1
|
Kramer SC, Pirikahu S, Casalegno JS, Domenech de Cellès M. Characterizing the interactions between influenza and respiratory syncytial viruses and their implications for epidemic control. Nat Commun 2024; 15:10066. [PMID: 39567519 PMCID: PMC11579344 DOI: 10.1038/s41467-024-53872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Pathogen-pathogen interactions represent a critical but little-understood feature of infectious disease dynamics. In particular, experimental evidence suggests that influenza virus and respiratory syncytial virus (RSV) compete with each other, such that infection with one confers temporary protection against the other. However, such interactions are challenging to study using common epidemiologic methods. Here, we use a mathematical modeling approach, in conjunction with detailed surveillance data from Hong Kong and Canada, to infer the strength and duration of the interaction between influenza and RSV. Based on our estimates, we further utilize our model to evaluate the potential conflicting effects of live attenuated influenza vaccines (LAIV) on RSV burden. We find evidence of a moderate to strong, negative, bidirectional interaction, such that infection with either virus yields 40-100% protection against infection with the other for one to five months. Assuming that LAIV reduces RSV susceptibility in a similar manner, we predict that the impact of such a vaccine at the population level would likely depend greatly on underlying viral circulation patterns. More broadly, we highlight the utility of mathematical models as a tool to characterize pathogen-pathogen interactions.
Collapse
Affiliation(s)
- Sarah C Kramer
- Max Planck Institute for Infection Biology, Infectious Disease Epidemiology group, Charitéplatz 1, Campus Charité Mitte, 10117, Berlin, Germany.
| | - Sarah Pirikahu
- Max Planck Institute for Infection Biology, Infectious Disease Epidemiology group, Charitéplatz 1, Campus Charité Mitte, 10117, Berlin, Germany
| | - Jean-Sébastien Casalegno
- Hospices Civils de Lyon, Hôpital de la Croix-Rousse, Centre de Biologie Nord, Institut des Agents Infectieux, Laboratoire de Virologie, Lyon, France
- Centre national de référence des virus des infections respiratoires (dont la grippe), Hôpital de la Croix-Rousse, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Laboratoire de Virologie et Pathologie Humaine - VirPath Team, INSERM U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Matthieu Domenech de Cellès
- Max Planck Institute for Infection Biology, Infectious Disease Epidemiology group, Charitéplatz 1, Campus Charité Mitte, 10117, Berlin, Germany
| |
Collapse
|
2
|
Nham E, Jang AY, Hyun H, Yoon JG, Noh JY, Cheong HJ, Kim WJ, Ahn KB, Ji HJ, Seo HS, Bae JY, Park MS, Song JY. Age-Stratified Seroprevalence of Respiratory Syncytial Virus: Analysis Using Prefusion F and G Protein Antibodies. Vaccines (Basel) 2024; 12:513. [PMID: 38793764 PMCID: PMC11126071 DOI: 10.3390/vaccines12050513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
This is a cross-sectional serosurveillance study for RSV. Between June and September of 2021, a total of 150 sera were collected from 30 individuals in each age group (<5, 5-18, 19-49, 50-64, and ≥65 years). Seroprevalence was estimated using enzyme-linked immunosorbent assays targeting two stabilized prefusion F (preF; DS-Cav1 and SC-TM) and G proteins. The overall seroprevalence was low in young children and older adults, despite them having a higher risk of severe RSV infection. There was a remarkable difference in age-stratified seroprevalence rates between anti-preF and anti-G protein antibodies. Given the high disease burden and low seroprevalence in both infants and old adults, RSV vaccination would be crucial for pregnant women and people aged over 60 years.
Collapse
Affiliation(s)
- Eliel Nham
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (E.N.); (A.-Y.J.); (H.H.); (J.G.Y.); (J.Y.N.); (H.J.C.); (W.J.K.)
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 02841, Republic of Korea; (J.-Y.B.); (M.-S.P.)
| | - A-Yeung Jang
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (E.N.); (A.-Y.J.); (H.H.); (J.G.Y.); (J.Y.N.); (H.J.C.); (W.J.K.)
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 02841, Republic of Korea; (J.-Y.B.); (M.-S.P.)
| | - Hakjun Hyun
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (E.N.); (A.-Y.J.); (H.H.); (J.G.Y.); (J.Y.N.); (H.J.C.); (W.J.K.)
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 02841, Republic of Korea; (J.-Y.B.); (M.-S.P.)
| | - Jin Gu Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (E.N.); (A.-Y.J.); (H.H.); (J.G.Y.); (J.Y.N.); (H.J.C.); (W.J.K.)
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 02841, Republic of Korea; (J.-Y.B.); (M.-S.P.)
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (E.N.); (A.-Y.J.); (H.H.); (J.G.Y.); (J.Y.N.); (H.J.C.); (W.J.K.)
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 02841, Republic of Korea; (J.-Y.B.); (M.-S.P.)
| | - Hee Jin Cheong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (E.N.); (A.-Y.J.); (H.H.); (J.G.Y.); (J.Y.N.); (H.J.C.); (W.J.K.)
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 02841, Republic of Korea; (J.-Y.B.); (M.-S.P.)
| | - Woo Joo Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (E.N.); (A.-Y.J.); (H.H.); (J.G.Y.); (J.Y.N.); (H.J.C.); (W.J.K.)
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 02841, Republic of Korea; (J.-Y.B.); (M.-S.P.)
| | - Ki Bum Ahn
- Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (K.B.A.); (H.J.J.); (H.S.S.)
| | - Hyun Jung Ji
- Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (K.B.A.); (H.J.J.); (H.S.S.)
| | - Ho Seong Seo
- Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (K.B.A.); (H.J.J.); (H.S.S.)
| | - Joon-Yong Bae
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 02841, Republic of Korea; (J.-Y.B.); (M.-S.P.)
- Department of Microbiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Man-Seong Park
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 02841, Republic of Korea; (J.-Y.B.); (M.-S.P.)
- Department of Microbiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (E.N.); (A.-Y.J.); (H.H.); (J.G.Y.); (J.Y.N.); (H.J.C.); (W.J.K.)
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 02841, Republic of Korea; (J.-Y.B.); (M.-S.P.)
| |
Collapse
|
3
|
Anderson LJ, Jadhao SJ, Hussaini L, Ha B, McCracken CE, Gibson T, Yildirim I, Yi J, Stephens K, Korski C, Kao C, Sun H, Lee CY, Jaunarajs A, Rostad CA, Anderson EJ. Development and comparison of immunologic assays to detect primary RSV infections in infants. Front Immunol 2024; 14:1332772. [PMID: 38283339 PMCID: PMC10811012 DOI: 10.3389/fimmu.2023.1332772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Effective respiratory syncytial virus (RSV) vaccines have been developed and licensed for elderly adults and pregnant women but not yet for infants and young children. The RSV immune state of the young child, i.e., previously RSV infected or not, is important to the conduct and interpretation of epidemiology studies and vaccine clinical trials. To address the need for sensitive assays to detect immunologic evidence of past infection, we developed, characterized, and evaluated 7 assays including 4 IgG antibody enzyme immunoassays (EIAs), two neutralizing antibody assays, and an IFN-γ EliSpot (EliSpot) assay. The four IgG EIAs used a subgroup A plus subgroup B RSV-infected Hep-2 cell lysate antigen (Lysate), an expressed RSV F protein antigen (F), an expressed subgroup A G protein antigen (Ga), or an expressed subgroup B G protein (Gb) antigen. The two neutralizing antibody assays used either a subgroup A or a subgroup B RSV strain. The EliSpot assay used a sucrose cushion purified combination of subgroup A and subgroup B infected cell lysate. All seven assays had acceptable repeatability, signal against control antigen, lower limit of detection, and, for the antibody assays, effect of red cell lysis, lipemia and anticoagulation of sample on results. In 44 sera collected from children >6 months after an RSV positive illness, the lysate, F, Ga and Gb IgG EIAs, and the subgroup A and B neutralizing antibody assays, and the EliSpot assays were positive in 100%, 100%, 86%, 95%, 43%, and 57%, respectively. The Lysate and F EIAs were most sensitive for detecting RSV antibody in young children with a documented RSV infection. Unexpectedly, the EliSpot assay was positive in 9/15 (60%) of PBMC specimens from infants not exposed to an RSV season, possibly from maternal microchimerism. The Lysate and F EIAs provide good options to reliably detect RSV antibodies in young children for epidemiologic studies and vaccine trials.
Collapse
Affiliation(s)
- Larry J. Anderson
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Samadhan J. Jadhao
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Laila Hussaini
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Binh Ha
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Courtney E. McCracken
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Theda Gibson
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Inci Yildirim
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Jumi Yi
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Kathy Stephens
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Chelsea Korski
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Carol Kao
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Heying Sun
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Chun Yi Lee
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | | | - Christina A. Rostad
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Evan J. Anderson
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
4
|
Song L, Rauf F, Hou CW, Qiu J, Murugan V, Chung Y, Lai H, Adam D, Magee DM, Trivino Soto G, Peterson M, Anderson KS, Rice SG, Readhead B, Park JG, LaBaer J. Quantitative assessment of multiple pathogen exposure and immune dynamics at scale. Microbiol Spectr 2024; 12:e0239923. [PMID: 38063388 PMCID: PMC10783028 DOI: 10.1128/spectrum.02399-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/13/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Serology reveals exposure to pathogens, as well as the state of autoimmune and other clinical conditions. It is used to evaluate individuals and their histories and as a public health tool to track epidemics. Employing a variety of formats, studies nearly always perform serology by testing response to only one or a few antigens. However, clinical outcomes of new infections also depend on which previous infections may have occurred. We developed a high-throughput serology method that evaluates responses to hundreds of antigens simultaneously. It can be used to evaluate thousands of samples at a time and provide a quantitative readout. This tool will enable doctors to monitor which pathogens an individual has been exposed to and how that changes in the future. Moreover, public health officials could track populations and look for infectious trends among large populations. Testing many potential antigens at a time may also aid in vaccine development.
Collapse
Affiliation(s)
- Lusheng Song
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Femina Rauf
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ching-Wen Hou
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ji Qiu
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Vel Murugan
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Yunro Chung
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Huafang Lai
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Deborah Adam
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - D. Mitchell Magee
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Guillermo Trivino Soto
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Milene Peterson
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Karen S. Anderson
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Stephen G. Rice
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Benjamin Readhead
- Arizona State University-Banner Neurodegenerative Disease Research Center, Tempe, Arizona, USA
| | - Jin G. Park
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
5
|
Nakajo K, Nishiura H. Age-Dependent Risk of Respiratory Syncytial Virus Infection: A Systematic Review and Hazard Modeling From Serological Data. J Infect Dis 2023; 228:1400-1409. [PMID: 37161934 PMCID: PMC10640776 DOI: 10.1093/infdis/jiad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/28/2023] [Accepted: 05/09/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND There is no immunization campaign that currently exist for respiratory syncytial virus (RSV). Seroprevalence studies are critical for assessing epidemiological dynamics before and during an immunization program. A systematic literature review was conducted to summarize the evidence from seroprevalence studies on RSV. METHODS A systematic search of age-dependent RSV seroprevalence was conducted using the PubMed database and EMBASE. Age-dependent force of infections (FoI) and the decay rate of immunity were estimated. A mixture finite model was used, estimating the age-dependent disease state and the antibody concentrations in susceptible and infected or recovered populations. RESULTS Twenty-one studies were identified from 15 countries, with studies using enzyme-linked immunosorbent assay being the most represented. Using a catalytic model, the age-dependent force of infection was estimated to be the lowest in infants aged 6 months to 1 year and increased in older age groups. The proportion ever-infected/recovered was estimated to be above 90% by 3 years of age. CONCLUSIONS The number of seroprevalence studies covering a broad range of ages are limited. The age-dependent FoI indicated that the risk of infection was greatest among those aged >5 years. Additional data using valid assays are required to describe the transmission dynamics of RSV infection.
Collapse
Affiliation(s)
- K Nakajo
- Kyoto University School of Public Health, Yoshidakonoecho, Sakyoku, Kyoto, Japan
- Sanofi K.K. Tokyo Opera City Tower, Shinjuku-ku, Tokyo, Japan
| | - H Nishiura
- Kyoto University School of Public Health, Yoshidakonoecho, Sakyoku, Kyoto, Japan
| |
Collapse
|
6
|
Li J, Zhao Y, Dai Y, Zhao J. Identification of γ-Fagarine as a novel antiviral agent against respiratory virus (hMPV) infection. Virus Res 2023; 336:199223. [PMID: 37734492 PMCID: PMC10522984 DOI: 10.1016/j.virusres.2023.199223] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Human metapneumovirus (hMPV) causes significant upper and lower respiratory disease in all age groups worldwide. However, there is no licensed drugs or vaccine available against hMPV. γ-Fagarine, an alkaloid isolated from the root of zanthoxylum, has been reported to be effective in the treatment of cancer, inflammatory diseases and antivirals. However, little is known about the inhibitory effect of γ-Fagarine against respiratory virus infection and the mechanism. In this study, we aim to investigate the effect of γ-Fagarine on hMPV infection and explore its underlying molecular mechanisms. Vero-E6 and 16HBE cells were used as cell models. Virus replication and microcosm character were explored in Vero-E6 cells. Then, the antiviral activities were investigated by quantitative real-time PCR (RT-qPCR), western blotting (WB), and indirect immunofluorescence assays (IFAs) in Vero-E6 and 16HBE. Potential mechanisms of γ-Fagarine related to HSPG and lysosome pH were assessed in 16HBE cells. Lastly, a virus-infected mouse model was established and antiviral assay in vivo was conducted. γ-Fagarine showed no toxicity toward Vero-E6 cells and 16HBE cells but demonstrated anti-hMPV activity. Virus titers of γ-Fagarine group were reduced to 33% and 45% of the hMPV groups, respectively. Besides, mechanistic studies revealed that γ-Fagarine could inhibit hMPV by dual mechanisms of direct restraining virus binding with HSPG and influencing lysosome pH. Furthermore, oral delivery of γ-Fagarine to hMPV-infected mice at a dosage of 25 mg/kg reduced the hMPV load in lung tissues. After γ-Fagarine treatment, pathological damage caused by viral infection was also ameliorated. These findings suggest that γ-Fagarine has antiviral effects in vitro and in vivo, which are associated with its ability to restrain virus binding with HSPG and influence lysosome pH, thus indicating that γ-Fagarine has the potential to serve as a candidate to fight against hMPV infection and other respiratory viruses such as influenza viruses and SARS-CoV-2.
Collapse
Affiliation(s)
- Jinhua Li
- Department of Pharmacognosy, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yao Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Ying Dai
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, China
| | - Junning Zhao
- Department of Pharmacognosy, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; National Key Laboratory of Drug Regulatory Science, National Medical Products Administration (NMPA), Beijing 100038, China.
| |
Collapse
|
7
|
Cho SJ, Kim SH, Lee H, Lee YU, Mun J, Park S, Park J, Park JS, Lee K, Lee CM, Seo J, Kim Y, Chung YS. Re-Emergence of HMPV in Gwangju, South Korea, after the COVID-19 Pandemic. Pathogens 2023; 12:1218. [PMID: 37887734 PMCID: PMC10609798 DOI: 10.3390/pathogens12101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
The non-pharmaceutical interventions implemented to prevent the spread of COVID-19 have affected the epidemiology of other respiratory viruses. In South Korea, Human metapneumovirus (HMPV) typically occurs from winter to the following spring; however, it was not detected for two years during the COVID-19 pandemic and re-emerged in the fall of 2022, which is a non-epidemic season. To examine the molecular genetic characteristics of HMPV before and after the COVID-19 pandemic, we analyzed 427 HMPV-positive samples collected in the Gwangju area from 2018 to 2022. Among these, 24 samples were subjected to whole-genome sequencing. Compared to the period before the COVID-19 pandemic, the incidence rate of HMPV in 2022 increased by 2.5-fold. Especially in the age group of 6-10 years, the incidence rate increased by more than 4.5-fold. In the phylogenetic analysis results, before the COVID-19 pandemic, the A2.2.2 lineage was predominant, while in 2022, the A2.2.1 and B2 lineage were observed. The non-pharmaceutical interventions implemented after COVID-19, such as social distancing, have reduced opportunities for exposure to HMPV, subsequently leading to decreased acquisition of immunity. As a result, HMPV occurred during non-epidemic seasons, influencing the age distribution of its occurrences.
Collapse
Affiliation(s)
- Sun-Ju Cho
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Sun-Hee Kim
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Hongsu Lee
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Yeong-Un Lee
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Jeongeun Mun
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Sujung Park
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Jungwook Park
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Ji-Su Park
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Kwangho Lee
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Cheong-mi Lee
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Jinjong Seo
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Yonghwan Kim
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Yoon-Seok Chung
- Division of High-Risk Pathogen, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency (KDCA), Cheongju 28159, Republic of Korea
| |
Collapse
|
8
|
Lamichhane J, Upreti M, Nepal K, Upadhyay BP, Maharjan U, Shrestha RK, Chapagain RH, Banjara MR, Shrestha UT. Burden of human metapneumovirus infections among children with acute respiratory tract infections attending a Tertiary Care Hospital, Kathmandu. BMC Pediatr 2023; 23:388. [PMID: 37550689 PMCID: PMC10405573 DOI: 10.1186/s12887-023-04208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Acute respiratory infections (ARIs) are one of the most common causes of mortality and morbidity worldwide. Every year millions of children suffer from viral respiratory tract infections (RTIs) ranging from mild to severe illnesses. Human Metapneumovirus (HMPV) is among the most frequent viruses responsible for RTIs. However, HMPV infections and their severity among children have not been explored yet in Nepal. PURPOSE Therefore, the study was focused on HMPV infections and other potential viral etiologies or co-infections using multiplex PCR among children attending Kanti Children's Hospital and assessed the clinical characteristics of the infections as well as found the co-infections. A hospital-based cross-sectional study was designed and a convenience sampling method was used to enroll children of less than 15 years with flu-like symptoms from both outpatients and inpatients departments over three months of the study period. RESULTS HMPV infection (13.3%) was the most predominant infection among the different viral infections in children with ARIs in Kanti Children's Hospital. The HMPV was more prevalent in the age group less than three years (21.8%). Cough and fever were the most common clinical features present in all children infected with HMPV followed by rhinorrhea, sore throat, and wheezing. HMPV-positive children were diagnosed with pneumonia (42.9%), bronchiolitis (28.5%), upper respiratory tract infections (14.3%), and asthma (14.3%). The prevalence of HMPV was high in late winter (14.3%) followed by early spring (13.5%). CONCLUSIONS This study provides the baseline information on HMPV and associated co-infection with other respiratory viruses for the differential diagnosis based on molecular methods and also the comparison of clinical presentations among the different respiratory syndromes.
Collapse
Affiliation(s)
- Jyoti Lamichhane
- GoldenGate International College, Battisputali, Kathmandu, Nepal
| | - Milan Upreti
- GoldenGate International College, Battisputali, Kathmandu, Nepal
| | - Krishus Nepal
- GoldenGate International College, Battisputali, Kathmandu, Nepal
| | | | - Urusha Maharjan
- Central Diagnostic Laboratory & Research Center, Kamalpokhari, Kathmandu, Nepal
| | | | | | - Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | | |
Collapse
|
9
|
Tada R, Yamazaki H, Nagai Y, Takeda Y, Ohshima A, Kunisawa J, Negishi Y. Intranasal administration of sodium nitroprusside augments antigen-specific mucosal and systemic antibody production in mice. Int Immunopharmacol 2023; 119:110262. [PMID: 37150015 PMCID: PMC10161703 DOI: 10.1016/j.intimp.2023.110262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
The coronavirus disease 2019, i.e., the COVID-19 pandemic, caused by a highly virulent and transmissible pathogen, has profoundly impacted global society. One approach to combat infectious diseases caused by pathogenic microbes is using mucosal vaccines, which can induce antigen-specific immune responses at both the mucosal and systemic sites. Despite its potential, the clinical implementation of mucosal vaccination is hampered by the lack of safe and effective mucosal adjuvants. Therefore, developing safe and effective mucosal adjuvants is essential for the fight against infectious diseases and the widespread clinical use of mucosal vaccines. In this study, we demonstrated the potent mucosal adjuvant effects of intranasal administration of sodium nitroprusside (SNP), a known nitric oxide (NO) donor, in mice. The results showed that intranasal administration of ovalbumin (OVA) in combination with SNP induced the production of OVA-specific immunoglobulin A in the mucosa and increased serum immunoglobulin G1 levels, indicating a T helper-2 (Th2)-type immune response. However, an analog of SNP, sodium ferrocyanide, which does not generate NO, failed to show any adjuvant effects, suggesting the critical role of NO generation in activating an immune response. In addition, SNPs facilitated the delivery of antigens to the lamina propria, where antigen-presenting cells are located, when co-administered with antigens, and also transiently elicited the expression of interleukin-6, interleukin-1β, granulocyte colony-stimulating factor, C-X-C motif chemokine ligand 1, and C-X-C motif chemokine ligand 2 in nasal tissue. These result suggest that SNP is a dual-functional formulation with antigen delivery capabilities to the lamina propria and the capacity to activate innate immunity. In summary, these results demonstrate the ability of SNP to induce immune responses via an antigen-specific Th2-type response, making it a promising candidate for further development as a mucosal vaccine formulation against infectious diseases.
Collapse
Affiliation(s)
- Rui Tada
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Haruka Yamazaki
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuzuho Nagai
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yukino Takeda
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Ohshima
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
10
|
Feng A, Li J, Hu Y, Sun W, Li M, Shi Y, Li L. Cichoric acid aerosol for inhalation therapy in respiratory syncytial virus. Heliyon 2023; 9:e15789. [PMID: 37305484 PMCID: PMC10256849 DOI: 10.1016/j.heliyon.2023.e15789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 06/13/2023] Open
Abstract
Cichoric acid (CA) is a caffeic acid derivative, which has significant anti respiratory syncytial virus (RSV) effect and low toxicity. However, due to the low oral bioavailability and poor intestinal absorption of CA, it is not suitable to be made into oral preparations. In this study, CA was made into metered dose inhaler (MDI), allowing the drug to target the site of action, thus achieving more effective treatment. Through preliminary experiments, the drug content and prescription composition of the preparation were determined. Clarity and stability of solution were used as indexes to screen the composition of latent solvent. Single factor and orthogonal test were used to optimize the amount of latent solvent in CA-MDI, and the optimal prescription was verified. The aerosol prepared according to the optimal formula was characterized and preliminary stability was studied. The final formula of CA-MDI was: CA 15 mg, absolute ethanol 1 g, propylene glycol 0.4 g and 1,1,1,2-tetrafluoroethane 10 g. CA-MDI was prepared with the best prescription, with the specification of 150 actuation per bottle and 75 μg per actuation. After quality inspection, three batches of inhaled aerosols showed that the main drug content per bottle was 77.91 ± 1.63 μg (n = 3), and the total number of bottles was 185 ± 3 (n = 3), all of which met the standards of China Pharmacopoeia and the proposed specifications. The preliminary stability study showed that the quality of inhaled aerosols in CA was stable and reliable.
Collapse
Affiliation(s)
- Anjie Feng
- Shandong University of Traditional Chinese Medicine, Jinan 250000,China
| | - Jieyu Li
- Shandong University of Traditional Chinese Medicine, Jinan 250000,China
| | - Yu Hu
- Shandong University of Traditional Chinese Medicine, Jinan 250000,China
| | - Wenxiu Sun
- Shandong University of Traditional Chinese Medicine, Jinan 250000,China
| | - Mengqi Li
- Shandong University of Traditional Chinese Medicine, Jinan 250000,China
| | - Yu Shi
- Shandong University of Traditional Chinese Medicine, Jinan 250000,China
| | - Lingjun Li
- Shandong University of Traditional Chinese Medicine, Jinan 250000,China
| |
Collapse
|
11
|
Du Y, Li W, Guo Y, Li L, Chen Q, He L, Shang S. Epidemiology and genetic characterization of human metapneumovirus in pediatric patients from Hangzhou China. J Med Virol 2022; 94:5401-5408. [PMID: 35871601 DOI: 10.1002/jmv.28024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 12/15/2022]
Abstract
Human metapneumovirus (HMPV), which is distributed worldwide, is a significant viral respiratory pathogen responsible for causing acute respiratory tract infections (ARTIs) in children. The aim of the present study was to investigate the epidemiological and genetic characteristics of HMPV in pediatric patients in Hangzhou China following the peak of onset of coronavirus disease 2019 (COVID-19). A total of 1442 throat swabs were collected from the pediatric patients with a diagnosis of ARTI from November 2020 to March 2021. The following viruses were detected by real-time polymerase chain reaction analysis: HMPV, RSV, adenovirus, hPIV1-3, influenza A, and influenza B. A two-step method was used to amplify the F genes of the HMPV-positive samples. Following sequencing, phylogenetic analyses were conducted using the MEGA version 7 software package. Among the 1442 samples, 103 (7.14%) were positive for HMPV. No significant differences were observed in the gender distribution. The highest incidence of HMPV occurred in children older than 6 years and the lowest was noted in children younger than 6 months. Lower respiratory tract infections were diagnosed at a higher rate than upper respiratory tract infections in HMPV-infected children. Only 10 HMPV-infected children (5.41%) were inpatients compared with 93 outpatients (7.39%). Co-infection was observed in 31 HMPV-positive samples including 24 samples of double infection and seven samples of triple infection. A total of 61F gene fragments of HMPV, which were approximately 727 bp in length were successfully sequenced. All the HMPVs belonged to the genotype B and were clustered into subgenotypes B1 (1.6%, 1/61) and B2 (98.4%, 60/61). A total of four specific amino acid substitutions were noted as follows: aa280, aa296, aa392, and aa396. These substitutions were present between sequences derived from the subgenotypes B1 and B2 in the fusion open reading frame from position 244 to 429. In conclusion, the present study provided significant information regarding the epidemiological and genetic characteristics of HMPV in children living in Hangzhou. Following the first peak of the COVID-19 pandemic, HMPV was considered an important viral respiratory pathogen present in children with ARTI.
Collapse
Affiliation(s)
- Yun Du
- Department of Respiratory Medicine, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Wei Li
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, Zhejiang, China
| | - Yajun Guo
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, Zhejiang, China
| | - Lin Li
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, Zhejiang, China
| | - Qiang Chen
- Department of Respiratory Medicine, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Lin He
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, Zhejiang, China
| | - Shiqiang Shang
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Chen G, Lan M, Lin S, Zhang Y, Zhang D, Weng Y, Zheng K. Genome analysis of human respiratory syncytial virus in Fujian Province, Southeast China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105329. [PMID: 35788050 DOI: 10.1016/j.meegid.2022.105329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is one of the main causes of acute respiratory infections (ARI) leading to a heavy disease burden. Reports on RSV in China are limited, especially in Fujian Province, and RSV whole-genome sequences in Fujian Province are not reported. This study aimed to explore the genomic characteristics of RSV to provide evidence for the development of vaccines and medicines. METHODS Reverse transcription-polymerase chain reaction (RT-PCR) was used to amplify and obtain the attachment (G) gene and whole-genome fragments from the positive samples. Genetic evolution as well as nucleotide and amino acid homology analyses of the virus sequences were conducted to identify any amino acid mutations. RESULTS A total of 72 RSV-positive cases were collected, and 53 G gene sequences were obtained using polymerase chain reaction (PCR) amplification. The ON1 and BA11 genotypes were found to be dominant using the Basic Local Alignment Search Tool (BLAST) on the NCBI website. The 40 genotype ON1 sequences had high nucleotide identity (95.3%-99.8%) and amino acid similarity (92.5%-100%), whereas the 13 BA11 genotype sequenceshad 97.3% - 99.6% nucleotide identity and 94.8% - 99.7% amino acid similarity. Compared to the ON1 prototype (JN257693) and BA11 prototype (AY333364), the obtained sequences had no nucleotide insertions or deletions, indicating high similarity among the samples. A total of 17 RSV whole genome sequences were obtained, 10 of which were genotype ON1 and seven were genotype BA11. Certain amino acid mutations were found in the antigen site and epitope of the fusion (F) protein but not in the G protein. Glycosylation analyses of specific RSV genes revealed high positive selection rates for the gene, and the N- and O-linked glycosylation sequences in the F gene were relatively conserved. CONCLUSIONS From July 2018 to January 2020, ON1 and BA11 were the most prevalent RSV genotypes in Fujian Province. A high nucleotide identity and amino acid similarity were observed between the reference strain and the obtained strains, as well as among the sequences of the obtained isotypes. Certain amino acid mutations occur at the antigen site and the epitope of the F protein.
Collapse
Affiliation(s)
- Guangmin Chen
- The Practice Base on the School of Public Health, Fujian Medical University, Fuzhou 350001, China; Fujian Provincial Center for Disease Control & Prevention, Fuzhou 350001, China; Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou 350001, China
| | - Meifang Lan
- The Practice Base on the School of Public Health, Fujian Medical University, Fuzhou 350001, China; Fujian Provincial Center for Disease Control & Prevention, Fuzhou 350001, China; Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou 350001, China
| | - Sixian Lin
- The Practice Base on the School of Public Health, Fujian Medical University, Fuzhou 350001, China; Fujian Provincial Center for Disease Control & Prevention, Fuzhou 350001, China; Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou 350001, China
| | - Yanhua Zhang
- The Practice Base on the School of Public Health, Fujian Medical University, Fuzhou 350001, China; Fujian Provincial Center for Disease Control & Prevention, Fuzhou 350001, China; Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou 350001, China
| | - Dongjuan Zhang
- The Practice Base on the School of Public Health, Fujian Medical University, Fuzhou 350001, China; Fujian Provincial Center for Disease Control & Prevention, Fuzhou 350001, China; Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou 350001, China
| | - Yuwei Weng
- The Practice Base on the School of Public Health, Fujian Medical University, Fuzhou 350001, China; Fujian Provincial Center for Disease Control & Prevention, Fuzhou 350001, China; Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou 350001, China
| | - Kuicheng Zheng
- The Practice Base on the School of Public Health, Fujian Medical University, Fuzhou 350001, China; Fujian Provincial Center for Disease Control & Prevention, Fuzhou 350001, China; Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou 350001, China.
| |
Collapse
|
13
|
Di Gennaro F, Petrosillo N. New endemic and pandemic pathologies with interhuman airborne transmission through ear, nose and throat anatomical sites. ACTA OTORHINOLARYNGOLOGICA ITALICA : ORGANO UFFICIALE DELLA SOCIETA ITALIANA DI OTORINOLARINGOLOGIA E CHIRURGIA CERVICO-FACCIALE 2022; 42:S5-S13. [PMID: 35763270 PMCID: PMC9137375 DOI: 10.14639/0392-100x-suppl.1-42-2022-01] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/23/2022]
Abstract
The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has once again stigmatised the importance of airborne pathogens and their clinical, social and public health impact. Respiratory viruses are transmitted between individuals when the pathogen is released from the upper airways or from the lower respiratory tract of an infected individual. Airborne transmission is defined as the inhalation of the infectious aerosol, named droplet nuclei which size is smaller than 5 mm and that can be inhaled at a distance up to 2 metres. This route of transmission is relevant for viral respiratory pathogens, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome (MERS)-CoV, influenza virus, human rhinovirus, respiratory syncytial virus (RSV) and other respiratory virus families that differ in viral and genomic structures, susceptibility of a population to the infection, severity, transmissibility, ways of transmission and seasonal recurrence. Human respiratory viruses generally infect cells of the upper respiratory tract, eliciting respiratory signs and symptoms, sometimes without the possibility to differentiate them clinically. As seen by the current Coronavirus Disease 2019 (COVID-19) pandemic, human respiratory viruses can substantially contribute to increased morbidity and mortality, economic losses and, eventually, social disruption. In this article, we describe the structural, clinical and transmission aspects of the main respiratory viruses responsible for endemic, epidemic and pandemic infections.
Collapse
Affiliation(s)
| | - Nicola Petrosillo
- Infection Control & Infectious Disease Service, University Hospital Campus Bio-Medico, Rome, Italy
| |
Collapse
|
14
|
Tada R, Hidaka A, Tanazawa Y, Ohmi A, Muto S, Ogasawara M, Saito M, Ohshima A, Iwase N, Honjo E, Kiyono H, Kunisawa J, Negishi Y. Role of interleukin-6 in antigen-specific mucosal immunoglobulin A induction by cationic liposomes. Int Immunopharmacol 2021; 101:108280. [PMID: 34710845 PMCID: PMC8553392 DOI: 10.1016/j.intimp.2021.108280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022]
Abstract
The COVID-19 pandemic, caused by a highly virulent and transmissible pathogen, has proven to be devastating to society. Mucosal vaccines that can induce antigen-specific immune responses in both the systemic and mucosal compartments are considered an effective measure to overcome infectious diseases caused by pathogenic microbes. We have recently developed a nasal vaccine system using cationic liposomes composed of 1,2-dioleoyl-3-trimethylammonium-propane and cholesteryl 3β-N-(dimethylaminoethyl)carbamate in mice. However, the comprehensive molecular mechanism(s), especially the host soluble mediator involved in this process, by which cationic liposomes promote antigen-specific mucosal immune responses, remain to be elucidated. Herein, we show that intranasal administration of cationic liposomes elicited interleukin-6 (IL-6) expression at the site of administration. Additionally, both nasal passages and splenocytes from mice nasally immunized with cationic liposomes plus ovalbumin (OVA) were polarized to produce IL-6 when re-stimulated with OVA in vitro. Furthermore, pretreatment with anti-IL-6R antibody, which blocks the biological activities of IL-6, attenuated the production of OVA-specific nasal immunoglobulin A (IgA) but not OVA-specific serum immunoglobulin G (IgG) responses. In this study, we demonstrated that IL-6, exerted by nasally administered cationic liposomes, plays a crucial role in antigen-specific IgA induction.
Collapse
Affiliation(s)
- Rui Tada
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan.
| | - Akira Hidaka
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Yuya Tanazawa
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Akari Ohmi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Shoko Muto
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Miki Ogasawara
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Momoko Saito
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Akihiro Ohshima
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Naoko Iwase
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Emi Honjo
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| | - Jun Kunisawa
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan; Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| |
Collapse
|
15
|
Howard LM, Liu Y, Zhu Y, Liu D, Willams JV, Gil AI, Griffin MR, Edwards KM, Lanata CF, Grijalva CG. Assessing the impact of acute respiratory illnesses on the risk of subsequent respiratory illness. J Infect Dis 2021; 225:42-49. [PMID: 34120189 DOI: 10.1093/infdis/jiab313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Whether acute respiratory illnesses (ARIs), often associated with virus detection, are associated with lower risk for subsequent ARI remains unclear. We assessed the association between symptomatic ARI and subsequent ARI in young children. METHODS In a prospective cohort of Peruvian children <3 years, we examined the impact of index ARI on subsequent ARI risk. Index ARI were matched with ≤3 asymptomatic observations and followed over 28 days. We compared risk of subsequent ARI between groups using conditional logistic regression adjusting for several covariates, accounting for repeat observations from individual children. RESULTS Among 983 index ARI, 339 (34%) had an ARI event during follow-up, compared with 876/2826 (31%) matched asymptomatic observations. We found no significant association of index ARI and subsequent ARI risk during follow-up overall (aOR 1.10, 95% CI 0.98, 1.23) or when limited to index ARI with respiratory viruses detected (aOR 1.03, 95% CI 0.86, 1.24). Similarly, when the outcome was limited to ARI in which viruses were detected, no significant association was seen (aOR 1.05, 95% CI 0.87, 1.27). DISCUSSION ARIs were not associated with short-term protection against subsequent ARI in these children. Additional longitudinal studies are needed to understand drivers of recurrent ARI in young children.
Collapse
Affiliation(s)
- Leigh M Howard
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuhan Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dandan Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John V Willams
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ana I Gil
- Instituto de Investigación Nutricional, Lima, Peru
| | - Marie R Griffin
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kathryn M Edwards
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Carlos G Grijalva
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
16
|
Jadhao SJ, Ha B, McCracken C, Gebretsadik T, Rosas-Salazar C, Chappell J, Das S, Hartert T, Anderson LJ. Performance evaluation of antibody tests for detecting infant respiratory syncytial virus infection. J Med Virol 2021; 93:3439-3445. [PMID: 33325064 PMCID: PMC8046717 DOI: 10.1002/jmv.26736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/20/2020] [Accepted: 12/12/2020] [Indexed: 11/12/2022]
Abstract
Respiratory syncytial virus (RSV) infection is a major cause of respiratory tract disease in young children and throughout life. Infant infection is also associated with later respiratory morbidity including asthma. With a prospective birth cohort study of RSV and asthma, we evaluated the performance of an RSV antibody enzyme-linked immunoassay (EIA) for detecting prior infant RSV infection. Infant RSV infection was determined by biweekly respiratory illness surveillance plus RSV polymerase chain reaction (PCR) testing in their first RSV season and serum RSV antibodies after the season at approximately 1 year of age. RSV antibodies were detected by RSV A and B lysate EIA. Antibody and PCR results on 1707 children included 327 RSV PCR positive (PCR+) and 1380 not RSV+. Of 327 PCR+ children, 314 (96%) were lysate EIA positive and 583 out of 1380 (42%) children not PCR+ were positive. We compared the lysate EIA to RSV F, group A G (Ga), and group B G (Gb) protein antibody EIAs in a subset of 226 sera, 118 PCR+ children (97 group A and 21 group B) and 108 not PCR+. In this subset, 117 out of 118 (99%) RSV PCR+ children were positive by both the F and lysate EIAs and 103 out of 118 (87%) were positive by the Ga and/or Gb EIAs. Comparison of the two G EIAs indicated the infecting group correctly in 100 out of 118 (86%) and incorrectly in 1 out of 118 (1%). The lysate and F EIAs are sensitive for detecting infant infection and the two G EIAs can indicate the group of an earlier primary infection.
Collapse
Affiliation(s)
- Samadhan J. Jadhao
- Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Binh Ha
- Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Courtney McCracken
- Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Tebeb Gebretsadik
- Department of Medicine, Biostatistics and Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Christian Rosas-Salazar
- Department of Medicine, Biostatistics and Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - James Chappell
- Department of Medicine, Biostatistics and Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Suman Das
- Department of Medicine, Biostatistics and Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tina Hartert
- Department of Medicine, Biostatistics and Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Larry J. Anderson
- Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Tada R, Suzuki H, Ogasawara M, Yamanaka D, Adachi Y, Kunisawa J, Negishi Y. Polymeric Caffeic Acid Acts as a Nasal Vaccine Formulation against Streptococcus pneumoniae Infections in Mice. Pharmaceutics 2021; 13:pharmaceutics13040585. [PMID: 33923897 PMCID: PMC8073337 DOI: 10.3390/pharmaceutics13040585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/17/2021] [Accepted: 04/17/2021] [Indexed: 11/16/2022] Open
Abstract
Infectious diseases are the second leading cause of death worldwide, highlighting the importance of the development of a novel and improved strategy for fighting pathogenic microbes. Streptococcus pneumoniae is a highly pathogenic bacteria that causes pneumonia with high mortality rates, especially in children and elderly individuals. To solve these issues, a mucosal vaccine system would be the best solution for the prevention and treatment of these diseases. We have recently reported that enzymatically polymerized caffeic acid (pCA) acts as a mucosal adjuvant when co-administered with antigenic proteins via the nasal route. Moreover, the sources of caffeic acid and horseradish peroxidase are ingredients found commonly in coffee beans and horseradish, respectively. In this study, we aimed to develop a pneumococcal nasal vaccine comprising pneumococcal surface protein A (PspA) and pCA as the mucosal adjuvant. Intranasal immunization with PspA and pCA induced the production of PspA-specific antibody responses in the mucosal and systemic compartments. Furthermore, the protective effects were tested in a murine model of S. pneumoniae infection. Intranasal vaccination conferred antigen-dependent protective immunity against a lethal infection of S. pneumoniae. In conclusion, pCA is useful as a serotype-independent universal nasal pneumococcal vaccine formulation.
Collapse
Affiliation(s)
- Rui Tada
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan; (M.O.); (Y.N.)
- Correspondence: ; Tel.: +81-42-676-3219
| | - Hidehiko Suzuki
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; (H.S.); (J.K.)
| | - Miki Ogasawara
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan; (M.O.); (Y.N.)
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan; (D.Y.); (Y.A.)
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan; (D.Y.); (Y.A.)
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; (H.S.); (J.K.)
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan; (M.O.); (Y.N.)
| |
Collapse
|
18
|
Tada R, Ogasawara M, Yamanaka D, Sakurai Y, Negishi Y, Kiyono H, Ohno N, Kunisawa J, Aramaki Y. Enzymatically polymerised polyphenols prepared from various precursors potentiate antigen-specific immune responses in both mucosal and systemic compartments in mice. PLoS One 2021; 16:e0246422. [PMID: 33556119 PMCID: PMC7870002 DOI: 10.1371/journal.pone.0246422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
Despite significant modern medicine progress, having an infectious disease is a major risk factor for humans. Mucosal vaccination is now widely considered as the most promising strategy to defeat infectious diseases; however, only live-attenuated and inactivated mucosal vaccines are used in the clinical field. To date, no subunit mucosal vaccine was approved mainly because of the lack of safe and effective methodologies to either activate or initiate host mucosal immune responses. We have recently elucidated that intranasal administration of enzymatically polymerised caffeic acid potentiates antigen-specific mucosal and systemic antibody responses in mice. However, our earlier study has not confirmed whether these effects are specific to the polymer synthesised from caffeic acid. Here, we show that enzymatically polymerised polyphenols (EPPs) from various phenolic compounds possess mucosal adjuvant activities when administered nasally with an antigen to mice. Potentiation of antigen-specific immune responses by all EPPs tested in this study showed no clear difference among the precursors used. We found that intranasal administration of ovalbumin as the antigen, in combination with all enzymatically polymerised polyphenols used in this study, induced ovalbumin-specific mucosal IgA in the nasal cavity, bronchoalveolar lavage fluid, vaginal fluids, and systemic IgG, especially IgG1, in sera. Our results demonstrate that the mucosal adjuvant activities of polyphenols are not limited to polymerised caffeic acid but are broadly observable across the studied polyphenols. These properties of polyphenols may be advantageous for the development of safe and effective nasal vaccine systems to prevent and/or treat various infectious diseases.
Collapse
Affiliation(s)
- Rui Tada
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
- * E-mail:
| | - Miki Ogasawara
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yasuhiro Sakurai
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Jun Kunisawa
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Yukihiko Aramaki
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
19
|
Ballegeer M, Saelens X. Cell-Mediated Responses to Human Metapneumovirus Infection. Viruses 2020; 12:v12050542. [PMID: 32423043 PMCID: PMC7290942 DOI: 10.3390/v12050542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022] Open
Abstract
Viruses are the most common cause of acute respiratory tract infections (ARTI). Human metapneumovirus (hMPV) frequently causes viral pneumonia which can become life-threatening if the virus spreads to the lungs. Even though hMPV was only isolated in 2001, this negative-stranded RNA virus has probably been circulating in the human population for many decades. Interestingly, almost all adults have serologic evidence of hMPV infection. A well-established host immune response is evoked when hMPV infection occurs. However, the virus has evolved to circumvent and even exploit the host immune response. Further, infection with hMPV induces a weak memory response, and re-infections during life are common. In this review, we provide a comprehensive overview of the different cell types involved in the immune response in order to better understand the immunopathology induced by hMPV. Such knowledge may contribute to the development of vaccines and therapeutics directed against hMPV.
Collapse
Affiliation(s)
- Marlies Ballegeer
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
20
|
Cell-Mediated Responses to Human Metapneumovirus Infection. Viruses 2020; 12:542. [PMID: 32423043 PMCID: PMC7290942 DOI: 10.3390/v12050542&set/a 882111696+808152660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Viruses are the most common cause of acute respiratory tract infections (ARTI). Human metapneumovirus (hMPV) frequently causes viral pneumonia which can become life-threatening if the virus spreads to the lungs. Even though hMPV was only isolated in 2001, this negative-stranded RNA virus has probably been circulating in the human population for many decades. Interestingly, almost all adults have serologic evidence of hMPV infection. A well-established host immune response is evoked when hMPV infection occurs. However, the virus has evolved to circumvent and even exploit the host immune response. Further, infection with hMPV induces a weak memory response, and re-infections during life are common. In this review, we provide a comprehensive overview of the different cell types involved in the immune response in order to better understand the immunopathology induced by hMPV. Such knowledge may contribute to the development of vaccines and therapeutics directed against hMPV.
Collapse
|
21
|
Cell-Mediated Responses to Human Metapneumovirus Infection. Viruses 2020. [DOI: 10.3390/v12050542
expr 836379838 + 819716165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Viruses are the most common cause of acute respiratory tract infections (ARTI). Human metapneumovirus (hMPV) frequently causes viral pneumonia which can become life-threatening if the virus spreads to the lungs. Even though hMPV was only isolated in 2001, this negative-stranded RNA virus has probably been circulating in the human population for many decades. Interestingly, almost all adults have serologic evidence of hMPV infection. A well-established host immune response is evoked when hMPV infection occurs. However, the virus has evolved to circumvent and even exploit the host immune response. Further, infection with hMPV induces a weak memory response, and re-infections during life are common. In this review, we provide a comprehensive overview of the different cell types involved in the immune response in order to better understand the immunopathology induced by hMPV. Such knowledge may contribute to the development of vaccines and therapeutics directed against hMPV.
Collapse
|
22
|
Zhou Z, Zhang P, Cui Y, Zhang Y, Qin X, Li R, Liu P, Dou Y, Wang L, Zhao Y. Experiments Investigating the Competitive Growth Advantage of Two Different Genotypes of Human Metapneumovirus: Implications for the Alternation of Genotype Prevalence. Sci Rep 2020; 10:2852. [PMID: 32071381 PMCID: PMC7029021 DOI: 10.1038/s41598-020-59150-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/23/2020] [Indexed: 12/03/2022] Open
Abstract
Human metapneumovirus (hMPV) is an important pathogen that causes upper and lower respiratory tract infections in children worldwide. hMPV has two major genotypes, hMPV-A and hMPV-B. Epidemiological studies have shown that the two hMPV genotypes alternate in predominance worldwide in recent years. Co-circulation of the two genotypes of hMPV was usually observed and there is no study about the interaction between them, such as competitive replication, which maybe the possible mechanisms for alternating prevalence of subtypes. Our present study have used two different genotypes of hMPV (genotype A: NL/1/00; B: NL/1/99) in different proportions in animal model (BALB/c mice) and cell model (Vero-E6) separately. The result showed that the competitive growth does exist in BALB/c mice, genotype B had a strong competitive advantage. However, genotype B did not cause more severe disease than non-predominant (genotype A) or mixed strains in the study, which were evaluated by the body weight, airway hyperresponsiveness and lung pathology of mouse. In cell model, competitive growth and the two genotypes alternately prevalence were observed. In summary, we confirmed that there was a competitive replication between hMPV genotype A and B, and no difference in disease severity caused by the two subtypes. This study shows a new insight to understand the alternation of hMPV genotype prevalence through genotype competition and provide experimental evidence for disease control and vaccine design.
Collapse
Affiliation(s)
- Zhen Zhou
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Pan Zhang
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Yuxia Cui
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guizhou, 550002, China
| | - Yongbo Zhang
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Xian Qin
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Rongpei Li
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Ping Liu
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Ying Dou
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Lijia Wang
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Yao Zhao
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China. .,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China.
| |
Collapse
|
23
|
Essential Role of Host Double-Stranded DNA Released from Dying Cells by Cationic Liposomes for Mucosal Adjuvanticity. Vaccines (Basel) 2019; 8:vaccines8010008. [PMID: 31892192 PMCID: PMC7157664 DOI: 10.3390/vaccines8010008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/21/2019] [Accepted: 12/21/2019] [Indexed: 12/20/2022] Open
Abstract
Infectious disease remains a substantial cause of death. To overcome this issue, mucosal vaccine systems are considered to be a promising strategy. Yet, none are approved for clinical use, except for live-attenuated mucosal vaccines, mainly owing to the lack of effective and safe systems to induce antigen-specific immune responses in the mucosal compartment. We have reported that intranasal vaccination of an antigenic protein, with cationic liposomes composed of 1,2-dioleoyl-3-trimethylammonium-propane and 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl], induced antigen-specific mucosal and systemic antibody responses in mice. However, precise molecular mechanism(s) underlying the mucosal adjuvant effects of cationic liposomes remain to be uncovered. Here, we show that a host double-stranded DNA (dsDNA), released at the site of cationic liposome injection, plays an essential role for the mucosal adjuvanticity of the cationic liposome. Namely, we found that nasal administration of the cationic liposomes induced localized cell death, at the site of injection, resulting in extracellular leakage of host dsDNA. Additionally, in vivo DNase I treatment markedly impaired OVA-specific mucosal and systemic antibody production exerted by cationic liposomes. Our report reveals that host dsDNA, released from local dying cells, acts as a damage-associated molecular pattern that mediates the mucosal adjuvant activity of cationic liposomes.
Collapse
|
24
|
Zhu R, Guo C, Zhao L, Deng J, Wang F, Sun Y, Qian Y. Epidemiological and genetic characteristics of human metapneumovirus in pediatric patients across six consecutive seasons in Beijing, China. Int J Infect Dis 2019; 91:137-142. [PMID: 31821893 DOI: 10.1016/j.ijid.2019.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES To investigate the genetic characteristics of human metapneumovirus (hMPV) circulating among children with acute respiratory tract infections (ARTIs) in Beijing, China. METHODS Clinical samples were obtained from outpatients and hospitalized children with ARTIs between August 2010 and July 2016. Reverse transcription polymerase chain reaction assays were used to screen and identify hMPV, while partial glycoprotein gene sequences were used for phylogenetic analysis. RESULTS Among the 10 918 samples, 292 (2.7%) were positive for hMPV. Overall, the virus was more prevalent among inpatients (4.3%) than outpatients (1.2%). A biennial alternating pattern of hMPV infection was observed, with infection rates fluctuating between 1.6% and 4.0%. Most cases were detected between December and April, showing clear-cut seasonality. Sub-genotypes A2b, B1, and B2 co-circulated in winter and spring in an alternating pattern, while only one A1-positive case was observed in 2012. The seasonal peak of hMPV was slightly delayed or overlapped with that of respiratory syncytial virus and influenza virus. hMPV activity increased in the 2010-2011 and 2014-2015 seasons, when influenza activity was apparently decreased compared with other epidemic seasons. CONCLUSIONS This study provides information on the epidemiological and genetic characteristics of hMPV in children in Beijing, and reinforces the significance of hMPV in children with ARTIs, especially lower respiratory tract infections.
Collapse
Affiliation(s)
- Runan Zhu
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing 100020, China
| | - Chunying Guo
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing 100020, China
| | - Linqing Zhao
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing 100020, China
| | - Jie Deng
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing 100020, China
| | - Fang Wang
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing 100020, China
| | - Yu Sun
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing 100020, China
| | - Yuan Qian
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing 100020, China.
| |
Collapse
|
25
|
Furuse Y, Tamaki R, Okamoto M, Saito-Obata M, Suzuki A, Saito M, Imamura T, Khandaker I, Dapat I, Ueno F, Alday PP, Tan AG, Inobaya MT, Segubre-Mercado E, Tallo V, Lupisan S, Oshitani H. Association Between Preceding Viral Respiratory Infection and Subsequent Respiratory Illnesses Among Children: A Prospective Cohort Study in the Philippines. J Infect Dis 2019; 219:197-205. [PMID: 30189092 PMCID: PMC6306022 DOI: 10.1093/infdis/jiy515] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/23/2018] [Indexed: 11/30/2022] Open
Abstract
Background Acute respiratory infection (ARI) is of great concern in public health. It remains unclear whether viral infections can affect the host’s susceptibility to subsequent ARIs. Methods A prospective cohort study on ARIs of children below 5 years old was conducted in the Philippines from 2014 to 2016. The respiratory symptoms were recorded daily, and nasopharyngeal swabs were collected at both household and health facilities. The specimens were tested for respiratory viruses. We then determined whether viral etiology was associated with the severity of the present ARI and whether previous viral infections was associated with subsequent ARIs. Results A total of 3851 children and 16337 ARI episodes were enrolled and recorded, respectively. Samples were collected from 24% of all ARI episodes; collection rate at the healthcare facilities was 95%. Enterovirus D68, rhinovirus species C, and respiratory syncytial virus were significantly associated with severe ARIs. The risk for subsequent ARIs was significantly enhanced after infections with adenovirus, influenza A virus, parainfluenza virus type 4, and rhinovirus species C. Conclusions This study revealed that viral etiology plays a significant role in the severity of the present ARI and that viral infection affects the host’s susceptibility to subsequent ARIs.
Collapse
Affiliation(s)
- Yuki Furuse
- Institute for Frontier Life and Medical Sciences, Kyoto University, Japan.,Hakubi Center for Advanced Research, Kyoto University, Japan.,Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Raita Tamaki
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiko Okamoto
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mariko Saito-Obata
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan.,RITM-Tohoku Collaborating Research Center on Emerging and Reemerging Infectious Diseases, Muntinlupa, Philippines
| | - Akira Suzuki
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mayuko Saito
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadatsugu Imamura
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Irona Khandaker
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Isolde Dapat
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumihiko Ueno
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Alvin Gue Tan
- Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | | | | | - Veronica Tallo
- Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Socorro Lupisan
- Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
26
|
Koo HJ, Lee HN, Choi SH, Sung H, Kim HJ, Do KH. Clinical and Radiologic Characteristics of Human Metapneumovirus Infections in Adults, South Korea. Emerg Infect Dis 2019; 25:15-24. [PMID: 30560776 PMCID: PMC6302610 DOI: 10.3201/eid2501.181131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Clinical features of human metapneumovirus (HMPV) infection have not been well documented for adults. We investigated clinical and radiologic features of HMPV infection in 849 adults in a tertiary hospital in South Korea. We classified patients into groups on the basis of underlying diseases: immunocompetent patients, solid tumor patients, solid organ transplantation recipients, hematopoietic stem cell transplant recipients, hematologic malignancy patients, and patients receiving long-term steroid treatment. Of 849 HMPV-infected patients, 756 had community-acquired infections, 579 had pneumonia, and 203 had infections with other pathogens. Mortality rates were highest in hematopoietic stem cell transplantation recipients (22% at 30 days). Older age, current smoking, and underlying disease were associated with HMPV pneumonia. Body mass index and an immunocompromised state were associated with 30-day mortality rates in HMPV-infected patients. Bronchial wall thickening, ground-glass opacity, and ill-defined centrilobular nodules were common computed tomography findings for HMPV pneumonia. Macronodules and consolidation were observed in <50% of patients.
Collapse
|
27
|
Human Metapneumovirus Infection: Pneumonia Risk Factors in Patients With Solid Organ Transplantation and Computed Tomography Findings. Transplantation 2018; 102:699-706. [PMID: 28957844 DOI: 10.1097/tp.0000000000001965] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Human metapneumovirus (HMPV) is a newly detected pathogen that can cause lower respiratory tract disease. Clinical characteristics, computed tomography (CT) findings, and outcomes of HMPV pneumonia in patients with solid organ transplantation (SOT) have not been well demonstrated. METHODS Between January 2010 and February 2016, clinical and imaging findings of 59 patients with SOT (types of organ: kidney, 37; liver, 16; heart, 4; and pancreas and kidney, 2) who had HMPV infection detected in nasopharyngeal or bronchoalveolar lavage by reverse transcription polymerase chain reaction were retrospectively evaluated. RESULTS Most (90%) of the patients were detected between March and June. In the 59 patients with SOT with upper respiratory tract infection (URI), 29 (49%) progressed to lower respiratory tract disease after a median of 7 days (range, 2-31 days). Coinfection was noted in 39% of the patients. In Cox proportional hazards analysis, low lymphocyte count (≤0.7 × 10/μL; hazard ratio, 2.24; 95% confidence interval, 1.04-4.85; P = 0.04) and high C-reactive protein (>10 mg/dL; hazard ratio, 2.93; 95% confidence interval, 1.19-7.21; P = 0.02) at URI diagnosis were associated with HMPV pneumonia. On CT, HMPV pneumonia presented as bilateral ill-defined centrilobular nodules, consolidation and ground-glass opacities, whereas lymphadenopathy or effusion is not common. There were no significantly different imaging CT findings between patients with HMPV infection alone and those with coinfection. CONCLUSIONS Human metapneumovirus pneumonias were detected in nearly half of patients with SOT showing URI symptoms with positive HMPV, and low lymphocyte count and high C-reactive protein at URI diagnosis were significant factors associated with HMPV pneumonia.
Collapse
|
28
|
Tada R, Yamanaka D, Ogasawara M, Saito M, Ohno N, Kiyono H, Kunisawa J, Aramaki Y. Polymeric Caffeic Acid Is a Safer Mucosal Adjuvant That Augments Antigen-Specific Mucosal and Systemic Immune Responses in Mice. Mol Pharm 2018; 15:4226-4234. [PMID: 30107747 DOI: 10.1021/acs.molpharmaceut.8b00648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Infections remain a major threat to human lives. To overcome the threat caused by pathogens, mucosal vaccines are considered a promising strategy. However, no inactivated and/or subunit mucosal vaccine has been approved for human use, largely because of the lack of a safe and effective mucosal adjuvant. Here, we show that enzymatically synthesized polymeric caffeic acid (pCA) can act as a potent mucosal adjuvant in mice. Intranasal administration of ovalbumin (OVA) in combination with pCA resulted in the induction of OVA-specific mucosal IgA and serum IgG, especially IgG1. Importantly, pCA was synthesized from caffeic acid and horseradish peroxidase from coffee beans and horseradish, respectively, which are commonly consumed. Therefore, pCA is believed to be a highly safe material. In fact, administration of pCA did not show distinct toxicity in mice. These data indicate that pCA has merit for use as a mucosal adjuvant for nasal vaccine formulations.
Collapse
Affiliation(s)
| | | | | | | | | | - Hiroshi Kiyono
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science , The University of Tokyo , Tokyo 108-8639 , Japan
| | - Jun Kunisawa
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science , The University of Tokyo , Tokyo 108-8639 , Japan.,Laboratory of Vaccine Materials , National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) , Osaka 567-0085 , Japan
| | | |
Collapse
|
29
|
Tada R, Hidaka A, Kiyono H, Kunisawa J, Aramaki Y. Intranasal administration of cationic liposomes enhanced granulocyte-macrophage colony-stimulating factor expression and this expression is dispensable for mucosal adjuvant activity. BMC Res Notes 2018; 11:472. [PMID: 30005702 PMCID: PMC6045820 DOI: 10.1186/s13104-018-3591-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/10/2018] [Indexed: 12/24/2022] Open
Abstract
Objective Infectious diseases remain a threat to human life. Vaccination against pathogenic microbes is a primary method of treatment as well as prevention of infectious diseases. Particularly mucosal vaccination is a promising approach to fight against most infectious diseases, because mucosal surfaces are a major point of entry for most pathogens. We recently developed an effective mucosal adjuvant of cationic liposomes composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl] (DC-chol) (DOTAP/DC-chol liposomes). However, the mechanism(s) underlying the mucosal adjuvant effects exerted by the cationic liposomes have been unclear. In this study, we investigated the role of granulocyte–macrophage colony-stimulating factor (GM-CSF), which was reported to act as a mucosal adjuvant, on the mucosal adjuvant activities of DOTAP/DC-chol liposomes when administered intranasally to mice. Results Here, we show that, although intranasal vaccination with cationic liposomes in combination with antigenic protein elicited GM-CSF expression at the site of administration, blocking GM-CSF function by using an anti-GM-CSF neutralizing antibody did not alter antigen-specific antibody production induced by DOTAP/DC-chol liposomes, indicating that GM-CSF may not contribute to the mucosal adjuvant activity of the cationic liposomes when administered intranasally. Electronic supplementary material The online version of this article (10.1186/s13104-018-3591-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Tada
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Akira Hidaka
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jun Kunisawa
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Yukihiko Aramaki
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
30
|
Tada R, Suzuki H, Takahashi S, Negishi Y, Kiyono H, Kunisawa J, Aramaki Y. Nasal vaccination with pneumococcal surface protein A in combination with cationic liposomes consisting of DOTAP and DC-chol confers antigen-mediated protective immunity against Streptococcus pneumoniae infections in mice. Int Immunopharmacol 2018; 61:385-393. [PMID: 29945026 DOI: 10.1016/j.intimp.2018.06.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 10/28/2022]
Abstract
Infectious diseases are the second leading cause of death worldwide, suggesting that there is still a need for the development of new and improved strategies for combating pathogens effectively. Streptococcus pneumoniae is the most virulent bacteria causing pneumonia with high mortality, especially in children and the elderly. Because of the emergence of antibiotic resistance in S. pneumoniae, employing a serotype-independent mucosal vaccine would be the best approach to prevent and treat the diseases caused by S. pneumoniae. In this study, we have developed a pneumococcal nasal vaccine, consisting of pneumococcal surface protein A (PspA) and cationic liposomes composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and cholesteryl 3β-N-(dimethylaminoethyl)-carbamate (DC-chol) (DOTAP/DC-chol liposome). The efficiency of this cationic liposome-based PspA nasal vaccine was examined in a murine model of S. pneumoniae infection. Intranasal vaccination with PspA and DOTAP/DC-chol liposomes conferred protective immunity against lethal inhalation of S. pneumoniae, improving the survival rate of infected mice. Moreover, intranasal immunization with PspA and DOTAP/DC-chol liposomes not only induced the production of PspA-specific IgA and IgG by both mucosal and systemic compartments but also elicited PspA-specific Th17 responses, which play a pivotal role in controlling S. pneumoniae infection by host innate immune response. We further demonstrated that DOTAP/DC-chol liposomes enhanced PspA uptake by nasal dendritic cells (DCs), which might be a mechanism for the induction of protective immune responses to S. pneumoniae infection. These results show that DOTAP/DC-chol liposome would be an efficient mucosal vaccine system for a serotype-independent universal nasal vaccine against pneumococcal infection.
Collapse
Affiliation(s)
- Rui Tada
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan.
| | - Hidehiko Suzuki
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, Japan
| | - Saeko Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, Japan; Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| | - Yukihiko Aramaki
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| |
Collapse
|
31
|
Abstract
Globally, as a leading agent of acute respiratory tract infections in children <5 years of age and the elderly, the human metapneumovirus (HMPV) has gained considerable attention. As inferred from studies comparing vaccinated and experimentally infected mice, the acquired immune response elicited by this pathogen fails to efficiently clear the virus from the airways, which leads to an exaggerated inflammatory response and lung damage. Furthermore, after disease resolution, there is a poor development of T and B cell immunological memory, which is believed to promote reinfections and viral spread in the community. In this article, we discuss the molecular mechanisms that shape the interactions of HMPV with host tissues that lead to pulmonary pathology and to the development of adaptive immunity that fails to protect against natural infections by this virus.
Collapse
|
32
|
Burbulla D, Günther PS, Peper JK, Jahn G, Dennehy KM. Human CD8(+) T Cells Target Multiple Epitopes in Respiratory Syncytial Virus Polymerase. Viral Immunol 2016; 29:307-14. [PMID: 27070377 DOI: 10.1089/vim.2015.0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection is a serious health problem in young children, immunocompromised patients, and the elderly. The development of novel prevention strategies, such as a vaccine to RSV, is a high priority. One strategy is to design a peptide-based vaccine that activates appropriate CD8(+) T-cell responses. However, this approach is limited by the low number of RSV peptide epitopes defined to date that activate CD8(+) T cells. We aimed to identify peptide epitopes that are presented by common human leukocyte antigen types (HLA-A*01, -A*02, and -B*07). We identify one novel HLA-A*02-restricted and two novel HLA-A*01-restricted peptide epitopes from RSV polymerase. Peptide-HLA multimer staining of specific T cells from healthy donor peripheral blood mononuclear cell, the memory phenotype of such peptide-specific T cells ex vivo, and functional IFNγ responses in short-term stimulation assays suggest that these peptides are recognized during RSV infection. Such peptides are candidates for inclusion into a peptide-based RSV vaccine designed to stimulate defined CD8(+) T-cell responses.
Collapse
Affiliation(s)
- Daniel Burbulla
- 1 Institute for Medical Virology, University Hospital Tübingen , Tübingen, Germany
| | - Patrick S Günther
- 1 Institute for Medical Virology, University Hospital Tübingen , Tübingen, Germany
| | - Janet K Peper
- 2 Department of Immunology, University of Tübingen , Tübingen, Germany
| | - Gerhard Jahn
- 1 Institute for Medical Virology, University Hospital Tübingen , Tübingen, Germany
| | - Kevin M Dennehy
- 1 Institute for Medical Virology, University Hospital Tübingen , Tübingen, Germany
| |
Collapse
|
33
|
Tada R, Hidaka A, Iwase N, Takahashi S, Yamakita Y, Iwata T, Muto S, Sato E, Takayama N, Honjo E, Kiyono H, Kunisawa J, Aramaki Y. Intranasal Immunization with DOTAP Cationic Liposomes Combined with DC-Cholesterol Induces Potent Antigen-Specific Mucosal and Systemic Immune Responses in Mice. PLoS One 2015; 10:e0139785. [PMID: 26440657 PMCID: PMC4594917 DOI: 10.1371/journal.pone.0139785] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/17/2015] [Indexed: 11/18/2022] Open
Abstract
Despite the progress made by modern medicine, infectious diseases remain one of the most important threats to human health. Vaccination against pathogens is one of the primary methods used to prevent and treat infectious diseases that cause illness and death. Vaccines administered by the mucosal route are potentially a promising strategy to combat infectious diseases since mucosal surfaces are a major route of entry for most pathogens. However, this route of vaccination is not widely used in the clinic due to the lack of a safe and effective mucosal adjuvant. Therefore, the development of safe and effective mucosal adjuvants is key to preventing infectious diseases by enabling the use of mucosal vaccines in the clinic. In this study, we show that intranasal administration of a cationic liposome composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 3β-[N-(N',N'-dimethylaminoethane)-carbamoyl] (DC-chol) (DOTAP/DC-chol liposome) has a potent mucosal adjuvant effect in mice. Intranasal vaccination with ovalbumin (OVA) in combination with DOTAP/DC-chol liposomes induced the production of OVA-specific IgA in nasal tissues and increased serum IgG1 levels, suggesting that the cationic DOTAP/DC-chol liposome leads to the induction of a Th2 immune response. Additionally, nasal-associated lymphoid tissue and splenocytes from mice treated with OVA plus DOTAP/DC-chol liposome showed high levels of IL-4 expression. DOTAP/DC-chol liposomes also enhanced OVA uptake by CD11c+ dendritic cells in nasal-associated lymphoid tissue. These data demonstrate that DOTAP/DC-chol liposomes elicit immune responses via an antigen-specific Th2 reaction. These results suggest that cationic liposomes merit further development as a mucosal adjuvant for vaccination against infectious diseases.
Collapse
Affiliation(s)
- Rui Tada
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
- * E-mail: (RT); (YA)
| | - Akira Hidaka
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Naoko Iwase
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Saeko Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuki Yamakita
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Tomoko Iwata
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Shoko Muto
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Emi Sato
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Noriko Takayama
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Emi Honjo
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jun Kunisawa
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Vaccine Materials, National Institute of Biomedical Innovation, Osaka, Japan
| | - Yukihiko Aramaki
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
- * E-mail: (RT); (YA)
| |
Collapse
|
34
|
Park WJ. Seroprevalence of respiratory syncytial virus IgG among healthy young adults in basic training for the Republic of Korea Air Force. J Korean Med Sci 2014; 29:1325-7. [PMID: 25246755 PMCID: PMC4168190 DOI: 10.3346/jkms.2014.29.9.1325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/13/2014] [Indexed: 11/20/2022] Open
Abstract
This investigation enrolled 570 healthy young males gathered from all over the country for military service at the Republic of Korea Air Force boot camp. It confirmed RSV IgG seroprevalence by utilizing the enzyme immunoassay method just prior to undergoing basic training. The mean age of this study was 20.25 ± 1.34 yr old. The results of their immunoassay seroprofiles showed that 561 men (98.4%) were positive, 2 (0.4%) were negative and 7 (1.2%) were equivocal belonging to the grey zone. It was confirmed that RSV is a common respiratory virus and RSV infection was encountered by almost all people before reaching adulthood in Korea. Nine basic trainees belonging to the RSV IgG negative and equivocal grey zone categories were prospectively observed for any particular vulnerability to respiratory infection during the training period of two months. However, these nine men completed their basic training without developing any specific respiratory illness.
Collapse
Affiliation(s)
- Won-Ju Park
- Department of Occupational and Environmental Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Department of Occupational and Environmental Medicine, Aerospace Medical Research Center, Republic of Korea Air Force, Cheongwon, Korea
| |
Collapse
|
35
|
Paynter S, Yakob L, Simões EAF, Lucero MG, Tallo V, Nohynek H, Ware RS, Weinstein P, Williams G, Sly PD. Using mathematical transmission modelling to investigate drivers of respiratory syncytial virus seasonality in children in the Philippines. PLoS One 2014; 9:e90094. [PMID: 24587222 PMCID: PMC3937436 DOI: 10.1371/journal.pone.0090094] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 01/31/2014] [Indexed: 12/02/2022] Open
Abstract
We used a mathematical transmission model to estimate when ecological drivers of respiratory syncytial virus (RSV) transmissibility would need to act in order to produce the observed seasonality of RSV in the Philippines. We estimated that a seasonal peak in transmissibility would need to occur approximately 51 days prior to the observed peak in RSV cases (range 49 to 67 days). We then compared this estimated seasonal pattern of transmissibility to the seasonal patterns of possible ecological drivers of transmissibility: rainfall, humidity and temperature patterns, nutritional status, and school holidays. The timing of the seasonal patterns of nutritional status and rainfall were both consistent with the estimated seasonal pattern of transmissibility and these are both plausible drivers of the seasonality of RSV in this setting.
Collapse
Affiliation(s)
- Stuart Paynter
- School of Population Health, University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| | - Laith Yakob
- School of Population Health, University of Queensland, Brisbane, Queensland, Australia
| | - Eric A. F. Simões
- University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Colorado School of Public Health, University of Colorado, Aurora, Colorado, United States of America
| | - Marilla G. Lucero
- Research Institute for Tropical Medicine, Department of Health, Muntinlupa City, Metro Manila, Philippines
| | - Veronica Tallo
- Research Institute for Tropical Medicine, Department of Health, Muntinlupa City, Metro Manila, Philippines
| | - Hanna Nohynek
- Department of Vaccines and Immune Protection, National Institute for Health and Welfare, Helsinki, Finland
| | - Robert S. Ware
- School of Population Health, University of Queensland, Brisbane, Queensland, Australia
- Queensland Children’s Medical Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Philip Weinstein
- Barbara Hardy Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Gail Williams
- School of Population Health, University of Queensland, Brisbane, Queensland, Australia
| | - Peter D. Sly
- Queensland Children’s Medical Research Institute, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
36
|
Roy Mukherjee T, Chanda S, Mullick S, De P, Dey‐Sarkar M, Chawla‐Sarkar M. Spectrum of respiratory viruses circulating in eastern India: prospective surveillance among patients with influenza-like illness during 2010-2011. J Med Virol 2013; 85:1459-65. [PMID: 23765782 PMCID: PMC7166942 DOI: 10.1002/jmv.23607] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2013] [Indexed: 11/07/2022]
Abstract
In developing countries, viruses causing respiratory disease are a major concern of public health. During January 2010-December 2011, 2,737 patients with acute respiratory infection from the outpatient departments as well as patients admitted to hospitals were screened for different respiratory viruses. Nasal and or throat swabs were collected and transported to the laboratory where initial screening of influenza A and influenza B viruses was performed. The samples were tested further for influenza C virus, parainfluenza viruses 1-4, human rhinovirus, metapneumovirus and respiratory syncytial virus by conventional RT- PCR. The study revealed that the majority of the patients were under 5 years of age; both due to their higher susceptibility to respiratory infections and presentation to hospitals. Out of 2,737 patients enrolled in this study, 59% were found positive for one or more respiratory viruses. Influenza B infection was detected in 12% of patients followed by influenza A (11.7%), respiratory syncytial virus (7.1%), parainfluenza virus-2 (6%), metapneumovirus (3%), parainfluenza virus-3 (1%), parainfluenza virus-4 (0.6%), parainfluenza virus-1 (0.3%), influenza C (0.2%) and human rhinovirus (0.2%). Distinct seasonal infection was observed only for influenza A and influenza B viruses.
Collapse
Affiliation(s)
| | - Shampa Chanda
- National Institute of Cholera and Enteric DiseasesBeliaghata, KolkataIndia
| | - Satarupa Mullick
- National Institute of Cholera and Enteric DiseasesBeliaghata, KolkataIndia
| | - Papiya De
- National Institute of Cholera and Enteric DiseasesBeliaghata, KolkataIndia
| | - Malay Dey‐Sarkar
- National Institute of Cholera and Enteric DiseasesBeliaghata, KolkataIndia
| | | |
Collapse
|
37
|
Abstract
Respiratory syncytial virus (RSV) is amongst the most important pathogenic infections of childhood and is associated with significant morbidity and mortality. Although there have been extensive studies of epidemiology, clinical manifestations, diagnostic techniques, animal models and the immunobiology of infection, there is not yet a convincing and safe vaccine available. The major histopathologic characteristics of RSV infection are acute bronchiolitis, mucosal and submucosal edema, and luminal occlusion by cellular debris of sloughed epithelial cells mixed with macrophages, strands of fibrin, and some mucin. There is a single RSV serotype with two major antigenic subgroups, A and B. Strains of both subtypes often co-circulate, but usually one subtype predominates. In temperate climates, RSV infections reflect a distinct seasonality with onset in late fall or early winter. It is believed that most children will experience at least one RSV infection by the age of 2 years. There are several key animal models of RSV. These include a model in mice and, more importantly, a bovine model; the latter reflects distinct similarity to the human disease. Importantly, the prevalence of asthma is significantly higher amongst children who are hospitalized with RSV in infancy or early childhood. However, there have been only limited investigations of candidate genes that have the potential to explain this increase in susceptibility. An atopic predisposition appears to predispose to subsequent development of asthma and it is likely that subsequent development of asthma is secondary to the pathogenic inflammatory response involving cytokines, chemokines and their cognate receptors. Numerous approaches to the development of RSV vaccines are being evaluated, as are the use of newer antiviral agents to mitigate disease. There is also significant attention being placed on the potential impact of co-infection and defining the natural history of RSV. Clearly, more research is required to define the relationships between RSV bronchiolitis, other viral induced inflammatory responses, and asthma.
Collapse
Affiliation(s)
- Andrea T. Borchers
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6501, Davis, CA 95616 USA
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6501, Davis, CA 95616 USA
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6501, Davis, CA 95616 USA
| | - Laurel J. Gershwin
- Department of Pathology, Microbiology and Immunology, University of California, Davis, School of Veterinary Medicine, Davis, CA USA
| |
Collapse
|
38
|
Identification of a nonstructural DNA-binding protein (DBP) as an antigen with diagnostic potential for human adenovirus. PLoS One 2013; 8:e56708. [PMID: 23516396 PMCID: PMC3596362 DOI: 10.1371/journal.pone.0056708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/14/2013] [Indexed: 12/23/2022] Open
Abstract
Background Human adenoviruses (HAdVs) have been implicated as important agents in a wide range of human illnesses. To date, 58 distinct HAdV serotypes have been identified and can be grouped into six species. For the immunological diagnosis of adenoviruses, the hexon protein, a structural protein, has been used. The potential of other HAdV proteins has not been fully addressed. Methodology/Principal Findings In this study, a nonstructural antigenic protein, the DNA binding protein (DBP) of human adenovirus 5 and 35 (Ad5, Ad35) - was identified using immunoproteomic technology. The expression of Ad5 and Ad35 DBP in insect cells could be detected by rhesus monkey serum antibodies and healthy adult human serum positive for Ad5 and Ad35. Recombinant DBPs elicited high titer antibodies in mice. Their conserved domain displayed immunological cross-reactions with heterologous DBP antibodies in Western blot assays. DBP-IgM ELISA showed higher sensitivity adenovirus IgM detection than the commercial Adenovirus IgM Human ELISA Kit. A Western blot method developed based on Ad5 DBP was highly consistent with (χ2 = 44.9, P<0.01) the Western blot assay for the hexon protein in the detection of IgG, but proved even more sensitive. Conclusions/Significance The HAdV nonstructural protein DBP is an antigenic protein that could serve as an alternative common antigen for adenovirus diagnosis.
Collapse
|
39
|
Sastre P, Ruiz T, Schildgen O, Schildgen V, Vela C, Rueda P. Seroprevalence of human respiratory syncytial virus and human metapneumovirus in healthy population analyzed by recombinant fusion protein-based enzyme linked immunosorbent assay. Virol J 2012; 9:130. [PMID: 22748150 PMCID: PMC3422200 DOI: 10.1186/1743-422x-9-130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 07/02/2012] [Indexed: 11/10/2022] Open
Abstract
Background Human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) are two of the most frequent respiratory pathogens that circulate worldwide. Infection with either virus can lead to hospitalization of young children, immunocompromised people and the elderly. A better understanding of the epidemiological aspects, such as prevalence of these viruses in the population will be of significant importance to the scientific community. The aim of this study was to gain some detailed knowledge on the humoral immune response to both viruses in different populations of individuals. Findings The fusion protein (F) of hRSV and hMPV was expressed in the baculovirus and Escherichia coli systems, respectively, and used as antigen in two independent enzyme-linked immunosorbent assays (ELISAs) for detection of specific antibodies in human sera. The seroprevalence of each virus in a large cohort of individuals with ages ranging from 0 to 89 years old was determined. Although the general distribution of the antibody response to each virus in the different age group was similar, the prevalence of hRSV appeared to be higher than that of hMPV in most of them. The group of children with ages between 0 and 2 showed the highest seronegative rates. After this age, an increase in the antibody response was observed, most likely as the result of new infections or even due to reinfections. Conclusions The use of these specific F-ELISAs in seroepidemiological studies might be helpful for a better understanding of the human antibody response to these viruses.
Collapse
Affiliation(s)
- Patricia Sastre
- Inmunología y Genética Aplicada S. A. (INGENASA), Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
40
|
Guo L, Wang Y, Zhou H, Wu C, Song J, Li J, Paranhos-Baccalà G, Vernet G, Wang J, Hung T. Differential seroprevalence of human bocavirus species 1-4 in Beijing, China. PLoS One 2012; 7:e39644. [PMID: 22761854 PMCID: PMC3382199 DOI: 10.1371/journal.pone.0039644] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 05/24/2012] [Indexed: 01/24/2023] Open
Abstract
Background Four species of human bocaviruses (HBoV1-4) have been identified based on phylogenetic analysis since its first report in 2005. HBoV1 has been associated with respiratory disease, whereas HBoV2-4 are mainly detected in enteric infections. Although the prevalence of HBoVs in humans has been studied in some regions, it has not been well addressed globally. Methodology/Principal Findings Cross-reactivity of anti-VP2 antibodies was detected between HBoV1, 2, 3, and 4 in mouse and human serum. The prevalence of specific anti-VP2 IgG antibodies against HBoV1-4 was determined in different age groups of healthy individuals aged 0-70 years old in Beijing, China, using a competition ELISA assay based on virus-like particles of HBoV1-4. The seroprevalence of HBoV1-4 was 50%, 36.9%, 28.7%, and 0.8%, respectively, in children aged 0-14 years (n = 244); whereas the seroprevalence of HBoV1-4 was 66.9%, 49.3%, 38.7% and 1.4%, respectively, in healthy adults (≥15 years old; n = 142). The seropositive rate of HBoV1 was higher than that of HBoV2, HBoV3, and HBoV4 in individuals older than 0.5 years. Furthermore, IgG seroconversion of HBoV1 (10/31, 32.3%), HBoV2 (8/31, 25.8%), and HBoV3 (2/31, 6.5%) was found in paired sera collected from children with respiratory tract infections who were positive for HBoV1 according to PCR analysis. Conclusions/Significance Our data indicate that HBoV1 is more prevalent than HBoV2, HBoV3, and HBoV4 in the population we sampled in Beijing, China, suggesting that HBoV species may play differential roles in disease.
Collapse
Affiliation(s)
- Li Guo
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Lower respiratory tract infections (LRTIs) are a global burden to public health and are frequently caused by respiratory viruses. Advances in molecular diagnostic techniques have allowed the identification of previously undetected viral pathogens and have improved our understanding of respiratory virus infections. Here we review the epidemiological and clinical characteristics of recently identified viruses including human metapneumovirus, human coronaviruses NL63 and HKU1, human rhinovirus C, bocavirus, WU and KI polyomaviruses, and parechovirus. The roles of these viruses in LRTIs in children and adults are discussed.
Collapse
Affiliation(s)
- Lili Ren
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, 9# Dong Dan San Tiao, Dongcheng District, Beijing, 100730 People’s Republic of China
| | - Zichun Xiang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, 9# Dong Dan San Tiao, Dongcheng District, Beijing, 100730 People’s Republic of China
| | - Li Guo
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, 9# Dong Dan San Tiao, Dongcheng District, Beijing, 100730 People’s Republic of China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, 9# Dong Dan San Tiao, Dongcheng District, Beijing, 100730 People’s Republic of China
| |
Collapse
|
42
|
Abstract
It has been 10 years since human metapneumovirus (HMPV) was identified as a causative agent of respiratory illness in humans. Since then, numerous studies have contributed to a substantial body of knowledge on many aspects of HMPV. This review summarizes our current knowledge on HMPV, HMPV disease pathogenesis, and disease intervention strategies and identifies a number of areas with key questions to be addressed in the future.
Collapse
|
43
|
Cui S, Wu C, Zhou H, Zhao R, Guo L, Wang J, Hung T. Secretory expression of all 16 subtypes of the hemagglutinin 1 protein of influenza A virus in insect cells. J Virol Methods 2011; 177:160-7. [PMID: 21827791 DOI: 10.1016/j.jviromet.2011.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 07/19/2011] [Accepted: 07/25/2011] [Indexed: 11/29/2022]
Abstract
Influenza viruses are known for their ability to change their antigenic structure and create new viral strains. Hemagglutinin (HA), for which 16 subtypes have been identified, is a major antigenic determinant essential for the pathogenesis of influenza A viruses. To predict and monitor future epidemics, it is critical to produce various HA subtype antigens conveniently and rapidly. A simple, effective, and economic method to generate subunit HA1 of all 16 HA subtypes as recombinant proteins (rHA1) is reported. rHA1 proteins are expressed in insect cells as secretory proteins after integration into a baculovirus expression vector containing a 6×His tag element and the signal peptide of the GP67 protein, a membrane glycoprotein identified in Autographa californica nuclear polyhedrosis virus. The proteins can be purified to ≥90% purity using a single Ni(2+)-chelating affinity chromatography step, yielding a recovery rate of about 50%. The rHA1 proteins elicit high titer antibodies in mice and show high specificity in Western blots. This study paves the way for subtype specific detection methods and for future studies of the immune relationships among the subtypes of influenza A virus HA proteins.
Collapse
Affiliation(s)
- Shujuan Cui
- State Key Laboratory of Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | | | | | | | | | | | | |
Collapse
|