1
|
Ren Z, Li M, Chen J, Gong X, Song S, Li D, Yang M, Yu J, Asghar S, Cui Y, Niu S, Liao Z, Jiang Y, Liu J, Li Y, Zhang B, Zhao W, Peng J, Yang Y, Shen C. Identification of mpox M1R and B6R monoclonal and bispecific antibodies that efficiently neutralize authentic mpox virus. Emerg Microbes Infect 2024; 13:2401931. [PMID: 39233480 DOI: 10.1080/22221751.2024.2401931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
In 2022, the monkeypox virus (mpox virus, MPXV) exhibited global dissemination across six continents, representing a notable challenge owing to the scarcity of targeted antiviral interventions. Passive immunotherapy, such as the use of monoclonal antibodies (mAbs) and bispecific antibodies (bsAbs), has emerged as a promising option for antiviral regimens. Here, we generated several mAbs against M1R and B6R of MPXV, and subsequently characterized the antiviral activity of these antibodies both in vitro and in vivo. Two neutralizing mAbs, M1H11 and M3B2, targeting M1R, and one B6R-specific mAb, B7C9, were identified. They exhibited varying antiviral efficacy against vaccinia virus (VACV) in vitro and in vivo. A cocktail comprising M1H11 and M3B2 demonstrated a superior protective effect in vivo. A bsAb, Bis-M1M3, was engineered by conjugating the fragment crystallizable (Fc) region of the human-mouse chimeric engineered M1H11 with the single-chain fragment variable (scFv) of M3B2. In mice challenged with MPXV, Bis-M1M3 showed a notable protective effects. Analysis of neutralization mechanism showed that these mAbs and Bis-M1M3 exerted virus-neutralizing effects before the virus infects cells. In vivo pharmacokinetic experiments showed that Bis-M1M3 has a long half-life in rhesus macaques. This study provides crucial insights for further research on broad-spectrum antiviral drugs against MPXV and other orthopoxviruses.
Collapse
Affiliation(s)
- Zuning Ren
- State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Mengjun Li
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jiayin Chen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaohua Gong
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Shuo Song
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Delin Li
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China
| | - Minghui Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Jianhai Yu
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Sadia Asghar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Yanxin Cui
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Shiyu Niu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Zhonghui Liao
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Yushan Jiang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jiahui Liu
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuqing Li
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Bao Zhang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jie Peng
- State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Chenguang Shen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Key Laboratory of Infectious Diseases Research in South China, Southern Medical University, Ministry of Education, People's Republic of China
| |
Collapse
|
2
|
Yuan F, Cui J, Wang T, Qin J, Jeon JH, Ding H, Whittaker CA, Xu R, Cao H, Chen J. Selection, Design and Immunogenicity Studies of ASFV Antigens for Subunit mRNA Cocktail Vaccines with Specific Immune Response Profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617156. [PMID: 39416081 PMCID: PMC11482780 DOI: 10.1101/2024.10.08.617156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Development of safe and effective subunit vaccines for controlling African Swine Fever Virus (ASFV) infection has been hampered by a lack of protective viral antigens, complex virion structures, and multiple mechanisms of infection. Here, we selected ASFV antigens based on their localization on the virion, known functions, and homologies to the subunits of the protective vaccinia virus vaccine. We also engineered viral capsid proteins for inducing optimal antibody responses and designed T cell-directed antigen for inducing broad and robust cellular immunity. The selected antigens in lipid nanoparticle-mRNA formulations were evaluated for immunogenicity in both mice and pigs with concordant results. Different antigens induced divergent immune response profiles, including the levels of IgG and T cell responses and effector functions of anti-sera. We further developed a computational approach to combine antigens into cocktails for inducing specific immune response profiles and validated candidate cocktail vaccines in mice. Our results provide a basis for further evaluating candidate subunit mRNA vaccines in challenge studies.
Collapse
Affiliation(s)
- Fangfeng Yuan
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Junru Cui
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tianlei Wang
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jane Qin
- ARV Technologies, Inc., North Bethesda, MD, USA
| | | | - Huiming Ding
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles A. Whittaker
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Renhuan Xu
- ARV Technologies, Inc., North Bethesda, MD, USA
| | - Helen Cao
- InnovHope, Inc., Framingham, MA, USA
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
3
|
Wen Y, Deng S, Wang T, Gao M, Nan W, Tang F, Xue Q, Ju Y, Dai J, Wei Y, Xue F. Novel strategy for Poxviridae prevention: Thermostable combined subunit vaccine patch with intense immune response. Antiviral Res 2024; 228:105943. [PMID: 38909959 DOI: 10.1016/j.antiviral.2024.105943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Poxviruses gained international attention due to the sharp rise in monkeypox cases in recent years, highlighting the urgent need for the development of a secure and reliable vaccine. This study involved the development of an innovative combined subunit vaccine (CSV) targeting poxviruses, with lumpy skin disease virus (LSDV) serving as the model virus. To this end, the potential sites for poxvirus vaccines were fully evaluated to develop and purify four recombinant proteins. These proteins were then successfully delivered to the dermis in a mouse model by utilizing dissolvable microneedle patches (DMPs). This approach simplified the vaccination procedure and significantly mitigated the associated risk. CSV-loaded DMPs contained four recombinant proteins and a novel adjuvant, CpG, which allowed DMPs to elicit the same intensity of humoral and cellular immunity as subcutaneous injection. Following immunization with SC and DMP, the mice exhibited notable levels of neutralizing antibodies, albeit at a low concentration. It is noteworthy that the CSV loaded into DMPs remained stable for at least 4 months at room temperature, effectively addressing the storage and transportation challenges. Based on the study findings, CSV-loaded DMPs are expected to be utilized worldwide as an innovative technique for poxvirus inoculation, especially in underdeveloped regions. This novel strategy is crucial for the development of future poxvirus vaccines.
Collapse
MESH Headings
- Animals
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Mice
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Poxviridae Infections/prevention & control
- Poxviridae Infections/immunology
- Female
- Poxviridae/immunology
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Mice, Inbred BALB C
- Lumpy skin disease virus/immunology
- Vaccination
- Immunity, Cellular
- Immunity, Humoral
- Recombinant Proteins/immunology
- Recombinant Proteins/administration & dosage
- Adjuvants, Vaccine/administration & dosage
- Adjuvants, Immunologic/administration & dosage
Collapse
Affiliation(s)
- Yuan Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, 572025, China
| | - Shuyue Deng
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Tianmin Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, 572025, China
| | - Mengtian Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, 572025, China
| | - Wenlong Nan
- Laboratory of Diagnostics Development, China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, 266032, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yurong Wei
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, 830099, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, 572025, China.
| |
Collapse
|
4
|
Su C, Li S, Wen Y, Geng X, Yin Q, Wang Y, Xiong Y, Liu Z. A Quadrivalent mRNA Immunization Elicits Potent Immune Responses against Multiple Orthopoxviral Antigens and Neutralization of Monkeypox Virus in Rodent Models. Vaccines (Basel) 2024; 12:385. [PMID: 38675767 PMCID: PMC11053415 DOI: 10.3390/vaccines12040385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The global outbreak of the 2022 monkeypox virus infection of humans and the 2023 documentation of a more virulent monkeypox in the Democratic Republic of the Congo raised public health concerns about the threat of human-to-human transmission of zoonotic diseases. Currently available vaccines may not be sufficient to contain outbreaks of a more transmissible and pathogenic orthopoxvirus. Development of a safe, effective, and scalable vaccine against orthopoxviruses to stockpile for future emergencies is imminent. In this study, we have developed an mRNA vaccine candidate, ALAB-LNP, expressing four vaccinia viral antigens A27, L1, A33, and B5 in tandem in one molecule, and evaluated the vaccine immunogenicity in rodent models. Immunization of animals with the candidate mRNA vaccine induced a potent cellular immune response and long-lasting antigen-specific binding antibody and neutralizing antibody responses against vaccinia virus. Strikingly, the sera from the vaccine-immunized mice cross-reacted with all four homologous antigens of multiple orthopoxviruses and neutralized monkeypox virus in vitro, holding promise for this mRNA vaccine candidate to be used for protection of humans from the infection of monkeypox and other orthopoxvirus.
Collapse
Affiliation(s)
- Caixia Su
- Department of Research and Development, Yither Biotech Co., Ltd., Pudong, Shanghai 200120, China
| | - Sha Li
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Hongshancelu Avenue, Wuhan 430071, China; (S.L.); (Y.W.)
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yang Wen
- Department of Research and Development, Yither Biotech Co., Ltd., Pudong, Shanghai 200120, China
| | - Xiya Geng
- Department of Research and Development, Yither Biotech Co., Ltd., Pudong, Shanghai 200120, China
| | - Quanyi Yin
- Department of Research and Development, Yither Biotech Co., Ltd., Pudong, Shanghai 200120, China
| | - Yun Wang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Hongshancelu Avenue, Wuhan 430071, China; (S.L.); (Y.W.)
| | - Yelin Xiong
- Department of Research and Development, Yither Biotech Co., Ltd., Pudong, Shanghai 200120, China
- Ab&B Biotech Co., Ltd., Taizhou 225300, China
| | - Zhihua Liu
- Department of Research and Development, Yither Biotech Co., Ltd., Pudong, Shanghai 200120, China
| |
Collapse
|
5
|
Riccardo V, Pablo GC. Neutralization Determinants on Poxviruses. Viruses 2023; 15:2396. [PMID: 38140637 PMCID: PMC10747254 DOI: 10.3390/v15122396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Smallpox was a highly contagious disease caused by the variola virus. The disease affected millions of people over thousands of years and variola virus ranked as one of the deadliest viruses in human history. The complete eradication of smallpox in 1980, a major triumph in medicine, was achieved through a global vaccination campaign using a less virulent poxvirus, vaccinia virus. Despite this success, the herd immunity established by this campaign has significantly waned, and concerns are rising about the potential reintroduction of variola virus as a biological weapon or the emergence of zoonotic poxviruses. These fears were further fueled in 2022 by a global outbreak of monkeypox virus (mpox), which spread to over 100 countries, thereby boosting interest in developing new vaccines using molecular approaches. However, poxviruses are complex and creating modern vaccines against them is challenging. This review focuses on the structural biology of the six major neutralization determinants on poxviruses (D8, H3, A27, L1, B5, and A33), the localization of epitopes targeted by neutralizing antibodies, and their application in the development of subunit vaccines.
Collapse
Affiliation(s)
| | - Guardado-Calvo Pablo
- Structural Biology of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, F-75015 Paris, France;
| |
Collapse
|
6
|
Peng F, Hu N, Liu Y, Xing C, Luo L, Li X, Wang J, Chen G, Xiao H, Liu C, Shen B, Feng J, Qiao C. Functional epitopes and neutralizing antibodies of vaccinia virus. Front Microbiol 2023; 14:1255935. [PMID: 37954238 PMCID: PMC10634548 DOI: 10.3389/fmicb.2023.1255935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Smallpox is an infectious disease caused by the variola virus, and it has a high mortality rate. Historically it has broken out in many countries and it was a great threat to human health. Smallpox was declared eradicated in 1980, and Many countries stopped nation-wide smallpox vaccinations at that time. In recent years the potential threat of bioterrorism using smallpox has led to resumed research on the treatment and prevention of smallpox. Effective ways of preventing and treating smallpox infection have been reported, including vaccination, chemical drugs, neutralizing antibodies, and clinical symptomatic therapies. Antibody treatments include anti-sera, murine monoclonal antibodies, and engineered humanized or human antibodies. Engineered antibodies are homologous, safe, and effective. The development of humanized and genetically engineered antibodies against variola virus via molecular biology and bioinformatics is therefore a potentially fruitful prospect with respect to field application. Natural smallpox virus is inaccessible, therefore most research about prevention and/or treatment of smallpox were done using vaccinia virus, which is much safer and highly homologous to smallpox. Herein we summarize vaccinia virus epitope information reported to date, and discuss neutralizing antibodies with potential value for field application.
Collapse
Affiliation(s)
- Fenghao Peng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Naijing Hu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Yingjun Liu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cong Xing
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Chenghua Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Beifen Shen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
7
|
Freyn AW, Atyeo C, Earl PL, Americo JL, Chuang GY, Natarajan H, Frey TR, Gall JG, Moliva JI, Hunegnaw R, Asthagiri Arunkumar G, Ogega CO, Nasir A, Santos G, Levin RH, Meni A, Jorquera PA, Bennett H, Johnson JA, Durney MA, Stewart-Jones G, Hooper JW, Colpitts TM, Alter G, Sullivan NJ, Carfi A, Moss B. An mpox virus mRNA-lipid nanoparticle vaccine confers protection against lethal orthopoxviral challenge. Sci Transl Med 2023; 15:eadg3540. [PMID: 37792954 DOI: 10.1126/scitranslmed.adg3540] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/18/2023] [Indexed: 10/06/2023]
Abstract
Mpox virus (MPXV) caused a global outbreak in 2022. Although smallpox vaccines were rapidly deployed to curb spread and disease among those at highest risk, breakthrough disease was noted after complete immunization. Given the threat of additional zoonotic events and the virus's evolving ability to drive human-to-human transmission, there is an urgent need for an MPXV-specific vaccine that confers protection against evolving MPXV strains and related orthopoxviruses. Here, we demonstrate that an mRNA-lipid nanoparticle vaccine encoding a set of four highly conserved MPXV surface proteins involved in virus attachment, entry, and transmission can induce MPXV-specific immunity and heterologous protection against a lethal vaccinia virus (VACV) challenge. Compared with modified vaccinia virus Ankara (MVA), which forms the basis for the current MPXV vaccine, immunization with an mRNA-based MPXV vaccine generated superior neutralizing activity against MPXV and VACV and more efficiently inhibited spread between cells. We also observed greater Fc effector TH1-biased humoral immunity to the four MPXV antigens encoded by the vaccine, as well as to the four VACV homologs. Single MPXV antigen-encoding mRNA vaccines provided partial protection against VACV challenge, whereas multivalent vaccines combining mRNAs encoding two, three, or four MPXV antigens protected against disease-related weight loss and death equal or superior to MVA vaccination. These data demonstrate that an mRNA-based MPXV vaccine confers robust protection against VACV.
Collapse
Affiliation(s)
| | | | - Patricia L Earl
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Jeffrey L Americo
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | | | | | | | - Jason G Gall
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Juan I Moliva
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Ruth Hunegnaw
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Jay W Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, 21702 MD, USA
| | | | | | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | | | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| |
Collapse
|
8
|
Zhang N, Cheng X, Zhu Y, Mo O, Yu H, Zhu L, Zhang J, Kuang L, Gao Y, Cao R, Liang X, Wang H, Li H, Li S, Zhong W, Li X, Li X, Hao P. Multi-valent mRNA vaccines against monkeypox enveloped or mature viron surface antigens demonstrate robust immune response and neutralizing activity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2329-2341. [PMID: 37300753 PMCID: PMC10257374 DOI: 10.1007/s11427-023-2378-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Monkeypox was declared a global health emergency by the World Health Organization, and as of March 2023, 86,000 confirmed cases and 111 deaths across 110 countries have been reported. Its causal agent, monkeypox virus (MPV) belongs to a large family of double-stranded DNA viruses, Orthopoxviridae, that also includes vaccinia virus (VACV) and others. MPV produces two distinct forms of viral particles during its replication cycles: the enveloped viron (EV) that is released via exocytosis, and the mature viron (MV) that is discharged through lysis of host cells. This study was designed to develop multi-valent mRNA vaccines against monkeypox EV and MV surface proteins, and examine their efficacy and mechanism of action. Four mRNA vaccines were produced with different combinations of surface proteins from EV (A35R and B6R), MV (A29L, E8L, H3L and M1R), or EV and MV, and were administered in Balb/c mice to assess their immunogenicity potentials. A dynamic immune response was observed as soon as seven days after initial immunization, while a strong IgG response to all immunogens was detected with ELISA after two vaccinations. The higher number of immunogens contributed to a more robust total IgG response and correlating neutralizing activity against VACV, indicating the additive potential of each immunogen in generating immune response and nullifying VACV infection. Further, the mRNA vaccines elicited an antigen-specific CD4+ T cell response that is biased towards Th1. The mRNA vaccines with different combinations of EV and MV surface antigens protected a mouse model from a lethal dose VACV challenge, with the EV and MV antigens-combined vaccine offering the strongest protection. These findings provide insight into the protective mechanism of multi-valent mRNA vaccines against MPV, and also the foundation for further development of effective and safe mRNA vaccines for enhanced protection against monkeypox virus outbreak.
Collapse
Affiliation(s)
- Niubing Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- East China University of Science and Technology, Shanghai, 200237, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Xiang Cheng
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yilong Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ouyang Mo
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiqing Yu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Liqi Zhu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Zhang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linlin Kuang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ying Gao
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaozhen Liang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haikun Wang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Honglin Li
- East China University of Science and Technology, Shanghai, 200237, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Song Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Xuan Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Pei Hao
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Noy-Porat T, Tamir H, Alcalay R, Rosenfeld R, Epstein E, Cherry L, Achdout H, Erez N, Politi B, Yahalom-Ronen Y, Weiss S, Melamed S, Israely T, Mazor O, Paran N, Makdasi E. Generation of recombinant mAbs to vaccinia virus displaying high affinity and potent neutralization. Microbiol Spectr 2023; 11:e0159823. [PMID: 37737634 PMCID: PMC10581037 DOI: 10.1128/spectrum.01598-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/23/2023] [Indexed: 09/23/2023] Open
Abstract
Members of the Orthopoxvirus genus can cause severe infections in humans. Global vaccination against smallpox, caused by the variola virus, resulted in the eradication of the disease in 1980. Shortly thereafter, vaccination was discontinued, and as a result, a large proportion of the current population is not protected against orthopoxviruses. The concerns that the variola virus or other engineered forms of poxviruses may re-emerge as bioweapons and the sporadic outbreaks of zoonotic members of the family, such as Mpox, which are becoming more frequent and prevalent, also emphasize the need for an effective treatment against orthopoxviruses. To date, the most effective way to prevent or control an orthopoxvirus outbreak is through vaccination. However, the traditional vaccinia-based vaccine may cause severe side effects. Vaccinia immune globulin was approved by the U.S. Food and Drug Administration (FDA) for the treatment of vaccine adverse reactions and was also used occasionally for the treatment of severe orthopoxvirus infections. However, this treatment carries many disadvantages and is also in short supply. Thus, a recombinant alternative is highly needed. In this study, two non-human primates were immunized with live vaccinia virus, producing a robust and diverse antibody response. A phage-display library was constructed based on the animal's lymphatic organs, and a panel of neutralizing monoclonal antibodies (mAbs), recognizing diverse proteins of the vaccinia virus, was selected and characterized. These antibodies recognized both mature virion and enveloped virion forms of the virus and exhibited high affinity and potent in vitro neutralization capabilities. Furthermore, these monoclonal antibodies were able to neutralize Mpox 2018 and 2022 strains, suggesting a potential for cross-species protection. We suggest that a combination of these mAbs has the potential to serve as recombinant therapy both for vaccinia vaccine adverse reactions and for orthopoxvirus infections. IMPORTANCE In this manuscript, we report the isolation and characterization of several recombinant neutralizing monoclonal antibodies (mAbs) identified by screening a phage-display library constructed from lymphatic cells collected from immunized non-human primates. The antibodies target several different antigens of the vaccinia virus, covering both mature virion and extracellular enveloped virion forms of the virus. We document strong evidence indicating that they exhibit excellent affinity to their respective antigens and, most importantly, optimal in vitro neutralization of the virus, which exceeded that of vaccinia immune globulin. Furthermore, we present the ability of these novel isolated mAbs (as well as the sera collected from vaccinia-immunized animals) to neutralize two Mpox strains from the 2018 to 2022 outbreaks. We believe that these antibodies have the potential to be used for the treatment of vaccinia vaccine adverse reactions, for other orthopoxvirus infections, and in cases of unexpected bioterror scenarios.
Collapse
Affiliation(s)
- Tal Noy-Porat
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Hadas Tamir
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ron Alcalay
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ronit Rosenfeld
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Eyal Epstein
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Lilach Cherry
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Hagit Achdout
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Noam Erez
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Boaz Politi
- Israel Institute for Biological Research, Ness Ziona, Israel
| | | | - Shay Weiss
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Sharon Melamed
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Tomer Israely
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ohad Mazor
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Nir Paran
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Efi Makdasi
- Israel Institute for Biological Research, Ness Ziona, Israel
| |
Collapse
|
10
|
Xia H, He YR, Zhan XY, Zha GF. Mpox virus mRNA-lipid nanoparticle vaccine candidates evoke antibody responses and drive protection against the Vaccinia virus challenge in mice. Antiviral Res 2023; 216:105668. [PMID: 37429529 DOI: 10.1016/j.antiviral.2023.105668] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
In response to the human Mpox (hMPX) epidemic that began in 2022, there is an urgent need for a monkeypox vaccine. Here, we have developed a series of mRNA-lipid nanoparticle (mRNA-LNP)-based vaccine candidates that encode a collection of four highly conserved Mpox virus (MPXV) surface proteins involved in virus attachment, entry, and transmission, namely A29L, A35R, B6R, and M1R, which are homologs to Vaccinia virus (VACV) A27, A33, B5, and L1, respectively. Despite possible differences in immunogenicity among the four antigenic mRNA-LNPs, administering these antigenic mRNA-LNPs individually (5 μg each) or an average mixture of these mRNA-LNPs at a low dose (0.5 μg each) twice elicited MPXV-specific IgG antibodies and potent VACV-specific neutralizing antibodies. Furthermore, two doses of 5 μg of A27, B5, and L1 mRNA-LNPs or a 2 μg average mixture of the four antigenic mRNA-LNPs protected mice against weight loss and death after the VACV challenge. Overall, our data suggest that these antigenic mRNA-LNP vaccine candidates are both safe and efficacious against MPXV, as well as diseases caused by other orthopoxviruses.
Collapse
Affiliation(s)
- Heng Xia
- The Seventh Affiliated Hospital, Sun Yat-sen University, China
| | - Yun-Ru He
- The Seventh Affiliated Hospital, Sun Yat-sen University, China
| | - Xiao-Yong Zhan
- The Seventh Affiliated Hospital, Sun Yat-sen University, China.
| | - Gao-Feng Zha
- The Seventh Affiliated Hospital, Sun Yat-sen University, China.
| |
Collapse
|
11
|
Israeli O, Guedj-Dana Y, Shifman O, Lazar S, Cohen-Gihon I, Amit S, Ben-Ami R, Paran N, Schuster O, Weiss S, Zvi A, Beth-Din A. Rapid Amplicon Nanopore Sequencing (RANS) for the Differential Diagnosis of Monkeypox Virus and Other Vesicle-Forming Pathogens. Viruses 2022; 14:1817. [PMID: 36016439 PMCID: PMC9416277 DOI: 10.3390/v14081817] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
As of July 2022, more than 16,000 laboratory-confirmed monkeypox (MPX) cases have been reported worldwide. Until recently, MPX was a rare viral disease seldom detected outside Africa. MPX virus (MPXV) belongs to the Orthopoxvirus (OPV) genus and is a genetically close relative of the Variola virus (the causative agent of smallpox). Following the eradication of smallpox, there was a significant decrease in smallpox-related morbidity and the population's immunity to other OPV-related diseases such as MPX. In parallel, there was a need for differential diagnosis between the different OPVs' clinical manifestations and diseases with similar symptoms (i.e., chickenpox, herpes simplex). The current study aimed to provide a rapid genetic-based diagnostic tool for accurate and specific identification of MPXV and additional related vesicle-forming pathogens. We initially assembled a list of 14 relevant viral pathogens, causing infectious diseases associated with vesicles, prone to be misdiagnosed as MPX. Next, we developed an approach that we termed rapid amplicon nanopore sequencing (RANS). The RANS approach uses diagnostic regions that harbor high homology in their boundaries and internal diagnostic SNPs that, when sequenced, aid the discrimination of each pathogen within a group. During a multiplex PCR amplification, a dA tail and a 5'-phosphonate were simultaneously added, thus making the PCR product ligation ready for nanopore sequencing. Following rapid sequencing (a few minutes), the reads were compared to a reference database and the nearest strain was identified. We first tested our approach using samples of known viruses cultured in cell lines. All the samples were identified correctly and swiftly. Next, we examined a variety of clinical samples from the 2022 MPX outbreak. Our RANS approach identified correctly all the PCR-positive MPXV samples and mapped them to strains that were sequenced during the 2022 outbreak. For the subset of samples that were negative for MPXV by PCR, we obtained definite results, identifying other vesicle-forming viruses: Human herpesvirus 3, Human herpesvirus 2, and Molluscum contagiosum virus. This work was a proof-of-concept study, demonstrating the potential of the RANS approach for rapid and discriminatory identification of a panel of closely related pathogens. The simplicity and affordability of our approach makes it straightforward to implement in any genetics lab. Moreover, other differential diagnostics panels might benefit from the implementation of the RANS approach into their diagnostics pipelines.
Collapse
Affiliation(s)
- Ofir Israeli
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Yehoudit Guedj-Dana
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Ohad Shifman
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Shirley Lazar
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Inbar Cohen-Gihon
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Sharon Amit
- Clinical Microbiology, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Ronen Ben-Ami
- Infectious Diseases Unit Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv P.O. Box 39040, Israel
| | - Nir Paran
- Departments of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Ofir Schuster
- Departments of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Shay Weiss
- Departments of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Anat Zvi
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Adi Beth-Din
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| |
Collapse
|
12
|
Kennedy RB, Ovsyannikova IG, Haralambieva IH, Grill DE, Poland GA. Proteomic assessment of humoral immune responses in smallpox vaccine recipients. Vaccine 2022; 40:789-797. [PMID: 34952760 PMCID: PMC8792332 DOI: 10.1016/j.vaccine.2021.12.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 02/02/2023]
Abstract
The availability of effective smallpox vaccines was a critical element of the successful eradication of smallpox in 1980. Antibody responses play a primary role in protective immunity and neutralizing antibody is an established correlate of protection against smallpox. In this study we used a poxvirus proteome array to assess the antibody response to individual viral proteins in a cohort of 1,037 smallpox vaccine recipients. Several statistically significant differences were observed in the antibody response to immunodominant proteins between men and women, including B5R-a major target of neutralizing antibody in vaccinia immune globulin, and the membrane proteins D8L and A27L, both of which have been used as vaccine antigens providing protection in animal models. We also noted differences across racial/ethnic groups. In this cohort, which consisted of both ACAM2000 and Dryvax recipients, we noted minute differences in the antibody responses to a restricted number of viral proteins, providing additional support for the use of ACAM2000 as a replacement smallpox vaccine. Furthermore, our data indicate that poxvirus proteome microarrays can be valuable for screening and monitoring smallpox vaccine-induced humoral immune responses in large-scale serologic surveillance studies and prove useful in the guidance of developing novel smallpox candidate vaccines.
Collapse
Affiliation(s)
- Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN USA,Department of Internal Medicine, Mayo Clinic, Rochester, MN USA,Corresponding author: Richard B. Kennedy, Ph.D., Co-Director, Mayo Vaccine Research Group, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, Phone: (507) 284-0708, Fax: (507) 266-4716,
| | - Inna G. Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN USA,Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - Iana H. Haralambieva
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN USA,Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - Diane E. Grill
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN USA
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN USA,Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
13
|
Xiao Y, Zeng Y, Schante C, Joshi SB, Buchman GW, Volkin DB, Middaugh CR, Isaacs SN. Short-term and longer-term protective immune responses generated by subunit vaccination with smallpox A33, B5, L1 or A27 proteins adjuvanted with aluminum hydroxide and CpG in mice challenged with vaccinia virus. Vaccine 2020; 38:6007-6018. [PMID: 32741672 PMCID: PMC7456309 DOI: 10.1016/j.vaccine.2020.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/08/2020] [Accepted: 07/10/2020] [Indexed: 12/28/2022]
Abstract
Smallpox, a contagious and deadly disease caused by variola virus, was eradicated by a strategy that included vaccination with vaccinia virus, a live-virus vaccine. Because the threat of bioterrorism with smallpox persists and infections with zoonotic poxvirus infections like monkeypox continue, and there may be a time when an alternative vaccine platform is needed, recombinant-subunit vaccine strategies for poxviruses have been pursued. Our prior work focused on understanding the immune responses generated to vaccine-formulations containing the virus protein L1. In this work, we examine vaccine-formulations with additional key protein targets: A33 and B5 (components of the extracellular virus) and another protein on the mature virus (A27) adjuvanted with aluminum hydroxide (AH) with and without CpG- oligonucleotide. Each vaccine was formulated to allow either adsorption or non-adsorption of the protein (and CpG) to AH. Mice given a prime and single boost produced long-lasting antibody responses. A second boost (given ~5-months after the first) further increased antibody titers. Similar to our prior findings with L1 vaccine-formulations, the most protective A33 vaccine-formulations included CpG, resulted in the generation of IgG2a-antibody responses. Unlike the prior findings with L1 (where formulations that adsorbed both the protein and the CpG to AH resulted in 100% survival after challenge and minimal weight loss), the AH-adsorption status of A33 and CpG did not play as important a role, since both AH-adsorbed and non-adsorbed groups lost weight after challenge and had similar survival. Vaccination with B5-formulations gave different results. While CpG-containing formulations were the only ones that generated IgG2a-antibody responses, the vaccine-formulation that adsorbed B5 to AH (without CpG) was as equally effective in protecting mice after challenge. These results indicate that the mechanism of how antibodies against A33 and B5 protect differ. The data also show the complexity of designing optimized vaccine-formulations containing multiple adjuvants and recombinant protein-based antigens.
Collapse
Affiliation(s)
- Yuhong Xiao
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Division of Infectious Diseases, Philadelphia, PA 19104-6073, United States
| | - Yuhong Zeng
- University of Kansas, Macromolecular and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - Carole Schante
- University of Kansas, Macromolecular and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - Sangeeta B Joshi
- University of Kansas, Macromolecular and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - George W Buchman
- Chesapeake-Perl, Inc., 8510 A Corridor Rd., Savage, MD 20763, United States
| | - David B Volkin
- University of Kansas, Macromolecular and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - C Russell Middaugh
- University of Kansas, Macromolecular and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - Stuart N Isaacs
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Division of Infectious Diseases, Philadelphia, PA 19104-6073, United States.
| |
Collapse
|
14
|
Shchelkunov SN, Yakubitskiy SN, Sergeev AA, Kabanov AS, Bauer TV, Bulychev LE, Pyankov SA. Effect of the Route of Administration of the Vaccinia Virus Strain LIVP to Mice on Its Virulence and Immunogenicity. Viruses 2020; 12:E795. [PMID: 32722032 PMCID: PMC7472337 DOI: 10.3390/v12080795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022] Open
Abstract
The mass smallpox vaccination campaign has played a crucial role in smallpox eradication. Various strains of the vaccinia virus (VACV) were used as a live smallpox vaccine in different countries, their origin being unknown in most cases. The VACV strains differ in terms of pathogenicity exhibited upon inoculation of laboratory animals and reactogenicity exhibited upon vaccination of humans. Therefore, each generated strain or clonal variant of VACV needs to be thoroughly studied in in vivo systems. The clonal variant 14 of LIVP strain (LIVP-14) was the study object in this work. A comparative analysis of the virulence and immunogenicity of LIVP-14 inoculated intranasally (i.n.), intradermally (i.d.), or subcutaneously (s.c.) to BALB/c mice at doses of 108, 107, and 106 pfu was carried out. Adult mice exhibited the highest sensitivity to the i.n. administered LIVP-14 strain, although the infection was not lethal. The i.n. inoculated LIVP-14 replicated efficiently in the lungs. Furthermore, this virus was accumulated in the brain at relatively high concentrations. Significantly lower levels of LIVP-14 were detected in the liver, kidneys, and spleen of experimental animals. No clinical manifestations of the disease were observed after i.d. or s.c. injection of LIVP-14 to mice. After s.c. inoculation, the virus was detected only at the injection site, while it could disseminate to the liver and lungs when delivered via i.d. administration. A comparative analysis of the production of virus-specific antibodies by ELISA and PRNT revealed that the highest level of antibodies was induced in i.n. inoculated mice; a lower level of antibodies was observed after i.d. administration of the virus and the lowest level after s.c. injection. Even at the lowest studied dose (106 pfu), i.n. or i.d. administered LIVP-14 completely protected mice against infection with the cowpox virus at the lethal dose. Our findings imply that, according to the ratio between such characteristics as pathogenicity/immunogenicity/protectivity, i.d. injection is the optimal method of inoculation with the VACV LIVP-14 strain to ensure the safe formation of immune defense after vaccination against orthopoxviral infections.
Collapse
Affiliation(s)
- Sergei N. Shchelkunov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia; (S.N.Y.); (A.A.S.); (A.S.K.); (T.V.B.); (L.E.B.); (S.A.P.)
| | | | | | | | | | | | | |
Collapse
|
15
|
Mucker EM, Lindquist M, Hooper JW. Particle-specific neutralizing activity of a monoclonal antibody targeting the poxvirus A33 protein reveals differences between cell associated and extracellular enveloped virions. Virology 2020; 544:42-54. [PMID: 32174513 DOI: 10.1016/j.virol.2020.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 10/24/2022]
Abstract
Only a small subset of the hundreds of proteins encoded by the poxvirus genome have been shown to be effective as vaccine and/or therapeutic targets. One of these proteins is A33. Here we assess and dissect the ability of an anti-A33 humanized monoclonal antibody, c6C, to affect vaccinia virus infection in vitro. Enveloped virions (EV) released from infected cells can be sensitive or resistant to neutralization by c6C indicating there are different types of EV particles, extracellular enveloped virions (EEV) and released cellular-associated virions (rCEV), that are biologically distinct. Through a combination of plaque phenotype, confocal imaging, and neutralization assays, we found that c6C differentially affects EV from two different virus strains, IHD-J and WR. Evidence for an anti-A33 resistant EV particle, and strain differences in this phenotype, provides a logical answer as to why certain functional assays in the literature have been unable to detect anti-viral effects of anti-A33 antibodies.
Collapse
Affiliation(s)
- Eric M Mucker
- Molecular Virology Branch, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, 21702, MD, USA
| | - Michael Lindquist
- Molecular Virology Branch, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, 21702, MD, USA
| | - Jay W Hooper
- Molecular Virology Branch, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, 21702, MD, USA.
| |
Collapse
|
16
|
Differential Response Following Infection of Mouse CNS with Virulent and Attenuated Vaccinia Virus Strains. Vaccines (Basel) 2019; 7:vaccines7010019. [PMID: 30759813 PMCID: PMC6466266 DOI: 10.3390/vaccines7010019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Abstract
Viral infections of the central nervous system (CNS) lead to a broad range of pathologies. CNS infections with Orthopox viruses have been mainly documented as an adverse reaction to smallpox vaccination with vaccinia virus. To date, there is insufficient data regarding the mechanisms underlying pathological viral replication or viral clearance. Therefore, informed risk assessment of vaccine adverse reactions or outcome prediction is limited. This work applied a model of viral infection of the CNS, comparing neurovirulent with attenuated strains. We followed various parameters along the disease and correlated viral load, morbidity, and mortality with tissue integrity, innate and adaptive immune response and functionality of the blood–brain barrier. Combining these data with whole brain RNA-seq analysis performed at different time points indicated that neurovirulence is associated with host immune silencing followed by induction of tissue damage-specific pathways. In contrast, brain infection with attenuated strains resulted in rapid and robust induction of innate and adaptive protective immunity, followed by viral clearance and recovery. This study significantly improves our understanding of the mechanisms and processes determining the consequence of viral CNS infection and highlights potential biomarkers associated with such outcomes.
Collapse
|
17
|
Lauron EJ, Yang L, Elliott JI, Gainey MD, Fremont DH, Yokoyama WM. Cross-priming induces immunodomination in the presence of viral MHC class I inhibition. PLoS Pathog 2018; 14:e1006883. [PMID: 29444189 PMCID: PMC5812664 DOI: 10.1371/journal.ppat.1006883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/17/2018] [Indexed: 01/07/2023] Open
Abstract
Viruses have evolved mechanisms of MHCI inhibition in order to evade recognition by cytotoxic CD8+ T cells (CTLs), which is well-illustrated by our prior studies on cowpox virus (CPXV) that encodes potent MHCI inhibitors. Deletion of CPXV viral MHCI inhibitors markedly attenuated in vivo infection due to effects on CTL effector function, not priming. However, the CTL response to CPXV in C57BL/6 mice is dominated by a single peptide antigen presented by H-2Kb. Here we evaluated the effect of viral MHCI inhibition on immunodominant (IDE) and subdominant epitopes (SDE) as this has not been thoroughly examined. We found that cross-priming, but not cross-dressing, is the main mechanism driving IDE and SDE CTL responses following CPXV infection. Secretion of the immunodominant antigen was not required for immunodominance. Instead, immunodominance was caused by CTL interference, known as immunodomination. Both immunodomination and cross-priming of SDEs were not affected by MHCI inhibition. SDE-specific CTLs were also capable of exerting immunodomination during primary and secondary responses, which was in part dependent on antigen abundance. Furthermore, CTL responses directed solely against SDEs protected against lethal CPXV infection, but only in the absence of the CPXV MHCI inhibitors. Thus, both SDE and IDE responses can contribute to protective immunity against poxviruses, implying that these principles apply to poxvirus-based vaccines. The use of vaccinia virus (VACV) to eradicate smallpox is the arguably the most successful demonstration of vaccination. The VACV vaccine also provides cross-protection against related zoonotic orthopoxviruses, including monkey poxvirus (MXPV) and CPXV, which circulate between various animal hosts and humans. Interestingly, Edward Jenner first demonstrated the concept of vaccination against smallpox in the late 1700s using CPXV. He also made the curious observation that CPXV vaccination did not always protect against recurrent exposure to CPXV. Jenner’s observations may be explained by the ability for CPXV to evade antiviral CD8+ T cell immune responses. To evade CD8+ T cells, CPXV inhibits MHCI antigen presentation, which is required to prime CD8+ T cells. Importantly, CPXV is the only orthopoxvirus that inhibits MHCI and thus provides a unique opportunity to investigate the effects of viral MHCI inhibition on CD8+ T cell priming. Here, we examine the factors that contribute to priming of CPXV-specific CD8+ T cells and show that viral MHCI inhibition does not affect CD8+ T cell priming, but prior CPXV immunization does inhibit priming during subsequent exposure to CPXV. The effects of pre-existing poxvirus immunity are therefore important to consider if poxvirus-based vaccines against various diseases are to be widely used.
Collapse
Affiliation(s)
- Elvin J. Lauron
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Liping Yang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jabari I. Elliott
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Maria D. Gainey
- Department of Biology, Western Carolina University, Cullowhee, North Carolina, United States of America
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wayne M. Yokoyama
- Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
18
|
Melamed S, Israely T, Paran N. Challenges and Achievements in Prevention and Treatment of Smallpox. Vaccines (Basel) 2018; 6:vaccines6010008. [PMID: 29382130 PMCID: PMC5874649 DOI: 10.3390/vaccines6010008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/15/2018] [Accepted: 01/26/2018] [Indexed: 01/17/2023] Open
Abstract
Declaration of smallpox eradication by the WHO in 1980 led to discontinuation of the worldwide vaccination campaign. The increasing percentage of unvaccinated individuals, the existence of its causative infectious agent variola virus (VARV), and the recent synthetic achievements increase the threat of intentional or accidental release and reemergence of smallpox. Control of smallpox would require an emergency vaccination campaign, as no other protective measure has been approved to achieve eradication and ensure worldwide protection. Experimental data in surrogate animal models support the assumption, based on anecdotal, uncontrolled historical data, that vaccination up to 4 days postexposure confers effective protection. The long incubation period, and the uncertainty of the exposure status in the surrounding population, call for the development and evaluation of safe and effective methods enabling extension of the therapeutic window, and to reduce the disease manifestations and vaccine adverse reactions. To achieve these goals, we need to evaluate the efficacy of novel and already licensed vaccines as a sole treatment, or in conjunction with immune modulators and antiviral drugs. In this review, we address the available data, recent achievements, and open questions.
Collapse
Affiliation(s)
- Sharon Melamed
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel.
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel.
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel.
| |
Collapse
|
19
|
Achdout H, Lustig S, Israely T, Erez N, Politi B, Tamir H, Israeli O, Waner T, Melamed S, Paran N. Induction, treatment and prevention of eczema vaccinatum in atopic dermatitis mouse models. Vaccine 2017. [PMID: 28625523 DOI: 10.1016/j.vaccine.2017.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Eczema vaccinatum is a severe and occasionally lethal complication of smallpox vaccine, characterized by systemic viral dissemination, distant from the initial inoculation site of the vaccine. A major risk factor for eczema vaccinatum is a background of atopic dermatitis, a chronic, common allergic, relapsing disorder, manifested by dry and inflamed skin, itchy rash, Th2 biased immune response and hypersensitivity to various antigens. Unlike the severe manifestations of eczema vaccinatum in humans, current models present only mild symptoms that limits examination of potential therapeutics for eczema vaccinatum. The atopic dermatitis and eczema vaccinatum models we present here, are the first to simulate the severity of the diseases in humans. Indeed, dermatitic mice display persistent severe dermatitis, characterized by dry and inflamed skin with barrier dysfunction, epidermal hyperplasia and significant elevation of serum IgE. By exposing atopic dermatitis mice to ectromelia virus, we generated eczema vaccinatum that mimic the human disease better than known eczema vaccinatum models. Similarly to humans, eczematous mice displayed enlarged and disseminated skin lesions, which correlated with elevated viral load. Cidofovir and antiviral antibodies conferred protection even when treatment started at a late eczematous stage. Moreover, we are the first to demonstrate that despite a severe background of atopic dermatitis, modified vaccinia Ankara virus (MVA) vaccination protects against lethal ectromelia virus exposure. We finally show that protection by MVA vaccination is dependent on CD4+ T cells and is associated with significant activation of CD8+ cytotoxic T cells and induction of humoral immunity.
Collapse
Affiliation(s)
- Hagit Achdout
- Department of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | - Shlomo Lustig
- Department of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | - Noam Erez
- Department of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | - Boaz Politi
- Department of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | - Hadas Tamir
- Department of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | - Trevor Waner
- Department of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | - Sharon Melamed
- Department of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel.
| |
Collapse
|
20
|
Abstract
Ectromelia virus is a mouse-specific orthopoxvirus that, following footpad infection or natural transmission, causes mousepox in most strains of mice, while a few strains, such as C57BL/6, are resistant to the disease but not to the infection. Mousepox is an acute, systemic, highly lethal disease of remarkable semblance to smallpox, caused by the human-specific variola virus. Starting in 1929 with its discovery by Marchal, work with ECTV has provided essential information for our current understanding on how viruses spread lympho-hematogenously, the genetic control of antiviral resistance, the role of different components of the innate and adaptive immune system in the control of primary and secondary infections with acute viruses, and how the mechanisms of immune evasion deployed by the virus affect virulence in vivo. Here, I review the literature on the pathogenesis and immunobiology of ECTV infection in vivo.
Collapse
Affiliation(s)
- Luis J Sigal
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
21
|
Matho MH, Schlossman A, Meng X, Benhnia MREI, Kaever T, Buller M, Doronin K, Parker S, Peters B, Crotty S, Xiang Y, Zajonc DM. Structural and Functional Characterization of Anti-A33 Antibodies Reveal a Potent Cross-Species Orthopoxviruses Neutralizer. PLoS Pathog 2015; 11:e1005148. [PMID: 26325270 PMCID: PMC4556652 DOI: 10.1371/journal.ppat.1005148] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/13/2015] [Indexed: 11/18/2022] Open
Abstract
Vaccinia virus A33 is an extracellular enveloped virus (EEV)-specific type II membrane glycoprotein that is essential for efficient EEV formation and long-range viral spread within the host. A33 is a target for neutralizing antibody responses against EEV. In this study, we produced seven murine anti-A33 monoclonal antibodies (MAbs) by immunizing mice with live VACV, followed by boosting with the soluble A33 homodimeric ectodomain. Five A33 specific MAbs were capable of neutralizing EEV in the presence of complement. All MAbs bind to conformational epitopes on A33 but not to linear peptides. To identify the epitopes, we have adetermined the crystal structures of three representative neutralizing MAbs in complex with A33. We have further determined the binding kinetics for each of the three antibodies to wild-type A33, as well as to engineered A33 that contained single alanine substitutions within the epitopes of the three crystallized antibodies. While the Fab of both MAbs A2C7 and A20G2 binds to a single A33 subunit, the Fab from MAb A27D7 binds to both A33 subunits simultaneously. A27D7 binding is resistant to single alanine substitutions within the A33 epitope. A27D7 also demonstrated high-affinity binding with recombinant A33 protein that mimics other orthopoxvirus strains in the A27D7 epitope, such as ectromelia, monkeypox, and cowpox virus, suggesting that A27D7 is a potent cross-neutralizer. Finally, we confirmed that A27D7 protects mice against a lethal challenge with ectromelia virus.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/metabolism
- Antibodies, Neutralizing/therapeutic use
- Antibody Affinity
- Antibody Specificity
- Antigen-Antibody Complex/chemistry
- Antigen-Antibody Complex/genetics
- Antigen-Antibody Complex/metabolism
- Chlorocebus aethiops
- Female
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Fab Fragments/metabolism
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice, Inbred BALB C
- Models, Molecular
- Mutation
- Orthopoxvirus/immunology
- Orthopoxvirus/physiology
- Poxviridae Infections/immunology
- Poxviridae Infections/prevention & control
- Poxviridae Infections/virology
- Protein Conformation
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Recombinant Proteins/therapeutic use
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/metabolism
- Vaccines, Synthetic/therapeutic use
- Vero Cells
- Viral Envelope Proteins/antagonists & inhibitors
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/metabolism
- Viral Tropism
- Viral Vaccines/chemistry
- Viral Vaccines/genetics
- Viral Vaccines/metabolism
- Viral Vaccines/therapeutic use
Collapse
Affiliation(s)
- Michael H. Matho
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Andrew Schlossman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Xiangzhi Meng
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Mohammed Rafii-El-Idrissi Benhnia
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville; and Laboratory of Immunovirology, Unit 211, Biomedicine Institute of Seville (IBIS), Seville, Spain
| | - Thomas Kaever
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Mark Buller
- Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Konstantin Doronin
- Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Scott Parker
- Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Yan Xiang
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Dirk M. Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Struzik J, Szulc-Dąbrowska L, Papiernik D, Winnicka A, Niemiałtowski M. Modulation of proinflammatory NF-κB signaling by ectromelia virus in RAW 264.7 murine macrophages. Arch Virol 2015; 160:2301-14. [PMID: 26141411 DOI: 10.1007/s00705-015-2507-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 06/19/2015] [Indexed: 02/07/2023]
Abstract
Macrophages are antigen-presenting cells (APCs) that play a crucial role in the innate immune response and may be involved in both clearance and spread of viruses. Stimulation of macrophages via Toll-like receptors (TLRs) results in activation of nuclear factor κB (NF-κB) and synthesis of proinflammatory cytokines. In this work, we show modulation of proinflammatory NF-κB signaling by a member of the family Poxviridae, genus Orthopoxvirus--ectromelia virus (ECTV)--in RAW 264.7 murine macrophages. ECTV interfered with p65 NF-κB nuclear translocation induced by TLR ligands such as lipopolysaccharide (LPS) (TLR4), polyinosinic-polycytidylic acid (poly(I:C)) (TLR3) and diacylated lipopeptide Pam2CSK4 (TLR2/6). We observed that ECTV modulates phosphorylation of Ser32 of inhibitor of κB (IκBα) and Ser536 of p65. Interference of ECTV with TLR signaling pathways implied that proinflammatory cytokine synthesis was inhibited. Our studies provide new insights into the strategies of proinflammatory signaling modulation by orthopoxviruses during their replication cycle in immune cells. Understanding important immune interactions between viral pathogens and APCs might contribute to the identification of drug targets and the development of vaccines.
Collapse
Affiliation(s)
- Justyna Struzik
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland
| | | | | | | | | |
Collapse
|
23
|
Israely T, Melamed S, Achdout H, Erez N, Politi B, Waner T, Lustig S, Paran N. TLR3 and TLR9 agonists improve postexposure vaccination efficacy of live smallpox vaccines. PLoS One 2014; 9:e110545. [PMID: 25350003 PMCID: PMC4211728 DOI: 10.1371/journal.pone.0110545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 09/14/2014] [Indexed: 12/14/2022] Open
Abstract
Eradication of smallpox and discontinuation of the vaccination campaign resulted in an increase in the percentage of unvaccinated individuals, highlighting the need for postexposure efficient countermeasures in case of accidental or deliberate viral release. Intranasal infection of mice with ectromelia virus (ECTV), a model for human smallpox, is curable by vaccination with a high vaccine dose given up to 3 days postexposure. To further extend this protective window and to reduce morbidity, mice were vaccinated postexposure with Vaccinia-Lister, the conventional smallpox vaccine or Modified Vaccinia Ankara, a highly attenuated vaccine in conjunction with TLR3 or TLR9 agonists. We show that co-administration of the TLR3 agonist poly(I:C) even 5 days postexposure conferred protection, avoiding the need to increase the vaccination dose. Efficacious treatments prevented death, ameliorated disease symptoms, reduced viral load and maintained tissue integrity of target organs. Protection was associated with significant elevation of serum IFNα and anti-vaccinia IgM antibodies, modulation of IFNγ response, and balanced activation of NK and T cells. TLR9 agonists (CpG ODNs) were less protective than the TLR3 agonist poly(I:C). We show that activation of type 1 IFN by poly(I:C) and protection is achievable even without co-vaccination, requiring sufficient amount of the viral antigens of the infective agent or the vaccine. This study demonstrated the therapeutic potential of postexposure immune modulation by TLR activation, allowing to alleviate the disease symptoms and to further extend the protective window of postexposure vaccination.
Collapse
Affiliation(s)
- Tomer Israely
- Department of Infectious diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Sharon Melamed
- Department of Infectious diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Hagit Achdout
- Department of Infectious diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Noam Erez
- Department of Infectious diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Boaz Politi
- Department of Infectious diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Trevor Waner
- Department of Infectious diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Shlomo Lustig
- Department of Infectious diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Nir Paran
- Department of Infectious diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
- * E-mail:
| |
Collapse
|
24
|
Davies DH, Chun S, Hermanson G, Tucker JA, Jain A, Nakajima R, Pablo J, Felgner PL, Liang X. T cell antigen discovery using soluble vaccinia proteome reveals recognition of antigens with both virion and nonvirion association. THE JOURNAL OF IMMUNOLOGY 2014; 193:1812-27. [PMID: 25024392 DOI: 10.4049/jimmunol.1400663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vaccinia virus (VACV) is a useful model system for understanding the immune response to a complex pathogen. Proteome-wide Ab profiling studies reveal the humoral response to be strongly biased toward virion-associated Ags, and several membrane proteins induce Ab-mediated protection against VACV challenge in mice. Some studies have indicated that the CD4 response is also skewed toward proteins with virion association, whereas the CD8 response is more biased toward proteins with early expression. In this study, we have leveraged a VACV strain Western Reserve (VACV-WR) plasmid expression library, produced previously for proteome microarrays for Ab profiling, to make a solubilized full VACV-WR proteome for T cell Ag profiling. Splenocytes from VACV-WR-infected mice were assayed without prior expansion against the soluble proteome in assays for Th1 and Th2 signature cytokines. The response to infection was polarized toward a Th1 response, with the distribution of reactive T cell Ags comprising both early and late VACV proteins. Interestingly, the proportions of different functional subsets were similar to that present in the whole proteome. In contrast, the targets of Abs from the same mice were enriched for membrane and other virion components, as described previously. We conclude that a "nonbiasing" approach to T cell Ag discovery reveals a T cell Ag profile in VACV that is broader and less skewed to virion association than the Ab profile. The T cell Ag mapping method developed in the present study should be applicable to other organisms where expressible "ORFeome" libraries are also available, and it is readily scalable for larger pathogens.
Collapse
Affiliation(s)
- D Huw Davies
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697; Antigen Discovery, Inc., Irvine, CA 92618; and
| | - Sookhee Chun
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | | | - Jo Anne Tucker
- Division of Hematology and Oncology, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Aarti Jain
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Rie Nakajima
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Jozelyn Pablo
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697; Antigen Discovery, Inc., Irvine, CA 92618; and
| | - Philip L Felgner
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | | |
Collapse
|