1
|
Miller JL, Leedale C, Kang D, Lilue J, Harder OE, Niewiesk S. Prostaglandin D2 delays CD8+ T-cell responses and respiratory syncytial virus clearance in geriatric cotton rats. J Virol 2025:e0186324. [PMID: 39818970 DOI: 10.1128/jvi.01863-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025] Open
Abstract
Respiratory syncytial virus (RSV) infection is associated with increased rates of severe disease, hospitalization, and death in elderly individuals. Clearance of RSV is frequently delayed within this demographic, contributing to the more severe disease course. Geriatric cotton rats mimic this prolonged clearance kinetic and serve as a useful animal model for studying age-associated immunological deficits during RSV infection. Treatment with the cyclooxygenase (COX) inhibitor ibuprofen restores RSV clearance, indicating that inflammation contributes to impaired clearance in geriatric cotton rats. Here, we further characterize a compromised immune response in geriatric cotton rats and identify an inflammatory pathway that contributes to this deficiency. Dendritic cell (DC) activation and migration to mediastinal lymph nodes are decreased during early infection in geriatric cotton rats, resulting in delayed generation of cytotoxic T cells and virus clearance. Prostaglandin D2 (PGD2), which reduces DC migration through the elevation of D-type prostanoid 1 receptor (DP1 receptor), is elevated in the airways of infected geriatric cotton rats. Reducing PGD2 production by inhibiting COX-2 or PGD2 synthase improves RSV clearance kinetics through DC activation and RSV-specific CD8+ T-cell responses in geriatric cotton rats, whereas activation of DP1 receptor through an agonist resulted in delayed viral clearance in adult cotton rats. These results indicate that PGD2 contributes to delayed antigen presentation and CD8+ T-cell responses to RSV in geriatric cotton rats. Inhibiting PGD2 generation or signaling may be a useful mechanism of therapeutic intervention in elderly individuals.IMPORTANCEElderly adults are at increased risk of severe disease resulting from infection with respiratory syncytial virus (RSV), characterized in part by delayed clearance (removal of the virus from airways). Understanding the immunological factors that lead to this delayed clearance may allow for the development of therapies to improve disease outcomes in elderly individuals infected with RSV and other respiratory viruses. Here, we describe an inflammatory pathway in geriatric cotton rats, the preferred small animal laboratory model for RSV, that impairs the generation of an effective immune response. We show that inhibiting this inflammatory pathway in geriatric cotton rats improves immune parameters and speeds clearance of RSV. These results contribute to our understanding of delayed RSV clearance in elderly individuals with possible applications for improving immune responses to RSV in clinical settings.
Collapse
Affiliation(s)
- Jonathan L Miller
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Cameron Leedale
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Danyue Kang
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Olivia E Harder
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Tran Van Hoi E, Appelman B, Mooijaart S, Dalm VASH, Polinder Bos HA, van Heemst D, van Raaij BFM, Noordam R, Kuranova A, Hoogerwerf JJ, Peeters G, Smorenberg A. The association of inflammatory markers with frailty and in-hospital mortality in older COVID-19 patients. Exp Gerontol 2024; 195:112534. [PMID: 39098360 DOI: 10.1016/j.exger.2024.112534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION During the COVID19 pandemic, older patients hospitalized for COVID-19 exhibited an increased mortality risk compared to younger patients. While ageing is associated with compromised immune responses and frailty, their contributions and interplay remain understudied. This study investigated the association between inflammatory markers and mortality and potential modification by frailty among older patients hospitalized for COVID-19. METHODS Data were from three multicenter Dutch cohorts (COVID-OLD, CliniCo, Covid-Predict). Patients were 70 years or older, hospitalized for COVID-19and categorized into three frailty groups: fit (Clinical frailty score (CFS) 1-3), pre-frail (CFS 4-5), and frail (CFS 6-9). Immunological markers (lymphocyte count, neutrophil count, C-reactive protein, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and systemic inflammation index (SII)) were measured at baseline. Associations with in hospital mortality were examined using logistic regression. RESULTS A total of 1697 patients were included from COVID-OLD, 656 from Covid-Predict, and 574 from CliniCo. The median age was 79, 77, and 78 years for each cohort. Hospital mortality rates were 33 %, 27 % and 39 % in the three cohorts, respectively. A lower CRP was associated with a higher frailty score in all three cohorts (all p < 0.01). Lymphocyte count, neutrophil count, NLR, PLR, or SII, were similar across frailty groups. Higher CRP levels were associated with increased in-hospital mortality risk across all frailty groups, across all cohorts (OR (95 % CI), 2.88 (2.20-3.78), 3.15 (1.95-5.16), and 3.28 (1.87-5.92)), and frailty did not modify the association between inflammatory markers and in-hospital mortality (all p-interaction>0.05). CONCLUSION While frailty is a significant factor in determining overall outcomes in older patients, our study suggests that the elevated risk of mortality in older patients with frailty compared to fit patients is likely not explained by difference in inflammatory responses.
Collapse
Affiliation(s)
- Estelle Tran Van Hoi
- Department of Internal Medicine, Section of Geriatrics and Gerontology, Leiden University Medical Center, Leiden, the Netherlands; LUMC Center for Medicine for Older People, Leiden University Medical Center, Leiden, the Netherlands.
| | - Brent Appelman
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity (AII), University of Amsterdam, Amsterdam, the Netherlands.; Division of Allergy and Clinical Immunology, Department of Internal Medicine, Erasmus Medical Center University Medical Center, Rotterdam, the Netherlands; Department of Immunology, Erasmus Medical Center University Medical Center, Rotterdam, the Netherlands
| | - Simon Mooijaart
- Department of Internal Medicine, Section of Geriatrics and Gerontology, Leiden University Medical Center, Leiden, the Netherlands; LUMC Center for Medicine for Older People, Leiden University Medical Center, Leiden, the Netherlands
| | - Virgil A S H Dalm
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Erasmus Medical Center University Medical Center, Rotterdam, the Netherlands; Department of Immunology, Erasmus Medical Center University Medical Center, Rotterdam, the Netherlands
| | - Harmke A Polinder Bos
- Division of Geriatric Medicine, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Diana van Heemst
- Department of Internal Medicine, Section of Geriatrics and Gerontology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bas F M van Raaij
- Department of Internal Medicine, Section of Geriatrics and Gerontology, Leiden University Medical Center, Leiden, the Netherlands; LUMC Center for Medicine for Older People, Leiden University Medical Center, Leiden, the Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Geriatrics and Gerontology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anna Kuranova
- Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jacobien J Hoogerwerf
- Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Geeske Peeters
- Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Annemieke Smorenberg
- Department of Internal Medicine, Section Geriatric Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Asefi N, Pakzad P, Khorasani A, Taghizadeh M, Amirkhani Z, Yazdi MH, Shahverdi AR, Mahdavi M. Ascorbic Acid and α-Tocopherol in the Inactivated SARS-CoV-2 Vaccine Formulation: Induction of the Th1 Pattern in Aged Mice. Viral Immunol 2024; 37:355-370. [PMID: 39212606 DOI: 10.1089/vim.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Aging is physiologically associated with a decline in the function of the immune system and subsequent susceptibility to infections. Interferon-gamma (IFN-γ), a key element in the activation of cellular immunity, plays an important role in defense against virus infections. Decreased levels of IFN-γ in the elderly may explain their increased risk for viral infectious diseases such as COVID-19. There is accumulating evidence that ascorbic acid (vitamin C [VitC]) and α-tocopherol together help improve the function of the immune system in the elderly, control infections, and decrease the treatment duration. A SARS-CoV-2 strain was isolated from a patient and then cultured in the Vero cell line. The isolated and propagated virus was then inactivated using formalin and purified by the column chromatography. The inactivated SARS-CoV-2 was formulated in the Alum adjuvant combined with VitC or α-tocopherol and/or both of them. The vaccines were injected twice to young and aged C57BL/6 mice. Two weeks later, IFN-γ, IL-4, and IL-2 cytokines were assessed using ELISA Kits. Specific IgG and IgG1/IgG2a were assessed by an in-house ELISA. In addition, the expression of PD1 and TERT genes in the spleen tissue of the mice was measured using real-time PCR. IL-4 and IFN-γ cytokines showed a significant increase in both aged and young mice compared with the Alum-based vaccine. In addition, our results exhibited a significant decrease and increase in specific total IgG and the IgG2a/IgG1 ratio, respectively. Furthermore, the vaccine formulated in α-tocopherol + VitC led to decreased PD1 and increased TERT gene expression levels. In conclusion, our results demonstrated that α-tocopherol + VitC formulated in the inactivated SARS-CoV-2 vaccine led to a shift toward Th1, which may be due to their effect on the physiology of cells, especially aged ones and changing their phenotype toward young cells.
Collapse
Affiliation(s)
- Nika Asefi
- Department of Microbiology, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Academic Center for Education, Culture and Research (ACECR), Motamed Cancer Institute, Tehran, Iran
| | - Parviz Pakzad
- Department of Microbiology, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Akbar Khorasani
- Department of FMD vaccine production, Razi Vaccine & Serum Research Institute, Agricultural Research, Education & Extension Organization (AREEO), Karaj, Iran
| | - Morteza Taghizadeh
- Department of Human Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Zahra Amirkhani
- Cellular and Molecular Biology Research Center, Larestan University of Medical Sciences, Larestan, Iran
| | - Mohammad Hossein Yazdi
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Shahverdi
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Academic Center for Education, Culture and Research (ACECR), Motamed Cancer Institute, Tehran, Iran
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Sun M, Yang H, Hu Y, Fan J, Duan M, Ruan J, Li S, Xu Y, Han Y. Differential white blood cell count and epigenetic clocks: a bidirectional Mendelian randomization study. Clin Epigenetics 2024; 16:118. [PMID: 39192327 DOI: 10.1186/s13148-024-01717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Human aging and white blood cell (WBC) count are complex traits influenced by multiple genetic factors. Predictors of chronological age have been developed using epigenetic clocks. However, the bidirectional causal effects between epigenetic clocks and WBC count have not been fully examined. METHODS This study employed Mendelian randomization (MR) to analyze summary statistics from four epigenetic clocks involving 34,710 participants, alongside data from the Blood Cell Consortium encompassing 563,946 individuals. We primarily explored bidirectional causal relationships using the random-effects inverse-variance weighted method, supplemented by additional MR methods for comprehensive analysis. Additionally, multivariate MR was applied to investigate independent effects of WBC count on epigenetic age acceleration. RESULTS In the two-sample univariate MR (UVMR) analysis, we observed that a decrease in lymphocyte count markedly accelerated aging according to the PhenoAge, GrimAge, and HannumAge metrics (all P < 0.01, β < 0), though it did not affect Intrinsic Epigenetic Age Acceleration (IEAA). Conversely, an increase in neutrophil count significantly elevated PhenoAge levels (β: 0.38; 95% CI 0.14, 0.61; P = 1.65E-03 < 0.01). Reverse MR revealed no significant causal impacts of epigenetic clocks on overall WBC counts. Furthermore, in multivariate MR, the impact of lymphocyte counts on epigenetic aging metrics remained statistically significant. We also identified a marked causal association between neutrophil counts and PhenoAge, GrimAge, and HannumAge, with respective results showing strong associations (PhenoAge β: 0.78; 95% CI 0.47, 1.09; P = 8.26E-07; GrimAge β: 0.55; 95% CI 0.31, 0.79; P = 5.50E-06; HannumAge β: 0.42; 95% CI 0.18, 0.67; P = 6.30E-04). Likewise, eosinophil cell count demonstrated significant association with HannumAge (β: 0.33; 95% CI 0.13, 0.53; P = 1.43E-03 < 0.01). CONCLUSION These findings demonstrated that within WBCs, lymphocyte and neutrophil counts exert irreversible and independent causal effects on the acceleration of PhenoAge, GrimAge, and HannumAge. Our findings highlight the critical role of WBCs in influencing epigenetic clocks and underscore the importance of considering immune parameters when interpreting epigenetic age.
Collapse
Affiliation(s)
- Manli Sun
- Drug Clinical Trail Center, The Second Hospital of Heilongjiang Province, 209 Jiangdu Street, Harbin, China
| | - Huan Yang
- Drug Clinical Trail Center, The Second Hospital of Heilongjiang Province, 209 Jiangdu Street, Harbin, China
| | - Yang Hu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jiaqi Fan
- College of Public Health, Harbin Medical University, Harbin, China
| | - Mingjing Duan
- Drug Clinical Trail Center, The Second Hospital of Heilongjiang Province, 209 Jiangdu Street, Harbin, China
| | - Jingqi Ruan
- Drug Clinical Trail Center, The Second Hospital of Heilongjiang Province, 209 Jiangdu Street, Harbin, China
| | - Shichang Li
- Drug Clinical Trail Center, The Second Hospital of Heilongjiang Province, 209 Jiangdu Street, Harbin, China
| | - Yang Xu
- Drug Clinical Trail Center, The Second Hospital of Heilongjiang Province, 209 Jiangdu Street, Harbin, China
| | - Yue Han
- The Second Hospital of Heilongjiang Province, 209 Jiangdu Street, Harbin, China.
| |
Collapse
|
5
|
Sudduth ER, López Ruiz A, Trautmann-Rodriguez M, Fromen CA. Age-dependent changes in phagocytic activity: in vivo response of mouse pulmonary antigen presenting cells to direct lung delivery of charged PEGDA nanoparticles. J Nanobiotechnology 2024; 22:476. [PMID: 39135064 PMCID: PMC11318229 DOI: 10.1186/s12951-024-02743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Current needle-based vaccination for respiratory viruses is ineffective at producing sufficient, long-lasting local immunity in the elderly. Direct pulmonary delivery to the resident local pulmonary immune cells can create long-term mucosal responses. However, criteria for drug vehicle design rules that can overcome age-specific changes in immune cell functions have yet to be established. RESULTS Here, in vivo charge-based nanoparticle (NP) uptake was compared in mice of two age groups (2- and 16-months) within the four notable pulmonary antigen presenting cell (APC) populations: alveolar macrophages (AM), interstitial macrophages (IM), CD103+ dendritic cells (DCs), and CD11b+ DCs. Both macrophage populations exhibited preferential uptake of anionic nanoparticles but showed inverse rates of phagocytosis between the AM and IM populations across age. DC populations demonstrated preferential uptake of cationic nanoparticles, which remarkably did not significantly change in the aged group. Further characterization of cell phenotypes post-NP internalization demonstrated unique surface marker expression and activation levels for each APC population, showcasing heightened DC inflammatory response to NP delivery in the aged group. CONCLUSION The age of mice demonstrated significant preferences in the charge-based NP uptake in APCs that differed greatly between macrophages and DCs. Carefully balance of the targeting and activation of specific types of pulmonary APCs will be critical to produce efficient, age-based vaccines for the growing elderly population.
Collapse
Affiliation(s)
- Emma R Sudduth
- Chemical and Biomolecular Engineering Department, University of Delaware, 150 Academy St, Newark, DE, 19716, USA
| | - Aida López Ruiz
- Chemical and Biomolecular Engineering Department, University of Delaware, 150 Academy St, Newark, DE, 19716, USA
| | - Michael Trautmann-Rodriguez
- Chemical and Biomolecular Engineering Department, University of Delaware, 150 Academy St, Newark, DE, 19716, USA
| | - Catherine A Fromen
- Chemical and Biomolecular Engineering Department, University of Delaware, 150 Academy St, Newark, DE, 19716, USA.
| |
Collapse
|
6
|
Ehrlich KB, Lyle SM, Corallo KL, Lavner JA, Ross TM. Changes in depressive symptoms and antibody production following influenza vaccination in adolescents and adults. Vaccine 2024; 42:3585-3591. [PMID: 38702230 PMCID: PMC11128339 DOI: 10.1016/j.vaccine.2024.04.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE Psychological distress has been associated with dampened antibody production following vaccination. Questions remain, however, about whether psychological distress influences vaccine response uniformly across the lifespan, and whether changes in distress result in changes in antibody production across the same period. METHODS Participants (N = 148; Mage = 32.2 years, SD = 19.7, range = 12-80 years) took part in consecutive vaccine studies during the 2017-2018 and 2018-2019 influenza seasons. Each influenza season, they reported on their depressive symptoms, provided blood samples, and received the standard influenza vaccine. Participants then provided a second blood sample one month later. Antibody titers were examined pre- and post-vaccination. RESULTS Analyses examined both within-season and across-season effects of depressive symptoms, age, and their interaction on vaccine response. Within-season analyses revealed that age predicted antibody response during both seasons (2017-2018 and 2018-2019). Neither depressive symptoms nor the interaction with age were associated with antibody response to vaccination within either season. Across the two seasons, age significantly moderated the association between change in depressive symptoms and change in antibody production. For people who were 48 or older, increases in depressive symptoms across the two seasons were associated with a less robust response to the vaccine in the second season relative to the first season. For people younger than 48, changes in depressive symptoms were not significantly related to changes in antibody production. CONCLUSIONS These findings highlight the important role of mental health for older adults' vaccine response, which could have clinical relevance for protection against disease.
Collapse
Affiliation(s)
- Katherine B Ehrlich
- Department of Psychology, University of Georgia, Athens, GA 30602, USA; Center for Family Research, University of Georgia, Athens, GA 30602, USA.
| | - Sarah M Lyle
- Psychology Discipline, Eckerd College, St. Petersburg, FL, USA
| | - Kelsey L Corallo
- Georgia Health Policy Center, Georgia State University, Atlanta GA, USA
| | - Justin A Lavner
- Department of Psychology, University of Georgia, Athens, GA 30602, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
7
|
ElAbd H, Bacher P, Tholey A, Lenz TL, Franke A. Challenges and opportunities in analyzing and modeling peptide presentation by HLA-II proteins. Front Immunol 2023; 14:1107266. [PMID: 37063883 PMCID: PMC10090296 DOI: 10.3389/fimmu.2023.1107266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
The human leukocyte antigen (HLA) proteins are an indispensable component of adaptive immunity because of their role in presenting self and foreign peptides to T cells. Further, many complex diseases are associated with genetic variation in the HLA region, implying an important role for specific HLA-presented peptides in the etiology of these diseases. Identifying the specific set of peptides presented by an individual’s HLA proteins in vivo, as a whole being referred to as the immunopeptidome, has therefore gathered increasing attention for different reasons. For example, identifying neoepitopes for cancer immunotherapy, vaccine development against infectious pathogens, or elucidating the role of HLA in autoimmunity. Despite the tremendous progress made during the last decade in these areas, several questions remain unanswered. In this perspective, we highlight five remaining key challenges in the analysis of peptide presentation and T cell immunogenicity and discuss potential solutions to these problems. We believe that addressing these questions would not only improve our understanding of disease etiology but will also have a direct translational impact in terms of engineering better vaccines and in developing more potent immunotherapies.
Collapse
Affiliation(s)
- Hesham ElAbd
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Petra Bacher
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
- Institute of Immunology, University of Kiel, Kiel, Germany
| | - Andreas Tholey
- Proteomics & Bioanalytics, Institute for Experimental Medicine, University of Kiel, Kiel, Germany
| | - Tobias L. Lenz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
- *Correspondence: Andre Franke,
| |
Collapse
|
8
|
Severance R, Schwartz H, Dagan R, Connor L, Li J, Pedley A, Hartzel J, Sterling TM, Nolan KM, Tamms GM, Musey LK, Buchwald UK. Safety, tolerability, and immunogenicity of V114, a 15-valent pneumococcal conjugate vaccine, administered concomitantly with influenza vaccine in healthy adults aged ≥50 years: a randomized phase 3 trial (PNEU-FLU). Hum Vaccin Immunother 2022; 18:1-14. [PMID: 34726574 PMCID: PMC8920144 DOI: 10.1080/21645515.2021.1976581] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/11/2021] [Accepted: 08/30/2021] [Indexed: 01/01/2023] Open
Abstract
Streptococcus pneumoniae and influenza viruses are associated with significant morbidity and mortality in older adults. Concomitant vaccination against these agents reduces hospitalization and mortality rates. This phase 3 trial evaluated safety, tolerability, and immunogenicity of concomitant and non-concomitant administration of V114, a 15-valent pneumococcal conjugate vaccine containing serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19F, 19A, 22F, 23F, 33F, and quadrivalent inactivated influenza vaccine (QIV), in healthy adults aged ≥50 years. Participants (N = 1,200) were randomized 1:1 to receive either V114 administered concomitantly with QIV (concomitant group) or QIV plus placebo (non-concomitant group) on Day 1, followed by placebo (concomitant group) or V114 (non-concomitant group) 30 days later. Randomization was stratified by age and history of pneumococcal polysaccharide vaccine receipt. Overall, 426 (71.0%) and 438 (73.5%) participants in the concomitant and non-concomitant groups experienced solicited injection-site adverse events (AEs); 278 (46.3%) and 300 (50.3%) reported solicited systemic AEs. Most solicited AEs were mild or moderate in severity and of short duration. Non-inferiority for pneumococcal- and influenza-specific antibody responses (lower bound 95% confidence interval of opsonophagocytic activity [OPA] and hemagglutination inhibition geometric mean titers [GMTs] ratios ≥0.5) was demonstrated for concomitant versus non-concomitant administration for all 15 pneumococcal serotypes and all four influenza strains. Consistent with previous studies, a trend was observed toward lower pneumococcal OPA GMTs in the concomitant versus the non-concomitant group. V114 administered concomitantly with QIV is generally well tolerated and immunologically non-inferior to non-concomitant administration, supporting coadministration of both vaccines.
Collapse
Affiliation(s)
| | | | - Ron Dagan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fraile M, Eiro N, Costa LA, Martín A, Vizoso FJ. Aging and Mesenchymal Stem Cells: Basic Concepts, Challenges and Strategies. BIOLOGY 2022; 11:1678. [PMID: 36421393 PMCID: PMC9687158 DOI: 10.3390/biology11111678] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023]
Abstract
Aging and frailty are complex processes implicating multifactorial mechanisms, such as replicative senescence, oxidative stress, mitochondrial dysfunction, or autophagy disorder. All of these mechanisms drive dramatic changes in the tissue environment, such as senescence-associated secretory phenotype factors and inflamm-aging. Thus, there is a demand for new therapeutic strategies against the devastating effects of the aging and associated diseases. Mesenchymal stem cells (MSC) participate in a "galaxy" of tissue signals (proliferative, anti-inflammatory, and antioxidative stress, and proangiogenic, antitumor, antifibrotic, and antimicrobial effects) contributing to tissue homeostasis. However, MSC are also not immune to aging. Three strategies based on MSC have been proposed: remove, rejuvenate, or replace the senescent MSC. These strategies include the use of senolytic drugs, antioxidant agents and genetic engineering, or transplantation of younger MSC. Nevertheless, these strategies may have the drawback of the adverse effects of prolonged use of the different drugs used or, where appropriate, those of cell therapy. In this review, we propose the new strategy of "Exogenous Restitution of Intercellular Signalling of Stem Cells" (ERISSC). This concept is based on the potential use of secretome from MSC, which are composed of molecules such as growth factors, cytokines, and extracellular vesicles and have the same biological effects as their parent cells. To face this cell-free regenerative therapy challenge, we have to clarify key strategy aspects, such as establishing tools that allow us a more precise diagnosis of aging frailty in order to identify the therapeutic requirements adapted to each case, identify the ideal type of MSC in the context of the functional heterogeneity of these cellular populations, to optimize the mass production and standardization of the primary materials (cells) and their secretome-derived products, to establish the appropriate methods to validate the anti-aging effects and to determine the most appropriate route of administration for each case.
Collapse
Affiliation(s)
- Maria Fraile
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| | - Noemi Eiro
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| | - Luis A. Costa
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| | - Arancha Martín
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
- Department of Emergency, Hospital Universitario de Cabueñes, Los Prados, 395, 33394 Gijon, Spain
| | - Francisco J. Vizoso
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
- Department of Surgery, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| |
Collapse
|
10
|
Distinct immunological and molecular signatures underpinning influenza vaccine responsiveness in the elderly. Nat Commun 2022; 13:6894. [PMID: 36371426 PMCID: PMC9653450 DOI: 10.1038/s41467-022-34487-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Seasonal influenza outbreaks, especially in high-risk groups such as the elderly, represent an important public health problem. Prevailing inadequate efficacy of seasonal vaccines is a crucial bottleneck. Understanding the immunological and molecular mechanisms underpinning differential influenza vaccine responsiveness is essential to improve vaccination strategies. Here we show comprehensive characterization of the immune response of randomly selected elderly participants (≥ 65 years), immunized with the adjuvanted influenza vaccine Fluad. In-depth analyses by serology, multi-parametric flow cytometry, multiplex and transcriptome analysis, coupled to bioinformatics and mathematical modelling, reveal distinguishing immunological and molecular features between responders and non-responders defined by vaccine-induced seroconversion. Non-responders are specifically characterized by multiple suppressive immune mechanisms. The generated comprehensive high dimensional dataset enables the identification of putative mechanisms and nodes responsible for vaccine non-responsiveness independently of confounding age-related effects, with the potential to facilitate development of tailored vaccination strategies for the elderly.
Collapse
|
11
|
Evaluation of Adverse Reactions to Influenza Vaccination: A Prospective Cohort Study. Vaccines (Basel) 2022; 10:vaccines10101664. [PMID: 36298529 PMCID: PMC9610483 DOI: 10.3390/vaccines10101664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to investigate the influence of sex, age, and quadrivalent vaccination history on adverse reactions (ARs) to influenza vaccines and the relationship between the occurrence of ARs and the risk of influenza infection. Study participants were employees of three hospitals in the Hyogo Prefecture, Japan, who received the influenza vaccine in 2019. Data were collected using questionnaires. The main factors were age, sex, and history of influenza vaccination as a control. The primary outcomes were the incidence of local and systemic ARs attributable to the vaccine and positive influenza cases among the participants during the influenza season. Logistic regression was used to calculate the odds ratio (OR) and 95% confidence interval (CI). Among the 1493 participants, 80% experienced either local or systemic ARs. ARs were less common among men than among women (OR: 0.28, 95% CI: 0.21-0.37) and less common among those aged ≥60 years (OR: 0.48, 95% CI: 0.26-0.89). ARs were significantly more likely to occur in those with a history of influenza vaccination (OR: 1.96, 95% CI: 1.15-3.33). Those who had ARs, notably localized ones, were significantly more likely to incur influenza infection. Individuals who report ARs to influenza vaccination should strictly adopt non-pharmaceutical preventive measures in the hospital, community settings, and at home.
Collapse
|
12
|
Hüppe N, Schunke J, Fichter M, Mailänder V, Wurm FR, Landfester K. Multicomponent encapsulation into fully degradable protein nanocarriers via interfacial azide-alkyne click reaction in miniemulsion allows the co-delivery of immunotherapeutics. NANOSCALE HORIZONS 2022; 7:908-915. [PMID: 35708163 DOI: 10.1039/d2nh00243d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Encapsulation of multiple adjuvants along with antigens into nanocarriers allows a co-delivery to antigen-presenting cells for the synergistic induction of robust immune responses. However, loading cargoes of different molar masses, polarities, and solubilities in high efficiencies remains a challenge. Therefore, we developed a strategy to encapsulate a triple combination of the so-called adjuvants, i.e. with Resiquimod (R848), muramyl dipeptide (MDP) and polyinosinic-polycytidylic acid (Poly(I : C)) into human serum albumin (HSA) nanocarriers. The loading is conducted in situ while the nanocarrier is formed by an orthogonal and metal-free click reaction at the interface of an inverse miniemulsion. By this unique approach, high encapsulation efficiency without harming the cargo during the nanocarrier formation process and regardless of their physical properties is achieved, thus keeping their bioactivity. Furthermore, we demonstrated high control over the encapsulation efficiency and varying the amount of each cargo did not influence the efficiency of multicomponent encapsulation. Azide-modified HSA was crosslinked with hexanediol dipropiolate (HDDP) at the interface of a water-in-oil miniemulsion. Varying the crosslinker amount allowed us to tailor the density and degradation rates of the protein shell. Additional installation of disulfide bonds into the crosslinker created redox-responsive nanocarriers, which degraded both by protease and under reducing conditions with dithiothreitol. The prepared HSA nanocarriers were efficiently taken up by dendritic cells and exhibited an additive cell activation and maturation, exceeding the nanocarriers loaded with only a single drug. This general protocol allows the orthogonal and metal-free encapsulation of various drugs or adjuvants at defined concentrations into the protein nanocarriers.
Collapse
Affiliation(s)
- Natkritta Hüppe
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Jenny Schunke
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Michael Fichter
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
- Sustainable Polymer Chemistry, Department of Molecules and Materials, Faculty of Science and Technology, MESA + Institute for Nanotechnology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
13
|
Fan J, Jin S, Gilmartin L, Toth I, Hussein WM, Stephenson RJ. Advances in Infectious Disease Vaccine Adjuvants. Vaccines (Basel) 2022; 10:1120. [PMID: 35891284 PMCID: PMC9316175 DOI: 10.3390/vaccines10071120] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Vaccines are one of the most significant medical interventions in the fight against infectious diseases. Since their discovery by Edward Jenner in 1796, vaccines have reduced the worldwide transmission to eradication levels of infectious diseases, including smallpox, diphtheria, hepatitis, malaria, and influenza. However, the complexity of developing safe and effective vaccines remains a barrier for combating many more infectious diseases. Immune stimulants (or adjuvants) are an indispensable factor in vaccine development, especially for inactivated and subunit-based vaccines due to their decreased immunogenicity compared to whole pathogen vaccines. Adjuvants are widely diverse in structure; however, their overall function in vaccine constructs is the same: to enhance and/or prolong an immunological response. The potential for adverse effects as a result of adjuvant use, though, must be acknowledged and carefully managed. Understanding the specific mechanisms of adjuvant efficacy and safety is a key prerequisite for adjuvant use in vaccination. Therefore, rigorous pre-clinical and clinical research into adjuvant development is essential. Overall, the incorporation of adjuvants allows for greater opportunities in advancing vaccine development and the importance of immune stimulants drives the emergence of novel and more effective adjuvants. This article highlights recent advances in vaccine adjuvant development and provides detailed data from pre-clinical and clinical studies specific to infectious diseases. Future perspectives into vaccine adjuvant development are also highlighted.
Collapse
Affiliation(s)
- Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Shengbin Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Lachlan Gilmartin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| |
Collapse
|
14
|
Xin Y, Ji H, Cho E, Roh KB, You J, Park D, Jung E. Immune-enhancing effect of water-soluble beta-glucan derived from enzymatic hydrolysis of yeast glucan. Biochem Biophys Rep 2022; 30:101256. [PMID: 35368741 PMCID: PMC8965850 DOI: 10.1016/j.bbrep.2022.101256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
Immunostimulants play an important role in the treatment of immunodeficiency. Macrophages are the first line in our immune defense system and play a critical role in the immune response. Therefore, finding new and better substances to induce an immune response by activating macrophages is an attractive research topic, especially in the fields of immunopharmacology and cancer prevention. Keratinocytes actively crosstalk with immune cells during wound repair, so enhancing the function of keratinocytes is also an important part of improving immunity. Beta-glucans are naturally occurring polysaccharides, consisting of d-glucose monomers linked by beta-glycosidic bonds. Several studies have investigated the immunomodulatory effects of beta-glucan, such as its anti-inflammatory and antibacterial properties. However, the use of yeast cell wall glucan has been limited because it is not soluble in water. In this study, we produced low-molecular-weight water-soluble yeast glucan (WSY glucan) and confirmed various aspects of its immune-enhancing effect. The structure of the beta-(1→3) and (1→6) bonds of WSY glucan were confirmed by nuclear magnetic resonance spectroscopy (1H-NMR) analysis. Our results showed that treatment with WSY glucan significantly and dose-dependently induced the production of inflammatory mediators (prostaglandin E2 (PGE2) and nitric oxide (NO)) and pro-inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-6) in macrophages. In addition, WSY glucan treatment showed changes in the morphological structure of the macrophages and promoted phagocytic activity of the macrophages and wound healing in keratinocytes. Based on these results, WSY glucan is considered as a potential candidate for the treatment of diseases related to the weakening of the immune system without the limitation of insolubility. Soluble low-molecular-weight beta-glucan, WSY-glucan, was produced through enzymatic hydrolysis. WSY glucan significantly and dose-dependently induced the production of pro-inflammatory cytokines (TNF-α and IL-6) and inflammatory mediators (NO and prostaglandin E2) in macrophages. WSY glucan treatment showed changes in the morphological structure of the macrophages and promoted phagocytic activity of the macrophages and wound healing in keratinocytes.
Collapse
|
15
|
Salminen A. Clinical perspectives on the age-related increase of immunosuppressive activity. J Mol Med (Berl) 2022; 100:697-712. [PMID: 35384505 PMCID: PMC8985067 DOI: 10.1007/s00109-022-02193-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/10/2022]
Abstract
The aging process is associated with a remodeling of the immune system involving chronic low-grade inflammation and a gradual decline in the function of the immune system. These processes are also called inflammaging and immunosenescence. The age-related immune remodeling is associated with many clinical changes, e.g., risk for cancers and chronic infections increases, whereas the efficiency of vaccination and immunotherapy declines with aging. On the other hand, there is convincing evidence that chronic inflammatory states promote the premature aging process. The inflammation associated with aging or chronic inflammatory conditions stimulates a counteracting immunosuppression which protects tissues from excessive inflammatory injuries but promotes immunosenescence. Immunosuppression is a driving force in tumors and chronic infections and it also induces the tolerance to vaccination and immunotherapies. Immunosuppressive cells, e.g., myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg), and type M2 macrophages, have a crucial role in tumorigenesis and chronic infections as well as in the tolerance to vaccination and immunotherapies. Interestingly, there is substantial evidence that inflammaging is also associated with an increased immunosuppressive activity, e.g., upregulation of immunosuppressive cells and anti-inflammatory cytokines. Given that both the aging and chronic inflammatory states involve the activation of immunosuppression and immunosenescence, this might explain why aging is a risk factor for tumorigenesis and chronic inflammatory states and conversely, chronic inflammatory insults promote the premature aging process in humans.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
16
|
Rouatbi S. Aging, tobacco use and lung damages. LA TUNISIE MEDICALE 2022; 100:295-302. [PMID: 36155900 PMCID: PMC9477149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The main two functions of the lung are the respiratory functions, dependent on ventilatory mechanics and gas exchange, and the nonrespiratory functions such as metabolic, immunological, and endocrine ones. Lung aging is secondary to the age-dependent impairment of one or more of these functions. Tobacco use accelerates lung aging and touches biological, structural and respiratory and non-respiratory functions. These changes contribute to the development of chronic pulmonary diseases and predispose to pulmonary infections in older individuals. The knowledge of these changes is very useful for better management of elderly. Lung health in aging can be improved by strategies that slow the age-related decline in lung function by acting on the environmental parameters. It is also possible to improve lung development in children and to strengthen the lungs' resistance to environmental challenges and thus to extrinsic lung aging.
Collapse
Affiliation(s)
- Sonia Rouatbi
- 1. Physiology and functional explorations laboratory, Farhat Hached Hospital, Sousse, Tunisia,2. Physiology and functional explorations laboratory, Faculty of Medicine, Sousse, Tunisia,3. Research Laboraory of cardiac failure “LR12SP09”
| |
Collapse
|
17
|
Simon JK, Staerke NB, Hemming-Harlo M, Layle S, Dagan R, Shekar T, Pedley A, Jumes P, Tamms G, Sterling T, Musey L, Buchwald UK. Lot-to-lot consistency, safety, tolerability, and immunogenicity of V114, a 15-valent pneumococcal conjugate vaccine, in healthy adults aged ≥50 years: A randomized phase 3 trial (PNEU-TRUE). Vaccine 2022; 40:1342-1351. [PMID: 35039194 DOI: 10.1016/j.vaccine.2021.12.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Older adults are at risk of pneumococcal disease and associated morbidity and mortality. This phase 3 study (V114-020) assessed lot-to-lot consistency across safety and immunogenicity outcomes for V114, a 15-valent pneumococcal conjugate vaccine (PCV), in healthy adults aged ≥ 50 years. METHODS Adults were randomized in a 3:3:3:1 ratio to receive a single dose of one of three lots of V114 or 13-valent PCV (PCV13), stratified by age (50-64 years, 65-74 years, and ≥ 75 years). Serotype-specific opsonophagocytic activity (OPA) and immunoglobulin G (IgG) antibodies were evaluated at baseline (Day 1) and 30 days post-vaccination. Non-serious and serious adverse events (AEs) were evaluated post-vaccination through 14 days and Month 6, respectively. RESULTS Of 2340 participants enrolled, 2282 (97.5%) completed the study. Proportions of participants experiencing ≥ 1 AE were 81.0%, 77.4%, and 78.0% for V114 lots 1, 2, and 3, respectively. Comparison of V114 combined lots with PCV13 showed that proportions of participants experiencing AEs, solicited AEs, and serious AEs were comparable for both vaccines, with the exception of injection-site pain (more frequently reported with V114). OPA geometric mean titers (GMTs) and IgG geometric mean concentrations (GMCs) at 30 days post-vaccination were comparable across V114 lots, and all lots met predefined equivalence criteria for all 15 vaccine serotypes (lower and upper limits of the 95% confidence intervals of serotype-specific OPA GMT ratios for all possible pairwise comparisons across the three lots were within the equivalence margin of 0.5-2.0). Serotype-specific OPA GMTs and IgG GMCs were comparable in the V114 combined lots and PCV13 groups for the 13 shared serotypes and higher in the V114 group for serotypes unique to V114 (22F and 33F). CONCLUSIONS V114 is well tolerated with a consistent safety profile and immune response across manufacturing lots. CLINICAL TRIALS REGISTRATION NCT03950856 (www.clinicaltrials.gov); 2018-004266-33 (EudraCT).
Collapse
Affiliation(s)
| | | | | | - Stacey Layle
- Artemis Institute for Clinical Research, San Diego, CA, USA
| | - Ron Dagan
- Ben-Gurion University, Beer-Sheva, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shenoy S. Gut microbiome, Vitamin D, ACE2 interactions are critical factors in immune-senescence and inflammaging: key for vaccine response and severity of COVID-19 infection. Inflamm Res 2022; 71:13-26. [PMID: 34738147 PMCID: PMC8568567 DOI: 10.1007/s00011-021-01510-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The SARS-CoV-2 pandemic continues to spread sporadically in the Unites States and worldwide. The severity and mortality excessively affected the frail elderly with co-existing medical diseases. There is growing evidence that cross-talk between the gut microbiome, Vitamin D and RAS/ACE2 system is essential for a balanced functioning of the elderly immune system and in regulating inflammation. In this review, we hypothesize that the state of gut microbiome, prior to infection determines the outcome associated with COVID-19 sepsis and may also be a critical factor in success to vaccination. METHODS Articles from PubMed/Medline searches were reviewed using a combination of terms "SARS-CoV-2, COVID-19, Inflammaging, Immune-senescence, Gut microbiome, Vitamin D, RAS/ACE2, Vaccination". CONCLUSION Evidence indicates a complex association between gut microbiota, ACE-2 expression and Vitamin D in COVID-19 severity. Status of gut microbiome is highly predictive of the blood molecular signatures and inflammatory markers and host responses to infection. Vitamin D has immunomodulatory function in innate and adaptive immune responses to viral infection. Anti-inflammatory functions of Vit D include regulation of gut microbiome and maintaining microbial diversity. It promotes growth of gut-friendly commensal strains of Bifida and Fermicutus species. In addition, Vitamin D is a negative regulator for expression of renin and interacts with the RAS/ ACE/ACE-2 signaling axis. Collectively, this triad may be the critical, link in determination of outcomes in SARS-CoV-2 infection. The presented data are empirical and informative. Further research using advanced systems biology techniques and artificial intelligence-assisted integration could assist with correlation of the gut microbiome with sepsis and vaccine responses. Modulating these factors may impact in guiding the success of vaccines and clinical outcomes in COVID-19 infections.
Collapse
Affiliation(s)
- Santosh Shenoy
- Department of Surgery, Kansas City VA Medical Center, University of Missouri Kansas City, 4801 E Linwood Blvd., Kansas City , MO, 64128, USA.
| |
Collapse
|
19
|
Mok DZL, Chan CYY, Ooi EE, Chan KR. The effects of aging on host resistance and disease tolerance to SARS-CoV-2 infection. FEBS J 2021; 288:5055-5070. [PMID: 33124149 PMCID: PMC8518758 DOI: 10.1111/febs.15613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 01/08/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a large-scale pandemic that is afflicting millions of individuals in over 200 countries. The clinical spectrum caused by SARS-CoV-2 infections can range from asymptomatic infection to mild undifferentiated febrile illness to severe respiratory disease with multiple complications. Elderly patients (aged 60 and above) with comorbidities such as cardiovascular diseases and diabetes mellitus appear to be at highest risk of a severe disease outcome. To protect against pulmonary immunopathology caused by SARS-CoV-2 infection, the host primarily depends on two distinct defense strategies: resistance and disease tolerance. Resistance is the ability of the host to suppress and eliminate incoming viruses. By contrast, disease tolerance refers to host responses that promote host health regardless of their impact on viral replication. Disruption of either resistance or disease tolerance mechanisms or both could underpin predisposition to elevated risk of severe disease during viral infection. Aging can disrupt host resistance and disease tolerance by compromising immune functions, weakening of the unfolded protein response, progressive mitochondrial dysfunction, and altering metabolic processes. A comprehensive understanding of the molecular mechanisms underlying declining host defense in elderly individuals could thus pave the way to provide new opportunities and approaches for the treatment of severe COVID-19.
Collapse
Affiliation(s)
- Darren Z. L. Mok
- Emerging Infectious Diseases ProgramDuke‐NUS Medical SchoolSingaporeSingapore
| | | | - Eng Eong Ooi
- Emerging Infectious Diseases ProgramDuke‐NUS Medical SchoolSingaporeSingapore
- Viral Research & Experimental Medicine Center @ SingHealth/Duke‐NUS (ViREMiCS)SingaporeSingapore
- Singapore‐MIT Alliance in Research and TechnologyAntimicrobial Resistance Interdisciplinary Research GroupSingaporeSingapore
- Saw Swee Hock School of Public HealthNational University of SingaporeSingapore
- Department of Microbiology and ImmunologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Kuan Rong Chan
- Emerging Infectious Diseases ProgramDuke‐NUS Medical SchoolSingaporeSingapore
| |
Collapse
|
20
|
Redondo E, Drago G, López-Belmonte JL, Guillén JM, Bricout H, Alvarez FP, Callejo D, Gil de Miguel Á. Cost-utility analysis of influenza vaccination in a population aged 65 years or older in Spain with a high-dose vaccine versus an adjuvanted vaccine. Vaccine 2021; 39:5138-5145. [PMID: 34344553 DOI: 10.1016/j.vaccine.2021.07.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The normal ageing process is accompanied by immunosenescence and a progressive weakening of the immune system. High-dose inactivated influenza quadrivalent vaccine (HD-QIV) has shown greater immunogenicity, relative efficacy, and effectiveness than the standard-dose inactivated quadrivalent vaccine (SD-QIV). The aim of the study was to assess the cost-utility of an HD-QIV strategy compared with an adjuvanted trivalent inactivated vaccine (aTIV) strategy in the population above 65 years of age in Spain. METHODS We evaluated the public health and economic benefits of alternatives by using a decision-tree model, which included influenza cases, visits to the general practitioner (GP), visits to the emergency department (ED), hospitalisations, and mortality related to influenza. We performed deterministic and probabilistic sensitivity analyses to account for both epidemiological and economical sources of uncertainty. RESULTS Our results show that switching from aTIV strategy to HD-QIV would prevent 36,476 cases of influenza, 5,143 visits to GP, 1,054 visits to the ED, 9,193 episodes of hospitalisation due to influenza or pneumonia, and 357 deaths due to influenza - increasing 3,514 life-years and 3,167 quality-adjusted life-years (QALYs). Healthcare costs increase by €78,874,301, leading to an incremental cost-effectiveness ratio (ICER) of €24,353/QALY. The sensitivity analysis indicates that the results are rather robust. CONCLUSION Our analysis shows that HD-QIV in people over 65 years of age is an influenza-prevention strategy that is at least cost-effective, if not dominant, in Spain. It reduces cases of influenza, GP visits, hospitalisations, deaths, and associated healthcare costs.
Collapse
Affiliation(s)
- Esther Redondo
- Centro de Salud Internacional Madrid Salud, Ayuntamiento de Madrid, Madrid (España)
| | | | | | | | | | | | - Daniel Callejo
- Health Economics & Outcomes Research, Real-World Evidence Solutions. IQVIA (España)
| | - Ángel Gil de Miguel
- Departamento de Especialidades Médicas y Salud Pública, Universidad Rey Juan Carlos, Madrid, (España)
| |
Collapse
|
21
|
Yeo GEC, Ng MH, Nordin FB, Law JX. Potential of Mesenchymal Stem Cells in the Rejuvenation of the Aging Immune System. Int J Mol Sci 2021; 22:5749. [PMID: 34072224 PMCID: PMC8198707 DOI: 10.3390/ijms22115749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Rapid growth of the geriatric population has been made possible with advancements in pharmaceutical and health sciences. Hence, age-associated diseases are becoming more common. Aging encompasses deterioration of the immune system, known as immunosenescence. Dysregulation of the immune cell production, differentiation, and functioning lead to a chronic subclinical inflammatory state termed inflammaging. The hallmarks of the aging immune system are decreased naïve cells, increased memory cells, and increased serum levels of pro-inflammatory cytokines. Mesenchymal stem cell (MSC) transplantation is a promising solution to halt immunosenescence as the cells have excellent immunomodulatory functions and low immunogenicity. This review compiles the present knowledge of the causes and changes of the aging immune system and the potential of MSC transplantation as a regenerative therapy for immunosenescence.
Collapse
Affiliation(s)
| | | | | | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras 56000, Malaysia; (G.E.C.Y.); (M.H.N.); (F.B.N.)
| |
Collapse
|
22
|
ElTanbouly MA, Noelle RJ. Rethinking peripheral T cell tolerance: checkpoints across a T cell's journey. Nat Rev Immunol 2021; 21:257-267. [PMID: 33077935 DOI: 10.1038/s41577-020-00454-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 01/10/2023]
Abstract
Following their exit from the thymus, T cells are endowed with potent effector functions but must spare host tissue from harm. The fate of these cells is dictated by a series of checkpoints that regulate the quality and magnitude of T cell-mediated immunity, known as tolerance checkpoints. In this Perspective, we discuss the mediators and networks that control the six main peripheral tolerance checkpoints throughout the life of a T cell: quiescence, ignorance, anergy, exhaustion, senescence and death. At the naive T cell stage, two intrinsic checkpoints that actively maintain tolerance are quiescence and ignorance. In the presence of co-stimulation-deficient T cell activation, anergy is a dominant hallmark that mandates T cell unresponsiveness. When T cells are successfully stimulated and reach the effector stage, exhaustion and senescence can limit excessive inflammation and prevent immunopathology. At every stage of the T cell's journey, cell death exists as a checkpoint to limit clonal expansion and to terminate unrestrained responses. Here, we compare and contrast the T cell tolerance checkpoints and discuss their specific roles, with the aim of providing an integrated view of T cell peripheral tolerance and fate regulation.
Collapse
Affiliation(s)
- Mohamed A ElTanbouly
- Department of Microbiology and Immunology, Geisel School of Medicine, Norris Cotton Cancer Center, Dartmouth College, Hanover, NH, USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine, Norris Cotton Cancer Center, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
23
|
Cripps AW, Folaranmi T, Johnson KD, Musey L, Niederman MS, Buchwald UK. Immunogenicity following revaccination or sequential vaccination with 23-valent pneumococcal polysaccharide vaccine (PPSV23) in older adults and those at increased risk of pneumococcal disease: a review of the literature. Expert Rev Vaccines 2021; 20:257-267. [PMID: 33567914 DOI: 10.1080/14760584.2021.1889374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Immunogenicity studies evaluating sequential administration of pneumococcal conjugate vaccine (PCV) followed by 23-valent pneumococcal polysaccharide vaccine (PPSV23) or revaccination with PPSV23 have raised concerns that PPSV23 may not elicit higher antibody levels than those measured following PCV or first PPSV23 dose.Areas covered: Recent literature was evaluated for evidence of blunted immune response (hyporesponsiveness), focusing on studies using adequate intervals between doses in accordance with vaccination recommendations. In eight of nine studies that evaluated revaccination with PPSV23 at an interval of ≥5 years after the previous dose, immunoglobulin G geometric mean concentrations and/or opsonophagocytic assay geometric mean titers for most serotypes increased from pre- to post-repeat vaccination and were comparable between repeat and primary vaccination groups post-vaccination. In seven studies in which PPSV23 was administered after PCVs (8 weeks to 1 year apart), responses to PPSV23 were comparable to those seen after initial PCV dose for shared vaccine serotypes. Studies in which PCVs were administered after PPSV23 were not evaluated.Expert opinion: Published data suggest immune responses following repeat vaccination with PPSV23, or sequential PCV/PPSV23 vaccination, are robust, without evidence of hyporesponsiveness. PPSV23 vaccination of at-risk adults is essential to ensure broad protection against all 23 vaccine serotypes.
Collapse
Affiliation(s)
- Allan W Cripps
- Mucosal Immunology Research Group, Menzies Health Institute and School of Medicine, Griffith University, Gold Coast Campus, Southport QLD, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Effros RB. Reflections from Peter's First Graduate Student. Viral Immunol 2021; 33:129-131. [PMID: 32286175 PMCID: PMC7185358 DOI: 10.1089/vim.2019.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rita Brickman Effros
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Molecular Biology Institute, UCLA AIDS Institute, Los Angeles, California
| |
Collapse
|
25
|
Niederman MS, Folaranmi T, Buchwald UK, Musey L, Cripps AW, Johnson KD. Efficacy and effectiveness of a 23-valent polysaccharide vaccine against invasive and noninvasive pneumococcal disease and related outcomes: a review of available evidence. Expert Rev Vaccines 2021; 20:243-256. [PMID: 33478306 DOI: 10.1080/14760584.2021.1880328] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Routine pneumococcal vaccination for adults aged ≥60 or ≥65 years and those with underlying at-risk and high-risk conditions is recommended in many countries. However, studies estimating the effectiveness of 23-valent pneumococcal polysaccharide vaccine (PPSV23) have revealed mixed results, partly due to variability in study design and endpoints used to assess outcomes.Areas covered: The authors conducted a literature review of independently randomized trials and real-world studies published from 2010 to 2020 that assessed the effectiveness and efficacy of PPSV23 against vaccine-type or any-serotype invasive and noninvasive pneumococcal disease in adults aged ≥60 years. The authors also evaluated differences in study design that may contribute to the heterogeneity of available evidence.Expert opinion: Policy decisions regarding the inclusion of vaccines into national immunization plans should consider study quality and limitations. This review shows that PPSV23 is effective against vaccine-type invasive pneumococcal disease and vaccine-type pneumococcal pneumonia and can lower the burden of vaccine-type pneumococcal pneumonia. PPSV23-conferred protection may be lower in adults aged ≥75 years, those with certain underlying conditions, and individuals who were vaccinated >5 years before disease onset. This is an important finding that supports the benefit of PPSV23 vaccination for older adults.
Collapse
Affiliation(s)
- Michael S Niederman
- Weill Cornell Medical College, Department of Pulmonary Critical Care Medicine, New York, NY, USA
| | | | | | | | - Allan W Cripps
- Menzies Health Institute Queensland and School of Medicine, Mucosal Immunology Research Group, Griffith University, Queensland, Australia
| | | |
Collapse
|
26
|
Inatomi T, Otomaru K. Effects of heat-killed Enterococcus faecalis T-110 supplementation on gut immunity, gut flora, and intestinal infection in naturally aged hamsters. PLoS One 2020; 15:e0240773. [PMID: 33378402 PMCID: PMC7773277 DOI: 10.1371/journal.pone.0240773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022] Open
Abstract
Infectious diseases are a threat to elderly individuals, whose immune systems weaken with age. Among the various infectious diseases, Clostridium difficile infection is associated with a high rate of mortality in elderly individuals and is a serious health problem worldwide, owing to the increasing infection rates. Probiotic use has been proposed as an effective countermeasure for C. difficile infection. The aim of this study was to evaluate the effects of heat-killed Enterococcus faecalis T-110 on intestinal immunity, intestinal flora, and intestinal infections, especially C. difficile infections, in naturally ageing animals, for extrapolating the results to elderly human subjects. Twenty female hamsters were randomly distributed into two groups. Group 1 was fed a basal diet and group 2 was fed a basal diet supplemented with heat-killed E. faecalis for 7 days. Heat-killed E. faecalis T-110 improved the gut immunity and microflora, especially Clostridium perfringens and C. difficile, in naturally aged hamsters. Therefore, heat-killed E. faecalis T-110 use may be a countermeasure against age-related immune dysfunction and intestinal infections, especially C. difficile infection, in elderly humans. However, further investigation in this regard is needed in humans.
Collapse
Affiliation(s)
| | - Konosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, Japan
| |
Collapse
|
27
|
Moehling KK, Zhai B, Schwarzmann WE, Chandran UR, Ortiz M, Nowalk MP, Nace D, Lin CJ, Susick M, Levine MZ, Alcorn JF, Zimmerman RK. The impact of physical frailty on the response to inactivated influenza vaccine in older adults. Aging (Albany NY) 2020; 12:24633-24650. [PMID: 33347425 PMCID: PMC7803506 DOI: 10.18632/aging.202207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/27/2020] [Indexed: 11/25/2022]
Abstract
Physical frailty's impact on hemagglutination inhibition antibody titers (HAI) and peripheral blood mononuclear cell (PBMC) transcriptional responses after influenza vaccination is unclear. Physical frailty was assessed using the 5-item Fried frailty phenotype in 168 community- and assisted-living adults ≥55 years of age during an observational study. Blood was drawn before, 3, 7, and 28 days post-vaccination with the 2017-2018 inactivated influenza vaccine. HAI response to the A/H1N1 strain was measured at Days 0 and 28 using seropositivity, seroconversion, log2 HAI titers, and fold-rise in log2 HAI titers. RNA sequencing of PBMCs from Days 0, 3 and 7 was measured in 28 participants and compared using pathway analyses. Frailty was not significantly associated with any HAI outcome in multivariable models. Compared with non-frail participants, frail participants expressed decreased cell proliferation, metabolism, antibody production, and interferon signaling genes. Conversely, frail participants showed elevated gene expression in IL-8 signaling, T-cell exhaustion, and oxidative stress pathways compared with non-frail participants. These results suggest that reduced effectiveness of influenza vaccine among older, frail individuals may be attributed to immunosenescence-related changes in PBMCs that are not reflected in antibody levels.
Collapse
Affiliation(s)
- Krissy K. Moehling
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bo Zhai
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - William E. Schwarzmann
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Uma R. Chandran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Marianna Ortiz
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Mary Patricia Nowalk
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - David Nace
- Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Chyongchiou J. Lin
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Ohio State University College of Nursing, Columbus, OH 43210, USA
| | - Michael Susick
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Min Z. Levine
- National Center for Immunization and Respiratory Diseases, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - John F. Alcorn
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Richard K. Zimmerman
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
28
|
Alexandrova R, Beykov P, Vassilev D, Jukić M, Podlipnik Č. The virus that shook the world: questions and answers about SARS-CoV-2 and COVID-19. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1847683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Radostina Alexandrova
- Department of Pathology Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Pencho Beykov
- Department of Pathology Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, Sofa, Bulgaria
| | - Dobrin Vassilev
- “Alexandrovska” University Hospital, Medical University of Sofia, Sofia, Bulgaria
| | - Marko Jukić
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Technology, University of Maribor, Maribor, Slovenia
- Natural Sciences and Information Technologies, Faculty of Mathematics, University of Primorska, Koper, Slovenia
| | - Črtomir Podlipnik
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
29
|
Even-Or O, Avniel-Polak S, Barenholz Y, Nussbaum G. The cationic liposome CCS/C adjuvant induces immunity to influenza independently of the adaptor protein MyD88. Hum Vaccin Immunother 2020; 16:3146-3154. [PMID: 32401698 PMCID: PMC8641586 DOI: 10.1080/21645515.2020.1750247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional non-living vaccines are often least effective in the populations that need them most, such as neonates and elderly adults. Vaccine adjuvants are one approach to boost the immunogenicity of antigens in populations with reduced immunity. Ideally, vaccine adjuvants will increase the seroconversion rates across the population, lead to stronger immune responses, and enable the administration of fewer vaccine doses. We previously demonstrated that a cationic liposomal formulation of the commercial influenza split virus vaccine (CCS/C-HA) enhanced cellular and humoral immunity to the virus, increased seroconversion rates, and improved survival after live virus challenge in a preclinical model, as compared to the commercial vaccine as is (F-HA). We now evaluated vaccine efficacy in different strains and sexes of mice and determined the role of innate immunity in the mechanism of action of the CCS/C adjuvant by testing the response of mice deficient in Toll-like receptors or the TLR/IL-1 adaptor protein MyD88 following immunization with CCS/C-HA vs. F-HA. Although TLR2- and TLR4-deficient mice responded to F-HA immunization, F-HA immunization failed to engender a significant immune response in the absence of MyD88. In contrast, immunization with the CCS/C-HA vaccine overcame the requirement for MyD88 in the response to the commercial vaccine and improved the immune responses and seroconversion rates in all strains of mice tested, including those deficient in TLR2 and TLR4.
Collapse
Affiliation(s)
- Orli Even-Or
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shani Avniel-Polak
- Institute of Dental Sciences, The Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Yechezkel Barenholz
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Gabriel Nussbaum
- Institute of Dental Sciences, The Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
30
|
Chang D, Zhao P, Zhang D, Dong JH, Xu Z, Yang G, Li BY, Liu HX, Li BA, Qin CF, Peng XH, Wang FS, Xie LX, Chen Z, Dela Cruz CS, Sharma L, Qin EQ. Persistent Viral Presence Determines the Clinical Course of the Disease in COVID-19. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2020; 8:2585-2591.e1. [PMID: 32574840 PMCID: PMC7305869 DOI: 10.1016/j.jaip.2020.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/30/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The clinical management of coronavirus disease 2019 (COVID-19) is dependent on understanding the underlying factors that contribute to the disease severity. In the absence of effective antiviral therapies, other host immunomodulatory therapies such as targeting inflammatory response are currently being used without clear evidence of their effectiveness. Because inflammation is an essential component of host antiviral mechanisms, therapies targeting inflammation may adversely affect viral clearance and disease outcome. OBJECTIVE To understand whether the persistent presence of the virus is a key determinant in the disease severity during COVID-19 and to determine whether the viral reactivation in some patients is associated with infectious viral particles. METHODS The data for patients were available including the onset of the disease, duration of viral persistence, measurements of inflammatory markers such as IL-6 and C-reactive protein, chest imaging, disease symptoms, and their durations among others. Follow-up tests were performed to determine whether the viral negative status persists after their recovery. RESULTS Our data show that patients with persistent viral presence (>16 days) have more severe disease outcomes including extensive lung involvement and requirement of respiratory support. Two patients who died of COVID-19 were virus-positive at the time of their death. Four patients demonstrated virus-positive status on the follow-up tests, and these patient samples were sent to viral culture facility where virus culture could not be established. CONCLUSIONS These data suggest that viral persistence is the key determining factor of the disease severity. Therapies that may impair the viral clearance may impair the host recovery from COVID-19.
Collapse
Affiliation(s)
- De Chang
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Peng Zhao
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dawei Zhang
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jing-Hui Dong
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhe Xu
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Guang Yang
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo-Yu Li
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hong-Xia Liu
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo-An Li
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Xiao-Hua Peng
- Section of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Conn
| | - Fu-Sheng Wang
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Li-Xin Xie
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Zhu Chen
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Charles S Dela Cruz
- Section of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Conn
| | - Lokesh Sharma
- Section of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Conn
| | - En-Qiang Qin
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
31
|
Sfera A, Osorio C, Jafri N, Diaz EL, Campo Maldonado JE. Intoxication With Endogenous Angiotensin II: A COVID-19 Hypothesis. Front Immunol 2020; 11:1472. [PMID: 32655579 PMCID: PMC7325923 DOI: 10.3389/fimmu.2020.01472] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 has spread rapidly around the globe. However, despite its high pathogenicity and transmissibility, the severity of the associated disease, COVID-19, varies widely. While the prognosis is favorable in most patients, critical illness, manifested by respiratory distress, thromboembolism, shock, and multi-organ failure, has been reported in about 5% of cases. Several studies have associated poor COVID-19 outcomes with the exhaustion of natural killer cells and cytotoxic T cells, lymphopenia, and elevated serum levels of D-dimer. In this article, we propose a common pathophysiological denominator for these negative prognostic markers, endogenous, angiotensin II toxicity. We hypothesize that, like in avian influenza, the outlook of COVID-19 is negatively correlated with the intracellular accumulation of angiotensin II promoted by the viral blockade of its degrading enzyme receptors. In this model, upregulated angiotensin II causes premature vascular senescence, leading to dysfunctional coagulation, and immunity. We further hypothesize that angiotensin II blockers and immune checkpoint inhibitors may be salutary for COVID-19 patients with critical illness by reversing both the clotting and immune defects (Graphical Abstract).
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, San Bernardino, CA, United States
| | - Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Nyla Jafri
- Patton State Hospital, San Bernardino, CA, United States
| | - Eddie Lee Diaz
- Patton State Hospital, San Bernardino, CA, United States
| | - Jose E Campo Maldonado
- Department of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| |
Collapse
|
32
|
Xu W, Lau ZWX, Fulop T, Larbi A. The Aging of γδ T Cells. Cells 2020; 9:E1181. [PMID: 32397491 PMCID: PMC7290956 DOI: 10.3390/cells9051181] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
In the coming decades, many developed countries in the world are expecting the "greying" of their populations. This phenomenon poses unprecedented challenges to healthcare systems. Aging is one of the most important risk factors for infections and a myriad of diseases such as cancer, cardiovascular and neurodegenerative diseases. A common denominator that is implicated in these diseases is the immune system. The immune system consists of the innate and adaptive arms that complement each other to provide the host with a holistic defense system. While the diverse interactions between multiple arms of the immune system are necessary for its function, this complexity is amplified in the aging immune system as each immune cell type is affected differently-resulting in a conundrum that is especially difficult to target. Furthermore, certain cell types, such as γδ T cells, do not fit categorically into the arms of innate or adaptive immunity. In this review, we will first introduce the human γδ T cell family and its ligands before discussing parallels in mice. By covering the ontogeny and homeostasis of γδ T cells during their lifespan, we will better capture their evolution and responses to age-related stressors. Finally, we will identify knowledge gaps within these topics that can advance our understanding of the relationship between γδ T cells and aging, as well as age-related diseases such as cancer.
Collapse
Affiliation(s)
- Weili Xu
- Biology of Aging Program and Immunomonitoring Platform, Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore 138648, Singapore; (W.X.); (Z.W.X.L.)
| | - Zandrea Wan Xuan Lau
- Biology of Aging Program and Immunomonitoring Platform, Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore 138648, Singapore; (W.X.); (Z.W.X.L.)
| | - Tamas Fulop
- Department of Geriatrics, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Anis Larbi
- Biology of Aging Program and Immunomonitoring Platform, Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore 138648, Singapore; (W.X.); (Z.W.X.L.)
- Department of Geriatrics, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
- Department of Microbiology, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
33
|
Lagos M, C. CD, Hernández P. Respuesta inmune y alergia a vacunas. REVISTA MÉDICA CLÍNICA LAS CONDES 2020. [DOI: 10.1016/j.rmclc.2020.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
34
|
Kim HJ, Lee J, Kim SC, Seo JY, Hong SB, Park YI. Immunostimulating activity of Lycium chinense Miller root extract through enhancing cytokine and chemokine production and phagocytic capacity of macrophages. J Food Biochem 2020; 44:e13215. [PMID: 32215941 DOI: 10.1111/jfbc.13215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
Whereas the fruits and a small portion of root bark of Lycium trees are commonly marketed in Korea as traditional medicine or functional foods, majority of their whole roots have been largely discarded. To develop the whole root of these plants as more value-added materials, this study aimed to evaluate the potential immunostimulating activity of a water extract (GTR-101) from L. chinense Miller roots using macrophages. The GTR-101 (0-500 μg/ml) significantly, dose-dependently increased the secretion of pro-inflammatory cytokines (TNF-α and IL-6), chemokines (RANTES and MIP-1α), nitric oxide, and the expression of inducible nitric oxide synthase, and activated the Akt, NF-κB, and MAPKs (ERK and p38) signaling proteins. GTR-101 also significantly enhanced the phagocytic activity of RAW 264.7 cells and bone marrow-derived macrophages. These results suggest that GTR-101 stimulates the early innate immunity via inducing the pro-inflammatory cytokine and chemokine secretion and enhancing the phagocytic activity of macrophages. PRACTICAL APPLICATIONS: The GTR-101 prepared from L. chinense Miller roots may be useful for enhancing body's defense systems especially in the elderly and cancer patients with an impaired or reduced immune response and may thus be effectively used as a natural immunostimulating ingredient in health foods or complementary medicine.
Collapse
Affiliation(s)
- Hyeon Jeong Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Jisun Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Seong Cheol Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Jeong Yeon Seo
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | | | - Yong Il Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|
35
|
Sahmoudi K, El Allam A, El Fakihi S, Tahoune H, Sadak A, El Hafidi N, Bourkadi J, El Aouad R, Seghrouchni F. Moroccan lymphocyte subsets reference ranges: age, gender, ethnicity, and socio-economic factors dependent differences. J Immunoassay Immunochem 2020; 41:281-296. [PMID: 32065027 DOI: 10.1080/15321819.2020.1728543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lymphocyte subsets reference ranges are helpful for a precise diagnosis and therapy of various diseases. We attempted in the current study to establish Moroccan lymphocyte reference range and reveal age, gender, ethnicity, income, and instructional levels dependent differences. Lymphocyte subsets percentage and absolute count were determined by 4-color flow cytometry in a population study of 145 adults Moroccan healthy volunteers. Analysis showed significant age-dependent changes. Age was associated with a decrease of naïve CD4+ and CD8+ T cells and an increase of memory CD4+ or CD8+ T cells. Activated CD4+ CD38+ and CD8+ CD38+ T cells, Treg as well as NK cell showed age-dependent alterations. In contrast, B cells remained unchanged. A higher percentage of CD3+ and CD4+ T cells was observed in females while CD8+, B and NK cells count were higher in men. Ethnicity, instructional levels, and personal income seem to not influence lymphocyte subsets reference values. This study provides reference ranges for lymphocyte subsets of healthy Moroccan adults. These results can be used for other North African (Maghrebian) countries considering their geographic, ethnic, economic, and cultural similarities.
Collapse
Affiliation(s)
- Karima Sahmoudi
- Laboratory of Cellular Immunology, The National Institute of Hygiene, Rabat, Morocco.,Faculty of Sciences, University Mohammed V Agdal, Rabat, Morocco
| | - Aicha El Allam
- Laboratory of Cellular Immunology, The National Institute of Hygiene, Rabat, Morocco.,Faculty of Sciences, University Mohammed V Agdal, Rabat, Morocco
| | - Sara El Fakihi
- Laboratory of Cellular Immunology, The National Institute of Hygiene, Rabat, Morocco
| | - Hicham Tahoune
- Laboratory of Cellular Immunology, The National Institute of Hygiene, Rabat, Morocco
| | - Abderrahim Sadak
- Faculty of Sciences, University Mohammed V Agdal, Rabat, Morocco
| | - Naima El Hafidi
- Department of Pediatric Infectious Diseases, Avicenne University Hospital, Rabat, Morocco
| | | | - Rajae El Aouad
- Laboratory of Cellular Immunology, The National Institute of Hygiene, Rabat, Morocco
| | - Fouad Seghrouchni
- Laboratory of Cellular Immunology, The National Institute of Hygiene, Rabat, Morocco
| |
Collapse
|
36
|
Implications of Oxidative Stress and Cellular Senescence in Age-Related Thymus Involution. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7986071. [PMID: 32089780 PMCID: PMC7025075 DOI: 10.1155/2020/7986071] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023]
Abstract
The human thymus is a primary lymphoepithelial organ which supports the production of self-tolerant T cells with competent and regulatory functions. Paradoxically, despite the crucial role that it exerts in T cell-mediated immunity and prevention of systemic autoimmunity, the thymus is the first organ of the body that exhibits age-associated degeneration/regression, termed “thymic involution.” A hallmark of this early phenomenon is a progressive decline of thymic mass as well as a decreased output of naïve T cells, thus resulting in impaired immune response. Importantly, thymic involution has been recently linked with cellular senescence which is a stress response induced by various stimuli. Accumulation of senescent cells in tissues has been implicated in aging and a plethora of age-related diseases. In addition, several lines of evidence indicate that oxidative stress, a well-established trigger of senescence, is also involved in thymic involution, thus highlighting a possible interplay between oxidative stress, senescence, and thymic involution.
Collapse
|
37
|
Al Zallouha M, Landkocz Y, Méausoone C, Ledoux F, Visade F, Cazier F, Martin PJ, Borgie M, Vitagliano JJ, Trémolet G, Cailliez JC, Gosset P, Courcot D, Billet S. A prospective pilot study of the T-lymphocyte response to fine particulate matter exposure. J Appl Toxicol 2020; 40:619-630. [PMID: 31975422 DOI: 10.1002/jat.3932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Exposure to air pollution is associated with increased morbidity and mortality. Once the fine atmospheric particulate matter (FP) is inhaled, some of its compounds can pass through the lungs and reach the bloodstream where they can come into contact with immune cells. Exposure to FP particularly affects sensitive populations such as the elderly. Aging affects the immune system, making the elderly more vulnerable. The project aims to determine the effects of FP exposure on human T cells while looking for biomarkers associated with exposure. Blood samples from 95 healthy subjects in three different age groups (20-30, 45-55 and 70-85 years) were collected to determine a potential age effect. T lymphocytes were isolated to be exposed ex vivo for 72 hours to 45 μg/mL of FP collected in Dunkirk and chemically characterized. Overexpression of the CYP1A1, CYP1B1 and CYP2S1 genes was therefore measured after exposure of the T cells to FP. These genes code for enzymes known to be involved in the metabolic activation of organic compounds such as polycyclic aromatic hydrocarbons detected in the FP sample. T-cell profiling allowed us to suggest a mixed T-helper 1/2 profile caused by exposure to FP. With regard to the influence of age, we have observed differences in the expression of certain genes, as well as an increase in interleukin-4 and -13 concentrations in the elderly. These results showed that exposure of T lymphocytes to FP causes effects on both transcriptomic and cytokine secretion levels.
Collapse
Affiliation(s)
- Margueritta Al Zallouha
- EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | - Yann Landkocz
- EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | - Clémence Méausoone
- EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | - Fréderic Ledoux
- EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | - Fabien Visade
- Service de gériatrie, Groupement des Hôpitaux de l'Institut Catholique de Lille, Lille, France
| | - Fabrice Cazier
- Centre Commun de Mesures, Université Littoral Côte d'Opale, Dunkerque, France
| | - Perrine J Martin
- EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | - Mireille Borgie
- EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | - Jean-Jacques Vitagliano
- Direction de la Recherche Médicale, Groupement des Hôpitaux de l'Institut Catholique de Lille, Lille, France
| | - Gauthier Trémolet
- EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | | | - Pierre Gosset
- Service d'Anatomie pathologique, Groupement des Hôpitaux de l'Institut Catholique de Lille, Lille, France
| | - Dominique Courcot
- EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | - Sylvain Billet
- EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, Dunkerque, France
| |
Collapse
|
38
|
Salminen A. Activation of immunosuppressive network in the aging process. Ageing Res Rev 2020; 57:100998. [PMID: 31838128 DOI: 10.1016/j.arr.2019.100998] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
Chronic low-grade inflammation has a key role in the aging process, a state called inflammaging. It is known that the chronic inflammatory condition generates counteracting immunosuppressive state in many diseases. Inflammaging is also associated with an immune deficiency; generally termed as immunosenescence, although it is not known whether it represents the senescence of immune cells or the active remodeling of immune system. Evidence has accumulated since the 1970's indicating that immunosenescence might be caused by an increased activity of immunosuppressive cells rather than cellular senescence. Immune cells display remarkable plasticity; many of these cells can express both proinflammatory and immunosuppressive phenotypes in a context-dependent manner. The immunosuppressive network involves the regulatory subtypes of T (Treg) and B (Breg) cells as well as regulatory phenotypes of macrophages (Mreg), dendritic (DCreg), natural killer (NKreg), and type II natural killer T (NKT) cells. The immunosuppressive network also includes monocytic (M-MDSC) and polymorphonuclear (PMN-MDSC) myeloid-derived suppressor cells which are immature myeloid cells induced by inflammatory mediators. This co-operative network is stimulated in chronic inflammatory conditions preventing excessive inflammatory responses but at the same time they exert harmful effects on the immune system and tissue homeostasis. Recent studies have revealed that the aging process is associated with the activation of immunosuppressive network, especially the functions of MDSCs, Tregs, and Mregs are increased. I will briefly review the properties of the regulatory phenotypes of immune cells and examine in detail the evidences for an activation of immunosuppressive network with aging.
Collapse
|
39
|
[Premature immune senescence and chronic kidney disease: Update and perspectives]. Nephrol Ther 2019; 16:9-18. [PMID: 31848067 DOI: 10.1016/j.nephro.2019.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022]
Abstract
Immune senescence is associated with age-related diseases (i.e. infectious disease, cardiovascular diseases and cancers). Chronic kidney disease patients die prematurely when compared with general population, because of a higher occurrence of infections, cardiovascular events and cancer. These diseases are commonly observed in the elderly population and frequently associated with immune senescence. Indeed, chronic kidney disease causes a premature aging of the T lymphocyte compartment, widely related to a decrease in thymic function, a phenomenon that plays a key role in the onset of age-related diseases in chronic kidney disease patients. The degree of immune senescence also influences patients' outcome after renal transplantation, particularly the risk of acute rejection and infections. Partial reversion of pre-transplant immune senescence is observed for some renal transplant patients. In conclusion, to reduce the increasing incidence of morbidity and mortality of chronic kidney disease patients, a better knowledge of uremia-induced immune senescence would help to pave the way to build clinical studies and promote innovative therapeutic approaches. We believe that therapeutic reversion and immune senescence prevention approaches will be part of the management of chronic kidney disease patients in the future.
Collapse
|
40
|
Zhu WS, Naler L, Maul RW, Sallin MA, Sen JM. Immune system development and age-dependent maintenance in Klotho-hypomorphic mice. Aging (Albany NY) 2019; 11:5246-5257. [PMID: 31386628 PMCID: PMC6682518 DOI: 10.18632/aging.102121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/20/2019] [Indexed: 12/12/2022]
Abstract
Circulating Klotho peptide hormone has anti-aging activity and affects tissue maintenance. Hypomorphic mutant Klotho [kl/kl] mice on C57BL/6xC3H, BALB/c and 129 genetic backgrounds, show decreased Klotho expression that correlate with accelerated aging including pre-mature death due to abnormally high levels of serum vitamin D. These mice also show multiple impairments in the immune system. However, it remains unresolved if the defects in the immune system stem from decreased Klotho expression or high vitamin D levels in the serum. Transfer of the kl/kl allele to pure C57BL/6 genetic background [B6-kl/kl] significantly reduced expression of Klotho at all ages. Surprisingly, B6-kl/kl mice showed normalized serum vitamin D levels, amelioration of severe aging-related phenotypes and normal lifespan. This paper reports a detailed analysis of the immune system in B6-kl/kl mice in the absence of detrimental levels of serum vitamin D. Remarkably, the data reveal that in the absence of overt systemic stress, such as abnormally high vitamin D levels, reduced expression of Klotho does not have a major effect on the generation and maintenance of the immune system.
Collapse
Affiliation(s)
- Wandi Sandra Zhu
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.,Current address: Department of Immunology and Microbiology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Lynette Naler
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.,Current address: Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Robert W Maul
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michelle A Sallin
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jyoti Misra Sen
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.,Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
41
|
Microbial Composition of the Human Nasopharynx Varies According to Influenza Virus Type and Vaccination Status. mBio 2019; 10:mBio.01296-19. [PMID: 31266874 PMCID: PMC6606809 DOI: 10.1128/mbio.01296-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Our results suggest that there is a significant association between the composition of the microbiota in the nasopharynx and the influenza virus type causing the infection. We observe that vaccination status, especially in more senior individuals, also has an association with the microbial community profile. This indicates that vaccination against influenza, even when ineffective to prevent disease, could play a role in controlling secondary bacterial complications. Factors that contribute to enhanced susceptibility to severe bacterial disease after influenza virus infection are not well defined but likely include the microbiome of the respiratory tract. Vaccination against influenza, while having variable effectiveness, could also play a role in microbial community stability. We collected nasopharyngeal samples from 215 individuals infected with influenza A/H3N2 or influenza B virus and profiled the microbiota by target sequencing of the 16S rRNA gene. We identified signature taxonomic groups by performing linear discriminant analysis and effective size comparisons (LEfSe) and defined bacterial community types using Dirichlet multinomial mixture (DMM) models. Influenza infection was shown to be significantly associated with microbial composition of the nasopharynx according to the virus type and the vaccination status of the patient. We identified four microbial community types across the combined cohort of influenza patients and healthy individuals with one community type most representative of the influenza virus-infected group. We also identified microbial taxa for which relative abundance was significantly higher in the unvaccinated elderly group; these taxa include species known to be associated with pneumonia.
Collapse
|
42
|
Sorensen JR, Kaluhiokalani JP, Hafen PS, Deyhle MR, Parcell AC, Hyldahl RD. An altered response in macrophage phenotype following damage in aged human skeletal muscle: implications for skeletal muscle repair. FASEB J 2019; 33:10353-10368. [PMID: 31208207 DOI: 10.1096/fj.201900519r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this study was to test the hypothesis that macrophage polarization is altered in old compared to young skeletal muscle, possibly contributing to the poor satellite cell response observed in older muscle tissue. Muscle biopsies were collected prior to and at 3, 24, and 72 h following a muscle-damaging exercise in young and old individuals. Immunohistochemistry was used to measure i.m. macrophage content and phenotype, and cell culture experiments tested macrophage behavior and influence on primary myoblasts from older individuals. We found that macrophage infiltration was similar between groups at 24 (young: 3712 ± 2407 vs. old: 5035 ± 2978 cells/mm3) and 72 (young: 4326 ± 2622 vs. old: 5287 ± 2248 cells/mm3) hours postdamage, yet the proportion of macrophages that expressed the proinflammatory marker CD11b were markedly lower in the older subjects (young: 74.5 ± 15 vs. old: 52.6 ± 17%). This finding was coupled with a greater overall proportion of CD206+, anti-inflammatory macrophages in the old (group: P = 0.0005). We further demonstrate in vitro that proliferation, and in some cases differentiation, of old primary human myoblasts increase as much as 30% when exposed to a young macrophage-conditioned environment. Collectively, the data suggest that old macrophages appear less capable of adapting and maintaining inflammatory function, which may contribute to poor satellite cell activation and delayed recovery from muscle damage.-Sorensen, J. R., Kaluhiokalani, J. P., Hafen, P. S., Deyhle, M. R., Parcell, A. C., Hyldahl, R. D. An altered response in macrophage phenotype following damage in aged human skeletal muscle: implications for skeletal muscle repair.
Collapse
Affiliation(s)
- Jacob R Sorensen
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA.,School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Paul S Hafen
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA
| | - Michael R Deyhle
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA
| | - Allen C Parcell
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA
| | - Robert D Hyldahl
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
43
|
Nacka-Aleksić M, Pilipović I, Kotur-Stevuljević J, Petrović R, Sopta J, Leposavić G. Sexual dimorphism in rat thymic involution: a correlation with thymic oxidative status and inflammation. Biogerontology 2019; 20:545-569. [DOI: 10.1007/s10522-019-09816-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/12/2019] [Indexed: 01/05/2023]
|
44
|
Marciani DJ. Promising Results from Alzheimer's Disease Passive Immunotherapy Support the Development of a Preventive Vaccine. RESEARCH 2019; 2019:5341375. [PMID: 31549066 PMCID: PMC6750119 DOI: 10.34133/2019/5341375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/18/2019] [Indexed: 12/23/2022]
Abstract
The apparently near-term effects of the monoclonal antibody BAN2401 in slowing the progression of prodromal Alzheimer's disease (AD) has created cautious optimism about the therapeutic use of antibodies that neutralize cytotoxic soluble amyloid-β aggregates, rather than removing plaque. Plaque being protective, as it immobilizes cytotoxic amyloid-β, rather than AD's causative agent. The presence of natural antibodies against cytotoxic amyloid-β implies the existence of a protective anti-AD immunity. Hence, for vaccines to induce a similar immunoresponse that prevents and/or delays the onset of AD, they must have adjuvants that stimulate a sole anti-inflammatory Th2 immunity, plus immunogens that induce a protective immunoresponse against diverse cytotoxic amyloid-β conformers. Indeed, amyloid-β pleomorphism may explain the lack of long-term protection by monoclonal antibodies that neutralize single conformers, like aducanumab. A situation that would allow new cytotoxic conformers to escape neutralization by previously effective monoclonal antibodies. Stimulation of a vaccine's effective immunoresponse would require the concurrent delivery of immunogen to dendritic cells and their priming, to induce a polarized Th2 immunity. An immunoresponse that would produce besides neutralizing antibodies against neurotoxic amyloid-β oligomers, anti-inflammatory cytokines; preventing inflammation that aggravates AD. Because of age-linked immune decline, vaccines would be significantly more effective in preventing, rather than treating AD. Considering the amyloid-β's role in tau's pathological hyperphosphorylation and their synergism in AD, the development of preventive vaccines against both amyloid-β and tau should be considered. Due to convenience and cost, vaccines may be the only option available to many countries to forestall the impending AD epidemic.
Collapse
Affiliation(s)
- D J Marciani
- Qantu Therapeutics, Inc., 612 E. Main Street, Lewisville, TX 75057, USA
| |
Collapse
|
45
|
Abstract
Although chronic obstructive pulmonary disease (COPD) is regarded as a chronic inflammatory lung disease, the disease mechanism is still not known. Intriguingly, aging lungs are quite similar to COPD-affected lungs in many ways, and COPD has been viewed as a disease of accelerated premature aging of the lungs. In this paper, based on a literature review, we would like to propose immunosenescence, age-associated decline in immunity, as a critical mechanism for the development of COPD. Immunosenescence can cause a low-grade, systemic inflammation described as inflammaging. This inflammaging may be directly involved in the COPD pathogenesis. The potential contributors to the development of inflammaging in the lungs possibly leading to COPD are discussed in the review paper. A notable fact about COPD is that only 15% to 20% of smokers develop clinically significant COPD. Given that there is a substantial inter-individual variation in inflammaging susceptibility, which is genetically determined and significantly affected by the history of the individual's exposure to pathogens, immunosenescence and inflammaging may also provide the answer for this unexpectedly low susceptibility of smokers to clinically significant COPD.
Collapse
Affiliation(s)
- Won Kyung Cho
- Department of Pulmonary and Critical Care Medicine, International Healthcare Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology, Division of Biology and Medical Sciences, Brown University, Providence, RI, USA
| | - Lark Kyun Kim
- Severance Biomedical Science Institute and BK21 PLUS Project for Medical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
46
|
Wellington D, Laurenson-Schafer H, Abdel-Haq A, Dong T. IFITM3: How genetics influence influenza infection demographically. Biomed J 2019; 42:19-26. [PMID: 30987701 PMCID: PMC6468115 DOI: 10.1016/j.bj.2019.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/06/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022] Open
Abstract
The role of host genetics in influenza infection is unclear despite decades of interest. Confounding factors such as age, sex, ethnicity and environmental factors have made it difficult to assess the role of genetics without influence. In recent years a single nucleotide polymorphism, interferon-induced transmembrane protein 3 (IFITM3) rs12252, has been shown to alter the severity of influenza infection in Asian populations. In this review we investigate this polymorphism as well as several others suggested to alter the host's defence against influenza infection. In addition, we highlight the open questions surrounding the viral restriction protein IFITM3 with the hope that by answering some of these questions we can elucidate the mechanism of IFITM3 viral restriction and therefore how this restriction is altered due to the rs12252 polymorphism.
Collapse
Affiliation(s)
- Dannielle Wellington
- MRC Human Immunology Unit, WIMM, University of Oxford, OX3 9DS, UK; CAMS Oxford Institute, Nuffield Department of Medicine, Oxford University, OX3 9FZ, UK.
| | - Henry Laurenson-Schafer
- MRC Human Immunology Unit, WIMM, University of Oxford, OX3 9DS, UK; CAMS Oxford Institute, Nuffield Department of Medicine, Oxford University, OX3 9FZ, UK
| | - Adi Abdel-Haq
- MRC Human Immunology Unit, WIMM, University of Oxford, OX3 9DS, UK; Martin-Luther-University, Halle-Wittenberg, Germany
| | - Tao Dong
- MRC Human Immunology Unit, WIMM, University of Oxford, OX3 9DS, UK; CAMS Oxford Institute, Nuffield Department of Medicine, Oxford University, OX3 9FZ, UK.
| |
Collapse
|
47
|
Giuffrida S. Calabria: a successful experience implementing Herpes Zoster vaccination strategies. Aging Clin Exp Res 2019; 31:421-423. [PMID: 30737649 DOI: 10.1007/s40520-019-01145-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/30/2019] [Indexed: 01/30/2023]
Abstract
Recently, the National Immunization Plan (NIP) in Italy has highlighted the importance of immunization practices also for adults, including vaccinations against influenza, Pneumococcus (PNO) and HZ. In response to the NIP, the Calabria region decided to offer HZ vaccination to the two cohorts of 65- and 70-year-old subjects. We at the Reggio Calabria Local Health Services, concentrated our efforts on addressing all the above-mentioned shortcomings and, as a first measure, we addressed the convenience problem by scheduling the HZ vaccine administration during the same visit as the pneumococcal vaccination (PCV13 vaccine). The adhesion rates were satisfactory in both cohorts-such high levels of vaccine coverage for HZ and PCV13 had never been reached before in our region and are still among the highest in Italy. However, the main result was undoubtedly the significantly high rate of PCV13 and HZ vaccine co-administration without safety problems.
Collapse
Affiliation(s)
- Sandro Giuffrida
- Azienda Sanitaria Provinciale di Reggio Calabria, Reggio, Italy.
| |
Collapse
|
48
|
Abstract
Chikungunya is a clinically and economically important arbovirus that has spread globally in the twenty-first century. While uncommonly fatal, infection with the virus can lead to incapacitating arthralgia that can persist for months to years. The adverse impacts of viral spread are most severe in developing low- and middle-income countries in which medical infrastructure is insufficient and manual labor is an economic driver. Unfortunately, no prophylactic or therapeutic treatments are approved for human use to combat the virus. Historically, vaccination has proven to be the most efficient and successful strategy for protecting populations and eradicating infectious disease. A large and diverse range of promising vaccination approaches for use against Chikungunya has emerged in recent years and been shown to safely elicit protective immune responses in animal models and humans. Importantly, many of these are based on technologies that have been clinically approved for use against other pathogens. Furthermore, clinical trials are currently ongoing for a subset of these. The purpose of this review is to provide a description of the relevant immunobiology of Chikungunya infection, to present immune-stimulating technologies that have been successfully employed to protect against infection, and discuss priorities and challenges regarding the future development of a vaccine for clinical use.
Collapse
|
49
|
Xing Y, Smith MJ, Goetz CA, McElmurry RT, Parker SL, Min D, Hollander GA, Weinberg KI, Tolar J, Stefanski HE, Blazar BR. Thymic Epithelial Cell Support of Thymopoiesis Does Not Require Klotho. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:3320-3328. [PMID: 30373854 PMCID: PMC6275142 DOI: 10.4049/jimmunol.1800670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/28/2018] [Indexed: 12/25/2022]
Abstract
Age-related thymic involution is characterized by a decrease in thymic epithelial cell (TEC) number and function parallel to a disruption in their spatial organization, resulting in defective thymocyte development and proliferation as well as peripheral T cell dysfunction. Deficiency of Klotho, an antiaging gene and modifier of fibroblast growth factor signaling, causes premature aging. To investigate the role of Klotho in accelerated age-dependent thymic involution, we conducted a comprehensive analysis of thymopoiesis and peripheral T cell homeostasis using Klotho-deficient (Kl/Kl) mice. At 8 wk of age, Kl/Kl mice displayed a severe reduction in the number of thymocytes (10-100-fold reduction), especially CD4 and CD8 double-positive cells, and a reduction of both cortical and medullary TECs. To address a cell-autonomous role for Klotho in TEC biology, we implanted neonatal thymi from Klotho-deficient and -sufficient mice into athymic hosts. Kl/Kl thymus grafts supported thymopoiesis equivalently to Klotho-sufficient thymus transplants, indicating that Klotho is not intrinsically essential for TEC support of thymopoiesis. Moreover, lethally irradiated hosts given Kl/Kl or wild-type bone marrow had normal thymocyte development and comparably reconstituted T cells, indicating that Klotho is not inherently essential for peripheral T cell reconstitution. Because Kl/Kl mice have higher levels of serum phosphorus, calcium, and vitamin D, we evaluated thymus function in Kl/Kl mice fed with a vitamin D-deprived diet. We observed that a vitamin D-deprived diet abrogated thymic involution and T cell lymphopenia in 8-wk-old Kl/Kl mice. Taken together, our data suggest that Klotho deficiency causes thymic involution via systemic effects that include high active vitamin D levels.
Collapse
Affiliation(s)
- Yan Xing
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Michelle J Smith
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Christine A Goetz
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Ron T McElmurry
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Sarah L Parker
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Dullei Min
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medicine, Stanford University, Palo Alto, CA 94304
| | - Georg A Hollander
- Department of Biomedicine, University of Basel, 4056 Basel, Switzerland; and
- Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom
| | - Kenneth I Weinberg
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medicine, Stanford University, Palo Alto, CA 94304
| | - Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Heather E Stefanski
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455;
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
50
|
Chronic Infections: A Possible Scenario for Autophagy and Senescence Cross-Talk. Cells 2018; 7:cells7100162. [PMID: 30308990 PMCID: PMC6210027 DOI: 10.3390/cells7100162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 02/07/2023] Open
Abstract
Multiple tissues and systems in the organism undergo modifications during aging due to an accumulation of damaged proteins, lipids, and genetic material. To counteract this process, the cells are equipped with specific mechanisms, such as autophagy and senescence. Particularly, the immune system undergoes a process called immunosenescence, giving rise to a chronic inflammatory status of the organism, with a decreased ability to counteract antigens. The obvious result of this process is a reduced defence capacity. Currently, there is evidence that some pathogens are able to accelerate the immunosenescence process for their own benefit. Although to date numerous reports show the autophagy–senescence relationship, or the connection between pathogens with autophagy or senescence, the link between the three actors remains unexplored. In this review, we have summarized current knowledge about important issues related to aging, senescence, and autophagy.
Collapse
|