahlquist
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Chinnapaiyan S, Santiago MJ, Panda K, Rahman MS, Alluin J, Rossi J, Unwalla HJ. A conditional RNA Pol II mono-promoter drives HIV-inducible, CRISPR-mediated cyclin T1 suppression and HIV inhibition. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:553-565. [PMID: 37215150 PMCID: PMC10192333 DOI: 10.1016/j.omtn.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023]
Abstract
Gene editing using clustered regularly interspaced short palindromic repeats (CRISPR) targeted to HIV proviral DNA has shown excision of HIV from infected cells. However, CRISPR-based HIV excision is vulnerable to viral escape. Targeting cellular co-factors provides an attractive yet risky alternative to render viral escape irrelevant. Cyclin T1 is a critical modulator of HIV transcription and mediates recruitment of positive transcription elongation factor-b (P-TEFb) kinase for transcriptional elongation. Hence, a CRISPR-mediated cyclin T1 inactivation will silence HIV transcription, locking it in an inactive form in the cell and thereby serving as an effective antiviral and possibly effecting a functional cure. However, cellular genes play important roles, and their uncontrolled inhibition can promote undesirable effects. Here, we demonstrate a conditional inducible RNA polymerase II (RNA Pol II) mono-promoter-based co-expression of a CRISPR system targeting cyclin T1 from a single transcription unit. Co-expression of guide RNA (gRNA) and CRISPR-associated protein (Cas9) is observed only in HIV-infected cells and leads to sustained HIV suppression in stringent chronically infected cell lines as well as in T cell lines. We further show that incorporation of cis-acting ribozymes immediately upstream of the gRNA further enhances HIV silencing.
Collapse
Affiliation(s)
- Srinivasan Chinnapaiyan
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Maria-Jose Santiago
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Kingshuk Panda
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Md. Sohanur Rahman
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Jessica Alluin
- Beckman Research Institute of the City of Hope National Medical Center, Monrovia Biomedical Research Center MBRC, 1218 S. Fifth Av., Monrovia, CA 91008, USA
| | - John Rossi
- Beckman Research Institute of the City of Hope National Medical Center, Monrovia Biomedical Research Center MBRC, 1218 S. Fifth Av., Monrovia, CA 91008, USA
| | - Hoshang J. Unwalla
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
6
|
Tietjen I, Schonhofer C, Sciorillo A, Naidu ME, Haq Z, Kannan T, Kossenkov AV, Rivera-Ortiz J, Mounzer K, Hart C, Gyampoh K, Yuan Z, Beattie KD, Rali T, Shuda McGuire K, Davis RA, Montaner LJ. The Natural Stilbenoid (-)-Hopeaphenol Inhibits HIV Transcription by Targeting Both PKC and NF-κB Signaling and Cyclin-Dependent Kinase 9. Antimicrob Agents Chemother 2023; 67:e0160022. [PMID: 36975214 PMCID: PMC10112218 DOI: 10.1128/aac.01600-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Despite effective combination antiretroviral therapy (cART), people living with HIV (PLWH) continue to harbor replication-competent and transcriptionally active virus in infected cells, which in turn can lead to ongoing viral antigen production, chronic inflammation, and increased risk of age-related comorbidities. To identify new agents that may inhibit postintegration HIV beyond cART, we screened a library of 512 pure compounds derived from natural products and identified (-)-hopeaphenol as an inhibitor of HIV postintegration transcription at low to submicromolar concentrations without cytotoxicity. Using a combination of global RNA sequencing, plasmid-based reporter assays, and enzyme activity studies, we document that hopeaphenol inhibits protein kinase C (PKC)- and downstream NF-κB-dependent HIV transcription as well as a subset of PKC-dependent T-cell activation markers, including interleukin-2 (IL-2) cytokine and CD25 and HLA-DRB1 RNA production. In contrast, it does not substantially inhibit the early PKC-mediated T-cell activation marker CD69 production of IL-6 or NF-κB signaling induced by tumor necrosis factor alpha (TNF-α). We further show that hopeaphenol can inhibit cyclin-dependent kinase 9 (CDK9) enzymatic activity required for HIV transcription. Finally, it inhibits HIV replication in peripheral blood mononuclear cells (PBMCs) infected in vitro and dampens viral reactivation in CD4+ cells from PLWH. Our study identifies hopeaphenol as a novel inhibitor that targets a subset of PKC-mediated T-cell activation pathways in addition to CDK9 to block HIV expression. Hopeaphenol-based therapies could complement current antiretroviral therapy otherwise not targeting cell-associated HIV RNA and residual antigen production in PLWH.
Collapse
Affiliation(s)
- Ian Tietjen
- The Wistar Institute, Philadelphia, Pennsylvania, USA
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Cole Schonhofer
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Maya E. Naidu
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Zahra Haq
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | - Karam Mounzer
- Jonathan Lax Immune Disorders Treatment Center, Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, Pennsylvania, USA
| | - Colin Hart
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Kwasi Gyampoh
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Zhe Yuan
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Karren D. Beattie
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, Queensland, Australia
| | - Topul Rali
- School of Natural and Physical Sciences, The University of Papua New Guinea, Port Moresby, Papua New Guinea
| | | | - Rohan A. Davis
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, Queensland, Australia
| | | |
Collapse
|
7
|
Targeting Human Proteins for Antiviral Drug Discovery and Repurposing Efforts: A Focus on Protein Kinases. Viruses 2023; 15:v15020568. [PMID: 36851782 PMCID: PMC9966946 DOI: 10.3390/v15020568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Despite the great technological and medical advances in fighting viral diseases, new therapies for most of them are still lacking, and existing antivirals suffer from major limitations regarding drug resistance and a limited spectrum of activity. In fact, most approved antivirals are directly acting antiviral (DAA) drugs, which interfere with viral proteins and confer great selectivity towards their viral targets but suffer from resistance and limited spectrum. Nowadays, host-targeted antivirals (HTAs) are on the rise, in the drug discovery and development pipelines, in academia and in the pharmaceutical industry. These drugs target host proteins involved in the virus life cycle and are considered promising alternatives to DAAs due to their broader spectrum and lower potential for resistance. Herein, we discuss an important class of HTAs that modulate signal transduction pathways by targeting host kinases. Kinases are considered key enzymes that control virus-host interactions. We also provide a synopsis of the antiviral drug discovery and development pipeline detailing antiviral kinase targets, drug types, therapeutic classes for repurposed drugs, and top developing organizations. Furthermore, we detail the drug design and repurposing considerations, as well as the limitations and challenges, for kinase-targeted antivirals, including the choice of the binding sites, physicochemical properties, and drug combinations.
Collapse
|
8
|
Santana JF, Collins GS, Parida M, Luse DS, Price D. Differential dependencies of human RNA polymerase II promoters on TBP, TAF1, TFIIB and XPB. Nucleic Acids Res 2022; 50:9127-9148. [PMID: 35947745 PMCID: PMC9458433 DOI: 10.1093/nar/gkac678] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/08/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
The effects of rapid acute depletion of components of RNA polymerase II (Pol II) general transcription factors (GTFs) that are thought to be critical for formation of preinitiation complexes (PICs) and initiation in vitro were quantified in HAP1 cells using precision nuclear run-on sequencing (PRO-Seq). The average dependencies for each factor across >70 000 promoters varied widely even though levels of depletions were similar. Some of the effects could be attributed to the presence or absence of core promoter elements such as the upstream TBP-specificity motif or downstream G-rich sequences, but some dependencies anti-correlated with such sequences. While depletion of TBP had a large effect on most Pol III promoters only a small fraction of Pol II promoters were similarly affected. TFIIB depletion had the largest general effect on Pol II and also correlated with apparent termination defects downstream of genes. Our results demonstrate that promoter activity is combinatorially influenced by recruitment of TFIID and sequence-specific transcription factors. They also suggest that interaction of the preinitiation complex (PIC) with nucleosomes can affect activity and that recruitment of TFIID containing TBP only plays a positive role at a subset of promoters.
Collapse
Affiliation(s)
- Juan F Santana
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Geoffrey S Collins
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Mrutyunjaya Parida
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Donal S Luse
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | |
Collapse
|
9
|
Olson SW, Turner AMW, Arney JW, Saleem I, Weidmann CA, Margolis DM, Weeks KM, Mustoe AM. Discovery of a large-scale, cell-state-responsive allosteric switch in the 7SK RNA using DANCE-MaP. Mol Cell 2022; 82:1708-1723.e10. [PMID: 35320755 PMCID: PMC9081252 DOI: 10.1016/j.molcel.2022.02.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/29/2021] [Accepted: 02/02/2022] [Indexed: 12/17/2022]
Abstract
7SK is a conserved noncoding RNA that regulates transcription by sequestering the transcription factor P-TEFb. 7SK function entails complex changes in RNA structure, but characterizing RNA dynamics in cells remains an unsolved challenge. We developed a single-molecule chemical probing strategy, DANCE-MaP (deconvolution and annotation of ribonucleic conformational ensembles), that defines per-nucleotide reactivity, direct base pairing interactions, tertiary interactions, and thermodynamic populations for each state in RNA structural ensembles from a single experiment. DANCE-MaP reveals that 7SK RNA encodes a large-scale structural switch that couples dissolution of the P-TEFb binding site to structural remodeling at distal release factor binding sites. The 7SK structural equilibrium shifts in response to cell growth and stress and can be targeted to modulate expression of P-TEFbresponsive genes. Our study reveals that RNA structural dynamics underlie 7SK function as an integrator of diverse cellular signals to control transcription and establishes the power of DANCE-MaP to define RNA dynamics in cells.
Collapse
Affiliation(s)
- Samuel W Olson
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Anne-Marie W Turner
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; UNC HIV Cure Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J Winston Arney
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Irfana Saleem
- Verna and Marrs McClean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA
| | - Chase A Weidmann
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - David M Margolis
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; UNC HIV Cure Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA.
| | - Anthony M Mustoe
- Verna and Marrs McClean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
10
|
A synthetic resveratrol analog termed Q205 reactivates latent HIV-1 through activation of P-TEFb. Biochem Pharmacol 2021; 197:114901. [PMID: 34971588 DOI: 10.1016/j.bcp.2021.114901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022]
Abstract
The persistence of HIV-1 latent reservoir creates the major obstacle toward an HIV-1 cure. The "shock and kill" strategy aims to reverse HIV-1 proviral latency using latency-reversing agents (LRAs), thus boosting immune recognition and clearance to residual infected cells. Unfortunately, to date, none of these tested LRA candidates has been demonstrated effectiveness and/or safety in reactivation HIV-1 latency. The discovery and development of effective, safe and affordable LRA candidates are urgently needed for creating an HIV-1 functional cure. Here, we designed and synthesized a series of small-molecule phenoxyacetic acid derivatives based on the resveratrol scaffold and found one of them, named 5, 7-dimethoxy-2-(5-(methoxymethyl) furan-2-yl) quinazolin-4(3H)-one (Q205), effectively reactivated latent HIV-1 in latent HIV-1-infected cells without a corresponding increase in induction of potentially damaging cytokines. The molecular mechanism of Q205 is shown to increase the phosphorylation of the CDK9 T-loop at position Thr186, dissociate positive transcription elongation factor b (P-TEFb) from BRD4, and promote the Tat-mediated HIV-1 transcription and RNA polymerase II (RNAPII) C-terminal domain (CTD) on Ser (CTD-Ser2P) to bind to the HIV promoter. This study provides a unique insight into resveratrol modified derivatives as promising leads for preclinical LRAs, which in turn may help toward inhibitor design and chemical optimization for improving HIV-1 shock-and kill-based efforts.
Collapse
|
11
|
Menezes JCJMDS, Campos VR. Natural biflavonoids as potential therapeutic agents against microbial diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145168. [PMID: 33493916 DOI: 10.1016/j.scitotenv.2021.145168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Microbes broadly constitute several organisms like viruses, protozoa, bacteria, and fungi present in our biosphere. Fast-paced environmental changes have influenced contact of human populations with newly identified microbes resulting in diseases that can spread quickly. These microbes can cause infections like HIV, SARS-CoV2, malaria, nosocomial Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), or Candida infection for which there are no available vaccines/drugs or are less efficient to prevent or treat these infections. In the pursuit to find potential safe agents for therapy of microbial infections, natural biflavonoids like amentoflavone, tetrahydroamentoflavone, ginkgetin, bilobetin, morelloflavone, agathisflavone, hinokiflavone, Garcinia biflavones 1 (GB1), Garcinia biflavones 2 (GB2), robustaflavone, strychnobiflavone, ochnaflavone, dulcisbiflavonoid C, tetramethoxy-6,6″-bigenkwanin and other derivatives isolated from several species of plants can provide effective starting points and become a source of future drugs. These biflavonoids show activity against influenza, severe acute respiratory syndrome (SARS), dengue, HIV-AIDS, coxsackieviral, hepatitis, HSV, Epstein-Barr virus (EBV), protozoal (Leishmaniasis, Malaria) infections, bacterial and fungal infections. Some of the biflavonoids can provide antiviral and protozoal activity by inhibition of neuraminidase, chymotrypsin-like protease, DV-NS5 RNA dependant RNA polymerase, reverse transcriptase (RT), fatty acid synthase, DNA polymerase, UL54 gene expression, Epstein-Barr virus early antigen activation, recombinant cysteine protease type 2.8 (r-CPB2.8), Plasmodium falciparum enoyl-acyl carrier protein (ACP) reductase or cause depolarization of parasitic mitochondrial membranes. They may also provide anti-inflammatory therapeutic activity against the infection-induced cytokine storm. Considering the varied bioactivity of these biflavonoids against these organisms, their structure-activity relationships are derived and wherever possible compared with monoflavones. Overall, this review aims to highlight these natural biflavonoids and briefly discuss their sources, reported mechanism of action, pharmacological uses, and comment on resistance mechanism, flavopiridol repurposing and the bioavailability aspects to provide a starting point for anti-microbial research in this area.
Collapse
Affiliation(s)
- José C J M D S Menezes
- Section of Functional Morphology, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan.
| | - Vinícius R Campos
- Department of Organic Chemistry, Institute of Chemistry, Fluminense Federal University, Campus do Valonguinho, 24020-141 Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Anshabo AT, Milne R, Wang S, Albrecht H. CDK9: A Comprehensive Review of Its Biology, and Its Role as a Potential Target for Anti-Cancer Agents. Front Oncol 2021; 11:678559. [PMID: 34041038 PMCID: PMC8143439 DOI: 10.3389/fonc.2021.678559] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/16/2021] [Indexed: 12/25/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are proteins pivotal to a wide range of cellular functions, most importantly cell division and transcription, and their dysregulations have been implicated as prominent drivers of tumorigenesis. Besides the well-established role of cell cycle CDKs in cancer, the involvement of transcriptional CDKs has been confirmed more recently. Most cancers overtly employ CDKs that serve as key regulators of transcription (e.g., CDK9) for a continuous production of short-lived gene products that maintain their survival. As such, dysregulation of the CDK9 pathway has been observed in various hematological and solid malignancies, making it a valuable anticancer target. This therapeutic potential has been utilized for the discovery of CDK9 inhibitors, some of which have entered human clinical trials. This review provides a comprehensive discussion on the structure and biology of CDK9, its role in solid and hematological cancers, and an updated review of the available inhibitors currently being investigated in preclinical and clinical settings.
Collapse
Affiliation(s)
- Abel Tesfaye Anshabo
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Robert Milne
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Shudong Wang
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Hugo Albrecht
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
13
|
O'Donovan SM, Imami A, Eby H, Henkel ND, Creeden JF, Asah S, Zhang X, Wu X, Alnafisah R, Taylor RT, Reigle J, Thorman A, Shamsaei B, Meller J, McCullumsmith RE. Identification of candidate repurposable drugs to combat COVID-19 using a signature-based approach. Sci Rep 2021; 11:4495. [PMID: 33627767 PMCID: PMC7904823 DOI: 10.1038/s41598-021-84044-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/21/2021] [Indexed: 02/08/2023] Open
Abstract
The COVID-19 pandemic caused by the novel SARS-CoV-2 is more contagious than other coronaviruses and has higher rates of mortality than influenza. Identification of effective therapeutics is a crucial tool to treat those infected with SARS-CoV-2 and limit the spread of this novel disease globally. We deployed a bioinformatics workflow to identify candidate drugs for the treatment of COVID-19. Using an "omics" repository, the Library of Integrated Network-Based Cellular Signatures (LINCS), we simultaneously probed transcriptomic signatures of putative COVID-19 drugs and publicly available SARS-CoV-2 infected cell lines to identify novel therapeutics. We identified a shortlist of 20 candidate drugs: 8 are already under trial for the treatment of COVID-19, the remaining 12 have antiviral properties and 6 have antiviral efficacy against coronaviruses specifically, in vitro. All candidate drugs are either FDA approved or are under investigation. Our candidate drug findings are discordant with (i.e., reverse) SARS-CoV-2 transcriptome signatures generated in vitro, and a subset are also identified in transcriptome signatures generated from COVID-19 patient samples, like the MEK inhibitor selumetinib. Overall, our findings provide additional support for drugs that are already being explored as therapeutic agents for the treatment of COVID-19 and identify promising novel targets that are worthy of further investigation.
Collapse
Affiliation(s)
- Sinead M O'Donovan
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Ali Imami
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Hunter Eby
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Nicholas D Henkel
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Justin Fortune Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Sophie Asah
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Xiaolu Zhang
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Xiaojun Wu
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Rawan Alnafisah
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - R Travis Taylor
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH, USA
| | - James Reigle
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alexander Thorman
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Behrouz Shamsaei
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jarek Meller
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Electrical Engineering and Computing Systems, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Informatics, Nicolaus Copernicus University, Torun, Poland
| | - Robert E McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA.
- Neurosciences Institute, Promedica, Toledo, OH, USA.
| |
Collapse
|
14
|
Flavonoid-based inhibition of cyclin-dependent kinase 9 without concomitant inhibition of histone deacetylases durably reinforces HIV latency. Biochem Pharmacol 2021; 186:114462. [PMID: 33577894 DOI: 10.1016/j.bcp.2021.114462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
While combination antiretroviral therapy (cART) durably suppresses HIV replication, virus persists in CD4+ T-cells that harbor latent but spontaneously inducible and replication-competent provirus. One strategy to inactivate these viral reservoirs involves the use of agents that continue to reinforce HIV latency even after their withdrawal. To identify new chemical leads with such properties, we investigated a series of naturally-occurring flavones (chrysin, apigenin, luteolin, and luteolin-7-glucoside (L7G)) and functionally-related cyclin dependent kinase 9 (CDK9) inhibitors (flavopiridol and atuveciclib) which are reported or presumed to suppress HIV replication in vitro. We found that, while all compounds inhibit provirus expression induced by latency-reversing agents in vitro, only aglycone flavonoids (chrysin, apigenin, luteolin, flavopiridol) and atuveciclib, but not the glycosylated flavonoid L7G, inhibit spontaneous latency reversal. Aglycone flavonoids and atuveciclib, but not L7G, also inhibit CDK9 and the HIV Tat protein. Aglycone flavonoids do not reinforce HIV latency following their in vitro withdrawal, which corresponds with their ability to also inhibit class I/II histone deacetylases (HDAC), a well-established mechanism of latency reversal. In contrast, atuveciclib and flavopiridol, which exhibit little or no HDAC inhibition, continue to reinforce latency for 9 to 14+ days, respectively, following their withdrawal in vitro. Finally, we show that flavopiridol also inhibits spontaneous ex vivo viral RNA production in CD4+ T cells from donors with HIV. These results implicate CDK9 inhibition (in the absence of HDAC inhibition) as a potentially favorable property in the search for compounds that durably reinforce HIV latency.
Collapse
|
15
|
Identification of Modulators of HIV-1 Proviral Transcription from a Library of FDA-Approved Pharmaceuticals. Viruses 2020; 12:v12101067. [PMID: 32977702 PMCID: PMC7598649 DOI: 10.3390/v12101067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) is the most prevalent human retrovirus. Recent data show that 34 million people are living with HIV-1 worldwide. HIV-1 infections can lead to AIDS which still causes nearly 20,000 deaths annually in the USA alone. As this retrovirus leads to high morbidity and mortality conditions, more effective therapeutic regimens must be developed to treat these viral infections. A key target for intervention for which there are no current FDA-approved modulators is at the point of proviral transcription. One successful method for identifying novel therapeutics for treating infectious diseases is the repurposing of pharmaceuticals that are approved by the FDA for alternate indications. Major benefits of using FDA-approved drugs include the fact that the compounds have well established toxicity profiles, approved manufacturing processes, and immediate commercial availability to the patients. Here, we demonstrate that pharmaceuticals previously approved for other indications can be utilized to either activate or inhibit HIV-1 proviral transcription. Specifically, we found febuxostat, eltrombopag, and resveratrol to be activators of HIV-1 transcription, while mycophenolate was our lead inhibitor of HIV-1 transcription. Additionally, we observed that the infected cells of lymphoid and myeloid lineage responded differently to our lead transcriptional modulators. Finally, we demonstrated that the use of a multi-dose regimen allowed for enhanced activation with our transcriptional activators.
Collapse
|
16
|
Groves IJ, Sinclair JH, Wills MR. Bromodomain Inhibitors as Therapeutics for Herpesvirus-Related Disease: All BETs Are Off? Front Cell Infect Microbiol 2020; 10:329. [PMID: 32714883 PMCID: PMC7343845 DOI: 10.3389/fcimb.2020.00329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Although the ubiquitous human herpesviruses (HHVs) are rarely associated with serious disease of the healthy host, primary infection and reactivation in immunocompromised individuals can lead to significant morbidity and, in some cases, mortality. Effective drugs are available for clinical treatment, however resistance is on the rise such that new anti-viral targets, as well as novel clinical treatment strategies, are required. A promising area of development and pre-clinical research is that of inhibitors of epigenetic modifying proteins that control both cellular functions and the viral life cycle. Here, we briefly outline the interaction of the host bromo- and extra-terminal domain (BET) proteins during different stages of the HHVs' life cycles while giving a full overview of the published work using BET bromodomain inhibitors (BRDis) during HHV infections. Furthermore, we provide evidence that small molecule inhibitors targeting the host BET proteins, and BRD4 in particular, have the potential for therapeutic intervention of HHV-associated disease.
Collapse
Affiliation(s)
- Ian J Groves
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - John H Sinclair
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Mark R Wills
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
O'Donovan SM, Eby H, Henkel ND, Creeden J, Imami A, Asah S, Zhang X, Wu X, Alnafisah R, Taylor RT, Reigle J, Thorman A, Shamsaei B, Meller J, McCullumsmith RE. Identification of new drug treatments to combat COVID19: A signature-based approach using iLINCS. RESEARCH SQUARE 2020:rs.3.rs-25643. [PMID: 32702077 PMCID: PMC7336712 DOI: 10.21203/rs.3.rs-25643/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The COVID-19 pandemic caused by the novel SARS-CoV-2 is more contagious than other coronaviruses and has higher rates of mortality than influenza. As no vaccine or drugs are currently approved to specifically treat COVID-19, identification of effective therapeutics is crucial to treat the afflicted and limit disease spread. We deployed a bioinformatics workflow to identify candidate drugs for the treatment of COVID-19. Using an "omics" repository, the Library of Integrated Network-Based Cellular Signatures (LINCS), we simultaneously probed transcriptomic signatures of putative COVID-19 drugs and signatures of coronavirus-infected cell lines to identify therapeutics with concordant signatures and discordant signatures, respectively. Our findings include three FDA approved drugs that have established antiviral activity, including protein kinase inhibitors, providing a promising new category of candidates for COVID-19 interventions.
Collapse
|
18
|
P-TEFb as A Promising Therapeutic Target. Molecules 2020; 25:molecules25040838. [PMID: 32075058 PMCID: PMC7070488 DOI: 10.3390/molecules25040838] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023] Open
Abstract
The positive transcription elongation factor b (P-TEFb) was first identified as a general factor that stimulates transcription elongation by RNA polymerase II (RNAPII), but soon afterwards it turned out to be an essential cellular co-factor of human immunodeficiency virus (HIV) transcription mediated by viral Tat proteins. Studies on the mechanisms of Tat-dependent HIV transcription have led to radical advances in our knowledge regarding the mechanism of eukaryotic transcription, including the discoveries that P-TEFb-mediated elongation control of cellular transcription is a main regulatory step of gene expression in eukaryotes, and deregulation of P-TEFb activity plays critical roles in many human diseases and conditions in addition to HIV/AIDS. P-TEFb is now recognized as an attractive and promising therapeutic target for inflammation/autoimmune diseases, cardiac hypertrophy, cancer, infectious diseases, etc. In this review article, I will summarize our knowledge about basic P-TEFb functions, the regulatory mechanism of P-TEFb-dependent transcription, P-TEFb’s involvement in biological processes and diseases, and current approaches to manipulating P-TEFb functions for the treatment of these diseases.
Collapse
|
19
|
Wang Y, Qiu T. Positive transcription elongation factor b and its regulators in development. ALL LIFE 2020. [DOI: 10.1080/21553769.2019.1663277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Yan Wang
- Department of Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Tong Qiu
- Department of Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
20
|
Aguilera LU, Rodríguez-González J. Modeling the effect of tat inhibitors on HIV latency. J Theor Biol 2019; 473:20-27. [PMID: 31004612 DOI: 10.1016/j.jtbi.2019.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/07/2019] [Accepted: 04/16/2019] [Indexed: 11/28/2022]
Abstract
Even in the presence of a successful combination therapy stalling the progress of AIDS, developing a cure for this disease is still an open question. One of the major steps towards a cure would be to be able to eradicate latent HIV reservoirs present in patients. During the last decade, multiple findings point to the dominant role of the viral protein Tat in the establishment of latency. Here we present a mathematical study to understand the potential role of Tat inhibitors as virus-suppressing agents. For this aim, we implemented a computational model that reproduces intracellular dynamics. Simulating an HIV-infected cell and its intracellular feedback we observed that removing Tat protein from the system via inhibitors resulted in a temporary and reversible viral suppression. In contrast, we observed that compounds that interact with Tat protein and disrupt the integrated viral genome produced a more permanent viral suppression.
Collapse
Affiliation(s)
- Luis U Aguilera
- Department of Modeling of Biological Processes, COS Heidelberg / Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg 69120, Germany; Colorado State University
| | - Jesús Rodríguez-González
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Via del Conocimiento 201, Parque PIIT, Apodaca CP 66600 NL, México.
| |
Collapse
|
21
|
Faust TB, Li Y, Bacon CW, Jang GM, Weiss A, Jayaraman B, Newton BW, Krogan NJ, D'Orso I, Frankel AD. The HIV-1 Tat protein recruits a ubiquitin ligase to reorganize the 7SK snRNP for transcriptional activation. eLife 2018; 7:31879. [PMID: 29845934 PMCID: PMC5999396 DOI: 10.7554/elife.31879] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/26/2018] [Indexed: 12/12/2022] Open
Abstract
The HIV-1 Tat protein hijacks P-TEFb kinase to activate paused RNA polymerase II (RNAP II) at the viral promoter. Tat binds additional host factors, but it is unclear how they regulate RNAP II elongation. Here, we identify the cytoplasmic ubiquitin ligase UBE2O as critical for Tat transcriptional activity. Tat hijacks UBE2O to ubiquitinate the P-TEFb kinase inhibitor HEXIM1 of the 7SK snRNP, a fraction of which also resides in the cytoplasm bound to P-TEFb. HEXIM1 ubiquitination sequesters it in the cytoplasm and releases P-TEFb from the inhibitory 7SK complex. Free P-TEFb then becomes enriched in chromatin, a process that is also stimulated by treating cells with a CDK9 inhibitor. Finally, we demonstrate that UBE2O is critical for P-TEFb recruitment to the HIV-1 promoter. Together, the data support a unique model of elongation control where non-degradative ubiquitination of nuclear and cytoplasmic 7SK snRNP pools increases P-TEFb levels for transcriptional activation.
Collapse
Affiliation(s)
- Tyler B Faust
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Yang Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Curtis W Bacon
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Gwendolyn M Jang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,J David Gladstone Institutes, San Francisco, United States
| | - Amit Weiss
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Bhargavi Jayaraman
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Billy W Newton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,J David Gladstone Institutes, San Francisco, United States
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,J David Gladstone Institutes, San Francisco, United States
| | - Iván D'Orso
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Alan D Frankel
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
22
|
Mbonye U, Wang B, Gokulrangan G, Shi W, Yang S, Karn J. Cyclin-dependent kinase 7 (CDK7)-mediated phosphorylation of the CDK9 activation loop promotes P-TEFb assembly with Tat and proviral HIV reactivation. J Biol Chem 2018; 293:10009-10025. [PMID: 29743242 DOI: 10.1074/jbc.ra117.001347] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/29/2018] [Indexed: 11/06/2022] Open
Abstract
The HIV trans-activator Tat recruits the host transcription elongation factor P-TEFb to stimulate proviral transcription. Phosphorylation of Thr-186 on the activation loop (T-loop) of cyclin-dependent kinase 9 (CDK9) is essential for its kinase activity and assembly of CDK9 and cyclin T1 (CycT1) to form functional P-TEFb. Phosphorylation of a second highly conserved T-loop site, Ser-175, alters the competitive binding of Tat and the host recruitment factor bromodomain containing 4 (BRD4) to P-TEFb. Here, we investigated the intracellular mechanisms that regulate these key phosphorylation events required for HIV transcription. Molecular dynamics simulations revealed that the CDK9/CycT1 interface is stabilized by intramolecular hydrogen bonding of pThr-186 by an arginine triad and Glu-96 of CycT1. Arginine triad substitutions that disrupted CDK9/CycT1 assembly accumulated Thr-186-dephosphorylated CDK9 associated with the cytoplasmic Hsp90/Cdc37 chaperone. The Hsp90/Cdc37/CDK9 complex was also present in resting T cells, which lack CycT1. Hsp90 inhibition in primary T cells blocked P-TEFb assembly, disrupted Thr-186 phosphorylation, and suppressed proviral reactivation. The selective CDK7 inhibitor THZ1 blocked CDK9 phosphorylation at Ser-175, and in vitro kinase assays confirmed that CDK7 activity is principally responsible for Ser-175 phosphorylation. Mutation of Ser-175 to Lys had no effect on CDK9 kinase activity or P-TEFb assembly but strongly suppressed both HIV expression and BRD4 binding. We conclude that the transfer of CDK9 from the Hsp90/Cdc37 complex induced by Thr-186 phosphorylation is a key step in P-TEFb biogenesis. Furthermore, we demonstrate that CDK7-mediated Ser-175 phosphorylation is a downstream nuclear event essential for facilitating CDK9 T-loop interactions with Tat.
Collapse
Affiliation(s)
- Uri Mbonye
- From the Department of Molecular Biology and Microbiology and
| | - Benlian Wang
- the Center for Proteomics and Bioinformatics and Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Giridharan Gokulrangan
- the Center for Proteomics and Bioinformatics and Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Wuxian Shi
- the Center for Proteomics and Bioinformatics and Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Sichun Yang
- the Center for Proteomics and Bioinformatics and Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Jonathan Karn
- From the Department of Molecular Biology and Microbiology and
| |
Collapse
|
23
|
Asamitsu K, Fujinaga K, Okamoto T. HIV Tat/P-TEFb Interaction: A Potential Target for Novel Anti-HIV Therapies. Molecules 2018; 23:E933. [PMID: 29673219 PMCID: PMC6017356 DOI: 10.3390/molecules23040933] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 11/16/2022] Open
Abstract
Transcription is a crucial step in the life cycle of the human immunodeficiency virus type 1 (HIV 1) and is primarily involved in the maintenance of viral latency. Both viral and cellular transcription factors, including transcriptional activators, suppressor proteins and epigenetic factors, are involved in HIV transcription from the proviral DNA integrated within the host cell genome. Among them, the virus-encoded transcriptional activator Tat is the master regulator of HIV transcription. Interestingly, unlike other known transcriptional activators, Tat primarily activates transcriptional elongation and initiation by interacting with the cellular positive transcriptional elongation factor b (P-TEFb). In this review, we describe the molecular mechanism underlying how Tat activates viral transcription through interaction with P-TEFb. We propose a novel therapeutic strategy against HIV replication through blocking Tat action.
Collapse
Affiliation(s)
- Kaori Asamitsu
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| | - Koh Fujinaga
- Department of Medicine, Microbiology and Immunology, University of California, San Francisco, CA 94143-0703, USA.
| | - Takashi Okamoto
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| |
Collapse
|
24
|
Abstract
Hexim1 acts as a tumor suppressor and is involved in the regulation of innate immunity. It was initially described as a non-coding RNA-dependent regulator of transcription. Here, we detail how 7SK RNA binds to Hexim1 and turns it into an inhibitor of the positive transcription elongation factor (P-TEFb). In addition to its action on P-TEFb, it plays a role in a variety of different mechanisms: it controls the stability of transcription factor components and assists binding of transcription factors to their targets.
Collapse
Affiliation(s)
- Annemieke A Michels
- a IBENS , Ecole Normale Supérieure UMR CNRS 8107, UA INSERM 1024 , 46 rue d'Ulm Paris Cedex France
| | - Olivier Bensaude
- a IBENS , Ecole Normale Supérieure UMR CNRS 8107, UA INSERM 1024 , 46 rue d'Ulm Paris Cedex France
| |
Collapse
|
25
|
Cdk-related kinase 9 regulates RNA polymerase II mediated transcription in Toxoplasma gondii. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:572-585. [PMID: 29466697 DOI: 10.1016/j.bbagrm.2018.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 11/20/2022]
Abstract
Cyclin-dependent kinases are an essential part of eukaryotic transcriptional machinery. In Apicomplexan parasites, the role and relevance of the kinases in the multistep process of transcription seeks more attention given the absence of full repertoire of canonical Cdks and cognate cyclin partners. In this study, we functionally characterize T. gondii Cdk-related kinase 9 (TgCrk9) showing maximal homology to eukaryotic Cdk9. An uncanonical cyclin, TgCyclin L, colocalizes with TgCrk9 in the parasite nucleus and co-immunoprecipitate, could activate the kinase in-vitro. We identify two threonines in conserved T-loop domain of TgCrk9 that are important for its activity. The activated TgCrk9 phosphorylates C-terminal domain (CTD) of TgRpb1, the largest subunit of RNA polymerase II highlighting its role in transcription. Selective chemical inhibition of TgCrk9 affected serine 2 phosphorylation in the heptapeptide repeats of TgRpb1-CTD towards 3' end of genes consistent with a possible role in transcription elongation. Interestingly, TgCrk9 kinase activity is regulated by the upstream TgCrk7 based CAK complex. TgCrk9 was found to functionally complement the role of its yeast counterpart Bur1 establishing its role as an important transcriptional kinase. In this study, we provide robust evidence that TgCrk9 is an important part of transcription machinery regulating gene expression in T. gondii.
Collapse
|
26
|
Brogie JE, Price DH. Reconstitution of a functional 7SK snRNP. Nucleic Acids Res 2017; 45:6864-6880. [PMID: 28431135 PMCID: PMC5499737 DOI: 10.1093/nar/gkx262] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/11/2017] [Indexed: 01/29/2023] Open
Abstract
The 7SK small nuclear ribonucleoprotein (snRNP) plays a central role in RNA polymerase II elongation control by regulating the availability of active P-TEFb. We optimized conditions for analyzing 7SK RNA by SHAPE and demonstrated a hysteretic effect of magnesium on 7SK folding dynamics including a 7SK GAUC motif switch. We also found evidence that the 5΄ end pairs alternatively with two different regions of 7SK giving rise to open and closed forms that dictate the state of the 7SK motif. We then used recombinant P-TEFb, HEXIM1, LARP7 and MEPCE to reconstruct a functional 7SK snRNP in vitro. Stably associated P-TEFb was highly inhibited, but could still be released and activated by HIV-1 Tat. Notably, P-TEFb association with both in vitro-reconstituted and cellular snRNPs led to similar changes in SHAPE reactivities, confirming that 7SK undergoes a P-TEFb-dependent structural change. We determined that the xRRM of LARP7 binds to the 3΄ stem loop of 7SK and inhibits the methyltransferase activity of MEPCE through a C-terminal MEPCE interaction domain (MID). Inhibition of MEPCE is dependent on the structure of the 3΄ stem loop and the closed form of 7SK RNA. This study provides important insights into intramolecular interactions within the 7SK snRNP.
Collapse
Affiliation(s)
- John E Brogie
- Biochemistry Department, University of Iowa, Iowa City, IA 52242, USA
| | - David H Price
- Biochemistry Department, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
27
|
Shin Y, Choi BS, Kim KC, Kang C, Kim K, Yoon CH. Development of a dual reporter screening assay for distinguishing the inhibition of HIV Tat-mediated transcription from off-target effects. J Virol Methods 2017; 249:1-9. [PMID: 28807730 DOI: 10.1016/j.jviromet.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/29/2022]
Abstract
Human immunodeficiency virus (HIV) encodes a transcription trans-activator (Tat) with an essential role in the transcriptional elongation of viral RNA based on the viral promoter long terminal repeat (LTR). Tat-mediated transcription is conserved and can be distinguished from host transcription, so it is a therapeutic target for combating HIV replication. Traditional screening assays for Tat-mediated transcriptional inhibitors are based on the biochemical properties of Tat and transactivation-responsive RNA. We developed an inducible system based on two lentiviral expression cassettes for doxycycline (Dox)-inducible Tat and Renilla luciferase (R-Luc) using TZM-bl cells harboring LTR-driven firefly luciferase (F-Luc). The cells simultaneously expressed both Tat-induced F-Luc and R-Luc, so it was possible to recognize off-target effects in the presence of Dox. The system was validated with known inhibitors: CYC202 obtained high sensitivity and specificity, whereas 6Bio and DRB had off-target effects. The MTT-based cytotoxicity test indicated the resistance of the system even at concentrations with off-target effects. The specificity of the system was confirmed using antiretroviral drugs. Our dual reporter system can simply detect Tat inhibitory effects, as well as precisely discriminate between the inhibitory and off-target effects of inhibitors, and may be useful for the development of a therapeutic anti-HIV drug.
Collapse
Affiliation(s)
- YoungHyun Shin
- Division of AIDS, Korea National Institute of Health, Chungbuk, Republic of Korea; Division of Viral Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea.
| | - Byeong-Sun Choi
- Division of AIDS, Korea National Institute of Health, Chungbuk, Republic of Korea; Division of Viral Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea.
| | - Kyung-Chang Kim
- Division of AIDS, Korea National Institute of Health, Chungbuk, Republic of Korea; Division of Viral Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea.
| | - Chun Kang
- Division of AIDS, Korea National Institute of Health, Chungbuk, Republic of Korea; Division of Viral Diseases, Korea National Institute of Health, Chungbuk, Republic of Korea.
| | - Kisoon Kim
- Division of Viral Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea.
| | - Cheol-Hee Yoon
- Division of AIDS, Korea National Institute of Health, Chungbuk, Republic of Korea; Division of Viral Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea.
| |
Collapse
|
28
|
Zhao Z, Tang KW, Muylaert I, Samuelsson T, Elias P. CDK9 and SPT5 proteins are specifically required for expression of herpes simplex virus 1 replication-dependent late genes. J Biol Chem 2017; 292:15489-15500. [PMID: 28743741 PMCID: PMC5602406 DOI: 10.1074/jbc.m117.806000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 12/02/2022] Open
Abstract
DNA replication greatly enhances expression of the herpes simplex virus 1 (HSV-1) γ2 late genes by still unknown mechanisms. Here, we demonstrate that 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB), an inhibitor of CDK9, suppresses expression of γ2 late genes with an IC50 of 5 μm, which is at least 10 times lower than the IC50 value required for inhibition of expression of early genes. The effect of DRB could not be explained by inhibition of DNA replication per se or loading of RNA polymerase II to late promoters and subsequent reduction of transcription. Instead, DRB reduces accumulation of γ2 late mRNA in the cytoplasm. In addition, we show that siRNA-mediated knockdown of the transcription factor SPT5, but not NELF-E, also gives rise to a specific inhibition of HSV-1 late gene expression. Finally, addition of DRB reduces co-immunoprecipitation of ICP27 using an anti-SPT5 antibody. Our results suggest that efficient expression of replication-dependent γ2 late genes is, at least in part, regulated by CDK9 dependent co- and/or post-transcriptional events involving SPT5 and ICP27.
Collapse
Affiliation(s)
- Zhiyuan Zhao
- From the Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Box 440, SE-405 30 Gothenburg, Sweden
| | - Ka-Wei Tang
- From the Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Box 440, SE-405 30 Gothenburg, Sweden
| | - Isabella Muylaert
- From the Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Box 440, SE-405 30 Gothenburg, Sweden
| | - Tore Samuelsson
- From the Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Box 440, SE-405 30 Gothenburg, Sweden
| | - Per Elias
- From the Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Box 440, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
29
|
Alfonso-Dunn R, Turner AMW, Jean Beltran PM, Arbuckle JH, Budayeva HG, Cristea IM, Kristie TM. Transcriptional Elongation of HSV Immediate Early Genes by the Super Elongation Complex Drives Lytic Infection and Reactivation from Latency. Cell Host Microbe 2017; 21:507-517.e5. [PMID: 28407486 DOI: 10.1016/j.chom.2017.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/06/2017] [Accepted: 03/13/2017] [Indexed: 12/23/2022]
Abstract
The cellular transcriptional coactivator HCF-1 is required for initiation of herpes simplex virus (HSV) lytic infection and for reactivation from latency in sensory neurons. HCF-1 stabilizes the viral Immediate Early (IE) gene enhancer complex and mediates chromatin transitions to promote IE transcription initiation. In infected cells, HCF-1 was also found to be associated with a network of transcription elongation components including the super elongation complex (SEC). IE genes exhibit characteristics of genes controlled by transcriptional elongation, and the SEC-P-TEFb complex is specifically required to drive the levels of productive IE mRNAs. Significantly, compounds that enhance the levels of SEC-P-TEFb also potently stimulated HSV reactivation from latency both in a sensory ganglia model system and in vivo. Thus, transcriptional elongation of HSV IE genes is a key limiting parameter governing both the initiation of HSV infection and reactivation of latent genomes.
Collapse
Affiliation(s)
- Roberto Alfonso-Dunn
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20814, USA
| | - Anne-Marie W Turner
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20814, USA
| | | | - Jesse H Arbuckle
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20814, USA
| | - Hanna G Budayeva
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Thomas M Kristie
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20814, USA.
| |
Collapse
|
30
|
Zaborowska J, Isa NF, Murphy S. P-TEFb goes viral. Bioessays 2016; 38 Suppl 1:S75-85. [DOI: 10.1002/bies.201670912] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 01/31/2023]
Affiliation(s)
| | - Nur F. Isa
- Sir William Dunn School of Pathology; University of Oxford; Oxford UK
- Department of Biotechnology; Kulliyyah of Science, IIUM; Kuantan Pahang Malaysia
| | - Shona Murphy
- Sir William Dunn School of Pathology; University of Oxford; Oxford UK
| |
Collapse
|
31
|
Abstract
Trees have made an enormous phytochemical contribution in anticancer drugs' development more than any other life form. The contributions include alkaloids that are biosynthesized in various ways and yield. Lead alkaloids isolated from the trees are taxol and camptothecins that currently have annual sales in billion dollars. Other important alkaloids isolated from these life forms include rohitukine, harringtonine, acronycine, thalicarpine, usambarensine, ellipticine, and matrines. Studies on their mechanism of action and target on the DNA and protein of cancerous cells aided the development of potent hemisynthesized congeners. The molecules and their congeners passed/are passing a long period of historical development before approved as antineoplastic drugs for cancer chemotherapy. Some of them did not find the application as anticancer drugs due to ineffectiveness in clinical trials; others are generating research interest in the antineoplastic activity at the present and have reached clinical trial stages. Potentials in antineoplastic molecules from trees are high and are hoped to be commensurate with cancer types afflicting human society in the future.
Collapse
Affiliation(s)
- Tasiu Isah
- Department of Botany, Cellular Differentiation and Molecular Genetics Section, Hamdard University, New Delhi, India
| |
Collapse
|
32
|
C Quaresma AJ, Bugai A, Barboric M. Cracking the control of RNA polymerase II elongation by 7SK snRNP and P-TEFb. Nucleic Acids Res 2016; 44:7527-39. [PMID: 27369380 PMCID: PMC5027500 DOI: 10.1093/nar/gkw585] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/17/2016] [Indexed: 01/01/2023] Open
Abstract
Release of RNA polymerase II (Pol II) from promoter-proximal pausing has emerged as a critical step regulating gene expression in multicellular organisms. The transition of Pol II into productive elongation requires the kinase activity of positive transcription elongation factor b (P-TEFb), which is itself under a stringent control by the inhibitory 7SK small nuclear ribonucleoprotein (7SK snRNP) complex. Here, we provide an overview on stimulating Pol II pause release by P-TEFb and on sequestering P-TEFb into 7SK snRNP. Furthermore, we highlight mechanisms that govern anchoring of 7SK snRNP to chromatin as well as means that release P-TEFb from the inhibitory complex, and propose a unifying model of P-TEFb activation on chromatin. Collectively, these studies shine a spotlight on the central role of RNA binding proteins (RBPs) in directing the inhibition and activation of P-TEFb, providing a compelling paradigm for controlling Pol II transcription with a non-coding RNA.
Collapse
Affiliation(s)
- Alexandre J C Quaresma
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Andrii Bugai
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Matjaz Barboric
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| |
Collapse
|
33
|
Mohana Kumara P, Srimany A, Arunan S, Ravikanth G, Uma Shaanker R, Pradeep T. Desorption Electrospray Ionization (DESI) Mass Spectrometric Imaging of the Distribution of Rohitukine in the Seedling of Dysoxylum binectariferum Hook. F. PLoS One 2016; 11:e0158099. [PMID: 27362422 PMCID: PMC4928942 DOI: 10.1371/journal.pone.0158099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 06/12/2016] [Indexed: 11/19/2022] Open
Abstract
Ambient ionization mass spectrometric imaging of all parts of the seedling of Dysoxylum binectariferum Hook. f (Meliaceae) was performed to reconstruct the molecular distribution of rohitukine (Rh) and related compounds. The species accumulates Rh, a prominent chromone alkaloid, in its seeds, fruits, and stem bark. Rh possesses anti-inflammatory, anti-cancer, and immuno-modulatory properties. Desorption electrospray ionization mass spectrometry imaging (DESI MSI) and electrospray ionization (ESI) tandem mass spectrometry (MS/MS) analysis detected Rh as well as its glycosylated, acetylated, oxidized, and methoxylated analogues. Rh was predominantly distributed in the main roots, collar region of the stem, and young leaves. In the stem and roots, Rh was primarily restricted to the cortex region. The identities of the metabolites were assigned based on both the fragmentation patterns and exact mass analyses. We discuss these results, with specific reference to the possible pathways of Rh biosynthesis and translocation during seedling development in D. binectariferum.
Collapse
Affiliation(s)
- Patel Mohana Kumara
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Amitava Srimany
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Suganya Arunan
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Gudasalamani Ravikanth
- School of Ecology and Conservation, Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, India
- Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Sriramapura, Jakkur, Bengaluru, 560064, India
| | - Ramanan Uma Shaanker
- School of Ecology and Conservation, Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, India
- Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Sriramapura, Jakkur, Bengaluru, 560064, India
| | - Thalappil Pradeep
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
34
|
Sonawane YA, Taylor MA, Napoleon JV, Rana S, Contreras JI, Natarajan A. Cyclin Dependent Kinase 9 Inhibitors for Cancer Therapy. J Med Chem 2016; 59:8667-8684. [PMID: 27171036 PMCID: PMC5636177 DOI: 10.1021/acs.jmedchem.6b00150] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Cyclin dependent kinase (CDK) inhibitors
have been the topic of intense research for nearly 2 decades due to
their widely varied and critical functions within the cell. Recently
CDK9 has emerged as a druggable target for the development of cancer
therapeutics. CDK9 plays a crucial role in transcription regulation;
specifically, CDK9 mediated transcriptional regulation of short-lived
antiapoptotic proteins is critical for the survival of transformed
cells. Focused chemical libraries based on a plethora of scaffolds
have resulted in mixed success with regard to the development of selective
CDK9 inhibitors. Here we review the regulation of CDK9, its cellular
functions, and common core structures used to target CDK9, along with
their selectivity profile and efficacy in vitro and in vivo.
Collapse
Affiliation(s)
- Yogesh A Sonawane
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| | - Margaret A Taylor
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| | - John Victor Napoleon
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| | - Sandeep Rana
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| | - Jacob I Contreras
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| |
Collapse
|
35
|
Recent advances in the identification of Tat-mediated transactivation inhibitors: progressing toward a functional cure of HIV. Future Med Chem 2016; 8:421-42. [PMID: 26933891 DOI: 10.4155/fmc.16.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The current anti-HIV combination therapy does not eradicate the virus that persists mainly in quiescent infected CD4(+) T cells as a latent integrated provirus that resumes after therapy interruption. The Tat-mediated transactivation (TMT) is a critical step in the HIV replication cycle that could give the opportunity to reduce the size of latent reservoirs. More than two decades of research led to the identification of various TMT inhibitors. While none of them met the criteria to reach the market, the search for a suitable TMT inhibitor is still actively pursued. Really promising compounds, including one in a Phase III clinical trial, have been recently identified, thus warranting an update.
Collapse
|
36
|
Gudipaty SA, D’Orso I. Functional interplay between PPM1G and the transcription elongation machinery. RNA & DISEASE 2016; 3:e1215. [PMID: 27088130 PMCID: PMC4830430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Transcription elongation is a critical regulatory step in the gene expression cycle. One key regulator of the switch between transcription initiation and elongation is the P-TEFb kinase, which phosphorylates RNA polymerase II (Pol II) and several negative elongation factors to relieve the elongation block at paused promoters to facilitate productive elongation. Here, we highlight recent findings signifying the role of the PPM1G/PP2Cγ phosphatase in activating and maintaining the active transcription elongation state by regulating the availability of P-TEFb and blocking its assembly into the catalytic inactive 7SK small nuclear ribonucleoprotein (snRNP) complex.
Collapse
Affiliation(s)
| | - Iván D’Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
37
|
Zaborowska J, Isa NF, Murphy S. P-TEFb goes viral. ACTA ACUST UNITED AC 2015; 1:106-116. [PMID: 27398404 PMCID: PMC4863834 DOI: 10.1002/icl3.1037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 01/30/2023]
Abstract
Positive transcription elongation factor b (P‐TEFb), which comprises cyclin‐dependent kinase 9 (CDK9) kinase and cyclin T subunits, is an essential kinase complex in human cells. Phosphorylation of the negative elongation factors by P‐TEFb is required for productive elongation of transcription of protein‐coding genes by RNA polymerase II (pol II). In addition, P‐TEFb‐mediated phosphorylation of the carboxyl‐terminal domain (CTD) of the largest subunit of pol II mediates the recruitment of transcription and RNA processing factors during the transcription cycle. CDK9 also phosphorylates p53, a tumor suppressor that plays a central role in cellular responses to a range of stress factors. Many viral factors affect transcription by recruiting or modulating the activity of CDK9. In this review, we will focus on how the function of CDK9 is regulated by viral gene products. The central role of CDK9 in viral life cycles suggests that drugs targeting the interaction between viral products and P‐TEFb could be effective anti‐viral agents.
Collapse
Affiliation(s)
| | - Nur F Isa
- Sir William Dunn School of Pathology University of Oxford Oxford UK; Department of Biotechnology Kulliyyah of Science, IIUM Kuantan Pahang Malaysia
| | - Shona Murphy
- Sir William Dunn School of Pathology University of Oxford Oxford UK
| |
Collapse
|
38
|
Abstract
Treatment with antiretroviral therapy dramatically increases the survival of HIV-infected individuals. However, treatment has to be continued for life because it does not lead to the full eradication of infection. HIV persists in resting CD4(+) T cells, and possibly other cell types, and can reemerge from these cells when therapy is interrupted. Here, we review molecular mechanisms that have been proposed to contribute to HIV latency, as well as the relative roles of cis- and trans-acting mechanisms. We also discuss existing and future therapeutic opportunities regarding HIV latency that might lead to a future cure for HIV infection.
Collapse
Affiliation(s)
- Matthew S Dahabieh
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California 94941;
| | | | | |
Collapse
|
39
|
Khalil HS, Mitev V, Vlaykova T, Cavicchi L, Zhelev N. Discovery and development of Seliciclib. How systems biology approaches can lead to better drug performance. J Biotechnol 2015; 202:40-9. [PMID: 25747275 DOI: 10.1016/j.jbiotec.2015.02.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 11/30/2022]
Abstract
Seliciclib (R-Roscovitine) was identified as an inhibitor of CDKs and has undergone drug development and clinical testing as an anticancer agent. In this review, the authors describe the discovery of Seliciclib and give a brief summary of the biology of the CDKs Seliciclib inhibits. An overview of the published in vitro and in vivo work supporting the development as an anti-cancer agent, from in vitro experiments to animal model studies ending with a summary of the clinical trial results and trials underway is presented. In addition some potential non-oncology applications are explored and the potential mode of action of Seliciclib in these areas is described. Finally the authors argue that optimisation of the therapeutic effects of kinase inhibitors such as Seliciclib could be enhanced using a systems biology approach involving mathematical modelling of the molecular pathways regulating cell growth and division.
Collapse
Affiliation(s)
- Hilal S Khalil
- CMCBR, SIMBIOS, School of Science, Engineering and Technology, Abertay University, Dundee DD1 1HG, Scotland, UK
| | - Vanio Mitev
- Department of Chemistry and Biochemistry, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Tatyana Vlaykova
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| | - Laura Cavicchi
- CMCBR, SIMBIOS, School of Science, Engineering and Technology, Abertay University, Dundee DD1 1HG, Scotland, UK
| | - Nikolai Zhelev
- CMCBR, SIMBIOS, School of Science, Engineering and Technology, Abertay University, Dundee DD1 1HG, Scotland, UK.
| |
Collapse
|
40
|
Liu RD, Wu J, Shao R, Xue YH. Mechanism and factors that control HIV-1 transcription and latency activation. J Zhejiang Univ Sci B 2015; 15:455-65. [PMID: 24793763 DOI: 10.1631/jzus.b1400059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
After reverse transcription, the HIV-1 proviral DNA is integrated into the host genome and thus subjected to transcription by the host RNA polymerase II (Pol II). With the identification and characterization of human P-TEFb in the late 1990 s as a specific host cofactor required for HIV-1 transcription, it is now believed that the elongation stage of Pol II transcription plays a particularly important role in regulating HIV-1 gene expression. HIV-1 uses a sophisticated scheme to recruit human P-TEFb and other cofactors to the viral long terminal repeat (LTR) to produce full-length HIV-1 transcripts. In this process, P-TEFb is regulated by the reversible association with various transcription factors/cofactors to form several multi-subunit complexes (e.g., 7SK snRNP, super elongation complexes (SECs), and the Brd4-P-TEFb complex) that collectively constitute a P-TEFb network for controlling cellular and HIV-1 transcription. Recent progresses in HIV-1 transcription were reviewed in the paper, with the emphasis on the mechanism and factors that control HIV-1 transcription and latency activation.
Collapse
Affiliation(s)
- Rong-diao Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | | | | | | |
Collapse
|
41
|
Abstract
Antiretroviral therapy (ART) potently suppresses HIV-1 replication, but the virus persists in quiescent infected CD4(+)T cells as a latent integrated provirus, and patients must indefinitely remain on therapy. If ART is terminated, these integrated proviruses can reactivate, driving new rounds of infection. A functional cure for HIV requires eliminating low-level ongoing viral replication that persists in certain tissue sanctuaries and preventing viral reactivation. The HIV Tat protein plays an essential role in HIV transcription by recruiting the kinase activity of the P-TEFb complex to the viral mRNA's stem-bulge-loop structure, TAR, activating transcriptional elongation. Because the Tat-mediated transactivation cascade is critical for robust HIV replication, the Tat/TAR/P-TEFb complex is one of the most attractive targets for drug development. Importantly, compounds that interfere with transcription could impair viral reactivation, low-level ongoing replication, and replenishment of the latent reservoir, thereby reducing the size of the latent reservoir pool. Here, we discuss the potential importance of transcriptional inhibitors in the treatment of latent HIV-1 disease and review recent findings on targeting Tat, TAR, and P-TEFb individually or as part of a complex. Finally, we discuss the impact of extracellular Tat in HIV-associated neurocognitive disorders and cancers.
Collapse
|
42
|
Fujinaga K, Luo Z, Schaufele F, Peterlin BM. Visualization of positive transcription elongation factor b (P-TEFb) activation in living cells. J Biol Chem 2014; 290:1829-36. [PMID: 25492871 DOI: 10.1074/jbc.m114.605816] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulation of transcription elongation by positive transcription elongation factor b (P-TEFb) plays a central role in determining the state of cell activation, proliferation, and differentiation. In cells, P-TEFb exists in active and inactive forms. Its release from the inactive 7SK small nuclear ribonucleoprotein complex is a critical step for P-TEFb to activate transcription elongation. However, no good method exists to analyze this P-TEFb equilibrium in living cells. Only inaccurate and labor-intensive cell-free biochemical assays are currently available. In this study, we present the first experimental system to monitor P-TEFb activation in living cells. We created a bimolecular fluorescence complementation assay to detect interactions between P-TEFb and its substrate, the C-terminal domain of RNA polymerase II. When cells were treated with suberoylanilide hydroxamic acid, which releases P-TEFb from the 7SK small nuclear ribonucleoprotein, they turned green. Other known P-TEFb-releasing agents, including histone deacetylase inhibitors, bromodomain and extraterminal bromodomain inhibitors, and protein kinase C agonists, also scored positive in this assay. Finally, we identified 5'-azacytidine as a new P-TEFb-releasing agent. This release of P-TEFb correlated directly with activation of human HIV and HEXIM1 transcription. Thus, our visualization of P-TEFb activation by fluorescent complementation assay could be used to find new P-TEFb-releasing agents, compare different classes of agents, and assess their efficacy singly and/or in combination.
Collapse
Affiliation(s)
- Koh Fujinaga
- From the Departments of Medicine, Microbiology, and Immunology and
| | - Zeping Luo
- From the Departments of Medicine, Microbiology, and Immunology and
| | - Fred Schaufele
- the Diabetes and Endocrinology Research Center, University of California, San Francisco, California 94143-0703
| | | |
Collapse
|
43
|
Bensaude O. Inhibiting eukaryotic transcription: Which compound to choose? How to evaluate its activity? Transcription 2014; 2:103-108. [PMID: 21922053 DOI: 10.4161/trns.2.3.16172] [Citation(s) in RCA: 411] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 04/28/2011] [Indexed: 02/07/2023] Open
Abstract
This review first discusses ways in which we can evaluate transcription inhibition, describe changes in nuclear structure due to transcription inhibition, and report on genes that are paradoxically stimulated by transcription inhibition. Next, it summarizes the characteristics and mechanisms of commonly used inhibitors: α-amanitin is highly selective for RNAP II and RNAP III but its action is slow, actinomycin D is fast but its selectivity is poor, CDK9 inhibitors such as DRB and flavopiridol are fast and reversible but many genes escape transcription inhibition. New compounds, such as triptolide, are fast and selective and able to completely arrest transcription by triggering rapid degradation of RNAP II.
Collapse
|
44
|
Šmerdová L, Svobodová J, Kabátková M, Kohoutek J, Blažek D, Machala M, Vondráček J. Upregulation of CYP1B1 expression by inflammatory cytokines is mediated by the p38 MAP kinase signal transduction pathway. Carcinogenesis 2014; 35:2534-43. [DOI: 10.1093/carcin/bgu190] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
45
|
Yamamoto M, Onogi H, Kii I, Yoshida S, Iida K, Sakai H, Abe M, Tsubota T, Ito N, Hosoya T, Hagiwara M. CDK9 inhibitor FIT-039 prevents replication of multiple DNA viruses. J Clin Invest 2014; 124:3479-88. [PMID: 25003190 DOI: 10.1172/jci73805] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 05/23/2014] [Indexed: 01/09/2023] Open
Abstract
A wide range of antiviral drugs is currently available; however, drug-resistant viruses have begun to emerge and represent a potential public health risk. Here, we explored the use of compounds that inhibit or interfere with the action of essential host factors to prevent virus replication. In particular, we focused on the cyclin-dependent kinase 9 (CDK9) inhibitor, FIT-039, which suppressed replication of a broad spectrum of DNA viruses through inhibition of mRNA transcription. Specifically, FIT-039 inhibited replication of herpes simplex virus 1 (HSV-1), HSV-2, human adenovirus, and human cytomegalovirus in cultured cells, and topical application of FIT-039 ointment suppressed skin legion formation in a murine HSV-1 infection model. FIT-039 did not affect cell cycle progression or cellular proliferation in host cells. Compared with the general CDK inhibitor flavopiridol, transcriptome analyses of FIT-039-treated cells revealed that FIT-039 specifically inhibited CDK9. Given at concentrations above the inhibitory concentration, FIT-039 did not have a cytotoxic effect on mammalian cells. Importantly, administration of FIT-039 ameliorated the severity of skin lesion formation in mice infected with an acyclovir-resistant HSV-1, without noticeable adverse effects. Together, these data indicate that FIT-039 has potential as an antiviral agent for clinical therapeutics.
Collapse
MESH Headings
- Acyclovir/pharmacology
- Adenoviruses, Human/drug effects
- Adenoviruses, Human/physiology
- Animals
- Antiviral Agents/chemistry
- Antiviral Agents/pharmacology
- Antiviral Agents/toxicity
- Cyclin-Dependent Kinase 9/antagonists & inhibitors
- Cytomegalovirus/drug effects
- Cytomegalovirus/physiology
- DNA Viruses/drug effects
- DNA Viruses/genetics
- DNA Viruses/physiology
- Disease Models, Animal
- Drug Resistance, Viral
- Flavonoids/pharmacology
- HEK293 Cells
- HeLa Cells
- Herpes Simplex/drug therapy
- Herpes Simplex/pathology
- Herpes Simplex/virology
- Herpesvirus 1, Human/drug effects
- Herpesvirus 1, Human/physiology
- Herpesvirus 2, Human/drug effects
- Herpesvirus 2, Human/physiology
- Host-Pathogen Interactions/drug effects
- Host-Pathogen Interactions/genetics
- Humans
- Mice
- Mice, Inbred ICR
- Piperidines/pharmacology
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/toxicity
- Pyridines/chemistry
- Pyridines/pharmacology
- Pyridines/toxicity
- Rats
- Rats, Wistar
- Transcription, Genetic/drug effects
- Transcriptome/drug effects
- Virus Replication/drug effects
Collapse
|
46
|
Garriga J, Graña X. CDK9 inhibition strategy defines distinct sets of target genes. BMC Res Notes 2014; 7:301. [PMID: 24886624 PMCID: PMC4045923 DOI: 10.1186/1756-0500-7-301] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/08/2014] [Indexed: 12/02/2022] Open
Abstract
Background CDK9 is the catalytic subunit of the Positive Transcription Elongation Factor b (P-TEFb), which phosphorylates the CTD of RNAPII and negative elongation factors enabling for productive elongation after initiation. CDK9 associates with T-type cyclins and cyclin K and its activity is tightly regulated in cells at different levels. CDK9 is also the catalytic subunit of TAK (Tat activating Kinase), essential for HIV1 replication. Because of CDK9′s potential as a therapeutic target in AIDS, cancer, inflammation, and cardiomyophathy it is important to understand the consequences of CDK9 inhibition. A previous gene expression profiling study performed with human glioblastoma T98G cells in which CDK9 activity was inhibited either with a dominant negative mutant form of CDK9 (dnCDK9) or the pharmacological inhibitor Flavopiridol unveiled striking differences in gene expression effects. In the present report we extended these studies by (1) using both immortalized normal human fibroblasts and primary human astrocytes, (2) eliminating potential experimental variability due to transduction methodology and (3) also modulating CDK9 activity with siRNA. Findings Striking differences in the effects on gene expression resulting from the strategy used to inhibit CDK9 activity (dnCDK9 or FVP) remain even when potential variability due to viral transduction is eliminated. siRNA mediated CDK9 knockdown in human fibroblasts and astrocytes efficiently reduced CDK9 expression and led to potent changes in gene expression that exhibit little correlation with the effects of dnCDK9 or FVP. Interestingly, HEXIM1 a validated CDK9 target gene, was found to be potently downregulated by dnCDK9, FVP and siCDK9, but the cluster of genes with expression profiles similar to HEXIM1 was small. Finally, cluster analysis of all treatments revealed higher correlation between treatments than cell type origin. Conclusion The nature of the strategy used to inhibit CDK9 profoundly affects the patterns of gene expression resulting from CDK9 inhibition. These results suggest multiple variables that affect outcome, including kinetics of inhibition, potency, off-target effects, and selectivity issues. This is particularly important when considering CDK9 as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
| | - Xavier Graña
- Fels Institute for Cancer Research and Molecular Biology, AHP bldg,, room 308, 3307 North Broad St,, Philadelphia, PA 19140, USA.
| |
Collapse
|
47
|
Heredia A, Natesan S, Le NM, Medina-Moreno S, Zapata JC, Reitz M, Bryant J, Redfield RR. Indirubin 3'-monoxime, from a Chinese traditional herbal formula, suppresses viremia in humanized mice infected with multidrug-resistant HIV. AIDS Res Hum Retroviruses 2014; 30:403-6. [PMID: 24401082 DOI: 10.1089/aid.2013.0249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Senthilkumar Natesan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Nhut M. Le
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sandra Medina-Moreno
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Juan C. Zapata
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Marvin Reitz
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Robert R. Redfield
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
48
|
Human Immunodeficiency Virus Type 1 Tat and Rev as Potential Targets for Drug Development. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Kukkonen S, Martinez-Viedma MDP, Kim N, Manrique M, Aldovini A. HIV-1 Tat second exon limits the extent of Tat-mediated modulation of interferon-stimulated genes in antigen presenting cells. Retrovirology 2014; 11:30. [PMID: 24742347 PMCID: PMC4036831 DOI: 10.1186/1742-4690-11-30] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 03/27/2014] [Indexed: 12/14/2022] Open
Abstract
Background We have shown that HIV-1 Tat interaction with MAP2K3, MAP2K6, and IRF7 promoters is key to IFN-stimulated genes (ISG) activation in immature dendritic cells and macrophages. Results We evaluated how Tat alleles and mutants differ in cellular gene modulation of immature dendritic cells and monocyte-derived macrophages and what similarities this modulation has with that induced by interferons. The tested alleles and mutants modulated to different degrees ISG, without concomitant induction of interferons. The first exon TatSF21-72 and the minimal transactivator TatSF21-58, all modulated genes to a significantly greater extent than full-length wild type, two-exon Tat, indicating that Tat second exon is critical in reducing the innate response triggered by HIV-1 in these cells. Mutants with reduced LTR transactivation had a substantially reduced effect on host gene expression modulation than wild type TatSF2. However, the more potent LTR transactivator TatSF2A58T modulated ISG expression to a lower degree compared to TatSF2. A cellular gene modulation similar to that induced by Tat and Tat mutants in immature dendritic cells could be observed in monocyte-derived macrophages, with the most significant pathways affected by Tat being the same in both cell types. Tat expression in cells deleted of the type I IFN locus or receptor resulted in a gene modulation pattern similar to that induced in primary immature dendritic cells and monocyte-derived macrophages, excluding the involvement of type I IFNs in Tat-mediated gene modulation. ISG activation depends on Tat interaction with MAP2K3, MAP2K6, and IRF7 promoters and a single exon Tat protein more strongly modulated the luciferase activity mediated by MAP2K3, MAP2K6, and IRF7 promoter sequences located 5′ of the RNA start site than the wild type two-exon Tat, while a cysteine and lysine Tat mutants, reduced in LTR transactivation, had negligible effects on these promoters. Chemical inhibition of CDK9 or Sp1 decreased Tat activation of MAP2K3-, MAP2K6-, and IRF7-mediated luciferase transcription. Conclusions Taken together, these data indicate that the second exon of Tat is critical to the containment of the innate response stimulated by Tat in antigen presenting cells and support a role for Tat in stimulating cellular transcription via its interaction with transcription factors present at promoters.
Collapse
Affiliation(s)
| | | | | | | | - Anna Aldovini
- Department of Pediatrics, Harvard Medical School, Department of Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Gu J, Babayeva ND, Suwa Y, Baranovskiy AG, Price DH, Tahirov TH. Crystal structure of HIV-1 Tat complexed with human P-TEFb and AFF4. Cell Cycle 2014; 13:1788-97. [PMID: 24727379 DOI: 10.4161/cc.28756] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Developing anti-viral therapies targeting HIV-1 transcription has been hampered by the limited structural knowledge of the proteins involved. HIV-1 hijacks the cellular machinery that controls RNA polymerase II elongation through an interaction of HIV-1 Tat with the positive transcription elongation factor P-TEFb, which interacts with an AF4 family member (AFF1/2/3/4) in the super elongation complex (SEC). Because inclusion of Tat•P-TEFb into the SEC is critical for HIV transcription, we have determined the crystal structure of the Tat•AFF4•P-TEFb complex containing HIV-1 Tat (residues 1-48), human Cyclin T1 (1-266), human Cdk9 (7-332), and human AFF4 (27-69). Tat binding to AFF4•P-TEFb causes concerted structural changes in AFF4 via a shift of helix H5' of Cyclin T1 and the α-3 10 helix of AFF4. The interaction between Tat and AFF4 provides structural constraints that explain tolerated Tat mutations. Analysis of the Tat-binding surface of AFF4 coupled with modeling of all other AF4 family members suggests that AFF1 and AFF4 would be preferred over AFF2 or AFF3 for interaction with Tat•P-TEFb. The structure establishes that the Tat-TAR recognition motif (TRM) in Cyclin T1 interacts with both Tat and AFF4, leading to the exposure of arginine side chains for binding to TAR RNA. Furthermore, modeling of Tat Lys28 acetylation suggests that the acetyl group would be in a favorable position for H-bond formation with Asn257 of TRM, thereby stabilizing the TRM in Cyclin T1, and provides a structural basis for the modulation of TAR RNA binding by acetylation of Tat Lys28.
Collapse
Affiliation(s)
- Jianyou Gu
- Eppley Institute for Research in Cancer and Allied Diseases; University of Nebraska Medical Center; Omaha, NE USA
| | - Nigar D Babayeva
- Eppley Institute for Research in Cancer and Allied Diseases; University of Nebraska Medical Center; Omaha, NE USA
| | - Yoshiaki Suwa
- Eppley Institute for Research in Cancer and Allied Diseases; University of Nebraska Medical Center; Omaha, NE USA
| | - Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases; University of Nebraska Medical Center; Omaha, NE USA
| | - David H Price
- Biochemistry Department; University of Iowa; Iowa City, IA USA
| | - Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases; University of Nebraska Medical Center; Omaha, NE USA
| |
Collapse
|