1
|
Bader El Din NG, Farouk S. Exploring the Impact of Different Inflammatory Cytokines on Hepatitis C Virus Infection. J Interferon Cytokine Res 2024; 44:233-243. [PMID: 38563804 DOI: 10.1089/jir.2024.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Hepatitis C virus (HCV) infection is a global health concern affecting millions worldwide. Chronic HCV infection often leads to liver inflammation and can progress to cirrhosis and hepatocellular carcinoma. Inflammatory cytokines are crucial in modulating the immune response during HCV infection. This review aims to investigate the impact of different inflammatory cytokines on HCV infection and associated immune responses. This review was conducted to identify relevant studies on the interplay between inflammatory cytokines and HCV infection. The analysis focused on the effects of key inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1 (IL-1), and interferon-gamma (IFN-γ), on HCV replication, immune cell activation, and liver inflammation. The findings reveal that these inflammatory cytokines can significantly influence HCV infection and the subsequent immune response. TNF-α, IL-6, and IL-1 have been shown to enhance HCV replication, while IFN-γ exerts antiviral effects by inhibiting viral replication and promoting immune cell-mediated clearance of infected hepatocytes. Moreover, these cytokines contribute to the recruitment and activation of immune cells, such as natural killer cells, T cells, and macrophages, which play critical roles in controlling HCV infection. Understanding the precise mechanisms by which inflammatory cytokines impact HCV infection is crucial for developing more targeted therapeutic strategies. Modulating the levels or activity of specific cytokines may provide opportunities to attenuate HCV replication, reduce liver inflammation, and improve treatment outcomes. In conclusion, this review highlights the significance of inflammatory cytokines in influencing HCV infection and associated immune responses.
Collapse
Affiliation(s)
- Noha G Bader El Din
- Microbial Biotechnology Department, Biotechnology Institute, National Research Center, Cairo, Egypt
| | - Sally Farouk
- Microbial Biotechnology Department, Biotechnology Institute, National Research Center, Cairo, Egypt
| |
Collapse
|
2
|
Moustafa RI, Faraag AHI, El-Shenawy R, Agwa MM, Elsayed H. Harnessing immunoinformatics for developing a multiple-epitope peptide-based vaccination approach against SARS-CoV-2 spike protein. Saudi J Biol Sci 2023; 30:103661. [PMID: 37163156 PMCID: PMC10141799 DOI: 10.1016/j.sjbs.2023.103661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
COVID-19 has spread to over 200 countries with variable severity and mortality rates. Computational analysis is a valuable tool for developing B-cell and T-cell epitope-based vaccines. In this study, by harnessing immunoinformatics tools, we designed a multiple-epitope vaccine to protect against COVID-19. The candidate epitopes were designed from highly conserved regions of the SARS-CoV-2 spike (S) glycoprotein. The consensus amino acids sequence of ten SARS-CoV-2 variants including Gamma, Beta, Epsilon, Delta, Alpha, Kappa, Iota, Lambda, Mu, and Omicron was involved. Applying the multiple sequence alignment plugin and the antigenic prediction tools of Geneious prime 2021, ten predicted variants were identified and consensus S-protein sequences were used to predict the antigenic part. According to ElliPro analysis of S-protein B-cell prediction, we explored 22 continuous linear epitopes with high scores ranging from 0.879 to 0.522. First, we reported five promising epitopes: BE1 1115-1192, BE2 481-563, BE3 287-313, BE4 62-75, and BE5 112-131 with antigenicity scores of 0.879, 0.86, 0.813, 0.779, and 0.765, respectively, while only nine discontinuous epitopes scored between 0.971 and 0.511. Next, we identified 194 Major Histocompatibility Complex (MHC) - I and 156 MHC - II epitopes with antigenic characteristics. These spike-specific peptide-epitopes with characteristically high immunogenic and antigenic scores have the potential as a SARS-CoV-2 multiple-epitope peptide-based vaccination strategy. Nevertheless, further experimental investigations are needed to test for the vaccine efficacy and efficiency.
Collapse
Affiliation(s)
- Rehab I Moustafa
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Egypt
| | - Ahmed H I Faraag
- Botany and Microbiology Department, Faculty of Science, Helwan University, Egypt
- School of Biotechnology, Badr University in Cairo, Egypt
| | | | - Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Egypt
| | - Hassan Elsayed
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Egypt
| |
Collapse
|
3
|
Keyhole Limpet Hemocyanin-Conjugated Peptides from Hepatitis C Virus Glycoproteins Elicit Neutralizing Antibodies in BALB/c Mice. J Immunol Res 2021; 2021:3108157. [PMID: 33532506 PMCID: PMC7834783 DOI: 10.1155/2021/3108157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Currently, no vaccine to prevent hepatitis C virus (HCV) infection is available. A major challenge in developing an HCV vaccine is the high diversity of HCV sequences. The purpose of immunization with viral glycoproteins is to induce a potent and long-lasting cellular and humoral immune response. However, this strategy only achieves limited protection, and antigen selection plays a crucial role in vaccine design. In this study, we investigated the humoral immune responses induced by intraperitoneal injection of keyhole limpet hemocyanin conjugated with 4 highly conserved peptides, including amino acids [aa]317-325 from E1 and aa418-429, aa502-518, and aa685-693 from E2, or 3 peptides from hypervariable region 1 (HVR1) of E2, including the N terminus of HVR1 (N-HVR1, aa384-396), C terminus of HVR1 (C-HVR1, aa397-410), and HVR1 in BALB/c mice. The neutralizing activity against HCV genotypes 1-6 was assessed using the cell culture HCV (HCVcc) system. The results showed that the 4 conserved peptides efficiently induced antibodies with potent neutralizing activity against 3 or 4 genotypes. Antibodies induced by aa685-693 conferred potent protection (>50%) against genotypes 2, 4, and 5. Peptide N-HVR1 elicited antibodies with the most potent neutralization activities against 3 HCV genotypes: TNcc(1a), S52(3a), and ED43(4a). These findings suggested that peptides within HCV glycoproteins could serve as potent immunogens for vaccine design and development.
Collapse
|
4
|
Dawood RM, Salum GM, Abdelhafez TH, El Shenawy R, Ibrahim NE, El Awady MK. Safety and tolerability of mice to repeated subcutaneous injections of a peptide mix as a potential vaccine against HCV infection. Hum Antibodies 2019; 27:105-110. [PMID: 30594921 DOI: 10.3233/hab-180354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS In this study, the safety and tolerability of new candidate HCV vaccine named Cenv6 were screened in mice. Cenv6 peptide is composed of 6 synthetic HCV peptides (3 structural and 3 nonstructural peptides). METHODS Forty eight mice were enrolled in this study, 12 controls and 36 mice (the thirty-six mice were categorized into 3 groups according to administered doses (3 monthly doses of 800 ng, 1600 ng, and 16 μg/25 gm mouse body weight (bw))). Hematological, biochemical and histopathological changes were appraised. RESULTS Our data indicated that the doses of 800 ng and 1600 ng of Cenv6 per 25 gm mouse body weight were safe as compared to the dose 16 μg/25 gm bw (10 times more than the potential therapeutic dose) for all examined tissues while the 16 μg Cenv6 dose provoked histopathological changes in kidneys, liver and lungs. CONCLUSIONS The extravagant histopathological changes in different organs have exiled the 16 μg dose out of acceptable range and validated that Cenv6 is safe and tolerable at the two lower doses (800 and 1600 ng/25 gm bw).
Collapse
|
5
|
Tabll A, El-Shenawy R, Abd YE. Progress in Vaccine Development for HCV Infection. UPDATE ON HEPATITIS C 2017. [DOI: 10.5772/intechopen.70649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
6
|
Abdelhafez TH, Bader El Din NG, Tabll AA, Mashaly MM, Dawood RM, Yassin NA, El-Awady MK. Mice Antibody Response to Conserved Nonadjuvanted Multiple Antigenic Peptides Derived from E1/E2 Regions of Hepatitis C Virus. Viral Immunol 2017; 30:359-365. [PMID: 28402196 DOI: 10.1089/vim.2016.0123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Synthetic peptides are one of the hepatitis C virus (HCV)-specific small molecules that have antiviral activity and represent a target for HCV vaccine. This study aims to determine the lowest concentration of adjuvanted and non-adjuvanted (multiple antigenic peptide [MAP]) form of three conserved HCV envelope peptides that can induce murine immunogenic responses and evaluate the neutralization capacities of the generated antibodies (Abs) against HCV in cultured Huh7.5 cells. In this study, three HCV synthetic peptides, E1 peptide (a.a 315-323) and E2 peptides (a.a 412-419 and a.a 516-531) were synthesized. Female Balb/c mice were immunized with different concentration of either adjuvanted linear peptides or nonadjuvanted MAP peptides to determine the lowest dose that generates Ab responses enough to confer viral neutralization in vitro. The humoral responses targeting these peptides in immunized mice sera were measured by enzyme-linked immunosorbent assay (ELISA). Viral neutralization capacities of the generated mice Abs were assessed using Huh7.5 cells infected with the HCVcc infectious system (J6/JFH-1). The results of this study showed that the MAPs induce higher Ab titers than adjuvanted linear peptides after 4 weeks of immunization (p = 0.003). The viral neutralization experiments showed that the immunized mice sera contain anti E1/E2 Abs that blocked HCVcc (J6/JFH-1) entry into Huh7.5 cells. In conclusion, the three HCV envelope MAP peptides are more immunogenic and produce higher neutralizing Abs than linear peptides; therefore, they can be essential components for HCV vaccine.
Collapse
Affiliation(s)
- Tawfeek H Abdelhafez
- 1 Department of Microbial Biotechnology, National Research Center , Dokki, Giza, Egypt
| | - Noha G Bader El Din
- 1 Department of Microbial Biotechnology, National Research Center , Dokki, Giza, Egypt
| | - Ashraf A Tabll
- 1 Department of Microbial Biotechnology, National Research Center , Dokki, Giza, Egypt
| | - Mohammad M Mashaly
- 2 Department of Chemistry, Faculty of Science, Damietta University , Damietta, Egypt
| | - Reham M Dawood
- 1 Department of Microbial Biotechnology, National Research Center , Dokki, Giza, Egypt
| | - Nemat A Yassin
- 3 Department of Pharmacology, National Research Center , Dokki, Giza, Egypt
| | - Mostafa K El-Awady
- 1 Department of Microbial Biotechnology, National Research Center , Dokki, Giza, Egypt
| |
Collapse
|
7
|
余 健, 刘 旭, 刘 雨, 何 晓, 惠 媛, 张 宝, 朱 利, 赵 卫. [Three-dimensional morphology of C6/36 cells infected by dengue virus: a study based on digital holographic microscopy]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:301-307. [PMID: 28377343 PMCID: PMC6780445 DOI: 10.3969/j.issn.1673-4254.2017.03.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To monitor the 3-dimensional (3D) morphological changes of C6/36 cells during dengue virus (DENV) infection using a live-cell imaging technique based on digital holographic microscopy and provide clues for better understanding the mechanisms of DENV infection. METHODS C6/36 cells were seeded in 6-well plates to determine the optimal imaging density under a holographic cell imager, and the morphological changes of the cells were recorded in response to a culture temperature change from 28 degrees celsius; to 37 degrees celsius; C6/36 cells were infected with 4 DENV strains with different serotypes at 28 degrees celsius; and incubated at 37 degrees celsius; for 24 h, and the 3D holograms and relevant morphological parameters were recorded at different time points using HoloMonitor M4 holographic cell imaging and analysis system. RESULTS The holograms of C6/36 cells inoculated at the optimal density for imaging (4×105 per well) showed unified 3D morphologies of the single cells with minimal dispersions in the cell area, thickness and volume (P<0.05), which did not undergo obvious changes when the cells were incubated at 37 degrees celsius; for 24 h (P>0.05). The cell area and volume of the cells infected with the 4 DENV strains all increased and the cell thickness was reduced during incubation. Among the 4 strains, DENV-1 and DENV-2 caused reduced cell thickness while DENV-3 and DENV-4 increased the cell thickness, and the pattern and degree of such changes differ among the 4 strains. CONCLUSIONS Digital holographic microscopy allows monitoring of the complex morphological changes of cells during DENV infection. The 4 DENV strains with different serotypes causes characteristic cell damages during infection.
Collapse
Affiliation(s)
- 健海 余
- />南方医科大学公共卫生学院三级生物安全实验室,广东 广州 510515Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 旭玲 刘
- />南方医科大学公共卫生学院三级生物安全实验室,广东 广州 510515Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 雨菁 刘
- />南方医科大学公共卫生学院三级生物安全实验室,广东 广州 510515Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 晓恩 何
- />南方医科大学公共卫生学院三级生物安全实验室,广东 广州 510515Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 媛 惠
- />南方医科大学公共卫生学院三级生物安全实验室,广东 广州 510515Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 宝 张
- />南方医科大学公共卫生学院三级生物安全实验室,广东 广州 510515Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 利 朱
- />南方医科大学公共卫生学院三级生物安全实验室,广东 广州 510515Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 卫 赵
- />南方医科大学公共卫生学院三级生物安全实验室,广东 广州 510515Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
8
|
Fazlalipour M, Keyvani H, Monavari SHR, Mollaie HR. Expression, Purification and Immunogenic Description of a Hepatitis C Virus Recombinant CoreE1E2 Protein Expressed by Yeast Pichia pastoris. Jundishapur J Microbiol 2015; 8:e17157. [PMID: 26034544 PMCID: PMC4449863 DOI: 10.5812/jjm.8(4)2015.17157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 05/14/2014] [Accepted: 07/26/2014] [Indexed: 01/26/2023] Open
Abstract
Background: Gradual development of a useful vaccine can be the main point in the control and eradication of Hepatitis C virus (HCV) infection. Hepatitis C Virus envelope glycoproteins are considered as the main HCV vaccine candidate. Objectives: In this study, the Pichia pastoris expression system was used to express a recombinant HCV CoreE1E2 protein, which consists of Core (269 nt-841nt) E1 (842 nt-1417nt) and E2 (1418 nt-2506nt). Materials and Methods: By a codon optimization technique based on the P. pastoris expression system, we could increase the rate of recombinant proteins. Moreover, the purified protein can efficiently induce anti-CoreE1E2 antibodies in rabbits, and also by developing a homemade Enzyme-Linked ELISA kit we can detect antibody of HCV Iranian patients with genotype 1a. Results: In our study, the virus-like particle of rCoreE1E2 with 70 nm size, was shown by Electron microscopy and proved the self-assembly in vitro in a yeast expression system. Conclusions: These findings of the present study indicate that the recombinant CoreE1E2 glycoprotein is effective in inducing neutralizing antibodies, and is an influential HCV vaccine candidate.
Collapse
Affiliation(s)
- Mehdi Fazlalipour
- Department of Medical Virology, Iran University of Medical Sciences, Tehran, IR Iran
| | - Hossein Keyvani
- Department of Medical Virology, Iran University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Hossein Keyvani, Department of Medical Virology, Iran University of Medical Sciences, Tehran, IR Iran. Tel/Fax: +98-9126222938, E-mail:
| | | | - Hamid Reza Mollaie
- Department of Medical Virology, Iran University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
9
|
Parizi LF, Sabadin GA, Alzugaray MF, Seixas A, Logullo C, Konnai S, Ohashi K, Masuda A, da Silva Vaz I. Rhipicephalus microplus and Ixodes ovatus cystatins in tick blood digestion and evasion of host immune response. Parasit Vectors 2015; 8:122. [PMID: 25889092 PMCID: PMC4340882 DOI: 10.1186/s13071-015-0743-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cystatins are a group of cysteine protease inhibitors responsible for physiological proteolysis regulation and present in a wide range of organisms. Studies about this class of inhibitors in parasites have contributed to clarify their roles in important physiological processes, like blood digestion and modulation of host immune response during blood feeding. Thus, cystatins are a subject of research on the development of new parasite control methods. Additionally, the characterization of proteins shared by different parasite species represents a valuable strategy to find potential targets in multi-species control methods. However, cystatin functions in ticks remain undetermined, especially in Rhipicephalus microplus and Ixodes ovatus, two species that affect livestock and human health, respectively. METHODS Here we report the inhibitory profile of two R. microplus (BrBmcys2b and BrBmcys2c) and one I. ovatus (JpIocys2a) cystatins to commercial cathepsins B, C, and L. The presence of native cystatins in R. microplus tissues was analyzed using sera against recombinant BrBmcys2b and BrBmcys2c. Also, a peptide from JpIocys2a was synthesized for rabbit immunization, and this serum was used to analyze the cross antigenicity between R. microplus and I. ovatus cystatins. RESULTS Enzymatic inhibition profile of tick cystatins shows a distinct modulation for cathepsins related to tick blood digestion and evasion of host immune response. Furthermore, BrBmcys2b was detected in saliva and different tissues along tick stages, while BrBmcys2c was detected mainly in gut from partially engorged R. microplus females, demonstrating a distinct pattern of cystatin expression, secretion and traffic between tick tissues. Moreover, phylogenetic analysis suggests that JpIocys2a belongs to the group of tick gut secreted cystatins. Finally, cross-antigenicity assays revealed that antibodies against the JpIocys2a peptide recognize native and recombinant R. microplus cystatins. CONCLUSION The presence of these proteins in different tissues and their ability to differentially inhibit cathepsins suggest distinct roles for JpIocys2a, BrBmcys2b, and BrBmcys2c in blood digestion, egg and larvae development, and modulation of host immune response in tick physiology. The cross-antigenicity between native and recombinant cystatins supports further experiments using JpIocys2a, BrBmcys2b, and BrBmcys2c as vaccine antigens.
Collapse
Affiliation(s)
- Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre, 91501-970, , RS, Brazil.
| | - Gabriela Alves Sabadin
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre, 91501-970, , RS, Brazil.
| | - María Fernanda Alzugaray
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre, 91501-970, , RS, Brazil.
- Departamento de Ciencias Microbiológicas, Laboratorio de Inmunología, Facultad de Veterinaria, UDELAR, Montevideo, Uruguay.
| | - Adriana Seixas
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre, 91501-970, , RS, Brazil.
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre, 90050-170, , RS, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| | - Carlos Logullo
- Laboratório de Química e Função de Proteínas e Peptídeos-CBB-UENF and Unidade de Experimentação Animal, Avenida Alberto Lamego, 2000, Horto, Campos dos Goytacazes, 28015-620, , RJ, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| | - Satoru Konnai
- Department of Disease Control, Laboratory of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, 060-0818, Sapporo, Hokkaido, Japan.
| | - Kazuhiko Ohashi
- Department of Disease Control, Laboratory of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, 060-0818, Sapporo, Hokkaido, Japan.
| | - Aoi Masuda
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre, 91501-970, , RS, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre, 91501-970, , RS, Brazil.
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090, Porto Alegre, 91540-000, , RS, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Shawky H, Maghraby AS, Solliman MED, El-Mokadem MT, Sherif MM, Arafa A, Bahgat MM. Expression, immunogenicity and diagnostic value of envelope proteins from an Egyptian hepatitis C virus isolate. Arch Virol 2015; 160:945-58. [PMID: 25631616 DOI: 10.1007/s00705-015-2334-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/02/2015] [Indexed: 12/28/2022]
Abstract
The present work aimed at 1) characterization of the E1 and E2 proteins (HCV-E) from an Egyptian hepatitis C virus genotype 4a (HCV-4a) isolate at the molecular and immunological level, 2) in silico identification of the B- and T-cell epitopes responsible for the immunogenicity of HCV-E, and 3) evaluation of the diagnostic potential of both the recombinant HCV-E and antibodies raised using mammalian expression constructs encoding the protein. The region encoding the E1 and E2 proteins was amplified by RT-PCR from RNA isolated from blood of a human infected with HCV-4 and cloned into the pSC-TA plasmid, and the sequence was verified and used to construct a neighbor-joining phylogenetic tree. The translated nucleotide sequence was used to predict the HCV-E secondary structure using the PREDICT-PROTEIN server and PSI-PRED. A 3D model of HCV-E was generated using the online tool 3Dpro. B- and T-cell epitopes were predicted using the online tools BCPred and Epijen v1.0, respectively. The HCV-E-encoding sequence was later subcloned into the mammalian expression plasmid pQE, and the constructs that were generated were used to immunize mice in the absence and presence of adjuvants of plant origin. The maximum sequence identity obtained by nucleotide and protein BLAST analysis with previously published HCV-E sequences was 85 and 77 %, respectively. The B-cell epitope CFTPSPVVV at position 203 and the T-cell epitope ALSTGLIHL at position 380 were found to be highly conserved among all HCV genotypes. Both ELISA and Western blotting experiments on crude and purified recombinant HCV envelope proteins using mouse antisera raised using the HCV-E mammalian expression construct confirmed the specific antigenicity of the expressed protein. The antibodies raised in mice using the HCV-E-encoding construct could efficiently capture circulating antigens in patients' sera with good sensitivity that correlated with liver enzyme levels (r = 0.4052, P < 0.0001 for ALT; r = -0.5439, P = 0.0019 for AST). Moreover, combining the HCV-E-encoding construct with extracts prepared from Echinacea purpurea and Nigella sativa prior to immunizing mice significantly (P < 0.05) increased both the humoral (14.9- to 20-fold increase in antibodies) and the cellular (CD4(+) and cytotoxic CD8(+)- T lymphocytes) responses compared to mice that received the DNA construct alone or PBS-treated mice. Both recombinant HCV-E protein preparations and antibodies raised using the HCV-E-encoding mammalian expression construct represent useful diagnostic tools that can report on active HCV infection. Also, the immunostimulatory effects induced by the two plant extracts used at the cellular and humoral level highlight the potential of natural products for inducing protection against HCV infection. The neutralizing capacity of the induced antibodies is a subject of future investigations. Furthermore, the predicted B- and T-cell epitopes may be useful for tailoring future diagnostics and candidate vaccines against various HCV genotypes.
Collapse
Affiliation(s)
- Heba Shawky
- The Immunology and Infectious Diseases Laboratory, Therapeutic Chemistry Department, The Center of Excellence for Advanced Sciences, The National Research Centre, Dokki, Giza, 12622, Egypt,
| | | | | | | | | | | | | |
Collapse
|
11
|
El-Shenawy R, Tabll A, Bader El Din NG, El Abd Y, Mashaly M, Abdel Malak CA, Dawood R, El-Awady M. Antiviral activity of virocidal peptide derived from NS5A against two different HCV genotypes: an in vitro study. J Immunoassay Immunochem 2015; 36:63-79. [PMID: 24606010 DOI: 10.1080/15321819.2014.896264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study aimed at assessment of the antiviral activity of an amphipathic α-helical peptide derived from the hepatitis C virus NS5A known as C5A virocidal peptide against different HCV genotypes. Two sources of HCV virus for in vitro study: HCV genotype 4 sera samples and JFH-1 infectious culture system genotype 2a were used. Several virocidal peptide concentrations were tested to determine the concentration that inhibits HCV propagation in Huh 7.5 cells according to three different prortocols (pre-infection, coinfection, and post infection). The capacity of the virocidal peptide to block HCV in Huh7.5 cells infected with different 10 individual serum samples was evaluated. In the pre-infection protocol, virocidal concentration (20, 50, and 75 μM) showed no viral RNA. In the co-infection protocol, virocidal concentrations (10, 20, 50, 75 μM) showed no viral RNA while in post-infection protocol, 75 μM was the only concentration that blocked the HCV activity. Results of Huh7.5 cell line transfected with HCV cc J6/JFH and treated with virocidal peptide revealed that only the higher virocidal concentration (75 μM) showed no amplification. The percentage of virocidal blocking in the 10 HCV individual serum samples was 60%. In conclusion, the C5A virocidal peptide has potent antiviral activity against HCV.
Collapse
Affiliation(s)
- Reem El-Shenawy
- a Department of Microbial Biotechnology , National Research Center , Giza , Egypt
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Gededzha MP, Mphahlele MJ, Selabe SG. Characterization of HCV genotype 5a envelope proteins: implications for vaccine development and therapeutic entry target. HEPATITIS MONTHLY 2014; 14:e23660. [PMID: 25598792 PMCID: PMC4286708 DOI: 10.5812/hepatmon.23660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/08/2014] [Accepted: 10/26/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) is one of the major causes of cirrhosis and hepatocellular carcinoma with an estimation of 185 million people with infection. The E2 is the main target for neutralizing antibody responses and the variation of this region is related to maintenance of persistent infection by emerging escape variants and subsequent development of chronic infection. While both E1 and E2 are hypervariable in nature, it is difficult to design vaccines or therapeutic drugs against them. OBJECTIVES The objective of this study was to characterize genotype 5a E1 and E2 sequences to determine possible glycosylation sites, conserved B-cell epitopes and peptides in HCV that could be useful targets in design of vaccine and entry inhibitors. PATIENTS AND METHODS This study was conducted through PCR amplification of E1 and E2 regions, sequencing, prediction of B-cell epitopes, analysis of N-linked glycosylation and peptide design in 18 samples of HCV genotype 5a from South African. RESULTS Differences in the probability of glycosylation in E1 and E2 regions were observed in this study. Three conserved antigenic B-cell epitopes were predicted in the E2 regions and also 11 short peptides were designed from the highly conserved residues. CONCLUSIONS This study provided conserved B-cell epitopes and peptides that can be useful for designing entry inhibitors and vaccines able to cover a global population, especially where genotype 5a is common.
Collapse
Affiliation(s)
- Maemu Petronella Gededzha
- Department of Virology, HIV and Hepatitis Research Unit, University of Limpopo, Medunsa Campus/National Health Laboratory Service, Pretoria, South Africa
- Corresponding Author: Maemu Petronella Gededzha, Department of Virology, HIV and Hepatitis Research Unit, University of Limpopo, Medunsa Campus/National Health Laboratory Service, Pretoria, South Africa. Tel: +27-125213631, Fax: +27-125215794, E-mail:
| | - Maphahlanganye Jeffrey Mphahlele
- Department of Virology, HIV and Hepatitis Research Unit, University of Limpopo, Medunsa Campus/National Health Laboratory Service, Pretoria, South Africa
| | - Selokela Gloria Selabe
- Department of Virology, HIV and Hepatitis Research Unit, University of Limpopo, Medunsa Campus/National Health Laboratory Service, Pretoria, South Africa
| |
Collapse
|
13
|
Al Olaby RR, Cocquerel L, Zemla A, Saas L, Dubuisson J, Vielmetter J, Marcotrigiano J, Khan AG, Catalan FV, Perryman AL, Freundlich JS, Forli S, Levy S, Balhorn R, Azzazy HM. Identification of a novel drug lead that inhibits HCV infection and cell-to-cell transmission by targeting the HCV E2 glycoprotein. PLoS One 2014; 9:e111333. [PMID: 25357246 PMCID: PMC4214736 DOI: 10.1371/journal.pone.0111333] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/23/2014] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C Virus (HCV) infects 200 million individuals worldwide. Although several FDA approved drugs targeting the HCV serine protease and polymerase have shown promising results, there is a need for better drugs that are effective in treating a broader range of HCV genotypes and subtypes without being used in combination with interferon and/or ribavirin. Recently, two crystal structures of the core of the HCV E2 protein (E2c) have been determined, providing structural information that can now be used to target the E2 protein and develop drugs that disrupt the early stages of HCV infection by blocking E2’s interaction with different host factors. Using the E2c structure as a template, we have created a structural model of the E2 protein core (residues 421–645) that contains the three amino acid segments that are not present in either structure. Computational docking of a diverse library of 1,715 small molecules to this model led to the identification of a set of 34 ligands predicted to bind near conserved amino acid residues involved in the HCV E2: CD81 interaction. Surface plasmon resonance detection was used to screen the ligand set for binding to recombinant E2 protein, and the best binders were subsequently tested to identify compounds that inhibit the infection of Huh-7 cells by HCV. One compound, 281816, blocked E2 binding to CD81 and inhibited HCV infection in a genotype-independent manner with IC50’s ranging from 2.2 µM to 4.6 µM. 281816 blocked the early and late steps of cell-free HCV entry and also abrogated the cell-to-cell transmission of HCV. Collectively the results obtained with this new structural model of E2c suggest the development of small molecule inhibitors such as 281816 that target E2 and disrupt its interaction with CD81 may provide a new paradigm for HCV treatment.
Collapse
Affiliation(s)
- Reem R. Al Olaby
- Department of Chemistry, The American University in Cairo, New Cairo, Egypt
| | - Laurence Cocquerel
- Center for Infection and Immunity of Lille, CNRS-UMR8204/Inserm-U1019, Pasteur Institute of Lille, University of Lille North of France, Lille, France
| | - Adam Zemla
- Pathogen Bioinformatics, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Laure Saas
- Center for Infection and Immunity of Lille, CNRS-UMR8204/Inserm-U1019, Pasteur Institute of Lille, University of Lille North of France, Lille, France
| | - Jean Dubuisson
- Center for Infection and Immunity of Lille, CNRS-UMR8204/Inserm-U1019, Pasteur Institute of Lille, University of Lille North of France, Lille, France
| | - Jost Vielmetter
- Protein Expression Center, Beckman Institute, California Institute of Technology, Pasadena, CA, United States of America
| | - Joseph Marcotrigiano
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, United States of America
| | - Abdul Ghafoor Khan
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, United States of America
| | - Felipe Vences Catalan
- Department of Medicine, Stanford University Medical Center, Stanford, CA, United States of America
| | - Alexander L. Perryman
- Department of Medicine, Division of Infectious Diseases, Center for Emerging & Re-emerging Pathogens, Rutgers University-New Jersey Medical School, Newark, NJ, United States of America
| | - Joel S. Freundlich
- Department of Medicine, Division of Infectious Diseases, Center for Emerging & Re-emerging Pathogens, Rutgers University-New Jersey Medical School, Newark, NJ, United States of America
- Department of Pharmacology and Physiology, Rutgers University-New Jersey Medical School, Newark, NJ, United States of America
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Shoshana Levy
- Department of Medicine, Stanford University Medical Center, Stanford, CA, United States of America
| | - Rod Balhorn
- Department of Applied Science, University of California Davis, Davis, CA, United States of America
- * E-mail:
| | - Hassan M. Azzazy
- Department of Chemistry, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
14
|
Ikram A, Anjum S, Tahir M. In Silico Identification and Conservation Analysis of B-cell and T-Cell Epitopes of Hepatitis C Virus 3a Genotype Enveloped Glycoprotein 2 From Pakistan: A Step Towards Heterologous Vaccine Design. HEPATITIS MONTHLY 2014; 14:e9832. [PMID: 24976845 PMCID: PMC4071360 DOI: 10.5812/hepatmon.9832] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/22/2013] [Accepted: 10/17/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) is known for the eminent global disease burden responsible for encumbering public health. Development of an effective vaccine is the major need of the day; however, several obstacles loom ahead of this objective. One of the major barriers is that as a RNA virus, it mutates rapidly resulting in high sequence divergence and several viral isolates in the world. Theglycoprotein 2 (gpE2) is the primary component of HCV envelope with direct interaction with the host cell surface receptors; it is an indispensable target of neutralizing antibodies and hence, should be a fundamental component of vaccine design. OBJECTIVES This study focused on B-cells and T-cells epitopes prediction in HCV gpE2, particularly in 3a genotype, in Pakistan and identification of the conserved epitopes among various 3a isolates at global level, principally conserved across HCV major genotypes. MATERIALS AND METHODS Epitope finding was done by using online available bioinformatics tools including Immune Epitope Database (IEDB), ProPred-I, and ProPred. Conservation of these epitopes was found by aligning selected gpE2 sequences using MultAlin online software and conservancy analysis tool available at IEDB. RESULTS Many B-cell and T-cell epitopes predicted in gpE2 were found conserved among HCV 3a genotypes whereas few were conserved in other genotypes anticipating these epitopes as potential candidates of producing strong B-cell and T-cell response against HCV 3a and other genotypes. CONCLUSIONS HCV gpE2 is an ideal target for HCV vaccine. Prediction of epitope immunogenicity and characterization on the basis of peptide sequences will be significantly helpful for development of a heterologous vaccine against HCV variants.
Collapse
Affiliation(s)
- Aqsa Ikram
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sadia Anjum
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Corresponding Author: Sadia Anjum, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan. Tel: +92-5190856152 Fax+92-5190856102, E-mail:
| | - Muhammad Tahir
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
15
|
Tabll AA, Atef K, Bader El Din NG, El Abd YS, Salem A, Sayed AA, Dawood RM, Omran MH, El-Awady MK. In vitro neutralization of HCV by goat antibodies against peptides encompassing regions downstream of HVR-1 of E2 glycoprotein. J Immunoassay Immunochem 2014; 35:12-25. [PMID: 24063613 DOI: 10.1080/15321819.2013.779925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This article aims at testing several in vitro systems with various viral sources and cell lines for propagation of HCV to evaluate goat antibodies raised against three E2 epitopes in viral neutralization experiments. Four human cell lines (Huh-7, Huh-7.5, HepG2, and CaCo2) were tested using two different HCV viral sources; Genotype 4 infected sera and J6/JFH HCV cc particles. Neutralization capacity of goat Abs against conserved E2 epitopes; p412 (a.a 412-419), p517 (a.a 517-531), and p430 (a.a 430-447) were examined in the above mentioned in vitro systems. Although infection with patients' sera seems to mimic the in vitro situation, it has limited replication rates as compared with HCV cc particularly in Huh7.5 cells. Non-HCV adapted Huh-7 cells were also found susceptible for transfection with J6/JFH virus but at much slower kinetics. The results of the neutralization assay showed that anti p412 and anti p517 were highly neutralizing to HCVcc. Our data demonstrate that antibodies directed against the viral surface glycoprotein E2 reduced the infectivity of the J6/JFH virus and are promising agents for immunotherapy and HCV vaccine development.
Collapse
Affiliation(s)
- Ashraf A Tabll
- a Department of Microbial Biotechnology National Research Center , Gizza , Egypt
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
El Abd YS, Tabll AA, El Din NGB, Hosny AEDS, Moustafa RI, El-Shenawy R, Atef K, El-Awady MK. Neutralizing activities of caprine antibodies towards conserved regions of the HCV envelope glycoprotein E2. Virol J 2011. [PMID: 21819575 DOI: 10.1186/1743-422x-8-391.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Anti HCV vaccine is not currently available and the present antiviral therapies fail to cure approximately half of the treated HCV patients. This study was designed to assess the immunogenic properties of genetically conserved peptides derived from the C-terminal region of HVR-1 and test their neutralizing activities in a step towards developing therapeutic and/or prophylactic immunogens against HCV infection. Antibodies were generated by vaccination of goats with synthetic peptides derived from HCV E2. Viral neutralizing capacity of the generated anti E2 antibodies was tested using in vitro assays. Goats immunized with E2 synthetic peptides termed p412 [a.a 412-419], p430 [a.a 430-447] and p517 [a.a 517-531] generated high titers of antibody responses 2 to 4.5 fold higher than comparable titers of antibodies to the same epitopes in chronic HCV patients. In post infection experiments of native HCV into cultured Huh7.5 cells anti p412 and anti p 517 were proven to be neutralizing to HCV genotype 4a from patients' sera (87.5% and 75% respectively). On the contrary anti p430 exhibited weak viral neutralization capacity on the same samples (31.25%). Furthermore Ab mixes containing anti p430 exhibited reduced viral neutralization properties. From these experiments one could predict that neutralization by Abs towards different E2-epitopes varies considerably and success in the enrichment of neutralization epitope-specific antibodies may be accompanied by favorable results in combating HCV infection. Also, E2 conserved peptides p517 and p412 represent potential components of a candidate peptide vaccine against HCV infection.
Collapse
Affiliation(s)
- Yasmine S El Abd
- Department of Microbial Biotechnology, National Research Center, Giza, Egypt
| | | | | | | | | | | | | | | |
Collapse
|
17
|
El Abd YS, Tabll AA, El Din NGB, Hosny AEDS, Moustafa RI, El-Shenawy R, Atef K, El-Awady MK. Neutralizing activities of caprine antibodies towards conserved regions of the HCV envelope glycoprotein E2. Virol J 2011; 8:391. [PMID: 21819575 PMCID: PMC3179750 DOI: 10.1186/1743-422x-8-391] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 08/05/2011] [Indexed: 02/07/2023] Open
Abstract
Anti HCV vaccine is not currently available and the present antiviral therapies fail to cure approximately half of the treated HCV patients. This study was designed to assess the immunogenic properties of genetically conserved peptides derived from the C-terminal region of HVR-1 and test their neutralizing activities in a step towards developing therapeutic and/or prophylactic immunogens against HCV infection. Antibodies were generated by vaccination of goats with synthetic peptides derived from HCV E2. Viral neutralizing capacity of the generated anti E2 antibodies was tested using in vitro assays. Goats immunized with E2 synthetic peptides termed p412 [a.a 412-419], p430 [a.a 430-447] and p517 [a.a 517-531] generated high titers of antibody responses 2 to 4.5 fold higher than comparable titers of antibodies to the same epitopes in chronic HCV patients. In post infection experiments of native HCV into cultured Huh7.5 cells anti p412 and anti p 517 were proven to be neutralizing to HCV genotype 4a from patients' sera (87.5% and 75% respectively). On the contrary anti p430 exhibited weak viral neutralization capacity on the same samples (31.25%). Furthermore Ab mixes containing anti p430 exhibited reduced viral neutralization properties. From these experiments one could predict that neutralization by Abs towards different E2-epitopes varies considerably and success in the enrichment of neutralization epitope-specific antibodies may be accompanied by favorable results in combating HCV infection. Also, E2 conserved peptides p517 and p412 represent potential components of a candidate peptide vaccine against HCV infection.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/pharmacology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/isolation & purification
- Antibodies, Neutralizing/pharmacology
- Antibody Specificity
- Antigenic Variation
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/virology
- Cell Line, Tumor
- Conserved Sequence/immunology
- Epitopes/immunology
- Goats/immunology
- Goats/virology
- Hepacivirus/chemistry
- Hepacivirus/drug effects
- Hepacivirus/genetics
- Hepacivirus/immunology
- Hepatitis C/drug therapy
- Hepatitis C/immunology
- Hepatitis C/prevention & control
- Hepatitis C/virology
- Hepatitis C Antibodies/immunology
- Hepatitis C Antibodies/isolation & purification
- Hepatitis C Antibodies/pharmacology
- Humans
- Neutralization Tests
- Peptides/administration & dosage
- Peptides/chemistry
- Peptides/immunology
- Vaccination
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/immunology
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Hepatitis Vaccines/chemistry
- Viral Hepatitis Vaccines/immunology
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/immunology
Collapse
Affiliation(s)
- Yasmine S El Abd
- Department of Microbial Biotechnology, National Research Center, Giza, Egypt
| | - Ashraf A Tabll
- Department of Microbial Biotechnology, National Research Center, Giza, Egypt
| | - Noha G Bader El Din
- Department of Microbial Biotechnology, National Research Center, Giza, Egypt
| | - Alaa El-Dien S Hosny
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Rehab I Moustafa
- Department of Microbial Biotechnology, National Research Center, Giza, Egypt
| | - Reem El-Shenawy
- Department of Microbial Biotechnology, National Research Center, Giza, Egypt
| | - Khaled Atef
- Department of Microbial Biotechnology, National Research Center, Giza, Egypt
| | - Mostafa K El-Awady
- Department of Microbial Biotechnology, National Research Center, Giza, Egypt
| |
Collapse
|
18
|
El-Awady MK, Tabll AA, Yousif H, El-Abd Y, Reda M, Khalil SB, El-Zayadi AR, Shaker MH, Bader El Din NG. Murine neutralizing antibody response and toxicity to synthetic peptides derived from E1 and E2 proteins of hepatitis C virus. Vaccine 2010; 28:8338-8344. [PMID: 19995542 DOI: 10.1016/j.vaccine.2009.11.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The highest estimated prevalence of HCV infection has been reported in Egypt, nearly 12% mostly type 4. Currently, a commercial vaccine to protect this high risk population as well as global HCV infected patients is not available. OBJECTIVES In the present study, we aim at: (1) examining the viral binding capacities of purified monospecific polyclonal murine antibodies raised against genetically conserved viral protein sequences, i.e. synthetic peptides derived from those sequences located within envelope proteins and (2) assessment of immunogenic properties and safety parameters of those peptides individually and in a vaccine format in mice. METHODS Purified IgG Abs from immunized mice were used in immunocapture RT-PCR experiments to test viral neutralization by Abs raised against each of 4 peptides termed p35 (E1), p36 (E2), p37 (E2) and p38 (E2). Swiss mice were immunized with each of the 3 peptides (p35, p37 and p38) which generated neutralizing antibodies in immunocapture experiments. Antibody responses to corresponding peptides were determined using different routes of administration, different adjuvants, different doses and at different time points post-injection. To explore the dose range for future pharmacological studies, three doses namely 50 ng, 10 μg and 50 μg/25 gm mouse body weight were tested for biochemical and histopathological changes in several organs. RESULTS Murine Abs against p35, p37 and p38 but not p36 showed HCV neutralization in immunocapture experiments. Subcutaneous injection of peptides elicited higher responses than i.m. and i.p. Immunization with Multiple Antigenic Peptide (MAP) form or coupled to Al PO4 elicited the highest Ab responses. Peptide doses of 50 ng/25 gm body weight or less were effective and safe, however dose assessment still requires further study. Histopathological changes were observed in animals that received doses ∼1000 times higher than the potential therapeutic dose. CONCLUSION Exploration of humoral immunogenicity, neutralization capacity and safety suggested that the peptides presented herein are candidate vaccine components for further preclinical assessment.
Collapse
Affiliation(s)
- Mostafa K El-Awady
- Biomedical Technology Department, National Research Center, Tahrir Street 12622, Dokki, Cairo, Egypt.
| | | | | | | | | | | | | | | | | |
Collapse
|