1
|
Lee CK, Jung EK, Kang SE, Petrick JF, Park YN. Impact of perception of COVID-19 on NPI, job satisfaction, and customer orientation: Highlighting three types of NPIs for the airline industry. JOURNAL OF AIR TRANSPORT MANAGEMENT 2022; 100:102191. [PMID: 35125687 PMCID: PMC8803538 DOI: 10.1016/j.jairtraman.2022.102191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 05/07/2023]
Abstract
Without vaccines or pharmaceutical treatments for a viral pandemic, non-pharmaceutical interventions (NPIs) such as washing hands and wearing masks are likely the most effective ways to control infections at airports and on airplanes. Although the aviation market is a major entry point for viruses, little is known about how flight attendants view the risk of COVID-19 and whether they follow individual-organizational-governmental NPI protocols. Guided by protection motivation theory (Rogers, 1975), this study proposed an NPI model tailored specifically to the airline industry and examined how an extended NPI would affect job satisfaction and customer orientation of Korean flight attendants (n = 371). Results revealed that perceptions of COVID-19 are positively related to three types of NPIs, which in turn positively influenced job satisfaction and customer orientation. Given that the examined three types of NPIs had not been paid attention in previous research, the study's proposed conceptual model should better guide the airline industry in protecting its flight attendants with NPI strategies inside and outside aircraft.
Collapse
Affiliation(s)
- Choong-Ki Lee
- College of Hotel & Tourism Management, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Eun-Kyo Jung
- College of Hotel & Tourism Management, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Sung-Eun Kang
- Smart Tourism Education Platform, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - James F Petrick
- Department of Recreation, Park & Tourism Sciences, Texas A&M University, TAMU 2261, College Station, TX, 778432261, USA
| | - Yae-Na Park
- Smart Tourism Education Platform, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| |
Collapse
|
2
|
BustosRivera-Bahena G, López-Guerrero DV, Márquez-Bandala AH, Esquivel-Guadarrama FR, Montiel-Hernández JL. TGF-β1 signaling inhibit the in vitro apoptotic, infection and stimulatory cell response induced by influenza H1N1 virus infection on A549 cells. Virus Res 2021; 297:198337. [PMID: 33581185 DOI: 10.1016/j.virusres.2021.198337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
Influenza A virus (IAV) infection induces host cell responses that could derive in inflammatory and apoptotic response. In this respect, in multiple pathological situations, TGF-β1 has shown anti-inflammatory effect, but its role during IAV infection is poorly understood. Interestingly, recent profiling expression studies have suggested that the TGF-β1 pathway could be functionally related to the IAV infection's host response. To gain an understanding of the involvement of TGF-β1's signaling pathway during IAV infection, we compared different apoptotic proteins such as TNFR1, Fas ligand, XIAP, cIAP, among others proteins, and pro-inflammatory elements like IL-1β in the A549 cells during IAV infection (H1N1/NC/99), with and without 1 h of pre-treatment with TGF-β1. Pre-incubation with TGF-β1 significantly inhibited apoptosis and the presence of pro-apoptotic factors. Moreover, the relative abundance of immunodetected IAV M1 protein along 24 -h post-infection period was abridged, which correlated with a disminished infectious viral progeny Additionally, caspase 1 activation and increase of IL-1β induced by IAV infection was also reduced by TGF-β1 signaling activation. Whereas IAV infection increase of Smad-7 and, as consequence, partially inhibiting Smad2/3 phosphorylation, pre-treatment with TGF-β1 blocked IAV-dependent Smad7 induction and prevented Smad2/3 signaling shutdown. All these data suggest the role of TGF-β1 signaling pathway in the control of host cell response induced by the IAV infection and identify a potential clinical target to modulate acute cell death.
Collapse
Affiliation(s)
- Genoveva BustosRivera-Bahena
- Instituto de Biotecnología, UNAM, Cuernavaca, México; Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Delia Vanessa López-Guerrero
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, México; Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Alicia Helena Márquez-Bandala
- Instituto de Biotecnología, UNAM, Cuernavaca, México; Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | | | | |
Collapse
|
3
|
Petersen H, Mostafa A, Tantawy MA, Iqbal AA, Hoffmann D, Tallam A, Selvakumar B, Pessler F, Beer M, Rautenschlein S, Pleschka S. NS Segment of a 1918 Influenza A Virus-Descendent Enhances Replication of H1N1pdm09 and Virus-Induced Cellular Immune Response in Mammalian and Avian Systems. Front Microbiol 2018; 9:526. [PMID: 29623073 PMCID: PMC5874506 DOI: 10.3389/fmicb.2018.00526] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/08/2018] [Indexed: 12/14/2022] Open
Abstract
The 2009 pandemic influenza A virus (IAV) H1N1 strain (H1N1pdm09) has widely spread and is circulating in humans and swine together with other human and avian IAVs. This fact raises the concern that reassortment between H1N1pdm09 and co-circulating viruses might lead to an increase of H1N1pdm09 pathogenicity in different susceptible host species. Herein, we explored the potential of different NS segments to enhance the replication dynamics, pathogenicity and host range of H1N1pdm09 strain A/Giessen/06/09 (Gi-wt). The NS segments were derived from (i) human H1N1- and H3N2 IAVs, (ii) highly pathogenic- (H5- or H7-subtypes) or (iii) low pathogenic avian influenza viruses (H7- or H9-subtypes). A significant increase of growth kinetics in A549 (human lung epithelia) and NPTr (porcine tracheal epithelia) cells was only noticed in vitro for the reassortant Gi-NS-PR8 carrying the NS segment of the 1918-descendent A/Puerto Rico/8/34 (PR8-wt, H1N1), whereas all other reassortants showed either reduced or comparable replication efficiencies. Analysis using ex vivo tracheal organ cultures of turkeys (TOC-Tu), a species susceptible to IAV H1N1 infection, demonstrated increased replication of Gi-NS-PR8 compared to Gi-wt. Also, Gi-NS-PR8 induced a markedly higher expression of immunoregulatory and pro-inflammatory cytokines, chemokines and interferon-stimulated genes in A549 cells, THP-1-derived macrophages (dHTP) and TOC-Tu. In vivo, Gi-NS-PR8 induced an earlier onset of mortality than Gi-wt in mice, whereas, 6-week-old chickens were found to be resistant to both viruses. These data suggest that the specific characteristics of the PR8 NS segments can impact on replication, virus induced cellular immune responses and pathogenicity of the H1N1pdm09 in different avian and mammalian host species.
Collapse
Affiliation(s)
- Henning Petersen
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany.,Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Cairo, Egypt
| | - Mohamed A Tantawy
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, Hanover, Germany.,Department of Hormones, Medical Research Division, National Research Centre, Cairo, Egypt
| | - Azeem A Iqbal
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, Hanover, Germany.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Aravind Tallam
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, Hanover, Germany
| | - Balachandar Selvakumar
- Max-Planck Laboratory for Heart and Lung Research, Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Frank Pessler
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, Hanover, Germany.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
4
|
Plant EP, Ilyushina NA, Sheikh F, Donnelly RP, Ye Z. Influenza virus NS1 protein mutations at position 171 impact innate interferon responses by respiratory epithelial cells. Virus Res 2017; 240:81-86. [PMID: 28757142 DOI: 10.1016/j.virusres.2017.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/21/2017] [Accepted: 07/26/2017] [Indexed: 01/09/2023]
Abstract
The influenza virus NS1 protein interacts with a wide range of proteins to suppress the host cell immune response and facilitate virus replication. The amino acid sequence of the 2009 pandemic virus NS1 protein differed from sequences of earlier related viruses. The functional impact of these differences has not been fully defined. Therefore, we made mutations to the NS1 protein based on these sequence differences, and assessed the impact of these changes on host cell interferon (IFN) responses. We found that viruses with mutations at position 171 replicated efficiently but did not induce expression of interferon genes as effectively as wild-type viruses in A459 lung epithelial cells. The decreased ability of these NS1 mutant viruses to induce IFN gene and protein expression correlated with decreased activation of STAT1 and lower levels of IFN-stimulated gene (ISG) expression. These findings demonstrate that mutations at position 171 in the NS1 protein result in decreased expression of IFN and ISGs by A549 cells. Consequently, these viruses may be more virulent than the parental strains that do not contain mutations at position 171 in the NS1 protein.
Collapse
Affiliation(s)
- Ewan P Plant
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, USA.
| | - Natalia A Ilyushina
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, USA.
| | - Faruk Sheikh
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, USA.
| | - Raymond P Donnelly
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, USA.
| | - Zhiping Ye
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, USA.
| |
Collapse
|
5
|
Abstract
Seasonal and pandemic influenza are the two faces of respiratory infections caused by influenza viruses in humans. As seasonal influenza occurs on an annual basis, the circulating virus strains are closely monitored and a yearly updated vaccination is provided, especially to identified risk populations. Nonetheless, influenza virus infection may result in pneumonia and acute respiratory failure, frequently complicated by bacterial coinfection. Pandemics are, in contrary, unexpected rare events related to the emergence of a reassorted human-pathogenic influenza A virus (IAV) strains that often causes increased morbidity and spreads extremely rapidly in the immunologically naive human population, with huge clinical and economic impact. Accordingly, particular efforts are made to advance our knowledge on the disease biology and pathology and recent studies have brought new insights into IAV adaptation mechanisms to the human host, as well as into the key players in disease pathogenesis on the host side. Current antiviral strategies are only efficient at the early stages of the disease and are challenged by the genomic instability of the virus, highlighting the need for novel antiviral therapies targeting the pulmonary host response to improve viral clearance, reduce the risk of bacterial coinfection, and prevent or attenuate acute lung injury. This review article summarizes our current knowledge on the molecular basis of influenza infection and disease progression, the key players in pathogenesis driving severe disease and progression to lung failure, as well as available and envisioned prevention and treatment strategies against influenza virus infection.
Collapse
Affiliation(s)
- Christin Peteranderl
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Carole Schmoldt
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| |
Collapse
|
6
|
Abstract
Seasonal and pandemic influenza are the two faces of respiratory infections caused by influenza viruses in humans. As seasonal influenza occurs on an annual basis, the circulating virus strains are closely monitored and a yearly updated vaccination is provided, especially to identified risk populations. Nonetheless, influenza virus infection may result in pneumonia and acute respiratory failure, frequently complicated by bacterial coinfection. Pandemics are, in contrary, unexpected rare events related to the emergence of a reassorted human-pathogenic influenza A virus (IAV) strains that often causes increased morbidity and spreads extremely rapidly in the immunologically naive human population, with huge clinical and economic impact. Accordingly, particular efforts are made to advance our knowledge on the disease biology and pathology and recent studies have brought new insights into IAV adaptation mechanisms to the human host, as well as into the key players in disease pathogenesis on the host side. Current antiviral strategies are only efficient at the early stages of the disease and are challenged by the genomic instability of the virus, highlighting the need for novel antiviral therapies targeting the pulmonary host response to improve viral clearance, reduce the risk of bacterial coinfection, and prevent or attenuate acute lung injury. This review article summarizes our current knowledge on the molecular basis of influenza infection and disease progression, the key players in pathogenesis driving severe disease and progression to lung failure, as well as available and envisioned prevention and treatment strategies against influenza virus infection.
Collapse
Affiliation(s)
- Christin Peteranderl
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Carole Schmoldt
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| |
Collapse
|
7
|
Paquette SG, Banner D, Chi LTB, Leόn AJ, Xu L, Ran L, Huang SSH, Farooqui A, Kelvin DJ, Kelvin AA. Pandemic H1N1 influenza A directly induces a robust and acute inflammatory gene signature in primary human bronchial epithelial cells downstream of membrane fusion. Virology 2013; 448:91-103. [PMID: 24314640 DOI: 10.1016/j.virol.2013.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/22/2013] [Accepted: 09/23/2013] [Indexed: 12/13/2022]
Abstract
Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus-epithelial cell interaction.
Collapse
Affiliation(s)
- Stéphane G Paquette
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Herberg JA, Kaforou M, Gormley S, Sumner ER, Patel S, Jones KDJ, Paulus S, Fink C, Martinon-Torres F, Montana G, Wright VJ, Levin M. Transcriptomic profiling in childhood H1N1/09 influenza reveals reduced expression of protein synthesis genes. J Infect Dis 2013; 208:1664-8. [PMID: 23901082 PMCID: PMC3805235 DOI: 10.1093/infdis/jit348] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We compared the blood RNA transcriptome of children hospitalized with influenza A H1N1/09, respiratory syncytial virus (RSV) or bacterial infection, and healthy controls. Compared to controls, H1N1/09 patients showed increased expression of inflammatory pathway genes and reduced expression of adaptive immune pathway genes. This was validated on an independent cohort. The most significant function distinguishing H1N1/09 patients from controls was protein synthesis, with reduced gene expression. Reduced expression of protein synthesis genes also characterized the H1N1/09 expression profile compared to children with RSV and bacterial infection, suggesting that this is a key component of the pathophysiological response in children hospitalized with H1N1/09 infection.
Collapse
|
9
|
Dankar SK, Miranda E, Forbes NE, Pelchat M, Tavassoli A, Selman M, Ping J, Jia J, Brown EG. Influenza A/Hong Kong/156/1997(H5N1) virus NS1 gene mutations F103L and M106I both increase IFN antagonism, virulence and cytoplasmic localization but differ in binding to RIG-I and CPSF30. Virol J 2013; 10:243. [PMID: 23886034 PMCID: PMC3733596 DOI: 10.1186/1743-422x-10-243] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/23/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genetic basis for avian to mammalian host switching in influenza A virus is largely unknown. The human A/HK/156/1997 (H5N1) virus that transmitted from poultry possesses NS1 gene mutations F103L + M106I that are virulence determinants in the mouse model of pneumonia; however their individual roles have not been determined. The emergent A/Shanghai/patient1/2013(H7N9)-like viruses also possess these mutations which may contribute to their virulence and ability to switch species. METHODS NS1 mutant viruses were constructed by reverse genetics and site directed mutagenesis on human and mouse-adapted backbones. Mouse infections assessed virulence, virus yield, tissue infection, and IFN induction. NS1 protein properties were assessed for subcellular distribution, IFN antagonism (mouse and human), CPSF30 and RIG-I domain binding, host transcription (microarray); and the natural prevalence of 103L and 106I mutants was assessed. RESULTS Each of the F103L and M106I mutations contributes additively to virulence to reduce the lethal dose by >800 and >3,200 fold respectively by mediating alveolar tissue infection with >100 fold increased infectious yields. The 106I NS1 mutant lost CPSF binding but the 103L mutant maintained binding that correlated with an increased general decrease in host gene expression in human but not mouse cells. Each mutation positively modulated the inhibition of IFN induction in mouse cells and activation of the IFN-β promoter in human cells but not in combination in human cells indicating negative epistasis. Each of the F103L and M106I mutations restored a defect in cytoplasmic localization of H5N1 NS1 in mouse cells. Human H1N1 and H3N2 NS1 proteins bound to the CARD, helicase and RD RIG-I domains, whereas the H5N1 NS1 with the same consensus 103F and 106M mutations did not bind these domains, which was totally or partially restored by the M106I or F103L mutations respectively. CONCLUSIONS The F103L and M106I mutations in the H5N1 NS1 protein each increased IFN antagonism and mediated interstitial pneumonia in mice that was associated with increased cytoplasmic localization and altered host factor binding. These mutations may contribute to the ability of previous HPAI H5N1 and recent LPAI H7N9 and H6N1 (NS1-103L+106M) viruses to switch hosts and cause disease in humans.
Collapse
Affiliation(s)
- Samar K Dankar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mukherjee S, Vipat VC, Chakrabarti AK. Infection with influenza A viruses causes changes in promoter DNA methylation of inflammatory genes. Influenza Other Respir Viruses 2013; 7:979-86. [PMID: 23758996 PMCID: PMC4634256 DOI: 10.1111/irv.12127] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2013] [Indexed: 12/24/2022] Open
Abstract
Background Replication of influenza virus in the host cells results in production of immune mediators like cytokines. Excessive secretion of cytokines (hypercytokinemia) has been observed during highly pathogenic avian influenza virus (HPAI‐H5N1) infections resulting in high fatality rates. Objective The exact mechanism of hypercytokinemia during influenza virus infection is still not known completely. As promoter DNA methylation changes are linked with expression changes in genes, we intend to identify whether changes in promoter DNA methylation have any role in expression of cytokines during influenza A virus infection. Methods A panel of 24 cytokine genes and genes known to be involved in inflammatory response were analyzed for their promoter DNA methylation changes during influenza A virus infections. Four different strains of influenza A viruses, viz. H5N1, H1N1, pandemic (2009) H1N1, and a vaccine strain of H5N1, were used for the study. Results We found seven of the total 24 inflammatory genes studied, showing significant changes in their promoter methylation levels in response to virus infection. These genes included proinflammatory cytokines CXCL14, CCL25, CXCL6, and interleukines IL13, IL17C, IL4R. The changes in DNA methylation levels varied across different strains of influenza viruses depending upon their virulence. Significant promoter hypomethylation in IL17C and IL13 genes was observed in cells infected with HPAI‐H5N1 virus compared with other influenza viruses. This decrease in methylation was found to be positively correlating with the increased expression of these genes. Analysis of IL17C promoter region using bisulfite sequencing resulted in identification of a CpG site within Retinoid X receptor‐alpha (RXR‐α) transcription factor binding site undergoing demethylation specifically in H5N1‐infected cells but not in other influenza‐infected cells. Conclusion Thus, the study could demonstrate that changes in promoter methylation in certain specific cytokine genes actually have a possible role in their expression changes during influenza A virus infection.
Collapse
|
11
|
Korth MJ, Tchitchek N, Benecke AG, Katze MG. Systems approaches to influenza-virus host interactions and the pathogenesis of highly virulent and pandemic viruses. Semin Immunol 2012; 25:228-39. [PMID: 23218769 PMCID: PMC3596458 DOI: 10.1016/j.smim.2012.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 11/08/2012] [Indexed: 12/14/2022]
Abstract
Influenza virus research has recently undergone a shift from a virus-centric perspective to one that embraces the full spectrum of virus-host interactions and cellular signaling events that determine disease outcome. This change has been brought about by the increasing use and expanding scope of high-throughput molecular profiling and computational biology, which together fuel discovery in systems biology. In this review, we show how these approaches have revealed an uncontrolled inflammatory response as a contributor to the extreme virulence of the 1918 pandemic and avian H5N1 viruses, and how this response differs from that induced by the 2009 H1N1 viruses responsible for the most recent influenza pandemic. We also discuss how new animal models, such as the Collaborative Cross mouse systems genetics platform, are key to the necessary systematic investigation of the impact of host genetics on infection outcome, how genome-wide RNAi screens have identified hundreds of cellular factors involved in viral replication, and how systems biology approaches are making possible the rational design of new drugs and vaccines against an ever-evolving respiratory virus.
Collapse
Affiliation(s)
- Marcus J Korth
- Department of Microbiology, School of Medicine, and Washington National Primate Research Center, University of Washington, Seattle, WA 98195-8070, USA
| | | | | | | |
Collapse
|
12
|
Mukherjee S, Majumdar S, Vipat VC, Mishra AC, Chakrabarti AK. Non structural protein of avian influenza A (H11N1) virus is a weaker suppressor of immune responses but capable of inducing apoptosis in host cells. Virol J 2012; 9:149. [PMID: 22866982 PMCID: PMC3490754 DOI: 10.1186/1743-422x-9-149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 07/25/2012] [Indexed: 12/26/2022] Open
Abstract
Background The Non-Structural (NS1) protein of Influenza A viruses is an extensively studied multifunctional protein which is commonly considered as key viral component to fight against host immune responses. Even though there has been a lot of studies on the involvement of NS1 protein in host immune responses there are still ambiguities regarding its role in apoptosis in infected cells. Interactions of NS1 protein with host factors, role of NS1 protein in regulating cellular responses and apoptosis are quite complicated and further studies are still needed to understand it completely. Results NS1 genes of influenza A/Chicken/India/WBNIV2653/2008 (H5N1) and A/Aquatic bird/India/NIV-17095/2007(H11N1) were cloned and expressed in human embryonic kidney (293T) cells. Microarray based approach to study the host cellular responses to NS1 protein of the two influenza A viruses of different pathogenicity showed significant differences in the host gene expression profile. NS1 protein of H5N1 resulted in suppression of IFN-β mediated innate immune responses, leading to down-regulation of the components of JAK-STAT pathway like STAT1 which further suppressed the expression of pro-inflammatory cytokines like CXCL10 and CCL5. The degree of suppression of host immune genes was found considerable with NS1 protein of H11N1 but was not as prominent as with H5N1-NS1. TUNEL assay analyses were found to be positive in both the NS1 transfected cells indicating both H5N1 as well as H11N1 NS1 proteins were able to induce apoptosis in transfected cells. Conclusions We propose that NS1 protein of both H5N1 and H11N1 subtypes of influenza viruses are capable of influencing host immune responses and possess necessary functionality to support apoptosis in host cells. H11N1, a low pathogenic virus without any proven evidence to infect mammals, contains a highly potential NS1 gene which might contribute to greater virus virulence in different gene combinations.
Collapse
Affiliation(s)
- Sanjay Mukherjee
- Microbial Containment Complex, National Institute of Virology, Pashan, Pune, India
| | | | | | | | | |
Collapse
|
13
|
Mi Z, Ma Y, Tong Y. Avian influenza virus H5N1 induces rapid interferon-beta production but shows more potent inhibition to retinoic acid-inducible gene I expression than H1N1 in vitro. Virol J 2012; 9:145. [PMID: 22862800 PMCID: PMC3464129 DOI: 10.1186/1743-422x-9-145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 07/30/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The mechanisms through which the avian influenza virus H5N1 modulate the host's innate immune defense during invasion, remains incompletely understood. RIG-I as a pattern recognition receptor plays an important role in mediating innate immune response induced by influenza virus. So, modulating RIG-I might be adopted as a strategy by influenza virus to antagonize the host's innate immune defense. METHODS Here we chose an avian influenza virus A/tree sparrow/Henan/1/04 (H5N1) directly isolated from a free-living tree sparrow in Mainland China which is amplified in egg allantoic cavity, and researched its interferon induction and manipulation of RIG-I expression compared with influenza virus A/WSN/1933(H1N1), a well characterized mouse adapted strain, in human lung epithelial A549 cells and human embryonic kidney 293T cells. RESULTS Although the avian influenza virus H5N1 infection initiated a rapid IFN-beta production early on, it eventually presented a more potent inhibition to IFN-beta production than H1N1. Correspondingly, the H5N1 infection induced low level expression of endogenous RIG-I, an Interferon Stimulating Gene (ISG), and showed more potent inhibition to the expression of endogenous RIG-I triggered by exogenous interferon than H1N1. CONCLUSIONS Manipulating endogenous RIG-I expression might constitute one of the mechanisms through which avian influenza virus H5N1 control the host's innate immune response during infection.
Collapse
Affiliation(s)
- Zhiqiang Mi
- Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Beijing, Fengtai District, 100071, China
| | - Yonghong Ma
- Center for Disease Control and Prevention in Xinjiang Military Command, Xinjiang Uygur Autonomous Region, Xinjiang Uygur, 830000, China
| | - Yigang Tong
- Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Beijing, Fengtai District, 100071, China
| |
Collapse
|
14
|
Lee J, Bottje WG, Kong BW. Genome-wide host responses against infectious laryngotracheitis virus vaccine infection in chicken embryo lung cells. BMC Genomics 2012; 13:143. [PMID: 22530940 PMCID: PMC3353197 DOI: 10.1186/1471-2164-13-143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 04/24/2012] [Indexed: 12/20/2022] Open
Abstract
Background Infectious laryngotracheitis virus (ILTV; gallid herpesvirus 1) infection causes high mortality and huge economic losses in the poultry industry. To protect chickens against ILTV infection, chicken-embryo origin (CEO) and tissue-culture origin (TCO) vaccines have been used. However, the transmission of vaccine ILTV from vaccinated- to unvaccinated chickens can cause severe respiratory disease. Previously, host cell responses against virulent ILTV infections were determined by microarray analysis. In this study, a microarray analysis was performed to understand host-vaccine ILTV interactions at the host gene transcription level. Results The 44 K chicken oligo microarrays were used, and the results were compared to those found in virulent ILTV infection. Total RNAs extracted from vaccine ILTV infected chicken embryo lung cells at 1, 2, 3 and 4 days post infection (dpi), compared to 0 dpi, were subjected to microarray assay using the two color hybridization method. Data analysis using JMP Genomics 5.0 and the Ingenuity Pathway Analysis (IPA) program showed that 213 differentially expressed genes could be grouped into a number of functional categories including tissue development, cellular growth and proliferation, cellular movement, and inflammatory responses. Moreover, 10 possible gene networks were created by the IPA program to show intermolecular connections. Interestingly, of 213 differentially expressed genes, BMP2, C8orf79, F10, and NPY were expressed distinctly in vaccine ILTV infection when compared to virulent ILTV infection. Conclusions Comprehensive knowledge of gene expression and biological functionalities of host factors during vaccine ILTV infection can provide insight into host cellular defense mechanisms compared to those of virulent ILTV.
Collapse
Affiliation(s)
- Jeongyoon Lee
- Department of Poultry Science, Division of Agriculture, POSC O-404, 1260 West Maple, Fayetteville, AR 72701, USA
| | | | | |
Collapse
|
15
|
Yu X, Zhang X, Zhao B, Wang J, Zhu Z, Teng Z, Shao J, Shen J, Gao Y, Yuan Z, Wu F. Intensive cytokine induction in pandemic H1N1 influenza virus infection accompanied by robust production of IL-10 and IL-6. PLoS One 2011; 6:e28680. [PMID: 22174866 PMCID: PMC3235144 DOI: 10.1371/journal.pone.0028680] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 11/13/2011] [Indexed: 12/22/2022] Open
Abstract
Background The innate immune system is the first line of defense against viruses by inducing expression of cytokines and chemokines. Many pandemic influenza H1N1 virus [P(H1N1)] infected severe cases occur in young adults under 18 years old who were rarely seriously affected by seasonal influenza. Results regarding host cytokine profiles of P(H1N1) are ambivalent. In the present study we investigated host cytokine profiles in P(H1N1) patients and identified cytokines related to disease severity. Methods and Principal Findings We retrieved 77, 59, 26 and 26 sera samples from P(H1N1) and non-flu influenza like illness (non-ILIs) cases with mild symptoms (mild patients), P(H1N1) vaccinees and healthy individuals, respectively. Nine and 16 sera were from hospitalized P(H1N1) and non-ILIs patients with severe symptoms (severe patients). Cytokines of IL-1, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IFN-γ and TNF-α were assayed by cytokine bead array, IL-17 and IL-23 measured with ELISA. Mild P(H1N1) patients produced significantly elevated IL-2, IL-12, IFN-γ, IL-6, TNF-α, IL-5, IL-10, IL-17 and IL-23 versus to healthy controls. While an overwhelming IL-6 and IL-10 production were observed in severe P(H1N1) patients. Higher IL-10 secretion in P(H1N1) vaccinees confirmed our observation that highly increased level of sera IL-6 and IL-10 in P(H1N1) patients may lead to disease progression. Conclusion and Significance A comprehensive innate immune response was activated at the early stage of P(H1N1) infection with a combine Th1/Th2/Th3 cytokines production. As disease progression, a systemic production of IL-6 and IL-10 were observed in severe P(H1N1) patients. Further analysis found a strong correlation between IL-6 and IL-10 production in the severe P(H1N1) patients. IL-6 may be served as a mediator to induce IL-10 production. Highly elevated level of sera IL-6 and IL-10 in P(H1N1) patients may lead to disease progression, but the underlying mechanism awaits further detailed investigations.
Collapse
Affiliation(s)
- Xuelian Yu
- Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Xi Zhang
- Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Baihui Zhao
- Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Jiayu Wang
- Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Zhaokui Zhu
- Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Zheng Teng
- Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Junjie Shao
- Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Jiaren Shen
- Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Ye Gao
- Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Zhengan Yuan
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Fan Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
- * E-mail:
| |
Collapse
|
16
|
McDermott JE, Shankaran H, Eisfeld AJ, Belisle SE, Neuman G, Li C, McWeeney S, Sabourin C, Kawaoka Y, Katze MG, Waters KM. Conserved host response to highly pathogenic avian influenza virus infection in human cell culture, mouse and macaque model systems. BMC SYSTEMS BIOLOGY 2011; 5:190. [PMID: 22074594 PMCID: PMC3229612 DOI: 10.1186/1752-0509-5-190] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/11/2011] [Indexed: 12/22/2022]
Abstract
Background Understanding host response to influenza virus infection will facilitate development of better diagnoses and therapeutic interventions. Several different experimental models have been used as a proxy for human infection, including cell cultures derived from human cells, mice, and non-human primates. Each of these systems has been studied extensively in isolation, but little effort has been directed toward systematically characterizing the conservation of host response on a global level beyond known immune signaling cascades. Results In the present study, we employed a multivariate modeling approach to characterize and compare the transcriptional regulatory networks between these three model systems after infection with a highly pathogenic avian influenza virus of the H5N1 subtype. Using this approach we identified functions and pathways that display similar behavior and/or regulation including the well-studied impact on the interferon response and the inflammasome. Our results also suggest a primary response role for airway epithelial cells in initiating hypercytokinemia, which is thought to contribute to the pathogenesis of H5N1 viruses. We further demonstrate that we can use a transcriptional regulatory model from the human cell culture data to make highly accurate predictions about the behavior of important components of the innate immune system in tissues from whole organisms. Conclusions This is the first demonstration of a global regulatory network modeling conserved host response between in vitro and in vivo models.
Collapse
Affiliation(s)
- Jason E McDermott
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|