1
|
Qin L, Yang L, Shiraiwa M, Faiola F, Yang Y, Liu S, Liu G, Zheng M, Jiang G. Formation of persistent free radicals from epigallocatechin Gallate in tea processing and their implications on DNA damage and cell cytotoxicity. Food Chem 2024; 458:140241. [PMID: 38944926 DOI: 10.1016/j.foodchem.2024.140241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Tea is widely consumed in both beverages and food. Epigallocatechin gallate (EGCG) is the most crucial active ingredient in tea. Currently, knowledges on transformation processes of EGCG during tea processing are lacking. Understanding the chemical reactions of EGCG and its products during tea processing is important for assessing the safety of tea-containing food. Here, we revealed the formation of persistent free radicals (PFRs) from EGCG under the influence of heating and light irradiation, which was substantiated with evidence. These PFRs exhibited stability for >30 min in simulated gastric fluid. Furthermore, we observed potential effects of these PFRs on DNA damage and cell cytotoxicity in vitro. By combining electron paramagnetic resonance spectrometer with Fourier transform ion cyclotron resonance mass spectrometry, we elucidated the pathways involved in free radical formation. These findings are expected to contribute to a comprehensive understanding of free radical chemistry in tea-containing food.
Collapse
Affiliation(s)
- Linjun Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China.
| | - Manabu Shiraiwa
- Department of Chemistry, University of California - Irvine, Irvine, 92697, USA
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Yujue Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Shuting Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
2
|
Zhang Y, Zhou Y, Wang H, Xiao K, Luo Z, Li Y, Xing R, Jiang K, Fu D, Liu W, Tao S, Shen G. Soil Environmental Persistent Free Radicals in highly polluted soils and the association with polycyclic aromatic compounds. ENVIRONMENTAL RESEARCH 2024; 262:119853. [PMID: 39218337 DOI: 10.1016/j.envres.2024.119853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Environmental persistent free radicals (EPFRs) as emerging contaminants in environment can induce oxidative stress causing severe adverse health outcomes. The formation of EPFRs is thought to be associated with the transformation of aromatic compounds like polycyclic aromatic hydrocarbons (PAHs). Herein this study firstly evaluated EPFRs in industrial soils being highly polluted by PAHs, and explored its associated with PAHs, with the modification of soil organic matter content. Soil EPFRs from two industrial plants were 4.1×1016 and 4.5×1016 spins/g, respectively, that were significantly higher than the levels in the surrounding areas. Carbon-centered EPFRs account for approximately 80% inside the plant, but outside the plants, nearly 50∼70% of EPFRs were carbon-centered with adjacent heteroatoms. As one important precursor of EPFRs, PAHs exhibited a significantly positive correlation with EPFRs in this study (p<0.05), explaining 40%-60% of the variation in EPFRs concentration. The relationship between soil organic matter and EPFRs concentration normalized by PAHs forms an inverted V-shape, illustrating an inhibition effect of soil organic matter on the EPFR formation potentials from PAHs.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Yousong Zhou
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Hanchen Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Kai Xiao
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Zhihan Luo
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Yaojie Li
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Ran Xing
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Ke Jiang
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Donglei Fu
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Wenxin Liu
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Shu Tao
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Guofeng Shen
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou, 45001, China.
| |
Collapse
|
3
|
Edwards KC, Kapur S, Fang T, Cesler-Maloney M, Yang Y, Holen AL, Wu J, Robinson ES, DeCarlo PF, Pratt KA, Weber RJ, Simpson WR, Shiraiwa M. Residential Wood Burning and Vehicle Emissions as Major Sources of Environmentally Persistent Free Radicals in Fairbanks, Alaska. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14293-14305. [PMID: 39093591 PMCID: PMC11325652 DOI: 10.1021/acs.est.4c01206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Environmentally persistent free radicals (EPFRs) play an important role in aerosol effects on air quality and public health, but their atmospheric abundance and sources are poorly understood. We measured EPFRs contained in PM2.5 collected in Fairbanks, Alaska, in winter 2022. We find that EPFR concentrations were enhanced during surface-based inversion and correlate strongly with incomplete combustion markers, including carbon monoxide and elemental carbon (R2 > 0.75). EPFRs exhibit moderately good correlations with PAHs, biomass burning organic aerosols, and potassium (R2 > 0.4). We also observe strong correlations of EPFRs with hydrocarbon-like organic aerosols, Fe and Ti (R2 > 0.6), and single-particle mass spectrometry measurements reveal internal mixing of PAHs, with potassium and iron. These results suggest that residential wood burning and vehicle tailpipes are major sources of EPFRs and nontailpipe emissions, such as brake wear and road dust, may contribute to the stabilization of EPFRs. Exposure to the observed EPFR concentrations (18 ± 12 pmol m-3) would be equivalent to smoking ∼0.4-1 cigarette daily. Very strong correlations (R2 > 0.8) of EPFR with hydroxyl radical formation in surrogate lung fluid indicate that exposure to EPFRs may induce oxidative stress in the human respiratory tract.
Collapse
Affiliation(s)
- Kasey C Edwards
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Sukriti Kapur
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Ting Fang
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong 511400, China
| | - Meeta Cesler-Maloney
- Department of Chemistry and Biochemistry, University of Alaska, Fairbanks, Fairbanks, Alaska 99775, United States
| | - Yuhan Yang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andrew L Holen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Judy Wu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ellis S Robinson
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21212, United States
| | - Peter F DeCarlo
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21212, United States
| | - Kerri A Pratt
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rodney J Weber
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - William R Simpson
- Department of Chemistry and Biochemistry, University of Alaska, Fairbanks, Fairbanks, Alaska 99775, United States
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
4
|
Liang D, Liu J, Wang C, Tu K, Wang L, Qiu L, Zhang X, Liu L. The Effect of α-Fe 2O 3(0001) Surface Containing Hydroxyl Radicals and Ozone on the Formation Mechanism of Environmentally Persistent Free Radicals. TOXICS 2024; 12:582. [PMID: 39195684 PMCID: PMC11359140 DOI: 10.3390/toxics12080582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
The formation of environmentally persistent free radicals (EPFRs) is mediated by the particulate matter's surface, especially transition metal oxide surfaces. In the context of current atmospheric complex pollution, various atmospheric components, such as key atmospheric oxidants ·OH and O3, are often absorbed on particulate matter surfaces, forming particulate matter surfaces containing ·OH and O3. This, in turn, influences EPFRs formation. Here, density functional theory (DFT) calculations were used to explore the formation mechanism of EPFRs by C6H5OH on α-Fe2O3(0001) surface containing the ·OH and O3, and compare it with that on clean surface. The results show that, compared to EPFRs formation with an energy barrier on a clean surface, EPFRs can be rapidly formed through a barrierless process on these surfaces. Moreover, during the hydrogen abstraction mechanism leading to EPFRs formation, the hydrogen acceptor shifts from a surface O atom on a clean surface to an O atom of ·OH or O₃ on these surfaces. However, the detailed hydrogen abstraction process differs on surfaces containing oxidants: on surfaces containing ·OH, it occurs directly through a one-step mechanism, while, on surfaces containing O3, it occurs through a two-step mechanism. But, in both types of surfaces, the essence of this promotional effect mainly lies in increasing the electron transfer amounts during the reaction process. This research provides new insights into EPFRs formation on particle surfaces within the context of atmospheric composite pollution.
Collapse
Affiliation(s)
- Danli Liang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (D.L.); (X.Z.)
| | - Jiarong Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (D.L.); (X.Z.)
- Key Laboratory of National Land Space Planning and Disaster Emergency Management of Inner Mongolia, School of Resources, Environment and Architectural Engineering, Chifeng University, Chifeng 024000, China
| | - Chunlin Wang
- Key Laboratory of National Land Space Planning and Disaster Emergency Management of Inner Mongolia, School of Resources, Environment and Architectural Engineering, Chifeng University, Chifeng 024000, China
| | - Kaipeng Tu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (D.L.); (X.Z.)
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (D.L.); (X.Z.)
- Norinco Group Shanxi North Xingan Chemical Industry Company Limited, Taiyuan 030008, China
| | - Lili Qiu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (D.L.); (X.Z.)
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (D.L.); (X.Z.)
| | - Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (D.L.); (X.Z.)
| |
Collapse
|
5
|
Zhao Z, Li H, Wei Y, Fang G, Jiang Q, Pang Y, Huang W, Tang M, Jing Y, Feng X, Luo XS, Berkemeier T. Airborne environmentally persistent free radicals (EPFRs) in PM 2.5 from combustion sources: Abundance, cytotoxicity and potential exposure risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172202. [PMID: 38599399 DOI: 10.1016/j.scitotenv.2024.172202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
As an emerging atmospheric pollutant, airborne environmentally persistent free radicals (EPFRs) are formed during many combustion processes and pose various adverse health effects. In health-oriented air pollution control, it is vital to evaluate the health effects of atmospheric fine particulate matter (PM2.5) from different emission sources. In this study, various types of combustion-derived PM2.5 were collected on filters in a partial-flow dilution tunnel sampling system from three typical emission sources: coal combustion, biomass burning, and automobile exhaust. Substantial concentrations of EPFRs were determined in PM2.5 samples and associated with significant potential exposure risks. Results from in vitro cytotoxicity and oxidative potential assays suggest that EPFRs may cause substantial generation of reactive oxygen species (ROS) upon inhalation exposure to PM2.5 from anthropogenic combustion sources, especially from automobile exhaust. This study provides important evidence for the source- and concentration-dependent health effects of EPFRs in PM2.5 and motivates further assessments to advance public health-oriented PM2.5 emission control.
Collapse
Affiliation(s)
- Zhen Zhao
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Hanhan Li
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yaqian Wei
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Guodong Fang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qian Jiang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yuting Pang
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; Zhejiang Institute of Meteorological Sciences, Hangzhou 310008, China
| | - Weijie Huang
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Mingwei Tang
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yuanshu Jing
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xinyuan Feng
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiao-San Luo
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Thomas Berkemeier
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| |
Collapse
|
6
|
Aryal A, Harmon AC, Varner KJ, Noël A, Cormier SA, Nde DB, Mottram P, Maxie J, Dugas TR. Inhalation of particulate matter containing environmentally persistent free radicals induces endothelial dysfunction mediated via AhR activation at the air-blood interface. Toxicol Sci 2024; 199:246-260. [PMID: 38310335 DOI: 10.1093/toxsci/kfae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024] Open
Abstract
Particulate matter (PM) containing environmentally persistent free radicals (EPFR) is formed by the incomplete combustion of organic wastes, resulting in the chemisorption of pollutants to the surface of PM containing redox-active transition metals. In prior studies in mice, EPFR inhalation impaired endothelium-dependent vasodilation. These findings were associated with aryl hydrocarbon receptor (AhR) activation in the alveolar type-II (AT-II) cells that form the air-blood interface in the lung. We thus hypothesized that AhR activation in AT-II cells promotes the systemic release of mediators that promote endothelium dysfunction peripheral to the lung. To test our hypothesis, we knocked down AhR in AT-II cells of male and female mice and exposed them to 280 µg/m3 EPFR lo (2.7e + 16 radicals/g) or EPFR (5.5e + 17 radicals/g) compared with filtered air for 4 h/day for 1 day or 5 days. AT-II-AhR activation-induced EPFR-mediated endothelial dysfunction, reducing endothelium-dependent vasorelaxation by 59%, and eNOS expression by 50%. It also increased endothelin-1 mRNA levels in the lungs and peptide levels in the plasma in a paracrine fashion, along with soluble vascular cell adhesion molecule-1 and iNOS mRNA expression, possibly via NF-kB activation. Finally, AhR-dependent increases in antioxidant response signaling, coupled to increased levels of 3-nitrotyrosine in the lungs of EPFR-exposed littermate control but not AT-II AhR KO mice suggested that ATII-specific AhR activation promotes oxidative and nitrative stress. Thus, AhR activation at the air-blood interface mediates endothelial dysfunction observed peripheral to the lung, potentially via release of systemic mediators.
Collapse
Affiliation(s)
- Ankit Aryal
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Ashlyn C Harmon
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Kurt J Varner
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University A&M College and Pennington Biomedical Research Institute, Baton Rouge, Louisiana 70803, USA
| | - Divine B Nde
- Department of Chemistry, Louisiana State University A&M College, Baton Rouge, Louisiana 70803, USA
| | - Peter Mottram
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Jemiah Maxie
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Tammy R Dugas
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
7
|
Li H, Li H, Zuo N, Lang D, Du W, Zhang P, Pan B. Can the concentration of environmentally persistent free radicals describe its toxicity to Caenorhabditis elegans? Evidence provided by neurotoxicity and oxidative stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133823. [PMID: 38442598 DOI: 10.1016/j.jhazmat.2024.133823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
Environmentally persistent free radicals (EPFRs) are emerging pollutants stabilized on or inside particles. Although the toxicity of EPFR-containing particles has been confirmed, the conclusions are always ambiguous because of the presence of various compositions. A clear dose-response relationship was always challenged by the fact that the concentrations of these coexisted components simultaneously changed with EPFR concentrations. Without these solid dose-response pieces of evidence, we could not confidently conclude the toxicity of EPFRs and the description of potential EPFR risks. In this study, we established a particle system with a fixed catechol concentration but different reaction times to obtain particles with different EPFR concentrations. Caenorhabditis elegans (C. elegans) in response to different EPFR concentrations was systematically investigated at multiple biological levels, including behavior observations and biochemical and transcriptome analyses. Our results showed that exposure to EPFRs disrupted the development and locomotion of C. elegans. EPFRs cause concentration-dependent neurotoxicity and oxidative damage to C. elegans, which could be attributed to reactive oxygen species (ROS) promoted by EPFRs. Furthermore, the expression of key genes related to neurons was downregulated, whereas antioxidative genes were upregulated. Overall, our results confirmed the toxicity from EPFRs and EPFR concentration as a rational parameter to describe the extent of toxicity.
Collapse
Affiliation(s)
- Huijie Li
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hao Li
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Ning Zuo
- Yunnan Research Academy of Eco-environmental Science, Kunming 650034, China
| | - Di Lang
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei Du
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Peng Zhang
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bo Pan
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
8
|
Zhang J, Liu K, Tang X, Wang XJ. Dysfunction of Nrf2-regulated cellular defence system and JNK activation induced by high dose of fly Ash particles are associated with pulmonary injury in mouse lungs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116239. [PMID: 38518612 DOI: 10.1016/j.ecoenv.2024.116239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
The mechanisms of the exposure to fine particulate matter (PM) as a risk factor for pulmonary injury are not fully understood. The transcription factor, NF-E2-related factor 2 (Nrf2), plays a key role in protection lung against PM insult and cancer chemoprevention. In this study, F3-S fly ash particles from a municipal waste incinerator were evaluated as a PM model. We found that F3-S triggered hierarchical oxidative stress responses involving the prolonged activation of the cytoprotective Nrf2 transcriptional program via Keap1 Cys151 modification, and c-Jun NH2-terminal kinase (JNK) phosphorylation at higher doses. In mouse lungs exposed to fly ash particles at a low dose (10-20 mg/kg), Nrf2 signalling was upregulated, while in those exposed to a high fly ash particle dose (40 mg/kg), there was significant activation of JNK, and this correlated with Nrf2 phosphorylation and the downregulation of antioxidant response element (ARE)-driven genes. The JNK inhibitor, SP600125, reversed Nrf2 phosphorylation, and downregulation of detoxifying enzymes. Silencing JNK expression in mouse lungs using adenoviral shRNA inhibited JNK activation and Nrf2 phosphorylation, promoted ARE-driven gene expression, and reduced pulmonary injury. Furthermore, we found that the 452-515 amino acid region within the Neh1 domain of Nrf2 was required for its interaction with P-JNK. We demonstrated that Nrf2 was an important P-JNK target in fly ash-induced pulmonary toxicity. JNK phosphorylated Nrf2, leading to a dysfunction of the Nrf2-mediated defence system.
Collapse
Affiliation(s)
- Jingwen Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention of the Ministry of Education), and Department of Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Kaihua Liu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention of the Ministry of Education), and Department of Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Xiuwen Tang
- Department of Biochemistry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China.
| | - Xiu Jun Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention of the Ministry of Education), and Department of Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China.
| |
Collapse
|
9
|
Ahmed SM, Oumnov RA, Kizilkaya O, Hall RW, Sprunger PT, Cook RL. Role of Electronegativity in Environmentally Persistent Free Radicals (EPFRs) Formation on ZnO. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:5179-5188. [PMID: 38567373 PMCID: PMC10983065 DOI: 10.1021/acs.jpcc.3c08231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Environmentally persistent free radicals (EPFRs), a group of emerging pollutants, have significantly longer lifetimes than typical free radicals. EPFRs form by the adsorption of organic precursors on a transition metal oxide (TMO) surface involving electron charge transfer between the organic and TMO. In this paper, dihalogenated benzenes were incorporated to study the role of electronegativity in the electron transfer process to obtain a fundamental knowledge of EPFR formation mechanism on ZnO. Upon chemisorption on ZnO nanoparticles at 250 °C, electron paramagnetic resonance (EPR) confirms the formation of oxygen adjacent carbon-centered organic free radicals with concentrations between 1016 and 1017 spins/g. The radical concentrations show a trend of 1,2-dibromobenzene (DBB) > 1,2-dichlorobenzene (DCB) > 1,2-difluorobenzene (DFB) illustrating the role of electronegativity on the amount of radical formation. X-ray absorption spectroscopy (XAS) confirms the reduction of the Zn2+ metal center, contrasting previous experimental evidence of an oxidative mechanism for ZnO single crystal EPFR formation. The extent of Zn reduction for the different organics (DBB > DCB > DFB) also correlates to their polarity. DFT calculations provide theoretical evidence of ZnO surface reduction and exhibit a similar trend of degree of reduction for different organics, further building on the experimental findings. The lifetimes of the EPFRs formed confirm a noteworthy persistency.
Collapse
Affiliation(s)
- Syed Monjur Ahmed
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Reuben A. Oumnov
- Department
of Natural Sciences and Mathematics, Dominican
University of California, San Rafael, California 94901, United States
| | - Orhan Kizilkaya
- Center for
Advanced Microstructures and Devices, Louisiana
State University, 6980
Jefferson Highway, Baton Rouge, Louisiana 70806, United States
| | - Randall W. Hall
- Department
of Natural Sciences and Mathematics, Dominican
University of California, San Rafael, California 94901, United States
| | - Phillip T. Sprunger
- Center for
Advanced Microstructures and Devices, Louisiana
State University, 6980
Jefferson Highway, Baton Rouge, Louisiana 70806, United States
- Department
of Physics and Astronomy, Louisiana State
University, Baton Rouge, Louisiana 70803, United States
| | - Robert L. Cook
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
10
|
Alfei S, Pandoli OG. Biochar-Derived Persistent Free Radicals: A Plethora of Environmental Applications in a Light and Shadows Scenario. TOXICS 2024; 12:245. [PMID: 38668468 PMCID: PMC11054495 DOI: 10.3390/toxics12040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024]
Abstract
Biochar (BC) is a carbonaceous material obtained by pyrolysis at 200-1000 °C in the limited presence of O2 from different vegetable and animal biomass feedstocks. BC has demonstrated great potential, mainly in environmental applications, due to its high sorption ability and persistent free radicals (PFRs) content. These characteristics enable BC to carry out the direct and PFRs-mediated removal/degradation of environmental organic and inorganic contaminants. The types of PFRs that are possibly present in BC depend mainly on the pyrolysis temperature and the kind of pristine biomass. Since they can also cause ecological and human damage, a systematic evaluation of the environmental behavior, risks, or management techniques of BC-derived PFRs is urgent. PFRs generally consist of a mixture of carbon- and oxygen-centered radicals and of oxygenated carbon-centered radicals, depending on the pyrolytic conditions. Here, to promote the more productive and beneficial use of BC and the related PFRs and to stimulate further studies to make them environmentally safer and less hazardous to humans, we have first reviewed the most common methods used to produce BC, its main environmental applications, and the primary mechanisms by which BC remove xenobiotics, as well as the reported mechanisms for PFR formation in BC. Secondly, we have discussed the environmental migration and transformation of PFRs; we have reported the main PFR-mediated application of BC to degrade inorganic and organic pollutants, the potential correlated environmental risks, and the possible strategies to limit them.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
| | - Omar Ginoble Pandoli
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
- Department of Chemistry, Pontifical Catholic University, Rua Marquês de São Vincente 225, Rio de Janeiro 22451-900, Brazil
| |
Collapse
|
11
|
Liang D, Liu J, Feng Y, Tu K, Wang L, Qiu L, Zhang X. Formation Mechanism of Environmentally Persistent Free Radicals on Alkaline Earth Oxide Surfaces. J Phys Chem A 2024; 128:1297-1305. [PMID: 38349766 DOI: 10.1021/acs.jpca.3c07250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The formation of environmentally persistent free radicals (EPFRs) is usually related to transition-metal oxides in particulate matter (PM). However, recent studies suggest that alkaline-earth-metal oxides (AEMOs) in PM also influence EPFRs formation, but the exact mechanism remains unclear. Here, density functional theory calculations were performed to investigate the formation mechanism of EPFRs by C6H5OH on AEMO (MgO, CaO, and BaO) surfaces and compare it with that on transition-metal oxide (ZnO and CuO) surfaces. Results indicate that EPFRs can be rapidly formed on AEMOs by dissociative adsorption of C6H5OH, accompanied by electrons transfer. As the alkalinity of AEMOs increases, both adsorption energy and the number of electron transfers gradually increase. Also, the stability of the formed EPFRs is mainly attributed to the electrostatic and van der Waals interactions between the phenoxy radical and surfaces. Notably, the formation mechanism of EPFRs on AEMOs is similar to that on ZnO but differs from that on CuO, as suggested through geometric structure and charge distribution analyses. This study not only elucidates the formation mechanisms of EPFRs on AEMOs but also provides theoretical insights into addressing EPFRs pollution.
Collapse
Affiliation(s)
- Danli Liang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiarong Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of National Land Space Planning and Disaster Emergency Management of Inner Mongolia, School of Resources, Environment and Architectural Engineering, Chifeng University, Chifeng 024000, China
| | - Yuwen Feng
- School of Chemical Engineering, Dalian University of Technology, Linggong Road, Dalian 116024, China
| | - Kaipeng Tu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Norinco Group Shanxi North Xingan Chemical Industry Company Limited, Taiyuan 030008, China
| | - Lili Qiu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
12
|
Hasan F, Potter PM, Al-Abed SR, Matheson J, Lomnicki SM. Investigating environmentally persistent free radicals (EPFRs) emissions of 3D printing process. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2024; 480:1-6. [PMID: 38510278 PMCID: PMC10953813 DOI: 10.1016/j.cej.2023.148158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
In recent years, the emission of particles and gaseous pollutants from 3D printing has attracted much attention due to potential health risks. This study investigated the generation of environmentally persistent free radicals (EPFRs, organic free radicals stabilized on or inside particles) in total particulate matter (TPM) released during the 3D printing process. Commercially available 3D printer filaments, made of acrylonitrile-butadiene-styrene (ABS) in two different colors and metal content, ABS-blue (19.66 μg/g Cu) and ABS-black (3.69 μg/g Fe), were used for printing. We hypothesized that the metal content/composition of the filaments contributes not only to the type and number of EPFRs in TPM emissions, but also impacts the overall yield of TPM emissions. TPM emissions during printing with ABS-blue (11.28 μg/g of printed material) were higher than with ABS-black (7.29 μg/g). Electron paramagnetic resonance (EPR) spectroscopy, employed to measure EPFRs in TPM emissions of both filaments, revealed higher EPFR concentrations in ABS-blue TPM (6.23 × 1017 spins/g) than in ABS-black TPM (9.72 × 1016 spins/g). The presence of copper in the ABS-blue contributed to the formation of mostly oxygen-centered EPFR species with a g-factor of ~2.0041 and a lifetime of 98 days. The ABS-black EPFR signal had a lower g-factor of ~2.0011, reflecting the formation of superoxide radicals during the printing process, which were shown to have an "estimated tentative" lifetime of 26 days. Both radical species (EPFRs and superoxides) translate to a potential health risk through inhalation of emitted particles.
Collapse
Affiliation(s)
- Farhana Hasan
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Phillip M. Potter
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Research and Emergency Response, Cincinnati, OH 45268, USA
| | - Souhail R. Al-Abed
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Research and Emergency Response, Cincinnati, OH 45268, USA
| | - Joanna Matheson
- U.S. Consumer Product and Safety Commission, Health Sciences Directorate, Rockville, MD 20850, USA
| | - Slawomir M. Lomnicki
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
13
|
Wang L, Zhao W, Luo P, He Q, Zhang W, Dong C, Zhang Y. Environmentally persistent free radicals in PM 2.5 from a typical Chinese industrial city during COVID-19 lockdown: The unexpected contamination level variation. J Environ Sci (China) 2024; 135:424-432. [PMID: 37778816 PMCID: PMC9418963 DOI: 10.1016/j.jes.2022.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 05/16/2023]
Abstract
The outbreak of COVID-19 has caused concerns globally. To reduce the rapid transmission of the virus, strict city lockdown measures were conducted in different regions. China is the country that takes the earliest home-based quarantine for people. Although normal industrial and social activities were suspended, the spread of virus was efficiently controlled. Simultaneously, another merit of the city lockdown measure was noticed, which is the improvement of the air quality. Contamination levels of multiple atmospheric pollutants were decreased. However, in this work, 24 and 14 air fine particulate matter (PM2.5) samples were continuously collected before and during COVID-19 city lockdown in Linfen (a typical heavy industrial city in China), and intriguingly, the unreduced concentration was found for environmentally persistent free radicals (EPFRs) in PM2.5 after normal life suspension. The primary non-stopped coal combustion source and secondary Cu-related atmospheric reaction may have impacts on this phenomenon. The cigarette-based assessment model also indicated possible exposure risks of PM2.5-bound EPFRs during lockdown of Linfen. This study revealed not all the contaminants in the atmosphere had an apparent concentration decrease during city lockdown, suggesting the pollutants with complicated sources and formation mechanisms, like EPFRs in PM2.5, still should not be ignored.
Collapse
Affiliation(s)
- Lingyun Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Peiru Luo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qingyun He
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.
| |
Collapse
|
14
|
Noël A, Harmon AC, Subramanian B, Perveen Z, Aryal A, Legendre K, Zaman H, Paulsen DB, Varner KJ, Dugas TR, Penn AL. Adjuvant effect of inhaled particulate matter containing free radicals following house-dust mite induction of asthma in mice. Inhal Toxicol 2023; 35:333-349. [PMID: 38060410 PMCID: PMC10903547 DOI: 10.1080/08958378.2023.2289024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023]
Abstract
INTRODUCTION Exposures to particulate matter (PM) from combustion sources can exacerbate preexisting asthma. However, the cellular and molecular mechanisms by which PM promotes the exacerbation of asthma remain elusive. We used a house dust mite (HDM)-induced mouse model of asthma to test the hypothesis that inhaled DCB230, which are PM containing environmentally persistent free radicals (EPFRs), will aggravate asthmatic responses. METHODS Groups of 8-10-week-old C57BL/6 male mice were exposed to either air or DCB230 aerosols at a concentration of 1.5 mg/m3 4 h/day for 10 days with or without prior HDM-induction of asthma. RESULTS Aerosolized DCB230 particles formed small aggregates (30-150 nm). Mice exposed to DCB230 alone showed significantly reduced lung tidal volume, overexpression of the Muc5ac gene, and dysregulation of 4 inflammation related genes, Ccl11, Ccl24, Il-10, and Tpsb2. This suggests DCB230 particles interacted with the lung epithelium inducing mucous hypersecretion and restricting lung volume. In addition to reduced lung tidal volume, compared to respective controls, the HDM + DCB230-exposed group exhibited significantly increased lung tissue damping and up-regulated expression of Muc5ac, indicating that in this model, mucous hypersecretion may be central to pulmonary dysfunction. This group also showed augmented lung eosinophilic inflammation accompanied by an up-regulation of 36 asthma related genes. Twelve of these genes are part of IL-17 signaling, suggesting that this pathway is critical for DCB230 induced toxicity and adjuvant effects in lungs previously exposed to HDM. CONCLUSION Our data indicate that inhaled DCB230 can act as an adjuvant, exacerbating asthma through IL-17-mediated responses in a HDM mouse model.
Collapse
Affiliation(s)
- Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA
| | - Ashlyn C. Harmon
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA
| | | | - Zakia Perveen
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA
| | - Ankit Aryal
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA
| | - Kelsey Legendre
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA
| | - Hasan Zaman
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA
| | - Daniel B. Paulsen
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA
| | - Kurt J. Varner
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA
| | - Tammy R. Dugas
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA
| | - Arthur L. Penn
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA
| |
Collapse
|
15
|
Yi JF, Lin ZZ, Li X, Zhou YQ, Guo Y. A short review on environmental distribution and toxicity of the environmentally persistent free radicals. CHEMOSPHERE 2023; 340:139922. [PMID: 37611755 DOI: 10.1016/j.chemosphere.2023.139922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/09/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
Environmentally Persistent Free Radicals (EPFRs) are usually generated by the electron transfer of a certain radical precursor on the surface of a carrier. They are characterized with high activity, wide migration range, and relatively long half-life period. In this review, we summarized the literature on EPFRs published since 2010, including their environmental occurrence and potential cytotoxicity and biotoxicity. The EPFRs in the atmosphere are the most abundant in the environment, mainly generated from the combustion of raw materials or biochar, and the C-center types (quinones, semiquinones radicals, etc.) may exist for a relatively long time. These EPFRs can transform into other substances (such as reactive oxygen species, ROS) under the influence of environmental factors, and partly enter soil and water by wet and dry deposition of particulate matter, which may promote the generation of EPFRs in those media. The wide distribution of EPFRs in the environment may lead to their exposure to biota including humans, resulting in cytotoxicity and biotoxicity. The EPFRs can influence the normal redox process of the biota, and generate a large number of free radicals like ROS. Exposure to EPFRs may change the expression of gene and activity of metabolic enzymes, and damage the cells, as well as some organs such as the lung, trachea, and heart. However, due to the difficulty in sample extraction, identification, and quantification of the specific EPFR individuals, the toxicity and exposure evaluation of biota are still limited which merits study in the future.
Collapse
Affiliation(s)
- Jing-Feng Yi
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Ze-Zhao Lin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xing Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Yue-Qiao Zhou
- Department of Department of Medical Oncology, Qionghai People's Hospital, Qionghai, 571499, China.
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
16
|
Aryal A, Noël A, Khachatryan L, Cormier SA, Chowdhury PH, Penn A, Dugas TR, Harmon AC. Environmentally persistent free radicals: Methods for combustion generation, whole-body inhalation and assessing cardiopulmonary consequences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122183. [PMID: 37442324 PMCID: PMC10528481 DOI: 10.1016/j.envpol.2023.122183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Particulate matter (PM) containing environmentally persistent free radicals (EPFRs) results from the incomplete combustion of organic wastes which chemisorb to transition metals. This process generates a particle-pollutant complex that continuously redox cycles to produce reactive oxygen species. EPFRs are well characterized, but their cardiopulmonary effects remain unknown. This publication provides a detailed approach to evaluating these effects and demonstrates the impact that EPFRs have on the lungs and vasculature. Combustion-derived EPFRs were generated (EPFR lo: 2.1e-16 radical/g, EPFR hi: 5.5e-17 radical/g), characterized, and verified as representative of those found in urban areas. Dry particle aerosolization and whole-body inhalation were established for rodent exposures. To verify that these particles and exposures recapitulate findings relevant to known PM-induced cardiopulmonary effects, male C57BL6 mice were exposed to filtered air, ∼280 μg/m3 EPFR lo or EPFR hi for 4 h/d for 5 consecutive days. Compared to filtered air, pulmonary resistance was increased in mice exposed to EPFR hi. Mice exposed to EPFR hi also exhibited increased plasma endothelin-1 (44.6 vs 30.6 pg/mL) and reduced nitric oxide (137 nM vs 236 nM), suggesting vascular dysfunction. Assessment of vascular response demonstrated an impairment in endothelium-dependent vasorelaxation, with maximum relaxation decreased from 80% to 62% in filtered air vs EPFR hi exposed mice. Gene expression analysis highlighted fold changes in aryl hydrocarbon receptor (AhR) and antioxidant response genes including increases in lung Cyp1a1 (8.7 fold), Cyp1b1 (9 fold), Aldh3a1 (1.7 fold) and Nqo1 (2.4 fold) and Gclc (1.3 fold), and in aortic Cyp1a1 (5.3 fold) in mice exposed to EPFR hi vs filtered air. We then determined that lung AT2 cells were the predominate locus for AhR activation. Together, these data suggest the lung and vasculature as particular targets for the health impacts of EPFRs and demonstrate the importance of additional studies investigating the cardiopulmonary effects of EPFRs.
Collapse
Affiliation(s)
- Ankit Aryal
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA
| | - Lavrent Khachatryan
- Department of Chemistry, Louisiana State University A&M College, Baton Rouge, Louisiana, 70803, USA
| | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University A&M College and the Pennington Biomedical Research Institute, Baton Rouge, Louisiana, 70803, USA
| | - Pratiti H Chowdhury
- Department of Biological Sciences, Louisiana State University A&M College and the Pennington Biomedical Research Institute, Baton Rouge, Louisiana, 70803, USA
| | - Arthur Penn
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA
| | - Tammy R Dugas
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA
| | - Ashlyn C Harmon
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA.
| |
Collapse
|
17
|
Li H, Chen Q, Wang C, Wang R, Sha T, Yang X, Ainur D. Pollution characteristics of environmental persistent free radicals (EPFRs) and their contribution to oxidation potential in road dust in a large city in northwest China. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130087. [PMID: 36206715 DOI: 10.1016/j.jhazmat.2022.130087] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Environmental persistent free radicals (EPFRs) are new environmental health risk substances in the atmosphere, and their oxidative toxicity (OT) has not been strongly confirmed. In this study, the fugitive characteristics of EPFRs in road dust in a metropolitan city located in northwest China, and their potential oxidative toxicity were investigated. The results showed that the road dust contains Carbon-centered EPFRs with the mean mass concentration of (6.6 ± 5.0) × 1017 spins/g. EPFRs in road dust are degradable and have a half-life of 4.5 years. The water insoluble (WIS) components contribute 71% to the oxidative toxicity of road dust and show a rapid toxicity generation process, while the oxidative toxicity generation rate of water-soluble dust is more stable. Based on the positive matrix factorization (PMF) model, the contribution of EPFRs-dominated factors to Total-OT and WIS-OT is 17.3% and 33.3%, respectively. The PMF model results indicated that different types of EPFRs contributed differently to the oxidative toxicity of road dust and Carbon-centered EPFRs are more likely to participate in reactive oxygen species generation. Our results highlight that the EPFRs are an important contributor to the oxidative toxicity of atmospheric particulate matter, and their oxidative toxicity is dependent on the types of free radicals. It also provides an important insight into the influence of other potentially toxic substances on the oxidative toxicity of atmospheric PM.
Collapse
Affiliation(s)
- Hao Li
- School of Environmental Science and Engineering., Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingcai Chen
- School of Environmental Science and Engineering., Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Chao Wang
- Beijing China Railway Construction Technology Co., LTD, Beijing 100040, China
| | - Ruihe Wang
- Beijing China Railway Construction Technology Co., LTD, Beijing 100040, China
| | - Tong Sha
- School of Environmental Science and Engineering., Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiqi Yang
- School of Environmental Science and Engineering., Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Dyussenova Ainur
- School of Environmental Science and Engineering., Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
18
|
Sun Y, Chen J, Qin W, Yu Q, Xin K, Ai J, Huang H, Liu X. Gas-PM 2.5 partitioning, health risks, and sources of atmospheric PAHs in a northern China city: Impact of domestic heating. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120156. [PMID: 36096260 DOI: 10.1016/j.envpol.2022.120156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
The diurnal variation, gas-particle partitioning, health risks, and sources of polycyclic aromatic hydrocarbons (PAHs) were investigated in a northern basin city of China in winter, 2020. The mean concentrations of particulate and gaseous PAHs were 87.90 ng m-3 and 69.65 ng m-3, respectively, and their concentrations were considerably enhanced during the domestic heating period. The relationship between the gas-particle partitioning coefficient of PAHs (KP) and subcooled liquid vapor pressure of PAHs (PL0) indicated organic absorption as the mechanism for this partitioning. However, the dual sorption model confirmed adsorption onto elemental carbon (EC). The health risks indicated by several equivalent parameters showed an important health effect of PAHs, especially of particulate PAHs bound onto PM2.5 during the heating period. Environmentally persistent free radicals (EPFRs) were also studied as an auxiliary parameter to evaluate the health impact of PAHs. According to the diagnostic ratios of PAHs and PMF model results, petroleum volatilization and coal combustion were the dominant sources of particulate PAHs during the non-heating and heating periods, respectively. The source apportionment results can help efficiently control PAHs and their health risks.
Collapse
Affiliation(s)
- Yuewei Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China
| | - Jing Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China.
| | - Weihua Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China
| | - Qing Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China
| | - Ke Xin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China
| | - Jing Ai
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China
| | - Huiying Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China
| | - Xingang Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
19
|
Li H, Li H, Zuo N, Liu Y, Lang D, Steinberg C, Pan B, Xing B. Direct toxicity of environmentally persistent free radicals to nematode Caenorhabditis elegans after excluding the concomitant chemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156226. [PMID: 35643143 DOI: 10.1016/j.scitotenv.2022.156226] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Environmentally persistent free radicals (EPFRs) have attracted extensive attention due to their potential toxicity. However, EPFRs-containing particles always coexist with their parent organic contaminants and intermediate degradation products (IM), which may have hindered the toxicity assessment of EPFRs. In this study, the toxicity of EFFRs was specifically verified after comparing the systems without EPFRs, such as the immediate mixture of catechol (CT) and particles, solutions of CT only, IM extracted from the particles, as well as particles after EPFRs quenching. Caenorhabditis elegans (C. elegans) were used as model organisms. Our results showed that EPFRs-containing particles (Si-Al-CT) exhibited significant toxicity to C. elegans, but not for the parent chemical CT and IM on the particles. Higher levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in the Si-Al-CT system were attributed to the mediated generation of ·O2- and ·OH via EPFRs. EPFRs could increase gene expressions related not only to oxidative stress and biotransformation in C. elegans, but also to indications of disturbances in energy homeostasis, survival, proliferation, cell and embryonic development. Overall, these results confirmed the direct toxicity of EPFRs and highlighted the key role of EPFRs which may be neglected in assessing the environmental risks of organic contaminants.
Collapse
Affiliation(s)
- Huijie Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Hao Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China.
| | - Ning Zuo
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Yi Liu
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Di Lang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Christian Steinberg
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China; Faculty of Life Sciences, Laboratory of Freshwater & Stress Ecology, Humboldt-Universität zu Berlin, Arboretum, Späthstr. 80/81, 12437 Berlin, Germany
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
20
|
Guo C, Richmond-Bryant J. A critical review of environmentally persistent free radical (EPFR) solvent extraction methodology and retrieval efficiency. CHEMOSPHERE 2021; 284:131353. [PMID: 34225117 PMCID: PMC8487994 DOI: 10.1016/j.chemosphere.2021.131353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/14/2021] [Accepted: 06/26/2021] [Indexed: 05/16/2023]
Abstract
Long-lived environmentally persistent free radical (EPFR) exposures have been shown in toxicology studies to lead to respiratory and cardiovascular effects, which were thought to be due to the persistence of EPFR and their ability to produce reactive oxygen species. To characterize EPFR exposure and resulting health impacts, it is necessary to identify and systematize analysis protocols. Both direct measurement and solvent extraction methods have been applied to analyze environmental samples containing EPFR. The use of different protocols and solvents in EPFR analyses makes it difficult to compare results among studies. In this work, we reviewed EPFR studies that involved solvent extraction and carefully reported the details of the extraction methodology and retrieval recovery. EPFR recovery depends on the structure of the radical species and the solvent. For the limited number of studies available for review, the polar solvents had superior recovery in more studies. Radicals appeared to be more oxygen-centered following extraction for fly ash and particulate matter (PM) samples. Different solvent extraction methods to retrieve EPFR may produce molecular products during the extraction, thus potentially changing the sample toxicity. The number of studies reporting detailed methodologies is limited, and data in these studies were not consistently reported. Thus, inference about the solvent and protocol that leads to the highest EPFR extraction efficiency for certain types of radicals is not currently possible. Based on our review, we proposed reporting criteria to be included for future EPFR studies.
Collapse
Affiliation(s)
- Chuqi Guo
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Jennifer Richmond-Bryant
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
21
|
Characteristics and Potential Inhalation Exposure Risks of Environmentally Persistent Free Radicals in Atmospheric Particulate Matter and Solid Fuel Combustion Particles in High Lung Cancer Incidence Area, China. ATMOSPHERE 2021. [DOI: 10.3390/atmos12111467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Environmentally persistent free radicals (EPFRs) were previously considered an unrecognized composition of air pollutants and might help explain the long-standing medical mystery of why non-smokers develop tobacco-related diseases such as lung cancer. However, there is no investigated on EPFRs in Xuanwei rural areas, especially in high prevalence of lung cancer areas. In this study, we selected six types of coal and three types of biomass in Xuanwei, then conducted simulated combustion, and six group of atmospheric particulate matters (APMs) to explore the content and particle size distribution pattern of EPFRs and a new health risk assessment method to evaluate the risk of EPFRs in PM for adults and children. Our results show that the contribution of EPFRs for biomass combustion, coal combustion and APMs were mainly distributed in the size range of <1.1 μm, which accounted for 76.15 ± 4.14%, 74.85 ± 10.76%, and 75.23 ± 8.18% of PM3.3. The mean g factors and ΔHp-p indicated that the EPFRs were mainly oxygen-centered radicals in PM in Xuanwei. The results suggest that the health risk of EPFRs is significantly increased when the particle size distribution of EPFRs is taken into account, and coal combustion particulate matter (174.70 ± 37.86 cigarettes for an adult, 66.39 ± 14.39 cigarettes per person per year for a child) is more hazardous to humans than biomass combustion particulate matter (69.41 ± 4.83 cigarettes for an adult, 26.37 ± 1.84 cigarettes per person per year for), followed by APMs (102.88 ± 39.99 cigarettes for an adult, 39.10 ±15.20 cigarettes per person per year for) in PM3.3. Our results provides a new perspective and evidence for revealing the reason for the high incidence of lung cancer in Xuanwei, China.
Collapse
|
22
|
Sakr NI, Kizilkaya O, Carlson SF, Chan S, Oumnov RA, Catano J, Kurtz RL, Hall RW, Poliakoff ED, Sprunger PT. Formation of Environmentally Persistent Free Radicals (EPFRs) on the Phenol-Dosed α-Fe 2O 3(0001) Surface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:21882-21890. [PMID: 34992708 PMCID: PMC8725784 DOI: 10.1021/acs.jpcc.1c04298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are a class of toxic air pollutants that are found to form by the chemisorption of substituted aromatic molecules on the surface of metal oxides. In this study, we employ X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) to perform a temperature-dependent study of phenol adsorption on α-Fe2O3(0001) to probe the radical formation mechanism by monitoring changes in the electronic structure of both the adsorbed phenol and metal oxide substrate. Upon dosing at room temperature, new phenol-derived electronic states have been clearly observed in the UPS spectrum at saturation coverage. However, upon dosing at high temperature (>200 °C), both photoemission techniques have shown distinctive features that strongly suggest electron transfer from adsorbed phenol to Fe2O3 surface atoms and consequent formation of a surface radical. Consistent with the experiment, DFT calculations show that phenoxyl adsorption on the iron oxide surface at RT leads to a minor charge transfer to the adsorbed molecule. The experimental findings at high temperatures agree well with the EPFRs' proposed formation mechanism and can guide future experimental and computational studies.
Collapse
Affiliation(s)
- N I Sakr
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Orhan Kizilkaya
- Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, Louisiana 70806, United States
| | - Sierra F Carlson
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States
| | - Simon Chan
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States
| | - Reuben A Oumnov
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States
| | - Jaqueline Catano
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States
| | - Richard L Kurtz
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States; Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, Louisiana 70806, United States
| | - Randall W Hall
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States; Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - E D Poliakoff
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Phillip T Sprunger
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States; Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, Louisiana 70806, United States
| |
Collapse
|
23
|
Harmon AC, Noël A, Subramanian B, Perveen Z, Jennings MH, Chen YF, Penn AL, Legendre K, Paulsen DB, Varner KJ, Dugas TR. Inhalation of particulate matter containing free radicals leads to decreased vascular responsiveness associated with an altered pulmonary function. Am J Physiol Heart Circ Physiol 2021; 321:H667-H683. [PMID: 34415187 PMCID: PMC8794232 DOI: 10.1152/ajpheart.00725.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/31/2022]
Abstract
Airborne particulate matter (PM) is associated with an increased risk for cardiovascular diseases. Although the goal of thermal remediation is to eliminate organic wastes through combustion, when incomplete combustion occurs, organics chemisorb to transition metals to generate PM-containing environmentally persistent free radicals (EPFRs). Similar EPFR species have been detected in PM found in diesel and gasoline exhaust, woodsmoke, and urban air. Prior in vivo studies demonstrated that EPFRs reduce cardiac function secondary to elevations in pulmonary arterial pressures. In vitro studies showed that EPFRs increase ROS and cytokines in pulmonary epithelial cells. We thus hypothesized that EPFR inhalation would promote lung inflammation and oxidative stress, leading to systemic inflammation, vascular endothelial injury, and a decline in vascular function. Mice were exposed to EPFRs for either 4 h or for 4 h/day for 10 days and lung and vascular function were assessed. After a 4-h exposure, plasma nitric oxide (NO) was reduced while endothelin-1 (ET-1) was increased, however lung function was not altered. After 10 day, plasma NO and ET-1 levels were again altered and lung tidal volume was reduced. These time course studies suggested the vasculature may be an early target of injury. To test this hypothesis, an intermediate time point of 3 days was selected. Though the mice exhibited no marked inflammation in either the lung or the blood, we did note significantly reduced endothelial function concurrent with a reduction in lung tidal volume and an elevation in annexin V protein levels in the lung. Although vascular dysfunction was not dependent upon inflammation, it may be associated with an injury at the air-blood interface. Gene expression analysis suggested roles for oxidative stress and aryl hydrocarbon receptor (Ahr) signaling. Studies probing the relationship between pulmonary oxidative stress and AhR signaling at the air-blood interface with vascular dysfunction seem warranted.NEW & NOTEWORTHY Particulate matter (PM) resulting from the combustion of organic matter is known to contribute to cardiopulmonary disease. Despite hypotheses that cardiovascular dysfunction occurring after PM exposures is secondary to lung or systemic inflammation, these studies investigating exposures to PM-containing environmentally persistent free radicals (EPFRs) demonstrate that cardiovascular dysfunction precedes pulmonary inflammation. The cardiopulmonary health consequences of EPFRs have yet to be thoroughly evaluated, especially in healthy, adult mice. Our data suggest the vasculature as a direct target of PM exposure, and our studies aimed to elucidate the mechanisms contributing to EPFR-induced vascular dysfunction.
Collapse
Affiliation(s)
- Ashlyn C Harmon
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | | | - Zakia Perveen
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Merilyn H Jennings
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Yi-Fan Chen
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Arthur L Penn
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Kelsey Legendre
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Daniel B Paulsen
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Kurt J Varner
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Tammy R Dugas
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| |
Collapse
|
24
|
Guo C, Hasan F, Lay D, Dela Cruz ALN, Ghimire A, Lomnicki SM. Phytosampling-a supplementary tool for particulate matter (PM) speciation characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39310-39321. [PMID: 33755885 PMCID: PMC8713460 DOI: 10.1007/s11356-021-13292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Ambient air particulate matter (PM) and PM-associated environmentally persistent free radicals (EPFRs) have been documented to contribute to pollution-related health effects. Studies of ambient air PM potentially bear artifacts stemming from the collection methods. We have investigated the applicability of PM phytosampling (PHS) as a supplementary tool to a classic PM sampler in respect of achieving better PM chemical composition assessment (primarily organic fraction). Phytosampling is a static PM collection method relying on the particle entrapment by the plant's leaf through electrostatic forces and surface trichomes. We have investigated the differences in the EPFR and polycyclic aromatic hydrocarbon (PAH) speciation and concentration on ambient air PM for PHS and high-volume PM sampler (HVS). The advantages of PHS are easy particle recovery from the matrix, collection under natural environmental conditions, and the ability to apply a dense collection network to accurately represent spatial pollutant distribution. The experimental results show that the PHS can provide valuable speciation information, sometimes different from that observed for HVS. For PM collected by PHS, we detected the larger contribution of oxygen-centered EPFRs, different decay behavior, and more consistent PAH distribution between different PM sizes compared to the PM from HVS. These results indicate that the isolation of samples from the ambient during HVS sampling and exposure to high-volume airflow may alter the chemical composition of the samples, while the PHS method could provide details on the original speciation and concentration and be more representative of the PM surface. However, PHS cannot evaluate an absolute air concentration of PM, so it serves as an excellent supplementary tool to work in conjunction with the standard PM collection method.
Collapse
Affiliation(s)
- Chuqi Guo
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Farhana Hasan
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Dean Lay
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Albert Leo N Dela Cruz
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ajit Ghimire
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Slawo M Lomnicki
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
25
|
Liu X, Yang L, Liu G, Zheng M. Formation of Environmentally Persistent Free Radicals during Thermochemical Processes and their Correlations with Unintentional Persistent Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6529-6541. [PMID: 33956443 DOI: 10.1021/acs.est.0c08762] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Attention is increasingly being paid to environmentally persistent free radicals (EPFRs), which are organic pollutants with the activities of free radicals and stabilities of organic pollutants. EPFRs readily form during thermal processes through the decomposition of organic precursors such as phenols, halogenated phenols, and quinone-type molecules, which are also important precursors of toxic unintentionally produced persistent organic pollutants (UPOPs). We have found that EPFRs are important intermediates for UPOP formation during thermal-related processes. However, interest in EPFRs is currently mostly focused on the toxicities and formation mechanisms of EPFRs themselves. Little information is available on the important roles EPFRs play in toxic UPOP formation during thermal processes. Here, we review the mechanisms involved in EPFR formation and transformation into UPOPs during thermal processes. The review is focused on typical EPFRs, including cyclopentadiene, phenoxy, and semiquinone radicals. The reaction temperature, metal species present, and oxygen concentration strongly affect EPFR and UPOP formation during thermal-related processes. Gaps in current knowledge and future directions for research into EPFR and UPOP formation, transformation, and control are presented. Understanding the relationships between EPFRs and UPOPs will allow synergistic control strategies to be developed for thermal-related industrial sources of EPFRs and UPOPs.
Collapse
Affiliation(s)
- Xiaoyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
26
|
Mechanistic Implications of Biomass-Derived Particulate Matter for Immunity and Immune Disorders. TOXICS 2021; 9:toxics9020018. [PMID: 33498426 PMCID: PMC7909393 DOI: 10.3390/toxics9020018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 12/29/2022]
Abstract
Particulate matter (PM) is a major and the most harmful component of urban air pollution, which may adversely affect human health. PM exposure has been associated with several human diseases, notably respiratory and cardiovascular diseases. In particular, recent evidence suggests that exposure to biomass-derived PM associates with airway inflammation and can aggravate asthma and other allergic diseases. Defective or excess responsiveness in the immune system regulates distinct pathologies, such as infections, hypersensitivity, and malignancies. Therefore, PM-induced modulation of the immune system is crucial for understanding how it causes these diseases and highlighting key molecular mechanisms that can mitigate the underlying pathologies. Emerging evidence has revealed that immune responses to biomass-derived PM exposure are closely associated with the risk of diverse hypersensitivity disorders, including asthma, allergic rhinitis, atopic dermatitis, and allergen sensitization. Moreover, immunological alteration by PM accounts for increased susceptibility to infectious diseases, such as tuberculosis and coronavirus disease-2019 (COVID-19). Evidence-based understanding of the immunological effects of PM and the molecular machinery would provide novel insights into clinical interventions or prevention against acute and chronic environmental disorders induced by biomass-derived PM.
Collapse
|
27
|
Guan X, Truong L, M. Lomnicki S, L. Tanguay R, A. Cormier S. Developmental Hazard of Environmentally Persistent Free Radicals and Protective Effect of TEMPOL in Zebrafish Model. TOXICS 2021; 9:toxics9010012. [PMID: 33467068 PMCID: PMC7829864 DOI: 10.3390/toxics9010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/29/2022]
Abstract
Environmentally persistent free radicals (EPFRs) can be detected in ambient PM2.5, cigarette smoke, and soils and are formed through combustion and thermal processing of organic materials. The hazards of EPFRs are largely unknown. In this study, we assess the developmental toxicity of EPFRs and the ability of TEMPOL (4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl) to protect against such hazards using zebrafish embryos. Particles containing EPFRs were acquired by dosing dichlorobenzene (DCB) vapor on the Cab-o-sil/5% CuO particles at 230 °C in vacuo (referred to as DCB-230). The particles were suspended in ultrapure water to make 1 mg/mL of stock solution from which series dilution was undertaken to obtain 10, 20, 30, 40, 50, 60, 80, and 100 µg/mL final test solutions, which were then placed in individual wells with a 4 h postfertilization (hpf) zebrafish embryo. Plates were run in duplicate to obtain a sample size of 24 animals per concentration; 12 embryos were exposed per concentration per plate. Statistical analysis of the morphology endpoints was performed. We investigated overt toxicity responses to DCB-230 in a 22-endpoint battery that included developing zebrafish from 24–120 hpf. Exposure to concentrations greater than 60 µg/mL of DCB-230 induced high mortality in the developmental zebrafish model. Exposure to EPFRs induced developmental hazards that were closely related to the concentrations of free radicals and EPFRs. The potential protective effects of TEMPOL against EPFRs’ toxicity in zebrafish were investigated. Exposure to EPFRs plus TEMPOL shifted the concentration to an induced 50% adverse effect (EC50), from 23.6 to 30.8 µg/mL, which verifies TEMPOL’s protective effect against EPFRs in the early phase of zebrafish development.
Collapse
Affiliation(s)
- Xia Guan
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (X.G.); (S.M.L.)
| | - Lisa Truong
- Sinnhuber Aquatic Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97333, USA; (L.T.); (R.L.T.)
| | - Slawomir M. Lomnicki
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (X.G.); (S.M.L.)
| | - Robyn L. Tanguay
- Sinnhuber Aquatic Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97333, USA; (L.T.); (R.L.T.)
| | - Stephania A. Cormier
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Pennington Biomedical Research Center, Baton Rouge, LA 70803, USA
- Correspondence:
| |
Collapse
|
28
|
Qi Z, Zhang Y, Chen ZF, Yang C, Song Y, Liao X, Li W, Tsang SY, Liu G, Cai Z. Chemical identity and cardiovascular toxicity of hydrophobic organic components in PM 2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110827. [PMID: 32535366 DOI: 10.1016/j.ecoenv.2020.110827] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Numerous experimental and epidemiological studies have demonstrated that exposure to PM2.5 may result in pathogenesis of several major cardiovascular diseases (CVDs), which can be attributed to the combined adverse effects induced by the complicated components of PM2.5. Organic materials, which are major components of PM2.5, contain thousands of chemicals, and most of them are environmental hazards. However, the contamination profile and contribution to overall toxicity of PM2.5-bound organic components (OCs) have not been thoroughly evaluated yet. Herein, we aim to provide an overview of the literature on PM2.5-bound hydrophobic OCs, with an emphasis on the chemical identity and reported impairments on the cardiovascular system, including the potential exposure routes and mechanisms. We first provide an update on the worldwide mass concentration and composition data of PM2.5, and then, review the contamination profile of PM2.5-bound hydrophobic OCs, including constitution, concentration, distribution, formation, source, and identification. In particular, the link between exposure to PM2.5-bound hydrophobic OCs and CVDs and its possible underlying mechanisms are discussed to evaluate the possible risks of PM2.5-bound hydrophobic OCs on the cardiovascular system and to provide suggestions for future studies.
Collapse
Affiliation(s)
- Zenghua Qi
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhi-Feng Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chun Yang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Liao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weiquan Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Suk Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Guoguang Liu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zongwei Cai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
29
|
Abstract
For work in Xenopus, frog-specific antibodies must usually be raised, although a few antibodies against mammalian proteins cross-react. To produce an immunogen for antibody production, human embryonic kidney (HEK) expression systems can be used as described here. For most laboratories, the actual method of raising the antibody is determined by local ethical regulations controlling the adjuvant and injection protocols used. Because these steps are often outsourced, they are not included in this protocol.
Collapse
Affiliation(s)
- Maya Z Piccinni
- European Xenopus Resource Centre, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom
| | - Matthew J Guille
- European Xenopus Resource Centre, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom
| |
Collapse
|
30
|
Zhang X, Gu W, Ma Z, Liu Y, Ru H, Zhou J, Zang Y, Xu Z, Qian G. Short-term exposure to ZnO/MCB persistent free radical particles causes mouse lung lesions via inflammatory reactions and apoptosis pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114039. [PMID: 32220747 DOI: 10.1016/j.envpol.2020.114039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are easily generated in the combustion processes of municipal solid waste (MSW) and can cause adverse effects on human health. This study focuses on understanding the toxicity of EPFR particles (ZnO/MCB containing EPFRs) to human bronchial epithelial cell lines BEAS-2B and 16HBE, murine macrophages Raw264.7, and the lung of BALB/c mice after a short exposure (7 days). Exposure of BEAS-2B, 16HBE, and Raw264.7 cells to ZnO/MCB particles significantly increased the reactive oxygen species (ROS) production and perturbed levels of intracellular redox conditions (decreased the intracellular GSH level and the activity of cytosolic SOD, and stimulated oxidative stress related proteins such as HO-1 and Nrf2). EPFR particles decreased the mitochondrial membrane potential (MMP) and induced cell apoptosis, including the activation of Caspase-3, Bax, and Bcl-2 apoptotic signalling pathways. A signature inflammatory condition was observed in both cell models and the mouse model for lung lesions. Our data suggest that EPFRs in particles have greater toxicity to lung cells and tissues that are potential health hazards to human lung.
Collapse
Affiliation(s)
- Xing Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Rd., Shanghai, 200444, PR China
| | - Wenyi Gu
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, QLD, 4072, Australia
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yun Liu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Rd., Shanghai, 200444, PR China
| | - Hongbo Ru
- Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, No.19A, China
| | - Jizhi Zhou
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Rd., Shanghai, 200444, PR China
| | - Yi Zang
- Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, No.19A, China
| | - ZhiPing Xu
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, QLD, 4072, Australia
| | - Guangren Qian
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Rd., Shanghai, 200444, PR China.
| |
Collapse
|
31
|
Hasan F, Khachatryan L, Lomnicki S. Comparative Studies of Environmentally Persistent Free Radicals on Total Particulate Matter Collected from Electronic and Tobacco Cigarettes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5710-5718. [PMID: 32267684 DOI: 10.1021/acs.est.0c00351] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the current study, electron paramagnetic resonance (EPR) spectroscopy was employed to measure environmentally persistent free radicals (EPFRs) in the total particulate matter (TPM) of mainstream and sidestream TPM of conventional cigarettes and the TPM of e-cigarettes. Comparable concentrations of EPFRs were detected in both sidestream (8.05 ± 1.32) × 104 pmol/g and mainstream TPM (7.41 ± 0.85) × 104 pmol/g of conventional cigarettes. TPM exposure to air resulted in long-lived oxygen centered, secondary radicals with EPR g values of 2.0041 for mainstream and 2.0044 for sidestream. Surprisingly, despite no combustion process, the TPM from e-cigarettes (menthol flavor of NJOY and V2 brands) also contain EPFRs with g values of 2.0031-2.0033, characteristic of carbon centered radicals, while the radical signal in the vanilla flavor of V2 brand was remarkably similar to semiquinones in cigarette smoke with a higher g value (2.0063). The radical concentration in e-cigarettes was much lower as compared to tobacco TPM. Although the production of ROS generated by e-cigarettes is comparatively lower than ROS generated by conventional cigarettes, EPFRs in e-cigarettes appear to be more potent than those in tobacco TPM with respect to hydroxyl radical generation yield per unit EPFR. EPFRs in e-cigarette TPM may be a potential source of health impacts.
Collapse
Affiliation(s)
- Farhana Hasan
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Lavrent Khachatryan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Slawo Lomnicki
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
32
|
Zhang J, Cui H, Namani A, Yao J, Deng H, Tang X, Wang XJ. Transcriptomic profiling identifies a critical role of Nrf2 in regulating the inflammatory response to fly ash particles in mouse lung. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110132. [PMID: 31918253 DOI: 10.1016/j.ecoenv.2019.110132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Exposure to combustion-derived nanoparticles is recognized as a major health hazard, but the molecular responses are still insufficiently described. The transcription factor erythroid 2-related factor 2 (Nrf2, also known as NFE2L2) is a master regulator of the pulmonary defense system against insults by particulate matter. However, its downstream molecular processes are not fully characterized. In the current study, BALB/c wild-type (WT) and Nrf2-/- mice were exposed by intranasal administration to fly ash particles (F3-S; 20 mg/kg BW), which were collected from a municipal waste incinerator in China, for three consecutive days. Using a comparative transcriptomics approach, the pulmonary global gene expression profiles to F3-S exposure were characterized for both genotypes. The preponderance of the differentially-expressed genes (DEGs) in WT mice induced by the fly ash particles, was related to inflammation. Functional enrichment and molecular pathway mapping of the DEGs specific to Nrf2-/- mice exposed to the particles revealed that all of the top 10 perturbed molecular pathways were associated with the inflammatory response. Our study identified a transcriptional signature related to the initial pulmonary injury in mouse upon fly ash exposure, and suggests an anti-inflammatory role of Nrf2 in protecting the lung against such exposure.
Collapse
Affiliation(s)
- Jingwen Zhang
- Department of Pharmacology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Huiling Cui
- Department of Pharmacology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Akhileshwar Namani
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Jun Yao
- Department of Pharmacology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Hong Deng
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Xiuwen Tang
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Xiu Jun Wang
- Department of Pharmacology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China.
| |
Collapse
|
33
|
Odinga ES, Waigi MG, Gudda FO, Wang J, Yang B, Hu X, Li S, Gao Y. Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars. ENVIRONMENT INTERNATIONAL 2020; 134:105172. [PMID: 31739134 DOI: 10.1016/j.envint.2019.105172] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 05/22/2023]
Abstract
Biochars are used globally in agricultural crop production and environmental remediation. However, environmentally persistent free radicals (EPFRs), which are stable emerging pollutants, are generated as a characteristic feature during biomass pyrolysis. EPFRs can induce the formation of reactive oxygen species, which poses huge agro-environmental and human health risks. Their half-lives and persistence in both biochar residues and in the atmosphere may lead to potentially adverse risks in the environment. This review highlights the comprehensive research into these bioreactive radicals, as well as the bottlenecks of biochar production leading up to the formation and persistence of EPFRs. Additionally, a way forward has been proposed, based on two main recommendations. A global joint initiative to create an all-encompassing regulations policy document that will improve both the technological and the quality control aspects of biochars to reduce EPFR generation at the production level. Furthermore, environmental impact and risk assessment studies should be conducted in the extensive applications of biochars in order to protect the environmental and human health. The highlighted key research directions proposed herein will shape the production, research, and adoption aspects of biochars, which will mitigate the considerable concerns raised on EPFRs.
Collapse
Affiliation(s)
- Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shunyao Li
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
34
|
Sakr NI, Patterson MC, Daemen L, Poliakoff ED, Sprunger PT. Vibrational and Structural Studies of Environmentally Persistent Free Radicals Formed by Phenol-Dosed Metal Oxide Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16726-16733. [PMID: 31786916 DOI: 10.1021/acs.langmuir.9b02948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are formed by the adsorption of substituted aromatic precursors on the surface of metal oxides and are known to have significant health and environmental impact due to their unique stability. In this article, the formation of EPFRs is studied by adsorption of phenol on ZnO, CuO, Fe2O3, and TiO2 nanoparticles (∼10-50 nm) at high temperatures. Electron paramagnetic resonance indicates the formation of phenoxyl-type radicals. Fourier transform infrared spectroscopy provides further evidence of EPFR formation by the disappearance of -OH groups, indicating the chemisorption of the organic precursor on the metal oxide surface. These results are further confirmed by inelastic neutron scattering, which shows both ring out-of-plane bend and C-H in-plane bend motions characteristic of phenol adsorption on the studied systems. Also, the changes in the oxidation state of the metal cations are investigated by X-ray photoelectron spectroscopy, which shows that the direction of electron transfer (redox) during phenol chemisorption is strongly dependent on surface properties as well as surface defects of the metal oxide surface.
Collapse
Affiliation(s)
- Nadra I Sakr
- Department of Physics and Astronomy , Louisiana State University , 202 Nicholson Hall , Baton Rouge , Louisiana 70803 , United States
| | - Matthew C Patterson
- Department of Chemistry , Louisiana State University , 232 Choppin Hall , Baton Rouge , Louisiana 70803 , United States
| | - Luke Daemen
- Spallation Neutron Source , Oak Ridge National Laboratory , MS-6473 , Oak Ridge , Tennessee 37831 , United States
| | - Erwin D Poliakoff
- Department of Chemistry , Louisiana State University , 232 Choppin Hall , Baton Rouge , Louisiana 70803 , United States
| | - Phillip T Sprunger
- Department of Physics and Astronomy , Louisiana State University , 202 Nicholson Hall , Baton Rouge , Louisiana 70803 , United States
| |
Collapse
|
35
|
Pan B, Li H, Lang D, Xing B. Environmentally persistent free radicals: Occurrence, formation mechanisms and implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:320-331. [PMID: 30802746 DOI: 10.1016/j.envpol.2019.02.032] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 05/23/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are defined as organic free radicals stabilized on or inside particles. They are persistent because of the protection by the particles and show significant toxicity to organisms. Increasing research interests have been attracted to study the potential environmental implications of EPFRs. Because of their different physical forms from conventional contaminants, it is not applicable to use the commonly used technique and strategy to predict and assess the behavior and risks of EPFRs. Current studies on EPFRs are scattered and not systematic enough to draw clear conclusions. Therefore, this review is organized to critically discuss the current research progress on EPFRs, highlighting their occurrence and transport, generation mechanisms, as well as their environmental implications (including both toxicity and reactivity). EPFR formation and stabilization as affected by the precursors and environmental factors are useful breakthrough to understand their formation mechanisms. To better understand the major differences between EPFRs and common contaminants, we identified the unique processes and/or mechanisms related to EPFRs. The knowledge gaps will be also addressed to highlight the future research while summarizing the research progress. Quantitative analysis of the interactions between organic contaminants and EPFRs will greatly improve the predictive accuracy of the multimedia environmental fate models. In addition, the health risks will be better evaluated when considering the toxicity contributed by EFPRs.
Collapse
Affiliation(s)
- Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, Yunnan, China
| | - Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, Yunnan, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| | - Di Lang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, Yunnan, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States.
| |
Collapse
|
36
|
Wang H, Chen Y, Zhang J, Tang X, Wang XJ. Using Nrf2/antioxidant response element-dependent signaling to assess the toxicity potential of fly ash particles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:172-179. [PMID: 30529616 DOI: 10.1016/j.ecoenv.2018.11.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Epidemiological studies have demonstrated an association between ambient particulate pollution and adverse health effects in humans. The antioxidant-responsive element (ARE) cytoprotective system mediated by the transcription factor NF-E2 p45-related factor 2 (Nrf2) serves as a primary defense against the oxidative stress triggered by particulate matter. In this study, using a cell-based ARE-reporter assay, the fine fractions of the fly ash collected from the municipal solid waste incinerators at four cities in China were examined for their ability to activate Nrf2/ARE signaling. We found that, at a non-lethal dose, all the fly ash samples were able to activate the ARE-reporter gene in a dose- and redox-dependent manner, and this was correlated with their cytotoxicity and their ability to induce DNA damage. Study of the kinetics revealed that fly ash particles elicited a prolonged activation of the ARE-reporter activity. Upon exposure to the particles, the ARE-luciferase activity significantly increased in 2 h, reached a peak at 24 h, and remained high level at 72 h. This was in contrast to the transient activation of the ARE-reporter gene triggered by the Nrf2 activators tert-butylhydroquinone and sulforaphane, while ARE-luciferase activity dropped to the basal level at 72 h from the peak at 24 h. These results demonstrate the robustness of using cell-based ARE-reporter assays to evaluate the oxidative potential of fly ash. Our novel findings suggest that the sustained activation of the Nrf2/ARE signaling pathway induced by fly ash particles perturbs cellular redox homeostasis, which in turn contributes to toxicity.
Collapse
Affiliation(s)
- Hongyan Wang
- Department of Pharmacology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China; Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
| | - Yiping Chen
- Department of Pharmacology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Jingwen Zhang
- Department of Pharmacology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Xiuwen Tang
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
| | - Xiu Jun Wang
- Department of Pharmacology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China.
| |
Collapse
|
37
|
Chen Q, Sun H, Mu Z, Wang Y, Li Y, Zhang L, Wang M, Zhang Z. Characteristics of environmentally persistent free radicals in PM 2.5: Concentrations, species and sources in Xi'an, Northwestern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:18-26. [PMID: 30650344 DOI: 10.1016/j.envpol.2019.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 05/07/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are a new class of environmental risk substances that can stably exist in atmospheric particles and pose a potential threat to human health. In this study, electron paramagnetic resonance (EPR) spectroscopy was used to study the concentration levels, species characteristics, and sources of EPFRs in PM2.5 in Xi'an in 2017. The results showed that the concentrations of EPFRs in PM2.5 in Xi'an in 2017 ranged from 9.8 × 1011 to 6.9 × 1014 spins/m3. The highest concentration of EPFRs occurred in winter when the average concentration was 2.1 × 1014 spins/m3. The lowest concentration of EPFRs occurred in autumn when the average concentration was 7.0 × 1013 spins/m3. According to the annual average atmospheric concentration of EPFRs, the amount of EPFRs inhaled by people in Xi'an is equivalent to approximately 5 cigarettes per person per day and approximately 23 cigarettes per person per day in winter when haze occurs. The results of the study on the EPFR characteristics show that the EPFRs in PM2.5 in Xi'an are mainly C-center organic radicals that are primarily non-decaying types, accounting for approximately 75% and 85% of total concentration of EPFRs in autumn and winter, respectively. Finally, a correlation analysis was used to explore the origins of EPFRs in PM2.5. Significant positive correlations were found between EPFRs and SO2, NO2 and the thermally derived OC3 and OC4 carbonaceous components. The results suggested that coal-fired and traffic may be important sources of EPFRs in PM2.5 in Xi'an. In addition, EPFRs are significantly positively correlated with O3 in summer, suggesting that some EPFRs may also originate from secondary processes. This study provides important basic data and evidence for further assessments of the potential health risks of EPFRs in PM2.5 and the development of effective air pollution control measures.
Collapse
Affiliation(s)
- Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Haoyao Sun
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zhen Mu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yuqin Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yanguang Li
- Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits, MLR, Xi'an, 710054, China; Xi'an Center of Geological Survey, China Geological Survey, Xi'an, 710054, China
| | - Lixin Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Mamin Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zimeng Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|
38
|
Jaligama S, Patel VS, Wang P, Sallam A, Harding J, Kelley M, Mancuso SR, Dugas TR, Cormier SA. Radical containing combustion derived particulate matter enhance pulmonary Th17 inflammation via the aryl hydrocarbon receptor. Part Fibre Toxicol 2018; 15:20. [PMID: 29724254 PMCID: PMC5934866 DOI: 10.1186/s12989-018-0255-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/20/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Pollutant particles containing environmentally persistent free radicals (EPFRs) are formed during many combustion processes (e.g. thermal remediation of hazardous wastes, diesel/gasoline combustion, wood smoke, cigarette smoke, etc.). Our previous studies demonstrated that acute exposure to EPFRs results in dendritic cell maturation and Th17-biased pulmonary immune responses. Further, in a mouse model of asthma, these responses were enhanced suggesting exposure to EPFRs as a risk factor for the development and/or exacerbation of asthma. The aryl hydrocarbon receptor (AHR) has been shown to play a role in the differentiation of Th17 cells. In the current study, we determined whether exposure to EPFRs results in Th17 polarization in an AHR dependent manner. RESULTS Exposure to EPFRs resulted in Th17 and IL17A dependent pulmonary immune responses including airway neutrophilia. EPFR exposure caused a significant increase in pulmonary Th17 cytokines such as IL6, IL17A, IL22, IL1β, KC, MCP-1, IL31 and IL33. To understand the role of AHR activation in EPFR-induced Th17 inflammation, A549 epithelial cells and mouse bone marrow-derived dendritic cells (BMDCs) were exposed to EPFRs and expression of Cyp1a1 and Cyp1b1, markers for AHR activation, was measured. A significant increase in Cyp1a1 and Cyp1b1 gene expression was observed in pulmonary epithelial cells and BMDCs in an oxidative stress and AHR dependent manner. Further, in vivo exposure of mice to EPFRs resulted in oxidative stress and increased Cyp1a1 and Cyp1b1 pulmonary gene expression. To further confirm the role of AHR activation in pulmonary Th17 immune responses, mice were exposed to EPFRs in the presence or absence of AHR antagonist. EPFR exposure resulted in a significant increase in pulmonary Th17 cells and neutrophilic inflammation, whereas a significant decrease in the percentage of Th17 cells and neutrophilic inflammation was observed in mice treated with AHR antagonist. CONCLUSION Exposure to EPFRs results in AHR activation and induction of Cyp1a1 and in vitro this is dependent on oxidative stress. Further, our in vivo studies demonstrated a role for AHR in EPFR-induced pulmonary Th17 responses including neutrophilic inflammation.
Collapse
Affiliation(s)
- Sridhar Jaligama
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103 USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103 USA
| | - Vivek S. Patel
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103 USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103 USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Room 2510, 1909 Freight Dock, Skip Bertman Drive, Baton Rouge, LA 70803 USA
| | - Pingli Wang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Asmaa Sallam
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103 USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103 USA
| | - Jeffrey Harding
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103 USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103 USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Matthew Kelley
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| | | | - Tammy R. Dugas
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Room 2510, 1909 Freight Dock, Skip Bertman Drive, Baton Rouge, LA 70803 USA
| | - Stephania A. Cormier
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103 USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103 USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Room 2510, 1909 Freight Dock, Skip Bertman Drive, Baton Rouge, LA 70803 USA
| |
Collapse
|
39
|
Vejerano EP, Rao G, Khachatryan L, Cormier SA, Lomnicki S. Environmentally Persistent Free Radicals: Insights on a New Class of Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2468-2481. [PMID: 29443514 PMCID: PMC6497067 DOI: 10.1021/acs.est.7b04439] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Environmentally persistent free radicals, EPFRs, exist in significant concentration in atmospheric particulate matter (PM). EPFRs are primarily emitted from combustion and thermal processing of organic materials, in which the organic combustion byproducts interact with transition metal-containing particles to form a free radical-particle pollutant. While the existence of persistent free radicals in combustion has been known for over half-a-century, only recently that their presence in environmental matrices and health effects have started significant research, but still in its infancy. Most of the experimental studies conducted to understand the origin and nature of EPFRs have focused primarily on nanoparticles that are supported on a larger micrometer-sized particle that mimics incidental nanoparticles formed during combustion. Less is known on the extent by which EPFRs may form on engineered nanomaterials (ENMs) during combustion or thermal treatment. In this critical and timely review, we summarize important findings on EPFRs and discuss their potential to form on pristine ENMs as a new research direction. ENMs may form EPFRs that may differ in type and concentration compared to nanoparticles that are supported on larger particles. The lack of basic data and fundamental knowledge about the interaction of combustion byproducts with ENMs under high-temperature and oxidative conditions present an unknown environmental and health burden. Studying the extent of ENMs on catalyzing EPFRs is important to address the hazards of atmospheric PM fully from these emerging environmental contaminants.
Collapse
Affiliation(s)
- Eric P. Vejerano
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia South Carolina 29208, United States
- Corresponding Author: Phone: (803) 777 6360;
| | - Guiying Rao
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia South Carolina 29208, United States
| | - Lavrent Khachatryan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Stephania A. Cormier
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, United States
| | - Slawo Lomnicki
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
40
|
Wang P, Pan B, Li H, Huang Y, Dong X, Ai F, Liu L, Wu M, Xing B. The Overlooked Occurrence of Environmentally Persistent Free Radicals in an Area with Low-Rank Coal Burning, Xuanwei, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1054-1061. [PMID: 29316392 DOI: 10.1021/acs.est.7b05453] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The mining and burning of low-rank coal in Xuanwei, China have attracted a great deal of research attention because of the generated polyaromatic hydrocarbons (PAHs) and the high incidence of lung cancer in this region. Given the abundant transition metals in the allitic soil, we hypothesized that environmentally persistent free radicals (EPFRs) are formed in this region and the potential risk had not been addressed. Strong electron paramagnetic resonance (EPR) signals of 3.20 × 1017 - 3.10 × 1019 spins/g were detected in environmental samples, including chimney soot, coal, soil and total suspended particles (TSP). These EPR signals did not significantly change after 18-months storage and had g-values in the range of 2.0039-2.0046, suggesting typical organic free radicals. Similar strong EPR signals were observed in PAH (anthracene and pyrene as model compounds) degradation on simulated soil particles and lasted over one month even when the applied PAHs were 100% degraded. Based on g-value and bond width, we propose that EPR signals detected in TSP and soot originated from both coal combustion and PAH photodegradation. Further research is thus urgently required to investigate EPFR generation, exposure and risk in Xuanwei to better understand the cause of high lung cancer incidence.
Collapse
Affiliation(s)
- Peng Wang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology , Kunming 650500, P. R. China
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology , Kunming 650500, P. R. China
| | - Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology , Kunming 650500, P. R. China
| | - Yu Huang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology , Kunming 650500, P. R. China
| | - Xudong Dong
- The affiliated Hospital of Kunming University of Science and Technology , Kunming, 650500, China
| | - Fang Ai
- The affiliated Hospital of Kunming University of Science and Technology , Kunming, 650500, China
| | - Lingyan Liu
- The affiliated Hospital of Kunming University of Science and Technology , Kunming, 650500, China
| | - Min Wu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology , Kunming 650500, P. R. China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts , Amherst, Massachusetts 01003, United States
| |
Collapse
|
41
|
Meldrum K, Guo C, Marczylo EL, Gant TW, Smith R, Leonard MO. Mechanistic insight into the impact of nanomaterials on asthma and allergic airway disease. Part Fibre Toxicol 2017; 14:45. [PMID: 29157272 PMCID: PMC5697410 DOI: 10.1186/s12989-017-0228-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/10/2017] [Indexed: 01/02/2023] Open
Abstract
Asthma is a chronic respiratory disease known for its high susceptibility to environmental exposure. Inadvertent inhalation of engineered or incidental nanomaterials is a concern for human health, particularly for those with underlying disease susceptibility. In this review we provide a comprehensive analysis of those studies focussed on safety assessment of different nanomaterials and their unique characteristics on asthma and allergic airway disease. These include in vivo and in vitro approaches as well as human and population studies. The weight of evidence presented supports a modifying role for nanomaterial exposure on established asthma as well as the development of the condition. Due to the variability in modelling approaches, nanomaterial characterisation and endpoints used for assessment in these studies, there is insufficient information for how one may assign relative hazard potential to individual nanoscale properties. New developments including the adoption of standardised models and focussed in vitro and in silico approaches have the potential to more reliably identify properties of concern through comparative analysis across robust and select testing systems. Importantly, key to refinement and choice of the most appropriate testing systems is a more complete understanding of how these materials may influence disease at the cellular and molecular level. Detailed mechanistic insight also brings with it opportunities to build important population and exposure susceptibilities into models. Ultimately, such approaches have the potential to more clearly extrapolate relevant toxicological information, which can be used to improve nanomaterial safety assessment for human disease susceptibility.
Collapse
Affiliation(s)
- Kirsty Meldrum
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Chang Guo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Emma L Marczylo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Timothy W Gant
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Rachel Smith
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Martin O Leonard
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK.
| |
Collapse
|
42
|
Chuang GC, Xia H, Mahne SE, Varner KJ. Environmentally Persistent Free Radicals Cause Apoptosis in HL-1 Cardiomyocytes. Cardiovasc Toxicol 2017; 17:140-149. [PMID: 27052339 DOI: 10.1007/s12012-016-9367-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Samples of environmental particulate matter contain environmentally persistent free radicals (EPFRs) capable of sustained generation of oxygen radicals. While exposure to EPFRs produces cardiac toxicity and oxidative stress in experimental animals, the underlying mechanisms are largely unknown. To determine whether EPFRs could directly damage cardiomyocytes, cultured mouse cardiomyocytes (HL-1) and primary rat adult left ventricular myocytes (ALVM) were incubated with an EPFR consisting of 1,2-dichlorobenzene chemisorbed to CuO-coated silica beads (DCB230). Treatment with DCB230 killed both HL-1 and ALVM in a dose- and time-dependent manner. The cytotoxic effects of DCB230 were significantly attenuated by treatment with α-tocopherol. One to 2 h after exposure to DCB230, there were significant reductions in mitochondrial membrane potential and significant increases in cleaved caspase-9, but no significant increases in DNA damage or cell death. After 8 h of treatment, there were significant increases in caspase-3, caspase-9, DNA damage and PARP cleavage associated with significant cell death. Together, these data indicate that DCB230 kills HL-1 myocytes by inducing oxidative stress that initiates apoptosis, with the intrinsic or mitochondrial pathway acting early in the apoptotic signaling process.
Collapse
Affiliation(s)
- Gin C Chuang
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, 1901 Perdido St, MEB 5262, New Orleans, LA, USA.,Superfund Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Huijing Xia
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, 1901 Perdido St, MEB 5262, New Orleans, LA, USA.,Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA.,Superfund Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Sarah E Mahne
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, 1901 Perdido St, MEB 5262, New Orleans, LA, USA.,Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Kurt J Varner
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, 1901 Perdido St, MEB 5262, New Orleans, LA, USA. .,Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA. .,Superfund Research Center, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
43
|
Feld-Cook EE, Bovenkamp-Langlois L, Lomnicki SM. Effect of Particulate Matter Mineral Composition on Environmentally Persistent Free Radical (EPFR) Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10396-10402. [PMID: 28817261 PMCID: PMC5778880 DOI: 10.1021/acs.est.7b01521] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Environmentally Persistent Free Radicals (EPFRs) are newly discovered, long-lived surface bound radicals that form on particulate matter and combustion borne particulates, such as fly ash. Human exposure to such particulates lead to translocation into the lungs and heart resulting in cardio-vascular and respiratory disease through the production of reactive oxygen species. Analysis of some waste incinerator fly ashes revealed a significant difference between their EPFR contents. Although EPFR formation occurs on the metal domains, these differences were correlated with the altering concentration of calcium and sulfur. To analyze these phenomena, surrogate fly ashes were synthesized to mimic the presence of their major mineral components, including metal oxides, calcium, and sulfur. The results of this study led to the conclusion that the presence of sulfates limits formation of EPFRs due to inhibition or poisoning of the transition metal active sites necessary for their formation. These findings provide a pathway toward understanding differences in EPFR presence on particulate matter and uncover the possibility of remediating EPFRs from incineration and hazardous waste sites.
Collapse
Affiliation(s)
- Elisabeth E. Feld-Cook
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Lisa Bovenkamp-Langlois
- Center for Advanced Microstructures & Devices (CAMD), Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Slawo M. Lomnicki
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
44
|
Oyana TJ, Lomnicki SM, Guo C, Cormier SA. A Scalable Field Study Protocol and Rationale for Passive Ambient Air Sampling: A Spatial Phytosampling for Leaf Data Collection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10663-10673. [PMID: 28805054 PMCID: PMC5792061 DOI: 10.1021/acs.est.7b03643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Stable, bioreactive, radicals known as environmentally persistent free radicals (EPFRs) have been found to exist on the surface of airborne PM2.5. These EPFRs have been found to form during many combustion processes, are present in vehicular exhaust, and persist in the environment for weeks and biological systems for up to 12 h. To measure EPFRs in PM samples, high volume samplers are required and measurements are less representative of community exposure; therefore, we developed a novel spatial phytosampling methodology to study the spatial patterns of EPFR concentrations using plants. Leaf samples for laboratory PM analysis were collected from 188 randomly drawn sampling sites within a 500-m buffer zone of pollution sources across a sampling grid measuring 32.9 × 28.4 km in Memphis, Tennessee. PM was isolated from the intact leaves and size fractionated, and EPFRs on PM quantified by electron paramagnetic resonance spectroscopy. The radical concentration was found to positively correlate with the EPFR g-value, thus indicating cumulative content of oxygen centered radicals in PM with higher EPFR load. Our spatial phytosampling approach reveals spatial variations and potential "hotspots" risk due to EPFR exposure across Memphis and provides valuable insights for identifying exposure and demographic differences for health studies.
Collapse
Affiliation(s)
- Tonny J. Oyana
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Department of Preventive Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Slawomir M. Lomnicki
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Chuqi Guo
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Stephania A. Cormier
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Department of Preventive Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Le Bonheur Children’s Medical Center, The University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
45
|
Patterson MC, DiTusa MF, McFerrin CA, Kurtz R, Hall RW, Poliakoff ED, Sprunger PT. Formation of environmentally persistent free radicals (EPFRs) on ZnO at room temperature: Implications for the fundamental model of EPFR generation. Chem Phys Lett 2017; 670:5-10. [PMID: 28824195 PMCID: PMC5560487 DOI: 10.1016/j.cplett.2016.12.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Environmentally persistent free radicals (EPFRs) have significant environmental and public health impacts. In this study, we demonstrate that EPFRs formed on ZnO nanoparticles provide two significant surprises. First, EPR spectroscopy shows that phenoxy radicals form readily on ZnO nanoparticles at room temperature, yielding EPR signals similar to those previously measured after 250°C exposures. Vibrational spectroscopy supports the conclusion that phenoxy-derived species chemisorb to ZnO nanoparticles under both exposure temperatures. Second, DFT calculations indicate that electrons are transferred from ZnO to the adsorbed organic (oxidizing the Zn), the opposite direction proposed by previous descriptions of EPFR formation on metal oxides.
Collapse
Affiliation(s)
| | - Mark F. DiTusa
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Cheri A. McFerrin
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94901, USA
| | - R.L. Kurtz
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Randall W. Hall
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94901, USA
| | - E. D. Poliakoff
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - P. T. Sprunger
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
46
|
Regulatory T cells and IL10 suppress pulmonary host defense during early-life exposure to radical containing combustion derived ultrafine particulate matter. Respir Res 2017; 18:15. [PMID: 28086957 PMCID: PMC5237352 DOI: 10.1186/s12931-016-0487-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/09/2016] [Indexed: 11/13/2022] Open
Abstract
Background Exposure to elevated levels of particulate matter (PM) is associated with increased risk of morbidity and mortality due to respiratory tract viral infections in infants. Recent identification of environmentally persistent free radicals (EPFRs) in the PM from a variety of combustion sources suggests its role in the enhancement of disease severity of lower respiratory tract infections (LRTI). Our previous studies demonstrated that acute exposure to EPFRs induces pulmonary immunosuppression allowing for enhanced influenza disease severity. Here, we determine the mechanism of EPFR-induced immunosuppression and its impact on the immune response towards influenza infection. Methods Neonatal mice (3 days old) were acutely exposed to DCB (combustion derived PM with chemisorbed EPFR) for seven consecutive days. Four days post-exposure (dpe), mice were infected with influenza virus. Pulmonary T cell phenotypes including regulatory T cells (Tregs) were analyzed by flow cytometry. The role of IL10 in EPFR-induced exacerbation of influenza disease severity was determined by administering recombinant IL10 (rIL10) to wild type mice or by using IL10 deficient (IL10−/−) neonatal mice. Mice were assessed for morbidity by measuring percent weight change and pulmonary viral load. Results Neonatal mice exposed to EPFRs had a significant increase in pulmonary Tregs and the immunosuppressive cytokine IL10 following influenza infection, which coincided with decreased protective T cell responses to influenza infection at 6 dpi. Depletion of Tregs in EPFR-exposed neonatal mice resulted in increased protective, adaptive T cell responses, whereas adoptive transfer of Tregs from EPFR-exposed neonates to air-exposed neonatal mice suppressed adaptive T cell responses towards influenza infection. Further, treatment with rIL10 could recapitulate EPFR-induced exacerbation of morbidity and pulmonary viral load compared to air exposed and influenza infected mice, whereas, EPFR-exposed IL10−/− neonates exhibited significant reductions in morbidity, pulmonary viral load and adaptive T cell responses following influenza infection. Conclusions Neonatal exposure to EPFRs induced Tregs and IL10 resulting in suppressed adaptive T cell responses and enhanced influenza disease severity in neonatal mice. Depletion of Tregs increased adaptive T cell responses and deficiency of IL10 reduced morbidity and conferred enhanced protection against influenza virus. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0487-4) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Dugas TR, Lomnicki S, Cormier SA, Dellinger B, Reams M. Addressing Emerging Risks: Scientific and Regulatory Challenges Associated with Environmentally Persistent Free Radicals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060573. [PMID: 27338429 PMCID: PMC4924030 DOI: 10.3390/ijerph13060573] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022]
Abstract
Airborne fine and ultrafine particulate matter (PM) are often generated through widely-used thermal processes such as the combustion of fuels or the thermal decomposition of waste. Residents near Superfund sites are exposed to PM through the inhalation of windblown dust, ingestion of soil and sediments, and inhalation of emissions from the on-site thermal treatment of contaminated soils. Epidemiological evidence supports a link between exposure to airborne PM and an increased risk of cardiovascular and pulmonary diseases. It is well-known that during combustion processes, incomplete combustion can lead to the production of organic pollutants that can adsorb to the surface of PM. Recent studies have demonstrated that their interaction with metal centers can lead to the generation of a surface stabilized metal-radical complex capable of redox cycling to produce ROS. Moreover, these free radicals can persist in the environment, hence their designation as Environmentally Persistent Free Radicals (EPFR). EPFR has been demonstrated in both ambient air PM2.5 (diameter < 2.5 µm) and in PM from a variety of combustion sources. Thus, low-temperature, thermal treatment of soils can potentially increase the concentration of EPFR in areas in and around Superfund sites. In this review, we will outline the evidence to date supporting EPFR formation and its environmental significance. Furthermore, we will address the lack of methodologies for specifically addressing its risk assessment and challenges associated with regulating this new, emerging contaminant.
Collapse
Affiliation(s)
- Tammy R Dugas
- Department of Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA 70803, USA.
| | - Slawomir Lomnicki
- Department of Environmental Sciences, Louisiana State University and A & M College, Baton Rouge, LA 70803, USA.
| | - Stephania A Cormier
- Department of Pediatrics, University of Tennessee Health Sciences Center and Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN 38103, USA.
| | - Barry Dellinger
- Department of Chemistry, Louisiana State University and A & M College, Baton Rouge, LA 70803, USA.
| | - Margaret Reams
- Department of Environmental Sciences, Louisiana State University and A & M College, Baton Rouge, LA 70803, USA.
| |
Collapse
|
48
|
Filep Á, Fodor GH, Kun-Szabó F, Tiszlavicz L, Rázga Z, Bozsó G, Bozóki Z, Szabó G, Peták F. Exposure to urban PM1 in rats: development of bronchial inflammation and airway hyperresponsiveness. Respir Res 2016; 17:26. [PMID: 26966003 PMCID: PMC4785744 DOI: 10.1186/s12931-016-0332-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/09/2016] [Indexed: 11/10/2022] Open
Abstract
Background Several epidemiological and laboratory studies have evidenced the fact that atmospheric particulate matter (PM) increases the risk of respiratory morbidity. It is well known that the smallest fraction of PM (PM1 - particulate matter having a diameter below 1 μm) penetrates the deepest into the airways. The ratio of the different size fractions in PM is highly variable, but in industrial areas PM1 can be significant. Despite these facts, the health effects of PM1 have been poorly investigated and air quality standards are based on PM10 and PM2.5 (PM having diameters below 10 μm and 2.5 μm, respectively) concentrations. Therefore, this study aimed at determining whether exposure to ambient PM1 at a near alert threshold level for PM10 has respiratory consequences in rats. Methods Rats were either exposed for 6 weeks to 100 μg/m3 (alert threshold level for PM10 in Hungary) urban submicron aerosol, or were kept in room air. End-expiratory lung volume, airway resistance (Raw) and respiratory tissue mechanics were measured. Respiratory mechanics were measured under baseline conditions and following intravenous methacholine challenges to characterize the development of airway hyperresponsiveness (AH). Bronchoalveolar lavage fluid (BALF) was analyzed and lung histology was performed. Results No significant differences were detected in lung volume and mechanical parameters at baseline. However, the exposed rats exhibited significantly greater MCh-induced responses in Raw, demonstrating the progression of AH. The associated bronchial inflammation was evidenced by the accumulation of inflammatory cells in BALF and by lung histology. Conclusions Our findings suggest that exposure to concentrated ambient PM1 (mass concentration at the threshold level for PM10) leads to the development of mild respiratory symptoms in healthy adult rats, which may suggest a need for the reconsideration of threshold limits for airborne PM1.
Collapse
Affiliation(s)
- Ágnes Filep
- Department: MTA-SZTE Research Group on Photoacoustic Spectroscopy, H-6720, Szeged, Dóm tér 9, Hungary. .,Department of Optics and Quantum Electronics, University of Szeged, H-6720, Szeged, Dóm tér 9, Hungary.
| | - Gergely H Fodor
- Department of Medical Physics and Informatics, University of Szeged, H-6720, Szeged, Korányi fasor 9, Hungary
| | - Fruzsina Kun-Szabó
- Institute for Environmental Sciences, University of Szeged, H-6720, Szeged, Dóm tér 9, Hungary
| | - László Tiszlavicz
- Department of Pathology, University of Szeged, H-6720, Szeged, Állomás u. 2, Hungary
| | - Zsolt Rázga
- Department of Pathology, University of Szeged, H-6720, Szeged, Állomás u. 2, Hungary
| | - Gábor Bozsó
- Department of Mineralogy, Geochemistry and Petrology, University of Szeged, H-6722, Szeged, Egyetem u. 2, Hungary
| | - Zoltán Bozóki
- Department: MTA-SZTE Research Group on Photoacoustic Spectroscopy, H-6720, Szeged, Dóm tér 9, Hungary.,Department of Optics and Quantum Electronics, University of Szeged, H-6720, Szeged, Dóm tér 9, Hungary
| | - Gábor Szabó
- Department: MTA-SZTE Research Group on Photoacoustic Spectroscopy, H-6720, Szeged, Dóm tér 9, Hungary.,Department of Optics and Quantum Electronics, University of Szeged, H-6720, Szeged, Dóm tér 9, Hungary
| | - Ferenc Peták
- Department of Medical Physics and Informatics, University of Szeged, H-6720, Szeged, Korányi fasor 9, Hungary
| |
Collapse
|
49
|
Thibodeaux CA, Poliakoff E, Kizilkaya O, Patterson MC, DiTusa MF, Kurtz RL, Sprunger P. Probing environmentally significant surface radicals: Crystallographic and temperature dependent adsorption of phenol on ZnO. Chem Phys Lett 2015; 638:56-60. [PMID: 26388650 PMCID: PMC4570833 DOI: 10.1016/j.cplett.2015.08.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Environmentally persistent free radicals (EPFRs) are toxic organic/metal oxide composite particles that have been discovered to form from substituted benzenes chemisorbed to metal oxides. Here, we perform photoelectron spectroscopy, electron energy loss spectroscopy, and low energy electron diffraction of phenol chemisorbed to ZnO(1 0 1̱ 0) and (0 0 0 1̱)-Zn to observe electronic structure changes and charge transfer as a function adsorption temperature. We show direct evidence of charge transfer from the ZnO surfaces to the phenol. This evidence can help gain a better understanding of EPFRs and be used to develop possible future remediation strategies.
Collapse
Affiliation(s)
- Chad A. Thibodeaux
- Louisiana State University, Department of Chemistry, 232 Choppin Hall, Highland Road, Baton Rouge, LA 70803, United States
| | - E.D. Poliakoff
- Louisiana State University, Department of Chemistry, 232 Choppin Hall, Highland Road, Baton Rouge, LA 70803, United States
| | - Orhan Kizilkaya
- Louisiana State University, Center for Advanced Microstructures and Devices, 6980 Jefferson Hwy., Baton Rouge, LA 70806, United States
| | - Matthew C. Patterson
- Louisiana State University, Department of Physics and Astronomy, 202 Nicholson Hall, Tower Dr., Baton Rouge, LA 70803, United States
| | - Mark F. DiTusa
- Louisiana State University, Department of Physics and Astronomy, 202 Nicholson Hall, Tower Dr., Baton Rouge, LA 70803, United States
| | - Richard L. Kurtz
- Louisiana State University, Center for Advanced Microstructures and Devices, 6980 Jefferson Hwy., Baton Rouge, LA 70806, United States
- Louisiana State University, Department of Physics and Astronomy, 202 Nicholson Hall, Tower Dr., Baton Rouge, LA 70803, United States
| | - P.T. Sprunger
- Louisiana State University, Department of Physics and Astronomy, 202 Nicholson Hall, Tower Dr., Baton Rouge, LA 70803, United States
| |
Collapse
|
50
|
Reed JR, dela Cruz ALN, Lomnicki SM, Backes WL. Environmentally persistent free radical-containing particulate matter competitively inhibits metabolism by cytochrome P450 1A2. Toxicol Appl Pharmacol 2015; 289:223-30. [PMID: 26423927 DOI: 10.1016/j.taap.2015.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 01/17/2023]
Abstract
Combustion processes generate different types of particulate matter (PM) that can have deleterious effects on the pulmonary and cardiovascular systems. Environmentally persistent free radicals (EPFRs) represent a type of particulate matter that is generated after combustion of environmental wastes in the presence of redox-active metals and aromatic hydrocarbons. Cytochromes P450 (P450/CYP) are membrane-bound enzymes that are essential for the phase I metabolism of most lipophilic xenobiotics. The EPFR formed by chemisorption of 2-monochlorophenol to silica containing 5% copper oxide (MCP230) has been shown to generally inhibit the activities of different forms of P450s without affecting those of cytochrome P450 reductase and heme oxygenase-1. The mechanism of inhibition of rat liver microsomal CYP2D2 and purified rabbit CYP2B4 by MCP230 has been shown previously to be noncompetitive with respect to substrate. In this study, MCP230 was shown to competitively inhibit metabolism of 7-benzyl-4-trifluoromethylcoumarin and 7-ethoxyresorufin by the purified, reconstituted rabbit CYP1A2. MCP230 is at least 5- and 50-fold more potent as an inhibitor of CYP1A2 than silica containing 5% copper oxide and silica, respectively. Thus, even though PM generally inhibit multiple forms of P450, PM interacts differently with the forms of P450 resulting in different mechanisms of inhibition. P450s function as oligomeric complexes within the membrane. We also determined the mechanism by which PM inhibited metabolism by the mixed CYP1A2-CYP2B4 complex and found that the mechanism was purely competitive suggesting that the CYP2B4 is dramatically inhibited when bound to CYP1A2.
Collapse
Affiliation(s)
- James R Reed
- Department of Pharmacology and Experimental Therapeutics and The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar St., New Orleans, LA 70112, USA.
| | - Albert Leo N dela Cruz
- The Department of Environmental Sciences and LSU Superfund Research Center, Louisiana State University A&M College, Baton Rouge, LA 70803, USA.
| | - Slawo M Lomnicki
- The Department of Environmental Sciences and LSU Superfund Research Center, Louisiana State University A&M College, Baton Rouge, LA 70803, USA.
| | - Wayne L Backes
- Department of Pharmacology and Experimental Therapeutics and The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar St., New Orleans, LA 70112, USA.
| |
Collapse
|