1
|
Malinowska D, Żendzian-Piotrowska M. Ketogenic Diet: A Review of Composition Diversity, Mechanism of Action and Clinical Application. J Nutr Metab 2024; 2024:6666171. [PMID: 39463845 PMCID: PMC11511599 DOI: 10.1155/2024/6666171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/16/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
The ketogenic diet (KD) is a special high-fat, very low-carbohydrate diet with the amount of protein adjusted to one's requirements. By lowering the supply of carbohydrates, this diet induces a considerable change in metabolism (of protein and fat) and increases the production of ketone bodies. The purpose of this article is to review the diversity of composition, mechanism of action, clinical application and risk associated with the KD. In the last decade, more and more results of the diet's effects on obesity, diabetes and neurological disorders, among other examples have appeared. The beneficial effects of the KD on neurological diseases are related to the reconstruction of myelin sheaths of neurons, reduction of neuron inflammation, decreased production of reactive oxygen species, support of dopamine production, repair of damaged mitochondria and formation of new ones. Minimizing the intake of carbohydrates results in the reduced absorption of simple sugars, thereby decreasing blood glucose levels and fluctuations of glycaemia in diabetes. Studies on obesity indicate an advantage of the KD over other diets in terms of weight loss. This may be due to the upregulation of the biological activity of appetite-controlling hormones, or to decreased lipogenesis, intensified lipolysis and increased metabolic costs of gluconeogenesis. However, it is important to be aware of the side effects of the KD. These include disorders of the digestive system as well as headaches, irritability, fatigue, the occurrence of vitamin and mineral deficiencies and worsened lipid profile. Further studies aimed to determine long-term effects of the KD are required.
Collapse
Affiliation(s)
- Dominika Malinowska
- Medical University of Bialystok, Department of Hygiene, Epidemiology and Ergonomy, ul. Jana Kilińskiego 1, Białystok 15-089, Poland
| | - Małgorzata Żendzian-Piotrowska
- Medical University of Bialystok, Department of Hygiene, Epidemiology and Ergonomy, ul. Jana Kilińskiego 1, Białystok 15-089, Poland
| |
Collapse
|
2
|
Shahpasand S, Khatami SH, Ehtiati S, Alehossein P, Salmani F, Toutounchi AH, Zarei T, Shahmohammadi MR, Khodarahmi R, Aghamollaii V, Tafakhori A, Karima S. Therapeutic potential of the ketogenic diet: A metabolic switch with implications for neurological disorders, the gut-brain axis, and cardiovascular diseases. J Nutr Biochem 2024; 132:109693. [PMID: 38880191 DOI: 10.1016/j.jnutbio.2024.109693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
The Ketogenic Diet (KD) is a dietary regimen that is low in carbohydrates, high in fats, and contains adequate protein. It is designed to mimic the metabolic state of fasting. This diet triggers the production of ketone bodies through a process known as ketosis. The primary objective of KD is to induce and sustain ketosis, which has been associated with numerous health benefits. Recent research has uncovered promising therapeutic potential for KD in the treatment of various diseases. This includes evidence of its effectiveness as a dietary strategy for managing intractable epilepsy, a form of epilepsy that is resistant to medication. We are currently assessing the efficacy and safety of KD through laboratory and clinical studies. This review focuses on the anti-inflammatory properties of the KD and its potential benefits for neurological disorders and the gut-brain axis. We also explore the existing literature on the potential effects of KD on cardiac health. Our aim is to provide a comprehensive overview of the current knowledge in these areas. Given the encouraging preliminary evidence of its therapeutic effects and the growing understanding of its mechanisms of action, randomized controlled trials are warranted to further explore the rationale behind the clinical use of KD. These trials will ultimately enhance our understanding of how KD functions and its potential benefits for various health conditions. We hope that our research will contribute to the body of knowledge in this field and provide valuable insights for future studies.
Collapse
Affiliation(s)
- Sheyda Shahpasand
- Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Ehtiati
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parsa Alehossein
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Salmani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Alireza Haghbin Toutounchi
- Department of general surgery,Imam Hosein medical and educational center, Shahid Beheshti University of medical sciences, Tehran, Iran
| | - Tayebe Zarei
- Clinical Trial Department, Behbalin Co., Ltd., Tehran, Iran
| | - Mohammad Reza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vajiheh Aghamollaii
- Neurology Department, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Department of Neurology, School of Medicine, Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran.
| |
Collapse
|
3
|
Monda A, La Torre ME, Messina A, Di Maio G, Monda V, Moscatelli F, De Stefano M, La Marra M, Padova MD, Dipace A, Limone P, Casillo M, Monda M, Messina G, Polito R. Exploring the ketogenic diet's potential in reducing neuroinflammation and modulating immune responses. Front Immunol 2024; 15:1425816. [PMID: 39188713 PMCID: PMC11345202 DOI: 10.3389/fimmu.2024.1425816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
The ketogenic diet (KD) is marked by a substantial decrease in carbohydrate intake and an elevated consumption of fats and proteins, leading to a metabolic state referred to as "ketosis," where fats become the primary source of energy. Recent research has underscored the potential advantages of the KD in mitigating the risk of various illnesses, including type 2 diabetes, hyperlipidemia, heart disease, and cancer. The macronutrient distribution in the KD typically entails high lipid intake, moderate protein consumption, and low carbohydrate intake. Restricting carbohydrates to below 50 g/day induces a catabolic state, prompting metabolic alterations such as gluconeogenesis and ketogenesis. Ketogenesis diminishes fat and glucose accumulation as energy reserves, stimulating the production of fatty acids. Neurodegenerative diseases, encompassing Alzheimer's disease, Parkinson's disease are hallmarked by persistent neuroinflammation. Evolving evidence indicates that immune activation and neuroinflammation play a significant role in the pathogenesis of these diseases. The protective effects of the KD are linked to the generation of ketone bodies (KB), which play a pivotal role in this dietary protocol. Considering these findings, this narrative review seeks to delve into the potential effects of the KD in neuroinflammation by modulating the immune response. Grasping the immunomodulatory effects of the KD on the central nervous system could offer valuable insights into innovative therapeutic approaches for these incapacitating conditions.
Collapse
Affiliation(s)
- Antonietta Monda
- Department of Human Sciences and Quality of Life Promotion of the Telematic University “San Raffaele”, Rome, Italy
| | - Maria Ester La Torre
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonietta Messina
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Girolamo Di Maio
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Vincenzo Monda
- Department of Exercise Sciences and Well-Being, University of Naples “Parthenope”, Naples, Italy
| | - Fiorenzo Moscatelli
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Naples, Italy
| | - Marida De Stefano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marco La Marra
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Anna Dipace
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Naples, Italy
| | - Pierpaolo Limone
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Naples, Italy
| | - Maria Casillo
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovanni Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
4
|
Shippy DC, Evered AH, Ulland TK. Ketone body metabolism and the NLRP3 inflammasome in Alzheimer's disease. Immunol Rev 2024. [PMID: 38989642 DOI: 10.1111/imr.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Alzheimer's disease (AD) is a degenerative brain disorder and the most common form of dementia. AD pathology is characterized by senile plaques and neurofibrillary tangles (NFTs) composed of amyloid-β (Aβ) and hyperphosphorylated tau, respectively. Neuroinflammation has been shown to drive Aβ and tau pathology, with evidence suggesting the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome as a key pathway in AD pathogenesis. NLRP3 inflammasome activation in microglia, the primary immune effector cells of the brain, results in caspase-1 activation and secretion of IL-1β and IL-18. Recent studies have demonstrated a dramatic interplay between the metabolic state and effector functions of immune cells. Microglial metabolism in AD is of particular interest, as ketone bodies (acetone, acetoacetate (AcAc), and β-hydroxybutyrate (BHB)) serve as an alternative energy source when glucose utilization is compromised in the brain of patients with AD. Furthermore, reduced cerebral glucose metabolism concomitant with increased BHB levels has been demonstrated to inhibit NLRP3 inflammasome activation. Here, we review the role of the NLRP3 inflammasome and microglial ketone body metabolism in AD pathogenesis. We also highlight NLRP3 inflammasome inhibition by several ketone body therapies as a promising new treatment strategy for AD.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Abigail H Evered
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Cellular and Molecular Pathology Graduate Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Tyler K Ulland
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Belinchón-deMiguel P, Ramos-Campo DJ, Curiel-Regueros A, Martín-Rodríguez A, Tornero-Aguilera JF. The Interplay of Sports and Nutrition in Neurological Health and Recovery. J Clin Med 2024; 13:2065. [PMID: 38610829 PMCID: PMC11012304 DOI: 10.3390/jcm13072065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
This comprehensive review explores the dynamic relationship between sports, nutrition, and neurological health. Focusing on recent clinical advancements, it examines how physical activity and dietary practices influence the prevention, treatment, and rehabilitation of various neurological conditions. The review highlights the role of neuroimaging in understanding these interactions, discusses emerging technologies in neurotherapeutic interventions, and evaluates the efficacy of sports and nutritional strategies in enhancing neurological recovery. This synthesis of current knowledge aims to provide a deeper understanding of how lifestyle factors can be integrated into clinical practices to improve neurological outcomes.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.C.-R.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain;
| | | | - Pedro Belinchón-deMiguel
- Department of Nursing and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain;
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Agustín Curiel-Regueros
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.C.-R.); (J.F.T.-A.)
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.C.-R.); (J.F.T.-A.)
| | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.C.-R.); (J.F.T.-A.)
| |
Collapse
|
6
|
Al-Kuraishy HM, Jabir MS, Albuhadily AK, Al-Gareeb AI, Jawad SF, Swelum AA, Hadi NR. Role of ketogenic diet in neurodegenerative diseases focusing on Alzheimer diseases: The guardian angle. Ageing Res Rev 2024; 95:102233. [PMID: 38360180 DOI: 10.1016/j.arr.2024.102233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
The ketogenic diet (KD) is a low-carbohydrate, adequate protein and high-fat diet. KD is primarily used to treat refractory epilepsy. KD was shown to be effective in treating different neurodegenerative diseases. Alzheimer disease (AD) is the first common neurodegenerative disease in the world characterized by memory and cognitive impairment. However, the underlying mechanism of KD in controlling of AD and other neurodegenerative diseases are not discussed widely. Therefore, this review aims to revise the fundamental mechanism of KD in different neurodegenerative diseases focusing on the AD. KD induces a fasting-like which modulates the central and peripheral metabolism by regulating mitochondrial dysfunction, oxidative stress, inflammation, gut-flora, and autophagy in different neurodegenerative diseases. Different studies highlighted that KD improves AD neuropathology by regulating synaptic neurotransmission and inhibiting of neuroinflammation and oxidative stress. In conclusion, KD improves cognitive function and attenuates the progression of AD neuropathology by reducing oxidative stress, mitochondrial dysfunction, and enhancing neuronal autophagy and brain BDNF.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq.
| | - Majid S Jabir
- Department of Applied Science, University of Technology Iraq.
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq; Jabir Ibn Hayyan Medical University, Al-Ameer Qu./Najaf-iraq, PO.Box13, Kufa, Iraq.
| | - Sabrean F Jawad
- Department of Pharmacy, Al-Mustaqbal University College, Hillah, Babylon, 51001, Iraq.
| | - Ayman A Swelum
- Department of Animal Production, King Saud University, Riyadh, Saudi Arabia.
| | | |
Collapse
|
7
|
Ross FC, Mayer DE, Gupta A, Gill CIR, Del Rio D, Cryan JF, Lavelle A, Ross RP, Stanton C, Mayer EA. Existing and Future Strategies to Manipulate the Gut Microbiota With Diet as a Potential Adjuvant Treatment for Psychiatric Disorders. Biol Psychiatry 2024; 95:348-360. [PMID: 37918459 DOI: 10.1016/j.biopsych.2023.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Nutrition and diet quality play key roles in preventing and slowing cognitive decline and have been linked to multiple brain disorders. This review compiles available evidence from preclinical studies and clinical trials on the impact of nutrition and interventions regarding major psychiatric conditions and some neurological disorders. We emphasize the potential role of diet-related microbiome alterations in these effects and highlight commonalities between various brain disorders related to the microbiome. Despite numerous studies shedding light on these findings, there are still gaps in our understanding due to the limited availability of definitive human trial data firmly establishing a causal link between a specific diet and microbially mediated brain functions and symptoms. The positive impact of certain diets on the microbiome and cognitive function is frequently ascribed with the anti-inflammatory effects of certain microbial metabolites or a reduction of proinflammatory microbial products. We also critically review recent research on pro- and prebiotics and nondietary interventions, particularly fecal microbiota transplantation. The recent focus on diet in relation to brain disorders could lead to improved treatment outcomes with combined dietary, pharmacological, and behavioral interventions.
Collapse
Affiliation(s)
- Fiona C Ross
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Dylan E Mayer
- Institute of Human Nutrition, Columbia University, New York, New York
| | - Arpana Gupta
- Goodman-Luskin Microbiome Center, G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, United Kingdom
| | - Daniele Del Rio
- Department of Food and Drugs, University of Parma, Parma, Italy
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aonghus Lavelle
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Moorepark Food Research Centre, Fermoy, Cork, Ireland.
| | - Emeran A Mayer
- Goodman-Luskin Microbiome Center, G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
8
|
Grabowska K, Grabowski M, Przybyła M, Pondel N, Barski JJ, Nowacka-Chmielewska M, Liśkiewicz D. Ketogenic diet and behavior: insights from experimental studies. Front Nutr 2024; 11:1322509. [PMID: 38389795 PMCID: PMC10881757 DOI: 10.3389/fnut.2024.1322509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
As a journal page for full details. The ketogenic diet (KD) has been established as a treatment for epilepsy, but more recently it has been explored as an alternative or add-on therapy for many other diseases ranging from weight loss to neurological disorders. Animal models are widely used in studies investigating the therapeutic effects of the KD as well as underlying mechanisms. Especially in the context of neurological, psychiatric, and neurodevelopmental disorders essential endpoints are assessed by behavioral and motor tests. Here we summarized research evaluating the influence of the KD on cognition, depressive and anxiety-related behaviors, and social and nutritional behaviors of laboratory rodents. Each section contains a brief description of commonly used behavioral tests highlighting their limitations. Ninety original research articles, written in English, performed on mice or rats, providing measurement of blood beta-hydroxybutyrate (BHB) levels and behavioral evaluation were selected for the review. The majority of research performed in various disease models shows that the KD positively impacts cognition. Almost an equal number of studies report a reduction or no effect of the KD on depressive-related behaviors. For anxiety-related behaviors, the majority of studies show no effect. Despite the increasing use of the KD in weight loss and its appetite-reducing properties the behavioral evaluation of appetite regulation has not been addressed in preclinical studies. This review provides an overview of the behavioral effects of nutritional ketosis addressed to a broad audience of scientists interested in the KD field but not necessarily specializing in behavioral tests.
Collapse
Affiliation(s)
- Konstancja Grabowska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Mateusz Grabowski
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marta Przybyła
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Natalia Pondel
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| | - Jarosław J Barski
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| | - Daniela Liśkiewicz
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
9
|
Li C, Ma Y, Chai X, Feng X, Feng W, Zhao Y, Cui C, Wang J, Zhao S, Zhu X. Ketogenic diet attenuates cognitive dysfunctions induced by hypoglycemia via inhibiting endoplasmic reticulum stress-dependent pathways. Food Funct 2024; 15:1294-1309. [PMID: 38197246 DOI: 10.1039/d3fo04007k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Hypoglycemia can potentially cause severe damage to the central nervous system. The ketogenic diet (KD), characterized by high-fat and extremely low-carbohydrate content, can modulate homeostasis and nutrient metabolism, thereby influencing body health. However, the effects and underlying mechanisms of KD on hypoglycemia-induced brain injury have not been thoroughly investigated. We aimed to explore the modulating effects of KD on cognitive functions and elucidate the underlying mechanisms. In this study, one-month-old mice were fed with KD for 2 weeks, and the changes in the gut microbiota were detected using the 16S rRNA gene amplicon sequencing method. The hypoglycemic model of mice was established using insulin, and the potential protective effect of KD on hypoglycemia-induced brain injury in mice was evaluated through immunofluorescence staining, western blotting, transmission electron microscopy, and Golgi staining. Our results showed that the intestinal flora of Dorea increased and Rikenella decreased in KD-fed mice. KD can not only alleviate anxiety-like behavior induced by hypoglycemia, but also increase the proportion of mushroom dendritic spines in the hippocampus by modulating changes in the gut microbiota. KD regulated synaptic plasticity by increasing the levels of SPN, PSD95, and SYP, which relieve cognitive impairment caused by hypoglycemia. Moreover, KD can promote the proliferation and survival of adult neural stem cells in the hippocampus, while reducing apoptosis by suppressing the activation of the IRE1-XBP1 and ATF6 endoplasmic reticulum stress pathways in mice with hypoglycemia. This study provides new evidence for demonstrating that KD may alleviate cognitive dysfunctions caused by hypoglycemia by modulating the gut microbiota.
Collapse
Affiliation(s)
- Cixia Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Yue Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Xuejun Chai
- College of Basic Medicine, Xi'An Medical University, Xi'An, Shaanxi 710021, PR China
| | - Xiao Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Wenyu Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yongkang Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Chaochu Cui
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
10
|
Kawade N, Yamanaka K. Novel insights into brain lipid metabolism in Alzheimer's disease: Oligodendrocytes and white matter abnormalities. FEBS Open Bio 2024; 14:194-216. [PMID: 37330425 PMCID: PMC10839347 DOI: 10.1002/2211-5463.13661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. A genome-wide association study has shown that several AD risk genes are involved in lipid metabolism. Additionally, epidemiological studies have indicated that the levels of several lipid species are altered in the AD brain. Therefore, lipid metabolism is likely changed in the AD brain, and these alterations might be associated with an exacerbation of AD pathology. Oligodendrocytes are glial cells that produce the myelin sheath, which is a lipid-rich insulator. Dysfunctions of the myelin sheath have been linked to white matter abnormalities observed in the AD brain. Here, we review the lipid composition and metabolism in the brain and myelin and the association between lipidic alterations and AD pathology. We also present the abnormalities in oligodendrocyte lineage cells and white matter observed in AD. Additionally, we discuss metabolic disorders, including obesity, as AD risk factors and the effects of obesity and dietary intake of lipids on the brain.
Collapse
Affiliation(s)
- Noe Kawade
- Department of Neuroscience and Pathobiology, Research Institute of Environmental MedicineNagoya UniversityJapan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of MedicineNagoya UniversityJapan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental MedicineNagoya UniversityJapan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of MedicineNagoya UniversityJapan
- Institute for Glyco‐core Research (iGCORE)Nagoya UniversityJapan
- Center for One Medicine Innovative Translational Research (COMIT)Nagoya UniversityJapan
| |
Collapse
|
11
|
Gabuzyan R, Lee C, Nygaard HB. Ketogenic Approaches for the Treatment of Alzheimer's Disease. J Alzheimers Dis 2024; 101:S443-S453. [PMID: 39422952 DOI: 10.3233/jad-240186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Dementia represents one of the largest and most urgent public health problems across the globe. Modeling projections have estimated that delaying the onset of Alzheimer's disease (AD) by 6 months would reduce the prevalence by 5%, while a delay of 12 months would reduce the prevalence by 10%. One approach to achieving a delay in the onset of AD is to investigate lifestyle interventions that could be widely implemented with a favorable risk-benefit relationship and socioeconomic profile. Amongst such interventions, there is increasing evidence to support the use of ketogenic interventions in AD. Indeed, it is well known that cerebral glucose metabolism is impaired in AD, even at a preclinical stage, and a growing body of literature suggests that these findings may represent a primary pathogenic mechanism leading to neurodegeneration. Ketones are readily taken up by the brain and can serve as an alternative energy source for neurons and glia, hypothetically bypassing the glucose uptake deficit in AD. In this invited review we discuss the preclinical as well as clinical work aiming to increase ketones as a primary intervention in AD, including variations of the ketogenic diet, medium chain triglyceride supplementation, and newer, more experimental approaches.
Collapse
Affiliation(s)
- Renata Gabuzyan
- Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Christopher Lee
- Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Haakon B Nygaard
- Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Oliveira TPD, Morais ALB, dos Reis PLB, Palotás A, Vieira LB. A Potential Role for the Ketogenic Diet in Alzheimer's Disease Treatment: Exploring Pre-Clinical and Clinical Evidence. Metabolites 2023; 14:25. [PMID: 38248828 PMCID: PMC10818526 DOI: 10.3390/metabo14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Given the remarkable progress in global health and overall quality of life, the significant rise in life expectancy has become intertwined with the surging occurrence of neurodegenerative disorders (NDs). This emerging trend is poised to pose a substantial challenge to the fields of medicine and public health in the years ahead. In this context, Alzheimer's disease (AD) is regarded as an ND that causes recent memory loss, motor impairment and cognitive deficits. AD is the most common cause of dementia in the elderly and its development is linked to multifactorial interactions between the environment, genetics, aging and lifestyle. The pathological hallmarks in AD are the accumulation of β-amyloid peptide (Aβ), the hyperphosphorylation of tau protein, neurotoxic events and impaired glucose metabolism. Due to pharmacological limitations and in view of the prevailing glycemic hypometabolism, the ketogenic diet (KD) emerges as a promising non-pharmacological possibility for managing AD, an approach that has already demonstrated efficacy in addressing other disorders, notably epilepsy. The KD consists of a food regimen in which carbohydrate intake is discouraged at the expense of increased lipid consumption, inducing metabolic ketosis whereby the main source of energy becomes ketone bodies instead of glucose. Thus, under these dietary conditions, neuronal death via lack of energy would be decreased, inasmuch as the metabolism of lipids is not impaired in AD. In this way, the clinical picture of patients with AD would potentially improve via the slowing down of symptoms and delaying of the progression of the disease. Hence, this review aims to explore the rationale behind utilizing the KD in AD treatment while emphasizing the metabolic interplay between the KD and the improvement of AD indicators, drawing insights from both preclinical and clinical investigations. Via a comprehensive examination of the studies detailed in this review, it is evident that the KD emerges as a promising alternative for managing AD. Moreover, its efficacy is notably enhanced when dietary composition is modified, thereby opening up innovative avenues for decreasing the progression of AD.
Collapse
Affiliation(s)
- Tadeu P. D. Oliveira
- Departamento de Fisiologia e Centro de Investigação em Medicina Molecular (CIMUS), Universidad De Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Ana L. B. Morais
- Departamento de Farmacologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.B.M.); (P.L.B.d.R.)
| | - Pedro L. B. dos Reis
- Departamento de Farmacologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.B.M.); (P.L.B.d.R.)
| | - András Palotás
- Asklepios-Med (Private Medical Practice and Research Center), H-6722 Szeged, Hungary;
- Kazan Federal University, Kazan R-420012, Russia
- Tokaj-Hegyalja University, H-3910 Tokaj, Hungary
| | - Luciene B. Vieira
- Departamento de Farmacologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.B.M.); (P.L.B.d.R.)
| |
Collapse
|
13
|
Jang J, Kim SR, Lee JE, Lee S, Son HJ, Choe W, Yoon KS, Kim SS, Yeo EJ, Kang I. Molecular Mechanisms of Neuroprotection by Ketone Bodies and Ketogenic Diet in Cerebral Ischemia and Neurodegenerative Diseases. Int J Mol Sci 2023; 25:124. [PMID: 38203294 PMCID: PMC10779133 DOI: 10.3390/ijms25010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Ketone bodies (KBs), such as acetoacetate and β-hydroxybutyrate, serve as crucial alternative energy sources during glucose deficiency. KBs, generated through ketogenesis in the liver, are metabolized into acetyl-CoA in extrahepatic tissues, entering the tricarboxylic acid cycle and electron transport chain for ATP production. Reduced glucose metabolism and mitochondrial dysfunction correlate with increased neuronal death and brain damage during cerebral ischemia and neurodegeneration. Both KBs and the ketogenic diet (KD) demonstrate neuroprotective effects by orchestrating various cellular processes through metabolic and signaling functions. They enhance mitochondrial function, mitigate oxidative stress and apoptosis, and regulate epigenetic and post-translational modifications of histones and non-histone proteins. Additionally, KBs and KD contribute to reducing neuroinflammation and modulating autophagy, neurotransmission systems, and gut microbiome. This review aims to explore the current understanding of the molecular mechanisms underpinning the neuroprotective effects of KBs and KD against brain damage in cerebral ischemia and neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Jiwon Jang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su Rim Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jo Eun Lee
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seoyeon Lee
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyeong Jig Son
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Insug Kang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
14
|
Chinna-Meyyappan A, Gomes FA, Koning E, Fabe J, Breda V, Brietzke E. Effects of the ketogenic diet on cognition: a systematic review. Nutr Neurosci 2023; 26:1258-1278. [PMID: 36354157 DOI: 10.1080/1028415x.2022.2143609] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Ketogenic diet (KD) therapy has been used as a dietary intervention in drug-resistant epilepsy for several years. Research currently suggests that KD therapy may carry neuroprotective and cognition enhancing effects for individuals with non-epileptic conditions as well as for healthy individuals. Therefore, KD may have potential as a non-invasive, nutritional treatment approach for difficult to manage conditions such as neurodegenerative illnesses or mood disorders. The aim of this review is to summarize the available evidence on ketogenic interventions and the resulting cognitive outcomes. MATERIALS AND METHODS The paper was based on PRISMA 2020 guidelines. The search was conducted in June 2021 on the following databases: CENTRAL, PubMed, EMBASE, PsycInfo, Web of Science. The search yielded 2014 studies, of which 49 were included. RESULTS There were 22 animal studies assessing murine models and 27 studies on humans. The primary indications in these studies were epileptic conditions, neurodegenerative disorders, cognitive impairment, and healthy populations. DISCUSSION Administration of KD seems to confer cognitive-enhancing effects in areas such as working memory, reference memory and attention. Studies found that KD treatment in animals has the potential to alleviate age-related cognitive decline. Over 80% of the 27 human studies reported a favourable effect of intervention, and none reported a detrimental effect of KD. While these findings suggest that KD may improve the functioning of certain cognitive domains, definitive conclusions were limited by studies with small sample sizes, the absence of controls and randomization, and the lack of objective measures of cognition.
Collapse
Affiliation(s)
| | - Fabiano Alves Gomes
- Department of Psychiatry, Queen's University School of Medicine, Kingston, Canada
- Centre for Neuroscience Studies (CNS), Queen's University, Kingston, Canada
| | - Elena Koning
- Department of Psychiatry, Queen's University School of Medicine, Kingston, Canada
| | | | - Vitor Breda
- Department of Psychiatry, Queen's University School of Medicine, Kingston, Canada
- Centre for Neuroscience Studies (CNS), Queen's University, Kingston, Canada
| | - Elisa Brietzke
- Department of Psychiatry, Queen's University School of Medicine, Kingston, Canada
- Centre for Neuroscience Studies (CNS), Queen's University, Kingston, Canada
| |
Collapse
|
15
|
Llorente-Folch I, Düssmann H, Watters O, Connolly NMC, Prehn JHM. Ketone body β-hydroxybutyrate (BHB) preserves mitochondrial bioenergetics. Sci Rep 2023; 13:19664. [PMID: 37952048 PMCID: PMC10640643 DOI: 10.1038/s41598-023-46776-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023] Open
Abstract
The ketogenic diet is an emerging therapeutic approach for refractory epilepsy, as well as certain rare and neurodegenerative disorders. The main ketone body, β-hydroxybutyrate (BHB), is the primary energy substrate endogenously produced in a ketogenic diet, however, mechanisms of its therapeutic actions remain unknown. Here, we studied the effects of BHB on mitochondrial energetics, both in non-stimulated conditions and during glutamate-mediated hyperexcitation. We found that glutamate-induced hyperexcitation stimulated mitochondrial respiration in cultured cortical neurons, and that this response was greater in cultures supplemented with BHB than with glucose. BHB enabled a stronger and more sustained maximal uncoupled respiration, indicating that BHB enables neurons to respond more efficiently to increased energy demands such as induced during hyperexcitation. We found that cytosolic Ca2+ was required for BHB-mediated enhancement of mitochondrial function, and that this enhancement was independent of the mitochondrial glutamate-aspartate carrier, Aralar/AGC1. Our results suggest that BHB exerts its protective effects against hyperexcitation by enhancing mitochondrial function through a Ca2+-dependent, but Aralar/AGC1-independent stimulation of mitochondrial respiration.
Collapse
Affiliation(s)
- I Llorente-Folch
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology, Universidad Rey Juan Carlos, 28922, Alcorcón, Madrid, Spain.
| | - H Düssmann
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - O Watters
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
- SFI FUTURE-NEURO Research Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - N M C Connolly
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
- SFI FUTURE-NEURO Research Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
16
|
Khemka S, Reddy A, Garcia RI, Jacobs M, Reddy RP, Roghani AK, Pattoor V, Basu T, Sehar U, Reddy PH. Role of diet and exercise in aging, Alzheimer's disease, and other chronic diseases. Ageing Res Rev 2023; 91:102091. [PMID: 37832608 PMCID: PMC10842571 DOI: 10.1016/j.arr.2023.102091] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterized by memory loss and multiple cognitive impairments. Genetic mutations cause a small proportion (1-2%) of early-onset AD, with mutations in amyloid precursor protein (APP), presenilin 1 (PS1) and presenilin 2 (PS2). Major contributing factors of late-onset AD are ApoE4 genotype, traumatic brain injury, diabetes, obesity, hypertension, cardiovascular conditions, in addition to lifestyle factors, such as unhealthy diet and lack of physical exercise. Disease progression can be delayed and/or prevented to a greater extent by adopting healthy lifestyle with balanced and antioxidant enriched diet and daily exercise. The interaction and interplay of diet, exercise, age, and pharmacological interventions holds a crucial role in the progression, pathogenesis and management of AD and its comorbidities, including diabetes, obesity, hypertension and cardiovascular conditions. Antioxidant enriched diet contributes to brain health, glucose control, weight management, and cardiovascular well-being. Regular exercise removes toxins including free radicals and enhances insulin sensitivity, and supports cardiovascular function. In the current article, we discussed, the role of diet, and exercise in aging, AD and other conditions including diabetes, obesity, hypertension, cardiovascular conditions. This article also highlights the impact of medication, socioeconomic and lifestyle factors, and pharmacological interventions. These aspects were discussed in different races and ethnic groups in Texas, and the US.
Collapse
Affiliation(s)
- Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Aananya Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA
| | - Ricardo Isaiah Garcia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Micheal Jacobs
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Ruhananhad P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA
| | - Aryan Kia Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Frenship High School, Lubbock, TX 79382, USA
| | - Vasanthkumar Pattoor
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; University of South Florida, Tampa, FL 33620, USA
| | - Tanisha Basu
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department pf Speech, Language and Hearing Services, School Health Professions, Texas Tech University Healthy Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
17
|
Whittaker DS, Akhmetova L, Carlin D, Romero H, Welsh DK, Colwell CS, Desplats P. Circadian modulation by time-restricted feeding rescues brain pathology and improves memory in mouse models of Alzheimer's disease. Cell Metab 2023; 35:1704-1721.e6. [PMID: 37607543 PMCID: PMC10591997 DOI: 10.1016/j.cmet.2023.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023]
Abstract
Circadian disruptions impact nearly all people with Alzheimer's disease (AD), emphasizing both their potential role in pathology and the critical need to investigate the therapeutic potential of circadian-modulating interventions. Here, we show that time-restricted feeding (TRF) without caloric restriction improved key disease components including behavioral timing, disease pathology, hippocampal transcription, and memory in two transgenic (TG) mouse models of AD. We found that TRF had the remarkable capability of simultaneously reducing amyloid deposition, increasing Aβ42 clearance, improving sleep and memory, and normalizing daily transcription patterns of multiple genes, including those associated with AD and neuroinflammation. Thus, our study unveils for the first time the pleiotropic nature of timed feeding on AD, which has far-reaching effects beyond metabolism, ameliorating neurodegeneration and the misalignment of circadian rhythmicity. Since TRF can substantially modify disease trajectory, this intervention has immediate translational potential, addressing the urgent demand for accessible approaches to reduce or halt AD progression.
Collapse
Affiliation(s)
- Daniel S Whittaker
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA
| | - Laila Akhmetova
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA
| | - Daniel Carlin
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA
| | - Haylie Romero
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA
| | - David K Welsh
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA; Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Paula Desplats
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA; Department of Pathology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
18
|
Raut S, Bhalerao A, Powers M, Gonzalez M, Mancuso S, Cucullo L. Hypometabolism, Alzheimer's Disease, and Possible Therapeutic Targets: An Overview. Cells 2023; 12:2019. [PMID: 37626828 PMCID: PMC10453773 DOI: 10.3390/cells12162019] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
The brain is a highly dynamic organ that requires a constant energy source to function normally. This energy is mostly supplied by glucose, a simple sugar that serves as the brain's principal fuel source. Glucose transport across the blood-brain barrier (BBB) is primarily controlled via sodium-independent facilitated glucose transport, such as by glucose transporter 1 (GLUT1) and 3 (GLUT3). However, other glucose transporters, including GLUT4 and the sodium-dependent transporters SGLT1 and SGLT6, have been reported in vitro and in vivo. When the BBB endothelial layer is crossed, neurons and astrocytes can absorb the glucose using their GLUT1 and GLUT3 transporters. Glucose then enters the glycolytic pathway and is metabolized into adenosine triphosphate (ATP), which supplies the energy to support cellular functions. The transport and metabolism of glucose in the brain are impacted by several medical conditions, which can cause neurological and neuropsychiatric symptoms. Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, traumatic brain injury (TBI), schizophrenia, etc., are a few of the most prevalent disorders, characterized by a decline in brain metabolism or hypometabolism early in the course of the disease. Indeed, AD is considered a metabolic disorder related to decreased brain glucose metabolism, involving brain insulin resistance and age-dependent mitochondrial dysfunction. Although the conventional view is that reduced cerebral metabolism is an effect of neuronal loss and consequent brain atrophy, a growing body of evidence points to the opposite, where hypometabolism is prodromal or at least precedes the onset of brain atrophy and the manifestation of clinical symptoms. The underlying processes responsible for these glucose transport and metabolic abnormalities are complicated and remain poorly understood. This review article provides a comprehensive overview of the current understanding of hypometabolism in AD and potential therapeutic targets.
Collapse
Affiliation(s)
- Snehal Raut
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Aditya Bhalerao
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Michael Powers
- Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI 48309, USA;
| | - Minelly Gonzalez
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Salvatore Mancuso
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| |
Collapse
|
19
|
García-Velázquez L, Massieu L. The proteomic effects of ketone bodies: implications for proteostasis and brain proteinopathies. Front Mol Neurosci 2023; 16:1214092. [PMID: 37575967 PMCID: PMC10413579 DOI: 10.3389/fnmol.2023.1214092] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/07/2023] [Indexed: 08/15/2023] Open
Abstract
A growing body of evidence supports the beneficial effects of the ketone bodies (KBs), acetoacetate and β-hydroxybutyrate (BHB), on diverse physiological processes and diseases. Hence, KBs have been suggested as therapeutic tools for neurodegenerative diseases. KBs are an alternative fuel during fasting and starvation as they can be converted to Ac-CoA to produce ATP. A ketogenic diet (KD), enriched in fats and low in carbohydrates, induces KB production in the liver and favors their use in the brain. BHB is the most abundant KB in the circulation; in addition to its role as energy fuel, it exerts many actions that impact the set of proteins in the cell and tissue. BHB can covalently bind to proteins in lysine residues as a new post-translational modification (PTM) named β-hydroxybutyrylation (Kbhb). Kbhb has been identified in many proteins where Kbhb sites can be critical for binding to other proteins or cofactors. Kbhb is mostly found in proteins involved in chromatin structure, DNA repair, regulation of spliceosome, transcription, and oxidative phosphorylation. Histones are the most studied family of proteins with this PTM, and H3K9bhb is the best studied histone mark. Their target genes are mainly related to cell metabolism, chromatin remodeling and the control of circadian rhythms. The role of Kbhb on physiological processes is poorly known, but it might link KB metabolism to cell signaling and genome regulation. BHB also impacts the proteome by influencing proteostasis. This KB can modulate the Unfolded Protein Response (UPR) and autophagy, two processes involved in the maintenance of protein homeostasis through the clearance of accumulated unfolded and damaged proteins. BHB can support proteostasis and regulate the UPR to promote metabolism adaptation in the liver and prevent cell damage in the brain. Also, BHB stimulates autophagy aiding to the degradation of accumulated proteins. Protein aggregation is common to proteinopathies like Alzheimer's (AD) and Parkinson's (PD) diseases, where the KD and BHB treatment have shown favorable effects. In the present review, the current literature supporting the effects of KBs on proteome conformation and proteostasis is discussed, as well as its possible impact on AD and PD.
Collapse
Affiliation(s)
| | - Lourdes Massieu
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México City, Mexico
| |
Collapse
|
20
|
Madhavan SS, Roa Diaz S, Peralta S, Nomura M, King CD, Lin A, Bhaumik D, Shah S, Blade T, Gray W, Chamoli M, Eap B, Panda O, Diaz D, Garcia TY, Stubbs BJ, Lithgow GJ, Schilling B, Verdin E, Chaudhuri AR, Newman JC. β-hydroxybutyrate is a metabolic regulator of proteostasis in the aged and Alzheimer disease brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547547. [PMID: 37461525 PMCID: PMC10349929 DOI: 10.1101/2023.07.03.547547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Loss of proteostasis is a hallmark of aging and Alzheimer disease (AD). Here, we identify β-hydroxybutyrate (βHB), a ketone body, as a regulator of protein solubility in the aging brain. βHB is a small molecule metabolite which primarily provides an oxidative substrate for ATP during hypoglycemic conditions, and also regulates other cellular processes through covalent and noncovalent protein interactions. We demonstrate βHB-induced protein insolubility across in vitro, ex vivo, and in vivo mouse systems. This activity is shared by select structurally similar metabolites, is not dependent on covalent protein modification, pH, or solute load, and is observable in mouse brain in vivo after delivery of a ketone ester. Furthermore, this phenotype is selective for pathological proteins such as amyloid-β, and exogenous βHB ameliorates pathology in nematode models of amyloid-β aggregation toxicity. We have generated a comprehensive atlas of the βHB-induced protein insolublome ex vivo and in vivo using mass spectrometry proteomics, and have identified common protein domains within βHB target sequences. Finally, we show enrichment of neurodegeneration-related proteins among βHB targets and the clearance of these targets from mouse brain, likely via βHB-induced autophagy. Overall, these data indicate a new metabolically regulated mechanism of proteostasis relevant to aging and AD.
Collapse
Affiliation(s)
- S S Madhavan
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Geriatrics, University of California San Francisco, San Francisco, CA, USA
| | - S Roa Diaz
- Buck Institute for Research on Aging, Novato, CA, USA
- Department of Geriatrics, University of California San Francisco, San Francisco, CA, USA
| | - S Peralta
- Buck Institute for Research on Aging, Novato, CA, USA
| | - M Nomura
- Buck Institute for Research on Aging, Novato, CA, USA
| | - C D King
- Buck Institute for Research on Aging, Novato, CA, USA
| | - A Lin
- Buck Institute for Research on Aging, Novato, CA, USA
| | - D Bhaumik
- Buck Institute for Research on Aging, Novato, CA, USA
| | - S Shah
- Buck Institute for Research on Aging, Novato, CA, USA
| | - T Blade
- Buck Institute for Research on Aging, Novato, CA, USA
| | - W Gray
- Buck Institute for Research on Aging, Novato, CA, USA
| | - M Chamoli
- Buck Institute for Research on Aging, Novato, CA, USA
| | - B Eap
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - O Panda
- Buck Institute for Research on Aging, Novato, CA, USA
| | - D Diaz
- Buck Institute for Research on Aging, Novato, CA, USA
| | - T Y Garcia
- Buck Institute for Research on Aging, Novato, CA, USA
- Department of Geriatrics, University of California San Francisco, San Francisco, CA, USA
| | - B J Stubbs
- Buck Institute for Research on Aging, Novato, CA, USA
| | - G J Lithgow
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - B Schilling
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - E Verdin
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - A R Chaudhuri
- Buck Institute for Research on Aging, Novato, CA, USA
| | - J C Newman
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Geriatrics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
21
|
Juby AG, Cunnane SC, Mager DR. Refueling the post COVID-19 brain: potential role of ketogenic medium chain triglyceride supplementation: an hypothesis. Front Nutr 2023; 10:1126534. [PMID: 37415915 PMCID: PMC10320593 DOI: 10.3389/fnut.2023.1126534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/25/2023] [Indexed: 07/08/2023] Open
Abstract
COVID-19 infection causes cognitive changes in the acute phase, but also after apparent recovery. Over fifty post (long)-COVID symptoms are described, including cognitive dysfunction ("brain fog") precluding return to pre-COVID level of function, with rates twice as high in females. Additionally, the predominant demographic affected by these symptoms is younger and still in the workforce. Lack of ability to work, even for six months, has significant socio-economic consequences. This cognitive dysfunction is associated with impaired cerebral glucose metabolism, assessed using 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET), showing brain regions that are abnormal compared to age and sex matched controls. In other cognitive conditions such as Alzheimer's disease (AD), typical patterns of cerebral glucose hypometabolism, frontal hypometabolism and cerebellar hypermetabolism are common. Similar FDG-PET changes have also been observed in post-COVID-19, raising the possibility of a similar etiology. Ketone bodies (B-hydroxybutyrate, acetoacetate and acetone) are produced endogenously with very low carbohydrate intake or fasting. They improve brain energy metabolism in the face of cerebral glucose hypometabolism in other conditions [mild cognitive impairment (MCI) and AD]. Long-term low carbohydrate intake or prolonged fasting is not usually feasible. Medium chain triglyceride (MCT) is an exogenous route to nutritional ketosis. Research has supported their efficacy in managing intractable seizures, and cognitive impairment in MCI and AD. We hypothesize that cerebral glucose hypometabolism associated with post COVID-19 infection can be mitigated with MCT supplementation, with the prediction that cognitive function would also improve. Although there is some suggestion that post COVID-19 cognitive symptoms may diminish over time, in many individuals this may take more than six months. If MCT supplementation is able to speed the cognitive recovery, this will impact importantly on quality of life. MCT is readily available and, compared to pharmaceutical interventions, is cost-effective. Research shows general tolerability with dose titration. MCT is a component of enteral and parenteral nutrition supplements, including in pediatrics, so has a long record of safety in vulnerable populations. It is not associated with weight gain or adverse changes in lipid profiles. This hypothesis serves to encourage the development of clinical trials evaluating the impact of MCT supplementation on the duration and severity of post COVID-19 cognitive symptoms.
Collapse
Affiliation(s)
- Angela G. Juby
- Division of Geriatrics, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Stephen C. Cunnane
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Diana R. Mager
- Agriculture Food and Nutrition Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
Mentzelou M, Dakanalis A, Vasios GK, Gialeli M, Papadopoulou SK, Giaginis C. The Relationship of Ketogenic Diet with Neurodegenerative and Psychiatric Diseases: A Scoping Review from Basic Research to Clinical Practice. Nutrients 2023; 15:nu15102270. [PMID: 37242153 DOI: 10.3390/nu15102270] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The ketogenic diet (KD) has become widespread for the therapy of epileptic pathology in childhood and adulthood. In the last few decades, the current re-emergence of its popularity has focused on the treatment of obesity and diabetes mellitus. KD also exerts anti-inflammatory and neuroprotective properties, which could be utilized for the therapy of neurodegenerative and psychiatric disorders. PURPOSE This is a thorough, scoping review that aims to summarize and scrutinize the currently available basic research performed in in vitro and in vivo settings, as well as the clinical evidence of the potential beneficial effects of KD against neurodegenerative and psychiatric diseases. This review was conducted to systematically map the research performed in this area as well as identify gaps in knowledge. METHODS We thoroughly explored the most accurate scientific web databases, e.g., PubMed, Scopus, Web of Science, and Google Scholar, to obtain the most recent in vitro and in vivo data from animal studies as well as clinical human surveys from the last twenty years, applying effective and characteristic keywords. RESULTS Basic research has revealed multiple molecular mechanisms through which KD can exert neuroprotective effects, such as neuroinflammation inhibition, decreased reactive oxygen species (ROS) production, decreased amyloid plaque deposition and microglial activation, protection in dopaminergic neurons, tau hyper-phosphorylation suppression, stimulating mitochondrial biogenesis, enhancing gut microbial diversity, restoration of histone acetylation, and neuron repair promotion. On the other hand, clinical evidence remains scarce. Most existing clinical studies are modest, frequently uncontrolled, and merely assess the short-term impacts of KD. Moreover, several clinical studies had large dropout rates and a considerable lack of compliance assessment, as well as an increased level of heterogeneity in the study design and methodology. CONCLUSIONS KD can exert substantial neuroprotective effects via multiple molecular mechanisms in various neurodegenerative and psychiatric pathological states. Large, long-term, randomized, double-blind, controlled clinical trials with a prospective design are strongly recommended to delineate whether KD may attenuate or even treat neurodegenerative and psychiatric disease development, progression, and symptomatology.
Collapse
Affiliation(s)
- Maria Mentzelou
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Myrina, Greece
| | - Antonios Dakanalis
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Georgios K Vasios
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Myrina, Greece
| | - Maria Gialeli
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Myrina, Greece
| | - Sousana K Papadopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Myrina, Greece
| |
Collapse
|
23
|
La Torre ME, Cianciulli A, Monda V, Monda M, Filannino FM, Antonucci L, Valenzano A, Cibelli G, Porro C, Messina G, Panaro MA, Messina A, Polito R. α-Tocopherol Protects Lipopolysaccharide-Activated BV2 Microglia. Molecules 2023; 28:molecules28083340. [PMID: 37110573 PMCID: PMC10141518 DOI: 10.3390/molecules28083340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Microglia, the resident macrophage-like population in the central nervous system, play a crucial role in the pathogenesis of many neurodegenerative disorders by triggering an inflammatory response that leads to neuronal death. Neuroprotective compounds to treat or prevent neurodegenerative diseases are a new field of study in modern medicine. Microglia are activated in response to inflammatory stimuli. The pathogenesis of various neurodegenerative diseases is closely related to the constant activation of microglia due to their fundamental role as a mediator of inflammation in the brain environment. α-Tocopherol, also known as vitamin E, is reported to possess potent neuroprotective effects. The goal of this study was to investigate the biological effects of vitamin E on BV2 microglial cells, as a possible neuroprotective and anti-inflammatory agent, following stimulation with lipopolysaccharide (LPS). The results showed that the pre-incubation of microglia with α-tocopherol can guarantee neuroprotective effects during microglial activation induced by LPS. α-Tocopherol preserved the branched morphology typical of microglia in a physiological state. It also reduced the migratory capacity; the production of pro-inflammatory and anti-inflammatory cytokines such as TNF-α and IL-10; and the activation of receptors such as TRL4 and CD40, which modulate the PI3K-Akt signaling pathway. The results of this study require further insights and research, but they present new scenarios for the application of vitamin E as an antioxidant for the purpose of greater neuroprotection in vivo for the prevention of possible neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria Ester La Torre
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Vincenzo Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | - Laura Antonucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
24
|
Xu Y, Zheng F, Zhong Q, Zhu Y. Ketogenic Diet as a Promising Non-Drug Intervention for Alzheimer’s Disease: Mechanisms and Clinical Implications. J Alzheimers Dis 2023; 92:1173-1198. [PMID: 37038820 DOI: 10.3233/jad-230002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is mainly characterized by cognitive deficits. Although many studies have been devoted to developing disease-modifying therapies, there has been no effective therapy until now. However, dietary interventions may be a potential strategy to treat AD. The ketogenic diet (KD) is a high-fat and low-carbohydrate diet with adequate protein. KD increases the levels of ketone bodies, providing an alternative energy source when there is not sufficient energy supply because of impaired glucose metabolism. Accumulating preclinical and clinical studies have shown that a KD is beneficial to AD. The potential underlying mechanisms include improved mitochondrial function, optimization of gut microbiota composition, and reduced neuroinflammation and oxidative stress. The review provides an update on clinical and preclinical research on the effects of KD or medium-chain triglyceride supplementation on symptoms and pathophysiology in AD. We also detail the potential mechanisms of KD, involving amyloid and tau proteins, neuroinflammation, gut microbiota, oxidative stress, and brain metabolism. We aimed to determine the function of the KD in AD and outline important aspects of the mechanism, providing a reference for the implementation of the KD as a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Yunlong Xu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Neonatology, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Fuxiang Zheng
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Qi Zhong
- Department of Neurology, Shenzhen Luohu People’s Hospital; The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Yin F. Lipid metabolism and Alzheimer's disease: clinical evidence, mechanistic link and therapeutic promise. FEBS J 2023; 290:1420-1453. [PMID: 34997690 PMCID: PMC9259766 DOI: 10.1111/febs.16344] [Citation(s) in RCA: 95] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disorder with multifactorial etiology, intersecting genetic and environmental risk factors, and a lack of disease-modifying therapeutics. While the abnormal accumulation of lipids was described in the very first report of AD neuropathology, it was not until recent decades that lipid dyshomeostasis became a focus of AD research. Clinically, lipidomic and metabolomic studies have consistently shown alterations in the levels of various lipid classes emerging in early stages of AD brains. Mechanistically, decades of discovery research have revealed multifaceted interactions between lipid metabolism and key AD pathogenic mechanisms including amyloidogenesis, bioenergetic deficit, oxidative stress, neuroinflammation, and myelin degeneration. In the present review, converging evidence defining lipid dyshomeostasis in AD is summarized, followed by discussions on mechanisms by which lipid metabolism contributes to pathogenesis and modifies disease risk. Furthermore, lipid-targeting therapeutic strategies, and the modification of their efficacy by disease stage, ApoE status, and metabolic and vascular profiles, are reviewed.
Collapse
Affiliation(s)
- Fei Yin
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
26
|
Potential of Capric Acid in Neurological Disorders: An Overview. Neurochem Res 2023; 48:697-712. [PMID: 36342577 DOI: 10.1007/s11064-022-03809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
To solve the restrictions of a classical ketogenic diet, a modified medium-chain triglyceride diet was introduced which required only around 60% of dietary energy. Capric acid (CA), a small molecule, is one of the main components because its metabolic profile offers itself as an alternate source of energy to the brain in the form of ketone bodies. This is possible with the combined capability of CA to cross the blood-brain barrier and achieve a concentration of 50% concentration in the brain more than any other fatty acid in plasma. Natural sources of CA include vegetable oils such as palm oil and coconut oil, mammalian milk and some seeds. Several studies have shown that CA has varied action on targets that include AMPA receptors, PPAR-γ, inflammatory/oxidative stress pathways and gut dysbiosis. Based on these lines of evidence, CA has proved to be effective in the amelioration of neurological diseases such as epilepsy, affective disorders and Alzheimer's disease. But these studies still warrant more pre-clinical and clinical studies that would further prove its efficacy. Hence, to understand the potential of CA in brain disease and associated comorbid conditions, an advance and rigorous molecular mechanistic study, apart from the reported in-vitro/in-vivo studies, is urgently required for the development of this compound through clinical setups.
Collapse
|
27
|
Association between Edinburgh Postnatal Depression Scale and Serum Levels of Ketone Bodies and Vitamin D, Thyroid Function, and Iron Metabolism. Nutrients 2023; 15:nu15030768. [PMID: 36771476 PMCID: PMC9920872 DOI: 10.3390/nu15030768] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Suicide due to postpartum depression is the most common perinatal-related death and is a social concern in Japan. Nutritional deficiencies during pregnancy may contribute to postpartum depression; therefore, we investigated the relationship between postpartum depression and nutritional status during pregnancy and postpartum. We focused specifically on ketone bodies because they are known to protect brain cells. The relationship between the Edinburgh Postnatal Depression Scale (EPDS) scores and the serum levels of ketone bodies and vitamin D, thyroid function, and iron metabolism was examined. Overall, 126 pregnant women were identified for the study, and 99 were eventually included in the analysis. We defined an EPDS score of ≥9 as being positive for postpartum depression, and serum ketone levels were found to be higher in the group with an EPDS score of ≥9 during the second trimester; however, there were no other significant findings. We may be able to predict postpartum depression from a pregnant woman's serum ketone levels in the second trimester. There was a positive correlation between the EPDS scores at 3 days and 1 month postpartum (r = 0.534, p < 0.001). EPDS scores assessed in the early postpartum period may be useful for the timely detection of postpartum depression.
Collapse
|
28
|
Chandra S, Sisodia SS, Vassar RJ. The gut microbiome in Alzheimer's disease: what we know and what remains to be explored. Mol Neurodegener 2023; 18:9. [PMID: 36721148 PMCID: PMC9889249 DOI: 10.1186/s13024-023-00595-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/06/2023] [Indexed: 02/02/2023] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia, results in a sustained decline in cognition. There are currently few effective disease modifying therapies for AD, but insights into the mechanisms that mediate the onset and progression of disease may lead to new, effective therapeutic strategies. Amyloid beta oligomers and plaques, tau aggregates, and neuroinflammation play a critical role in neurodegeneration and impact clinical AD progression. The upstream modulators of these pathological features have not been fully clarified, but recent evidence indicates that the gut microbiome (GMB) may have an influence on these features and therefore may influence AD progression in human patients. In this review, we summarize studies that have identified alterations in the GMB that correlate with pathophysiology in AD patients and AD mouse models. Additionally, we discuss findings with GMB manipulations in AD models and potential GMB-targeted therapeutics for AD. Lastly, we discuss diet, sleep, and exercise as potential modifiers of the relationship between the GMB and AD and conclude with future directions and recommendations for further studies of this topic.
Collapse
Affiliation(s)
- Sidhanth Chandra
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Sangram S. Sisodia
- Department of Neurobiology, University of Chicago, Chicago, IL 60637 USA
| | - Robert J. Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| |
Collapse
|
29
|
Ciurea VA, Covache-Busuioc RA, Mohan AG, Costin HP, Voicu V. Alzheimer's disease: 120 years of research and progress. J Med Life 2023; 16:173-177. [PMID: 36937482 PMCID: PMC10015576 DOI: 10.25122/jml-2022-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/29/2022] [Indexed: 03/21/2023] Open
Affiliation(s)
- Vlad Alexandru Ciurea
- Neurosurgery Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Neurosurgery Department, Sanador Clinical Hospital, Bucharest, Romania
| | | | - Aurel George Mohan
- Department of Neurosurgery, Bihor County Emergency Clinical Hospital, Oradea, Romania
- Neurosurgery Department, Faculty of Medicine, Oradea University, Oradea, Romania
| | | | - Victor Voicu
- Pharmacology, Toxicology and Clinical Psychopharmacology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Romanian Academy, Bucharest, Romania
| |
Collapse
|
30
|
Amin AM, Mostafa H, Khojah HMJ. Insulin resistance in Alzheimer's disease: The genetics and metabolomics links. Clin Chim Acta 2023; 539:215-236. [PMID: 36566957 DOI: 10.1016/j.cca.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with significant socioeconomic burden worldwide. Although genetics and environmental factors play a role, AD is highly associated with insulin resistance (IR) disorders such as metabolic syndrome (MS), obesity, and type two diabetes mellitus (T2DM). These findings highlight a shared pathogenesis. The use of metabolomics as a downstream systems' biology (omics) approach can help to identify these shared metabolic traits and assist in the early identification of at-risk groups and potentially guide therapy. Targeting the shared AD-IR metabolic trait with lifestyle interventions and pharmacological treatments may offer promising AD therapeutic approach. In this narrative review, we reviewed the literature on the AD-IR pathogenic link, the shared genetics and metabolomics biomarkers between AD and IR disorders, as well as the lifestyle interventions and pharmacological treatments which target this pathogenic link.
Collapse
Affiliation(s)
- Arwa M Amin
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Madinah, Saudi Arabia.
| | - Hamza Mostafa
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Network (XIA), Nutrition and Food Safety Research Institute (INSA), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Hani M J Khojah
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
31
|
Aminzadeh-Gohari S, Kofler B, Herzog C. Dietary restriction in senolysis and prevention and treatment of disease. Crit Rev Food Sci Nutr 2022; 64:5242-5268. [PMID: 36484738 PMCID: PMC7616065 DOI: 10.1080/10408398.2022.2153355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging represents a key risk factor for a plethora of diseases. Targeting detrimental processes which occur during aging, especially before onset of age-related disease, could provide drastic improvements in healthspan. There is increasing evidence that dietary restriction (DR), including caloric restriction, fasting, or fasting-mimicking diets, extend both lifespan and healthspan. This has sparked interest in the use of dietary regimens as a non-pharmacological means to slow aging and prevent disease. Here, we review the current evidence on the molecular mechanisms underlying DR-induced health improvements, including removal of senescent cells, metabolic reprogramming, and epigenetic rejuvenation.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabollism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Ageing, Universität Innsbruck, Innsbruck, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabollism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Chiara Herzog
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Ageing, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
32
|
The Effects of Dietary Interventions on Brain Aging and Neurological Diseases. Nutrients 2022; 14:nu14235086. [PMID: 36501116 PMCID: PMC9740746 DOI: 10.3390/nu14235086] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Dietary interventions can ameliorate age-related neurological decline. Decades of research of in vitro studies, animal models, and clinical trials support their ability and efficacy to improve behavioral outcomes by inducing biochemical and physiological changes that lead to a more resilient brain. Dietary interventions including calorie restriction, alternate day fasting, time restricted feeding, and fasting mimicking diets not only improve normal brain aging but also slow down, or even reverse, the progression of neurological diseases. In this review, we focus on the effects of intermittent and periodic fasting on improving phenotypic outcomes, such as cognitive and motor-coordination decline, in the normal aging brain through an increase in neurogenesis and synaptic plasticity, and decrease in neuroinflammation, mitochondrial dysfunction, and oxidative stress. We summarize the results of various dietary interventions in animal models of age-related neurological diseases such as Alzheimer's disease, Parkinson's disease, epilepsy, and Multiple Sclerosis and discuss the results of clinical trials that explore the feasibility of dietary interventions in the prevention and treatment of these diseases.
Collapse
|
33
|
Dyńka D, Kowalcze K, Paziewska A. The Role of Ketogenic Diet in the Treatment of Neurological Diseases. Nutrients 2022; 14:5003. [PMID: 36501033 PMCID: PMC9739023 DOI: 10.3390/nu14235003] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Over a hundred years of study on the favourable effect of ketogenic diets in the treatment of epilepsy have contributed to a long-lasting discussion on its potential influence on other neurological diseases. A significant increase in the number of scientific studies in that field has been currently observed. The aim of this paper is a widespread, thorough analysis of the available scientific evidence in respect of the role of the ketogenic diet in the therapy of neurological diseases such as: epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and migraine. A wide range of the mechanisms of action of the ketogenic diet has been demonstrated in neurological diseases, including, among other effects, its influence on the reduction in inflammatory conditions and the amount of reactive oxygen species (ROS), the restoration of the myelin sheath of the neurons, the formation and regeneration of mitochondria, neuronal metabolism, the provision of an alternative source of energy for neurons (ketone bodies), the reduction in glucose and insulin concentrations, the reduction in amyloid plaques, the induction of autophagy, the alleviation of microglia activation, the reduction in excessive neuronal activation, the modulation of intestinal microbiota, the expression of genes, dopamine production and the increase in glutamine conversion into GABA. The studies discussed (including randomised controlled studies), conducted in neurological patients, have stressed the effectiveness of the ketogenic diet in the treatment of epilepsy and have demonstrated its promising therapeutic potential in Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and migraine. A frequent advantage of the diet was demonstrated over non-ketogenic diets (in the control groups) in the therapy of neurological diseases, with simultaneous safety and feasibility when conducting the nutritional model.
Collapse
Affiliation(s)
- Damian Dyńka
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| | - Katarzyna Kowalcze
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| | - Agnieszka Paziewska
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| |
Collapse
|
34
|
Saris CGJ, Timmers S. Ketogenic diets and Ketone suplementation: A strategy for therapeutic intervention. Front Nutr 2022; 9:947567. [PMID: 36458166 PMCID: PMC9705794 DOI: 10.3389/fnut.2022.947567] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/13/2022] [Indexed: 07/24/2023] Open
Abstract
Ketogenic diets and orally administered exogenous ketone supplements are strategies to increase serum ketone bodies serving as an alternative energy fuel for high energy demanding tissues, such as the brain, muscles, and the heart. The ketogenic diet is a low-carbohydrate and fat-rich diet, whereas ketone supplements are usually supplied as esters or salts. Nutritional ketosis, defined as serum ketone concentrations of ≥ 0.5 mmol/L, has a fasting-like effect and results in all sorts of metabolic shifts and thereby enhancing the health status. In this review, we thus discuss the different interventions to reach nutritional ketosis, and summarize the effects on heart diseases, epilepsy, mitochondrial diseases, and neurodegenerative disorders. Interest in the proposed therapeutic benefits of nutritional ketosis has been growing the past recent years. The implication of this nutritional intervention is becoming more evident and has shown interesting potential. Mechanistic insights explaining the overall health effects of the ketogenic state, will lead to precision nutrition for the latter diseases.
Collapse
Affiliation(s)
- Christiaan G. J. Saris
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Center for Mitochondrial Medicine, Nijmegen, Netherlands
| | - Silvie Timmers
- Department of Human and Animal Physiology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
35
|
Whittaker DS, Tamai TK, Bains RS, Villanueva SAM, Luk SHC, Dell’Angelica D, Block GD, Ghiani CA, Colwell CS. Dietary ketosis improves circadian dysfunction as well as motor symptoms in the BACHD mouse model of Huntington's disease. Front Nutr 2022; 9:1034743. [PMID: 36407529 PMCID: PMC9669764 DOI: 10.3389/fnut.2022.1034743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Disturbances in sleep/wake cycles are common among patients with neurodegenerative diseases including Huntington's disease (HD) and represent an appealing target for chrono-nutrition-based interventions. In the present work, we sought to determine whether a low-carbohydrate, high-fat diet would ameliorate the symptoms and delay disease progression in the BACHD mouse model of HD. Adult WT and BACHD male mice were fed a normal or a ketogenic diet (KD) for 3 months. The KD evoked a robust rhythm in serum levels of β-hydroxybutyrate and dramatic changes in the microbiome of male WT and BACHD mice. NanoString analysis revealed transcriptional changes driven by the KD in the striatum of both WT and BACHD mice. Disturbances in sleep/wake cycles have been reported in mouse models of HD and are common among HD patients. Having established that the KD had effects on both the WT and mutant mice, we examined its impact on sleep/wake cycles. KD increased daytime sleep and improved the timing of sleep onset, while other sleep parameters were not altered. In addition, KD improved activity rhythms, including rhythmic power, and reduced inappropriate daytime activity and onset variability. Importantly, KD improved motor performance on the rotarod and challenging beam tests. It is worth emphasizing that HD is a genetically caused disease with no known cure. Life-style changes that not only improve the quality of life but also delay disease progression for HD patients are greatly needed. Our study demonstrates the therapeutic potential of diet-based treatment strategies in a pre-clinical model of HD.
Collapse
Affiliation(s)
- Daniel S. Whittaker
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - T. Katherine Tamai
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Raj S. Bains
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sophia Anne Marie Villanueva
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shu Hon Christopher Luk
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Derek Dell’Angelica
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gene D. Block
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cristina A. Ghiani
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christopher S. Colwell
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
36
|
Ameen AO, Freude K, Aldana BI. Fats, Friends or Foes: Investigating the Role of Short- and Medium-Chain Fatty Acids in Alzheimer's Disease. Biomedicines 2022; 10:2778. [PMID: 36359298 PMCID: PMC9687972 DOI: 10.3390/biomedicines10112778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 08/26/2023] Open
Abstract
Characterising Alzheimer's disease (AD) as a metabolic disorder of the brain is gaining acceptance based on the pathophysiological commonalities between AD and major metabolic disorders. Therefore, metabolic interventions have been explored as a strategy for brain energetic rescue. Amongst these, medium-chain fatty acid (MCFA) supplementations have been reported to rescue the energetic failure in brain cells as well as the cognitive decline in patients. Short-chain fatty acids (SCFA) have also been implicated in AD pathology. Due to the increasing therapeutic interest in metabolic interventions and brain energetic rescue in neurodegenerative disorders, in this review, we first summarise the role of SCFAs and MCFAs in AD. We provide a comparison of the main findings regarding these lipid species in established AD animal models and recently developed human cell-based models of this devastating disorder.
Collapse
Affiliation(s)
- Aishat O. Ameen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Blanca I. Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
37
|
Abstract
Alzheimer’s disease (AD) is the most common major neurocognitive disorder of ageing. Although largely ignored until about a decade ago, accumulating evidence suggests that deteriorating brain energy metabolism plays a key role in the development and/or progression of AD-associated cognitive decline. Brain glucose hypometabolism is a well-established biomarker in AD but was mostly assumed to be a consequence of neuronal dysfunction and death. However, its presence in cognitively asymptomatic populations at higher risk of AD strongly suggests that it is actually a pre-symptomatic component in the development of AD. The question then arises as to whether progressive AD-related cognitive decline could be prevented or slowed down by correcting or bypassing this progressive ‘brain energy gap’. In this review, we provide an overview of research on brain glucose and ketone metabolism in AD and its prodromal condition – mild cognitive impairment (MCI) – to provide a clearer basis for proposing keto-therapeutics as a strategy for brain energy rescue in AD. We also discuss studies using ketogenic interventions and their impact on plasma ketone levels, brain energetics and cognitive performance in MCI and AD. Given that exercise has several overlapping metabolic effects with ketones, we propose that in combination these two approaches might be synergistic for brain health during ageing. As cause-and-effect relationships between the different hallmarks of AD are emerging, further research efforts should focus on optimising the efficacy, acceptability and accessibility of keto-therapeutics in AD and populations at risk of AD.
Collapse
|
38
|
Taylor MK, Sullivan DK, Keller JE, Burns JM, Swerdlow RH. Potential for Ketotherapies as Amyloid-Regulating Treatment in Individuals at Risk for Alzheimer’s Disease. Front Neurosci 2022; 16:899612. [PMID: 35784855 PMCID: PMC9243383 DOI: 10.3389/fnins.2022.899612] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative condition characterized by clinical decline in memory and other cognitive functions. A classic AD neuropathological hallmark includes the accumulation of amyloid-β (Aβ) plaques, which may precede onset of clinical symptoms by over a decade. Efforts to prevent or treat AD frequently emphasize decreasing Aβ through various mechanisms, but such approaches have yet to establish compelling interventions. It is still not understood exactly why Aβ accumulates in AD, but it is hypothesized that Aβ and other downstream pathological events are a result of impaired bioenergetics, which can also manifest prior to cognitive decline. Evidence suggests that individuals with AD and at high risk for AD have functional brain ketone metabolism and ketotherapies (KTs), dietary approaches that produce ketone bodies for energy metabolism, may affect AD pathology by targeting impaired brain bioenergetics. Cognitively normal individuals with elevated brain Aβ, deemed “preclinical AD,” and older adults with peripheral metabolic impairments are ideal candidates to test whether KTs modulate AD biology as they have impaired mitochondrial function, perturbed brain glucose metabolism, and elevated risk for rapid Aβ accumulation and symptomatic AD. Here, we discuss the link between brain bioenergetics and Aβ, as well as the potential for KTs to influence AD risk and progression.
Collapse
Affiliation(s)
- Matthew K. Taylor
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- *Correspondence: Matthew K. Taylor,
| | - Debra K. Sullivan
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
| | - Jessica E. Keller
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jeffrey M. Burns
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
39
|
Brinkley TE, Leng I, Register TC, Neth BJ, Zetterberg H, Blennow K, Craft S. Changes in Adiposity and Cerebrospinal Fluid Biomarkers Following a Modified Mediterranean Ketogenic Diet in Older Adults at Risk for Alzheimer’s Disease. Front Neurosci 2022; 16:906539. [PMID: 35720727 PMCID: PMC9202553 DOI: 10.3389/fnins.2022.906539] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/06/2022] [Indexed: 12/03/2022] Open
Abstract
Background Ketogenic diets have been used to treat both obesity and neurological disorders, including epilepsy and more recently Alzheimer’s disease (AD), likely due to favorable effects on both central and peripheral metabolism. Improvements in body composition have also been reported; however, it is unclear if diet-induced changes in adiposity are related to improvements in AD and related neuropathology. Purpose We examined the effects of a Modified Mediterranean Ketogenic (MMK) diet vs. an American Heart Association (AHA) diet on body weight, body composition, and body fat distribution and their association with cerebrospinal fluid (CSF) biomarkers in older adults at risk for AD. Methods Twenty adults (mean age: 64.3 ± 6.3 years, 35% Black, 75% female) were randomly assigned to a crossover trial starting with either the MMK or AHA diet for 6 weeks, followed by a 6-week washout and then the opposite diet for 6 weeks. At baseline and after each diet adiposity was assessed by dual-energy x-ray absorptiometry and CSF biomarkers were measured. Linear mixed effect models were used to examine the effect of diet on adiposity. Spearman correlations were examined to assess associations between adiposity and CSF biomarkers. Results At baseline there was a high prevalence of overweight/obesity and central adiposity, and higher visceral fat and lower peripheral fat were associated with an adverse CSF biomarker profile. The MMK and AHA diets led to similar improvements in body composition and body fat distribution. Significant correlations were found between changes in adiposity and changes in CSF biomarkers (r’s = 0.63–0.92, p’s < 0.05), with notable differences by diet. Decreases in body fat on the MMK diet were related to changes in Aβ biomarkers, whereas decreases in body fat on the AHA diet were related to changes in tau biomarkers and cholinesterase activity. Interestingly, increases in CSF Aβ on the MMK diet occurred in those with less fat loss. Conclusion An MMK diet leads to favorable changes in body composition, body fat distribution, and CSF biomarkers. Our data suggest that modest weight loss that maximizes visceral fat loss and preserves peripheral fat, may have the greatest impact on brain health. Clinical Trial Registration [www.ClinicalTrials.gov], identifier [NCT02984540].
Collapse
Affiliation(s)
- Tina E. Brinkley
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Winston-Salem, NC, United States
- *Correspondence: Tina E. Brinkley,
| | - Iris Leng
- Division of Public Health Sciences, Department of Biostatistics and Data Sciences, Winston-Salem, NC, United States
| | - Thomas C. Register
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Bryan J. Neth
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
- United Kingdom Dementia Research Institute at UCL, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Hong Kong SAR, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Suzanne Craft
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Winston-Salem, NC, United States
| |
Collapse
|
40
|
Şimşek H, Uçar A. Is Ketogenic Diet Therapy a Remedy for Alzheimer’s Disease or Mild Cognitive Impairments?: A Narrative Review of Randomized Controlled Trials. ADVANCES IN GERONTOLOGY 2022. [DOI: 10.1134/s2079057022020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Jiwani R, Robbins R, Neri A, Renero J, Lopez E, Serra MC. Effect of Dietary Intake Through Whole Foods on Cognitive Function: Review of Randomized Controlled Trials. Curr Nutr Rep 2022; 11:146-160. [PMID: 35334104 PMCID: PMC11110908 DOI: 10.1007/s13668-022-00412-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW This review evaluated recent randomized controlled trials (RCTs) examining the chronic intake of whole foods associated with the Mediterranean, Dietary Approaches to Stop Hypertension (DASH), Mediterranean-DASH Intervention for Neurogenerative Delay (MIND), and ketogenic (KETO) diets on cognitive function. RECENT FINDINGS We identified RCTs related to olive oil (N = 3), nuts (N = 7), fatty fish (N = 1), lean meats (N = 4), fruits and vegetables (N = 9), legumes (N = 1), and low-fat dairy (N = 4), with 26/29 reporting positive results on at least one measure of cognition. We also identified 6 RCTs related to whole food-induced KETO diets, with half reporting positive effects on cognition. Variations in study design (i.e., generally the studies are < 6 months and include middle-aged and older, cognitively intact participants) and small sample sizes make it difficult to draw conclusions across studies; however, the current evidence from RCTs generally supports individual component intakes of these dietary patterns as an effective, nonpharmacological approach to improve cognitive health in adults.
Collapse
Affiliation(s)
- Rozmin Jiwani
- School of Nursing, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
- Geriatric Research, Education & Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, TX, USA.
| | - Ronna Robbins
- Geriatric Research, Education & Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Alfonso Neri
- School of Nursing, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Jose Renero
- Geriatric Research, Education & Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Emme Lopez
- Dolph Briscoe, Jr. Library, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Monica C Serra
- Geriatric Research, Education & Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
42
|
ALTINSOY E, ÇULCU S. Effects of ketogenic diet on colon anastomosis and wound healing in rats. Chirurgia (Bucur) 2022. [DOI: 10.23736/s0394-9508.21.05268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Robbins JP, Solito E. Does Neuroinflammation Underlie the Cognitive Changes Observed With Dietary Interventions? Front Neurosci 2022; 16:854050. [PMID: 35620671 PMCID: PMC9127342 DOI: 10.3389/fnins.2022.854050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary interventions, such as calorie restriction and ketogenic diet, have been extensively studied in ageing research, including in cognitive decline. Epidemiological studies indicate beneficial effects of certain dietary regimes on mental health, including mood disorders and dementia. However, randomised-controlled trials (the gold-standard of evidence-based medicine) on calorie restriction diets and the ketogenic diet have yet to show clinically convincing effects in neuropsychiatric disorders. This review will examine the quality of studies and evidence base for the ketogenic and calorie restriction diets in common neuropsychiatric conditions, collating findings from preclinical experiments, case reports or small clinical studies, and randomised controlled clinical trials. The major cellular mechanisms that mediate the effects of these dietary interventions on brain health include neuroinflammation, neuroprotection, and neuromodulation. We will discuss the studies that have investigated the roles of these pathways and their interactions. Popularity of the ketogenic and calorie restriction diets has grown both in the public domain and in psychiatry research, allowing for informed review of the efficacy, the limitations, and the side effects of these diets in specific patient populations. In this review we will summarise the clinical evidence for these diets in neuropsychiatry and make suggestions to improve clinical translation of future research studies.
Collapse
Affiliation(s)
- Jacqueline P. Robbins
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Egle Solito
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
44
|
Noshiro K, Umazume T, Hattori R, Kataoka S, Yamada T, Watari H. Changes in Serum Levels of Ketone Bodies and Human Chorionic Gonadotropin during Pregnancy in Relation to the Neonatal Body Shape: A Retrospective Analysis. Nutrients 2022; 14:nu14091971. [PMID: 35565938 PMCID: PMC9099686 DOI: 10.3390/nu14091971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 12/10/2022] Open
Abstract
Among the physiological changes occurring during pregnancy, the benefits of morning sickness, which is likely mediated by human chorionic gonadotropin (HCG) and induces serum ketone production, are unclear. We investigated the relationship between serum levels of ketone bodies and HCG in the first, second, and third trimesters and neonatal body shape (i.e., birth weight, length, head circumference, and chest circumference) in 245 pregnant women. Serum levels of 3-hydroxybutyric acid peaked in late-stage compared with early stage pregnancy (27.8 [5.0−821] vs. 42.2 [5.0−1420] μmol/L, median [range], p < 0.001). However, serum levels of ketone bodies and HCG did not correlate with neonatal body shape. When weight loss during pregnancy was used as an index of morning sickness, a higher pre-pregnancy body mass index was associated with greater weight loss. This study is the first to show that serum ketone body levels are maximal in the third trimester of pregnancy. As the elevation of serum ketone bodies in the third trimester is a physiological change, high serum levels of ketone bodies may be beneficial for mothers and children. One of the possible biological benefits of morning sickness is the prevention of diseases that have an increased incidence due to weight gain during pregnancy.
Collapse
Affiliation(s)
- Kiwamu Noshiro
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.N.); (H.W.)
| | - Takeshi Umazume
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.N.); (H.W.)
- Correspondence: ; Tel.: +81-11-706-5941
| | - Rifumi Hattori
- Department of Obstetrics and Gynecology, Obihiro-Kosei General Hospital, Obihiro 080-0024, Japan;
| | - Soromon Kataoka
- Department of Obstetrics and Gynecology, Hakodate Central General Hospital, Hakodate 040-8585, Japan;
| | - Takashi Yamada
- Department of Obstetrics and Gynecology, Japan Community Health Care Organization Hokkaido Hospital, Sapporo 062-8618, Japan;
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.N.); (H.W.)
| |
Collapse
|
45
|
Pickersgill JW, Turco CV, Ramdeo K, Rehsi RS, Foglia SD, Nelson AJ. The Combined Influences of Exercise, Diet and Sleep on Neuroplasticity. Front Psychol 2022; 13:831819. [PMID: 35558719 PMCID: PMC9090458 DOI: 10.3389/fpsyg.2022.831819] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Neuroplasticity refers to the brain's ability to undergo structural and functional adaptations in response to experience, and this process is associated with learning, memory and improvements in cognitive function. The brain's propensity for neuroplasticity is influenced by lifestyle factors including exercise, diet and sleep. This review gathers evidence from molecular, systems and behavioral neuroscience to explain how these three key lifestyle factors influence neuroplasticity alone and in combination with one another. This review collected results from human studies as well as animal models. This information will have implications for research, educational, fitness and neurorehabilitation settings.
Collapse
Affiliation(s)
| | - Claudia V. Turco
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Karishma Ramdeo
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Ravjot S. Rehsi
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Stevie D. Foglia
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
46
|
Horn J, Mayer DE, Chen S, Mayer EA. Role of diet and its effects on the gut microbiome in the pathophysiology of mental disorders. Transl Psychiatry 2022; 12:164. [PMID: 35443740 PMCID: PMC9021202 DOI: 10.1038/s41398-022-01922-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
There is emerging evidence that diet has a major modulatory influence on brain-gut-microbiome (BGM) interactions with important implications for brain health, and for several brain disorders. The BGM system is made up of neuroendocrine, neural, and immune communication channels which establish a network of bidirectional interactions between the brain, the gut and its microbiome. Diet not only plays a crucial role in shaping the gut microbiome, but it can modulate structure and function of the brain through these communication channels. In this review, we summarize the evidence available from preclinical and clinical studies on the influence of dietary habits and interventions on a selected group of psychiatric and neurologic disorders including depression, cognitive decline, Parkinson's disease, autism spectrum disorder and epilepsy. We will particularly address the role of diet-induced microbiome changes which have been implicated in these effects, and some of which are shared between different brain disorders. While the majority of these findings have been demonstrated in preclinical and in cross-sectional, epidemiological studies, to date there is insufficient evidence from mechanistic human studies to make conclusions about causality between a specific diet and microbially mediated brain function. Many of the dietary benefits on microbiome and brain health have been attributed to anti-inflammatory effects mediated by the microbial metabolites of dietary fiber and polyphenols. The new attention given to dietary factors in brain disorders has the potential to improve treatment outcomes with currently available pharmacological and non-pharmacological therapies.
Collapse
Affiliation(s)
- J Horn
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - D E Mayer
- MayerInterconnected, LLC, Los Angeles, CA, USA
| | - S Chen
- University of California, San Francisco, CA, USA
| | - E A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
47
|
Brain Metabolic Alterations in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23073785. [PMID: 35409145 PMCID: PMC8998942 DOI: 10.3390/ijms23073785] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
The brain is one of the most energy-consuming organs in the body. Satisfying such energy demand requires compartmentalized, cell-specific metabolic processes, known to be complementary and intimately coupled. Thus, the brain relies on thoroughly orchestrated energy-obtaining agents, processes and molecular features, such as the neurovascular unit, the astrocyte-neuron metabolic coupling, and the cellular distribution of energy substrate transporters. Importantly, early features of the aging process are determined by the progressive perturbation of certain processes responsible for adequate brain energy supply, resulting in brain hypometabolism. These age-related brain energy alterations are further worsened during the prodromal stages of neurodegenerative diseases, namely Alzheimer's disease (AD), preceding the onset of clinical symptoms, and are anatomically and functionally associated with the loss of cognitive abilities. Here, we focus on concrete neuroenergetic features such as the brain's fueling by glucose and lactate, the transporters and vascular system guaranteeing its supply, and the metabolic interactions between astrocytes and neurons, and on its neurodegenerative-related disruption. We sought to review the principles underlying the metabolic dimension of healthy and AD brains, and suggest that the integration of these concepts in the preventive, diagnostic and treatment strategies for AD is key to improving the precision of these interventions.
Collapse
|
48
|
To J, Shao ZY, Gandawidjaja M, Tabibi T, Grysman N, Grossberg GT. Comparison of the Impact of the Mediterranean Diet, Anti-Inflammatory Diet, Seventh-Day Adventist Diet, and Ketogenic Diet Relative to Cognition and Cognitive Decline. Curr Nutr Rep 2022; 11:161-171. [PMID: 35347664 DOI: 10.1007/s13668-022-00407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Increasing evidence points toward the importance of diet and its impact on cognitive decline. This review seeks to clarify the impact of four diets on cognition: the Mediterranean diet, the anti-inflammatory diet, the Seventh Day Adventist diet, and the Ketogenic diet. RECENT FINDINGS Of the diets reviewed, the Mediterranean diet provides the strongest evidence for efficacy. Studies regarding the anti-inflammatory diet and Seventh Day Adventist diet are sparse, heterogeneous in quality and outcome measurements, providing limited reliable data. There is also minimal research confirming the cognitive benefits of the Ketogenic diet. Increasing evidence supports the use of the Mediterranean diet to reduce cognitive decline. The MIND-diet, a combination of the Mediterranean and DASH diets, seems especially promising, likely due to its anti-inflammatory properties. The Ketogenic diet may also have potential efficacy; however, adherence in older populations may be difficult given frequent adverse effects. Future research should focus on long-term, well-controlled studies confirming the impact of various diets, as well as the combination of diets and lifestyle modification.
Collapse
Affiliation(s)
- Jennifer To
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Blvd, St. Louis, MO, 63104, USA
| | - Zi Yi Shao
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Blvd, St. Louis, MO, 63104, USA
| | - Monique Gandawidjaja
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Blvd, St. Louis, MO, 63104, USA
| | - Tara Tabibi
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Blvd, St. Louis, MO, 63104, USA
| | - Noam Grysman
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Blvd, St. Louis, MO, 63104, USA.
| | - George T Grossberg
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Blvd, St. Louis, MO, 63104, USA
| |
Collapse
|
49
|
Effect of a Ketogenic Diet on Oxidative Posttranslational Protein Modifications and Brain Homogenate Denaturation in the Kindling Model of Epilepsy in Mice. Neurochem Res 2022; 47:1943-1955. [PMID: 35316463 DOI: 10.1007/s11064-022-03579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
This study focused on the ketogenic diet (KD) effects on oxidative posttranslational protein modification (PPM) as presumptive factors implicated in epileptogenesis. A 28-day of KD treatment was performed. The corneal kindling model of epileptogenesis was used. Four groups of adult male ICR mice (25-30 g) were randomized in standard rodent chow (SRC) group, KD-treatment group; SRC + kindling group; KD + kindling group (n = 10 each). Advanced oxidation protein products (AOPP) and protein carbonyl contents of brain homogenates together with differential scanning calorimetry (DSC) were evaluated. Two exothermic transitions (Exo1 and Exo2) were explored after deconvolution of the thermograms. Factor analysis was applied. The protective effect of KD in the kindling model was demonstrated with both decreased seizure score and increased seizure latency. KD significantly decreased glucose and increased ketone bodies (KB) in blood. Despite its antiseizure effect, the KD increased the AOPP level and the brain proteome's exothermic transitions, suggestive for qualitative modifications. The ratio of the two exothermic peaks (Exo2/Exo1) of the thermograms from the KD vs. SRC treated group differed more than twice (3.7 vs. 1.6). Kindling introduced the opposite effect, changing this ratio to 2.7 for the KD + kindling group. Kindling significantly increased glucose and KB in the blood whereas decreased the BW under the SRC treatment. Kindling decreased carbonyl proteins in the brain irrespectively of the diet. Further evaluations are needed to assess the nature of correspondence of calorimetric images of the brain homogenates with PPM.
Collapse
|
50
|
Can dietary patterns prevent cognitive impairment and reduce Alzheimer's disease risk: exploring the underlying mechanisms of effects. Neurosci Biobehav Rev 2022; 135:104556. [PMID: 35122783 DOI: 10.1016/j.neubiorev.2022.104556] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is one of the fastest growing cognitive decline-related neurological diseases. To date, effective curative strategies have remained elusive. A growing body of evidence indicates that dietary patterns have significant effects on cognitive function and the risk of developing AD. Previous studies on the association between diet and AD risk have mainly focused on individual food components and specific nutrients, and the mechanisms responsible for the beneficial effects of dietary patterns on AD are not well understood. This article provides a comprehensive overview of the effects of dietary patterns, including the Mediterranean diet (MedDiet), dietary approaches to stop hypertension (DASH) diet, Mediterranean-DASH diet intervention for neurological delay (MIND), ketogenic diet, caloric restriction, intermittent fasting, methionine restriction, and low-protein and high-carbohydrate diet, on cognitive impairment and summarizes the underlying mechanisms by which dietary patterns attenuate cognitive impairment, especially highlighting the modulation of dietary patterns on cognitive impairment through gut microbiota. Furthermore, considering the variability in individual metabolic responses to dietary intake, we put forward a framework to develop personalized dietary patterns for people with cognitive disorders or AD based on individual gut microbiome compositions.
Collapse
|