1
|
Lamichhane S, Seo JE, Jeong JH, Lee S, Lee S. Ideal animal models according to multifaceted mechanisms and peculiarities in neurological disorders: present and challenges. Arch Pharm Res 2024:10.1007/s12272-024-01527-9. [PMID: 39690343 DOI: 10.1007/s12272-024-01527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Neurological disorders, encompassing conditions such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), pose a significant global health challenge, affecting millions worldwide. With an aging population and increased life expectancy, the prevalence of these disorders is escalating rapidly, leading to substantial economic burdens exceeding trillions of dollars annually. Animal models play a crucial role in understanding the underlying mechanisms of these disorders and developing effective treatments. Various species, including rodents, non-human primates, and fruit flies, are utilized to replicate specific aspects of human neurological conditions. However, selecting the ideal animal model requires careful consideration of its proximity to human disease conditions and its ability to mimic disease pathobiology and pharmacological responses. An Animal Model Quality Assessment (AMQA) tool has been developed to facilitate this selection process, focusing on assessing models based on their similarity to human conditions and disease pathobiology. Therefore, integrating intrinsic and extrinsic factors linked to the disease into the study's objectives aids in constructing a biological information matrix for comparing disease progression between the animal model and human disease. Ultimately, selecting an ideal animal disease model depends on its predictive, face, and construct validity, ensuring relevance and reliability in translational research efforts.
Collapse
Affiliation(s)
- Shrawani Lamichhane
- College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Jo-Eun Seo
- College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
2
|
VanderGiessen M, de Jager C, Leighton J, Xie H, Theus M, Johnson E, Kehn-Hall K. Neurological manifestations of encephalitic alphaviruses, traumatic brain injuries, and organophosphorus nerve agent exposure. Front Neurosci 2024; 18:1514940. [PMID: 39734493 PMCID: PMC11671522 DOI: 10.3389/fnins.2024.1514940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Encephalitic alphaviruses (EEVs), Traumatic Brain Injuries (TBI), and organophosphorus nerve agents (NAs) are three diverse biological, physical, and chemical injuries that can lead to long-term neurological deficits in humans. EEVs include Venezuelan, eastern, and western equine encephalitis viruses. This review describes the current understanding of neurological pathology during these three conditions, provides a comparative review of case studies vs. animal models, and summarizes current therapeutics. While epidemiological data on clinical and pathological manifestations of these conditions are known in humans, much of our current mechanistic understanding relies upon animal models. Here we review the animal models findings for EEVs, TBIs, and NAs and compare these with what is known from human case studies. Additionally, research on NAs and EEVs is limited due to their classification as high-risk pathogens (BSL-3) and/or select agents; therefore, we leverage commonalities with TBI to develop a further understanding of the mechanisms of neurological damage. Furthermore, we discuss overlapping neurological damage mechanisms between TBI, NAs, and EEVs that highlight novel medical countermeasure opportunities. We describe current treatment methods for reducing neurological damage induced by individual conditions and general neuroprotective treatment options. Finally, we discuss perspectives on the future of neuroprotective drug development against long-term neurological sequelae of EEVs, TBIs, and NAs.
Collapse
Affiliation(s)
- Morgen VanderGiessen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Caroline de Jager
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Julia Leighton
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michelle Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Erik Johnson
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
3
|
Asiri YI, Moni SS, Ramar M, Chidambaram K. Advancing Pain Understanding and Drug Discovery: Insights from Preclinical Models and Recent Research Findings. Pharmaceuticals (Basel) 2024; 17:1439. [PMID: 39598351 PMCID: PMC11597627 DOI: 10.3390/ph17111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Despite major advancements in our understanding of its fundamental causes, pain-both acute and chronic-remains a serious health concern. Various preclinical investigations utilizing diverse animal, cellular, and alternative models are required and frequently demanded by regulatory approval bodies to bridge the gap between the lab and the clinic. Investigating naturally occurring painful disorders can speed up medication development at the preclinical and clinical levels by illuminating molecular pathways. A wide range of animal models related to pain have been developed to elucidate pathophysiological mechanisms and aid in identifying novel targets for treatment. Pain sometimes drugs fail clinically, causing high translational costs due to poor selection and the use of preclinical tools and reporting. To improve the study of pain in a clinical context, researchers have been creating innovative models over the past few decades that better represent pathological pain conditions. In this paper, we provide a summary of traditional animal models, including rodents, cellular models, human volunteers, and alternative models, as well as the specific characteristics of pain diseases they model. However, a more rigorous approach to preclinical research and cutting-edge analgesic technologies may be necessary to successfully create novel analgesics. The research highlights from this review emphasize new opportunities to develop research that includes animals and non-animals using proven methods pertinent to comprehending and treating human suffering. This review highlights the value of using a variety of modern pain models in animals before human trials. These models can help us understand the different mechanisms behind various pain types. This will ultimately lead to the development of more effective pain medications.
Collapse
Affiliation(s)
- Yahya I. Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| | - Sivakumar S. Moni
- Health Research Centre, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohankumar Ramar
- Department of Pharmaceutical Sciences, UConn School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA;
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| |
Collapse
|
4
|
Arndt SS, van der Staay FJ, Goerlich VC. Near and Dear? If animal welfare concepts do not apply to species at a great phylogenetic distance from humans, what concepts might serve as alternatives? Anim Welf 2024; 33:e38. [PMID: 39464388 PMCID: PMC11503720 DOI: 10.1017/awf.2024.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/29/2024] [Accepted: 06/12/2024] [Indexed: 10/29/2024]
Abstract
A wide range of animal taxa, including vertebrates and invertebrates, are controlled or kept by humans. They may be used as pets, for recreation, sport and hobbies, as working animals, as producers of animal-derived (food) products or as biomedical models in research. There is a need for clear guidance on the treatment of animals, regardless of their phylogenetic distance from humans. Current animal welfare concepts, which emphasise animal sentience and the ability of animals to experience negative or positive mental states, are limited in scope to a small proportion of the animal kingdom, as the vast majority of species are (currently) thought to lack sentience. We discuss four options for addressing the question of which basic concept(s) could be used to derive guidelines for the treatment of animal species, sentient or non-sentient: (1) alternative concepts tailored to specific groups of species; (2) 'welfare' concepts not presupposing sentience; (3) the precautionary principle; or (4) the concept of animal integrity. Since questions regarding the appropriate treatment of animals, including species with a large phylogenetic distance from humans, have an ethical/moral dimension, we also address who counts morally and how much, and how animals should be treated given their moral status. We suggest that the concept of animal integrity, possibly complemented and extended by the concept of habitat/ecosystem integrity, is suitable for application to all species. However, a current concept of animal welfare should serve as the primary basis for guidance on how to treat species that are sentient and capable of experiencing emotions.
Collapse
Affiliation(s)
- Saskia S Arndt
- Division of Animals in Science and Society, Animal Behaviour Group, Faculty of Veterinary Medicine, Utrecht University, PO Box 80166, 3508 TDUtrecht, The Netherlands
| | - F Josef van der Staay
- Department of Population Health Sciences, Division of Farm Animal Health, Behaviour and Welfare Group (Formerly: Emotion and Cognition Group), Faculty of Veterinary Medicine, University Utrecht, Utrecht, The Netherlands
- University Medical Center (UMC) Utrecht, Brain Centre, Utrecht, The Netherlands
| | - Vivian C Goerlich
- Division of Animals in Science and Society, Animal Behaviour Group, Faculty of Veterinary Medicine, Utrecht University, PO Box 80166, 3508 TDUtrecht, The Netherlands
| |
Collapse
|
5
|
Shiohama T, Uchikawa H, Nitta N, Takatani T, Matsuda S, Ortug A, Takahashi E, Sawada D, Shimizu E, Fujii K, Aoki I, Hamada H. Brain morphological analysis in mice with hyperactivation of the hedgehog signaling pathway. Front Neurosci 2024; 18:1449673. [PMID: 39290714 PMCID: PMC11405378 DOI: 10.3389/fnins.2024.1449673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Hedgehog signaling is a highly conserved pathway that plays pivotal roles in morphogenesis, tumorigenesis, osteogenesis, and wound healing. Previous investigations in patients with Gorlin syndrome found low harm avoidance traits, and increased volumes in the cerebrum, cerebellum, and cerebral ventricles, suggesting the association between brain morphology and the constitutive hyperactivation of hedgehog signaling, while the changes of regional brain volumes in upregulated hedgehog signaling pathway remains unclear so far. Herein, we investigated comprehensive brain regional volumes using quantitative structural brain MRI, and identified increased volumes of amygdala, striatum, and pallidum on the global segmentation, and increased volumes of the lateral and medial parts of the central nucleus of the amygdala on the detail segmentation in Ptch heterozygous deletion mice. Our data may enhance comprehension of the association between brain morphogenic changes and hyperactivity in hedgehog signaling.
Collapse
Affiliation(s)
- Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideki Uchikawa
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of General Medical Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nobuhiro Nitta
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, QST, Chiba, Japan
- Central Institute for Experimental Medicine and Life Science Bio Imaging Center, Yokohama, Japan
| | - Tomozumi Takatani
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shingo Matsuda
- Department of Cognitive Behavioral Physiology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Tokyo, Japan
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Alpen Ortug
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Emi Takahashi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Daisuke Sawada
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Eiji Shimizu
- Department of Cognitive Behavioral Physiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsunori Fujii
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Pediatrics, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Ichio Aoki
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, QST, Chiba, Japan
| | - Hiromichi Hamada
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
6
|
Löscher W. Mammalian models of status epilepticus - Their value and limitations. Epilepsy Behav 2024; 158:109923. [PMID: 38944026 DOI: 10.1016/j.yebeh.2024.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Status epilepticus (SE) is a medical and neurologic emergency that may lead to permanent brain damage, morbidity, or death. Animal models of SE are particularly important to study the pathophysiology of SE and mechanisms of SE resistance to antiseizure medications with the aim to develop new, more effective treatments. In addition to rodents (rats or mice), larger mammalian species such as dogs, pigs, and nonhuman primates are used. This short review describes and discusses the value and limitations of the most frequently used mammalian models of SE. Issues that are discussed include (1) differences between chemical and electrical SE models; (2) the role of genetic background and environment on SE in rodents; (3) the use of rodent models (a) to study the pathophysiology of SE and mechanisms of SE resistance; (b) to study developmental aspects of SE; (c) to study the efficacy of new treatments, including drug combinations, for refractory SE; (d) to study the long-term consequences of SE and identify biomarkers; (e) to develop treatments that prevent or modify epilepsy; (e) to study the pharmacology of spontaneous seizures; (4) the limitations of animal models of induced SE; and (5) the advantages (and limitations) of naturally (spontaneously) occurring SE in epileptic dogs and nonhuman primates. Overall, mammalian models of SE have significantly increased our understanding of the pathophysiology and drug resistance of SE and identified potential targets for new, more effective treatments. This paper was presented at the 9th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures held in April 2024.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
7
|
Correll CU, Tusconi M, Carta MG, Dursun SM. What Remains to Be Discovered in Schizophrenia Therapeutics: Contributions by Advancing the Molecular Mechanisms of Drugs for Psychosis and Schizophrenia. Biomolecules 2024; 14:906. [PMID: 39199294 PMCID: PMC11353083 DOI: 10.3390/biom14080906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 09/01/2024] Open
Abstract
Schizophrenia is a frequently debilitating and complex mental disorder affecting approximately 1% of the global population, characterized by symptoms such as hallucinations, delusions, disorganized thoughts and behaviors, cognitive dysfunction, and negative symptoms. Traditional treatment has centered on postsynaptic dopamine antagonists, commonly known as antipsychotic drugs, which aim to alleviate symptoms and improve functioning and the quality of life. Despite the availability of these medications, significant challenges remain in schizophrenia therapeutics, including incomplete symptom relief, treatment resistance, and medication side effects. This opinion article explores advancements in schizophrenia treatment, emphasizing molecular mechanisms, novel drug targets, and innovative delivery methods. One promising approach is novel strategies that target neural networks and circuits rather than single neurotransmitters, acknowledging the complexity of brain region interconnections involved in schizophrenia. Another promising approach is the development of biased agonists, which selectively activate specific signaling pathways downstream of receptors, offering potential for more precise pharmacological interventions with fewer side effects. The concept of molecular polypharmacy, where a single drug targets multiple molecular pathways, is exemplified by KarXT, a novel drug combining xanomeline and trospium to address both psychosis and cognitive dysfunction. This approach represents a comprehensive strategy for schizophrenia treatment, potentially improving outcomes for patients. In conclusion, advancing the molecular understanding of schizophrenia and exploring innovative therapeutic strategies hold promise for addressing the unmet needs in schizophrenia treatment, aiming for more effective and tailored interventions. Future research should focus on these novel approaches to achieve better clinical outcomes and improve the functional level and quality of life for individuals with schizophrenia.
Collapse
Affiliation(s)
- Christoph U. Correll
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY 10128, USA;
- Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Department of Child and Adolescent Psychiatry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Mauro Giovanni Carta
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
| | - Serdar M. Dursun
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2G5, Canada;
| |
Collapse
|
8
|
Kovlyagina I, Wierczeiko A, Todorov H, Jacobi E, Tevosian M, von Engelhardt J, Gerber S, Lutz B. Leveraging interindividual variability in threat conditioning of inbred mice to model trait anxiety. PLoS Biol 2024; 22:e3002642. [PMID: 38805548 PMCID: PMC11161093 DOI: 10.1371/journal.pbio.3002642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/07/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Trait anxiety is a major risk factor for stress-induced and anxiety disorders in humans. However, animal models accounting for the interindividual variability in stress vulnerability are largely lacking. Moreover, the pervasive bias of using mostly male animals in preclinical studies poorly reflects the increased prevalence of psychiatric disorders in women. Using the threat imminence continuum theory, we designed and validated an auditory aversive conditioning-based pipeline in both female and male mice. We operationalised trait anxiety by harnessing the naturally occurring variability of defensive freezing responses combined with a model-based clustering strategy. While sustained freezing during prolonged retrieval sessions was identified as an anxiety-endophenotype behavioral marker in both sexes, females were consistently associated with an increased freezing response. RNA-sequencing of CeA, BLA, ACC, and BNST revealed massive differences in phasic and sustained responders' transcriptomes, correlating with transcriptomic signatures of psychiatric disorders, particularly post-traumatic stress disorder (PTSD). Moreover, we detected significant alterations in the excitation/inhibition balance of principal neurons in the lateral amygdala. These findings provide compelling evidence that trait anxiety in inbred mice can be leveraged to develop translationally relevant preclinical models to investigate mechanisms of stress susceptibility in a sex-specific manner.
Collapse
Affiliation(s)
- Irina Kovlyagina
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Anna Wierczeiko
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hristo Todorov
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Eric Jacobi
- Institute of Pathophysiology, and Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Margarita Tevosian
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Jakob von Engelhardt
- Institute of Pathophysiology, and Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| |
Collapse
|
9
|
Vanneau T, Quiquempoix M, Erkel MC, Drogou C, Trignol A, Sauvet F, Léger D, Gomez-Merino D, Chennaoui M. Beneficial Effects of Photoperiod Lengthening on Sleep Characteristics and Mechanical Hyperalgesia in Injured Rats. eNeuro 2024; 11:ENEURO.0433-23.2023. [PMID: 38212115 PMCID: PMC10921263 DOI: 10.1523/eneuro.0433-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 01/13/2024] Open
Abstract
Sleep and muscle injury-related pain are in negative relationship, and sleep extension may be a favorable countermeasure. In response to muscle injury, an adaptive sleep response has been described in rats, characterized by an increase in total sleep time (TST) and nonrapid eye movement (NREM) sleep. This study examined the effects of photoperiod lengthening (a model of sleep prolongation in rats) on the sleep characteristics of muscle-injured rats and whether this lengthening could benefit injury-induced mechanical hyperalgesia using the Von Frey test. Switching from the conventional 12:12 light/dark (LD) photoperiod (light on: 08:00-20:00) to LD 16:8 (light extended to 24:00) gives rats an extra window of sleep. Our results show higher TST and NREM sleep times in LD 16:8 versus LD 12:12 injured rats during 4 h of light lengthening for 7 d postinjury, showing the efficiency of photoperiod lengthening to increase sleep time in injured rats. In addition, a cumulative effect with the adaptive sleep response to muscle injury occurred with higher TST and NREM sleep times in LD 16:8 injured versus noninjured rats during the dark period, reflecting the high need for sleep after the injury. Greater stability and higher relative delta power of NREM sleep during the extended light period were also observed in injured rats. Finally, the extended photoperiod limits the muscle injury-induced mechanical hyperalgesia for 13 d and allows faster recovery of the baseline mechanical threshold. This is associated with reduced pro-inflammatory cytokines levels in the hippocampus, a brain structure involved in pain processing.
Collapse
Affiliation(s)
- T Vanneau
- French Armed Forces Biomedical Research Institute (IRBA), Brétigny-sur-Orge 91223, France
- VIFASOM (URP 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université Paris Cité, Paris 75001, France
| | - M Quiquempoix
- French Armed Forces Biomedical Research Institute (IRBA), Brétigny-sur-Orge 91223, France
- VIFASOM (URP 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université Paris Cité, Paris 75001, France
| | - M-C Erkel
- French Armed Forces Biomedical Research Institute (IRBA), Brétigny-sur-Orge 91223, France
- VIFASOM (URP 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université Paris Cité, Paris 75001, France
| | - C Drogou
- French Armed Forces Biomedical Research Institute (IRBA), Brétigny-sur-Orge 91223, France
- VIFASOM (URP 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université Paris Cité, Paris 75001, France
| | - A Trignol
- French Armed Forces Biomedical Research Institute (IRBA), Brétigny-sur-Orge 91223, France
- VIFASOM (URP 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université Paris Cité, Paris 75001, France
| | - F Sauvet
- French Armed Forces Biomedical Research Institute (IRBA), Brétigny-sur-Orge 91223, France
- VIFASOM (URP 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université Paris Cité, Paris 75001, France
| | - D Léger
- VIFASOM (URP 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université Paris Cité, Paris 75001, France
- APHP, APHP-Centre Université de Paris, Hôtel-Dieu, Centre du Sommeil et de la Vigilance, Paris 75001, France
| | - D Gomez-Merino
- French Armed Forces Biomedical Research Institute (IRBA), Brétigny-sur-Orge 91223, France
- VIFASOM (URP 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université Paris Cité, Paris 75001, France
| | - M Chennaoui
- French Armed Forces Biomedical Research Institute (IRBA), Brétigny-sur-Orge 91223, France
- VIFASOM (URP 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université Paris Cité, Paris 75001, France
| |
Collapse
|
10
|
Nigri M, Bramati G, Steiner AC, Wolfer DP. Appetitively motivated tasks in the IntelliCage reveal a higher motivational cost of spatial learning in male than female mice. Front Behav Neurosci 2024; 18:1270159. [PMID: 38487348 PMCID: PMC10938600 DOI: 10.3389/fnbeh.2024.1270159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
The IntelliCage (IC) permits the assessment of the behavior and learning abilities of mice in a social home cage context. To overcome water deprivation as an aversive driver of learning, we developed protocols in which spatial learning is motivated appetitively by the preference of mice for sweetened over plain water. While plain water is available at all times, only correct task responses give access to sweetened water rewards. Under these conditions, C57BL/6J mice successfully mastered a corner preference task with the reversal and also learned a more difficult time-place task with reversal. However, the rate of responding to sweetened water decreased strongly with increasing task difficulty, indicating that learning challenges and reduced success in obtaining rewards decreased the motivation of the animals to seek sweetened water. While C57BL/6J mice of both sexes showed similar initial taste preferences and learned similarly well in simple learning tasks, the rate of responding to sweetened water and performance dropped more rapidly in male than in female mice in response to increasing learning challenges. Taken together, our data indicate that male mice can have a disadvantage relative to females in mastering difficult, appetitively motivated learning tasks, likely due to sex differences in value-based decision-making.
Collapse
Affiliation(s)
- Martina Nigri
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
- Institute of Anatomy, Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Giulia Bramati
- Institute of Anatomy, Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Adrian C. Steiner
- Institute of Anatomy, Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - David P. Wolfer
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
- Institute of Anatomy, Faculty of Medicine, University of Zürich, Zürich, Switzerland
| |
Collapse
|
11
|
Largeau B, Bergeron S, Auger F, Salmon Gandonnière C, Jonville-Béra AP, Ehrmann S, Gautier S, Bordet R. Experimental Models of Posterior Reversible Encephalopathy Syndrome: A Review From Pathophysiology to Therapeutic Targets. Stroke 2024; 55:484-493. [PMID: 38126184 DOI: 10.1161/strokeaha.123.044533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Posterior reversible encephalopathy syndrome (PRES) is a clinical and radiological entity characterized by nonspecific symptomatology (eg, headache, visual disturbances, encephalopathy, and seizures) and classically cortical and subcortical vasogenic edema predominantly affecting the parietooccipital region. PRES etiologies are usually dichotomized into toxic PRES (eg, antineoplastic drugs, illicit drugs) and clinical condition-associated PRES (eg, acute hypertension, dysimmune disorders). Although the pathophysiology of PRES remains elusive, 2 main pathogenic hypotheses have been suggested: cerebral hyperperfusion due to acute hypertension and cerebral hypoperfusion related to endothelial dysfunction. Research into the pathogenesis of PRES has emerged through the development of animal models in the last decade. The motivation for developing a suitable PRES model is 2-fold: to fill in knowledge gaps of the pathophysiological mechanisms involved, and to open new perspectives for clinical assessment of pharmacological targets to improve therapeutic management of PRES. All current models of PRES have a hypertensive background, on which other triggers (acute hypertension, inflammatory, drug toxicity) have been added to address specific facets of PRES (eg, seizures). The initial model consisted in inducing a reduced uterine perfusion pressure that mimics preeclampsia, a leading cause of PRES. More recently, a model of stroke-prone spontaneously hypertensive rats on high-salt diet, originally developed for hypertensive small vessel disease and vascular cognitive impairment, has been studied in PRES. This review aims to discuss, depending on the research objective, the benefits and limitations of current experimental approaches and thus to define the desirable characteristics for studying the pathophysiology of PRES and developing new therapies.
Collapse
Affiliation(s)
- Bérenger Largeau
- CHRU de Tours, Service de Pharmacosurveillance, Centre Régional de Pharmacovigilance Centre-Val de Loire, Tours, France (B.L.)
| | - Sandrine Bergeron
- Université de Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille Neuroscience & Cognition, Unité Mixte de Recherche (UMR) 1172, équipe Troubles Cognitifs Dégénératifs et Vasculaires, Centre Hospitalier Universitaire (CHU) de Lille, Service de Pharmacologie Médicale, Centre Régional de Pharmacovigilance, France (S.B., S.G., R.B.)
| | - Florent Auger
- Université de Lille, Centre National de la Recherche Scientifique (CNRS), INSERM, CHU Lille, Institut Pasteur de Lille, US 41, Unités Mixtes de Service 2014, Plateformes Lilloises en Biologie et Santé, Lille, France (F.A.)
| | - Charlotte Salmon Gandonnière
- CHRU de Tours, Service de Médecine Intensive Réanimation, réseau CRICS-TRIGGERSEP F-CRIN (Clinical Research in Intensive Care Sepsis Trial Group for Global Evaluation Research in Sepsis, a French Clinical Research Infrastructure Network) Research Network, Tours, France (C.S.G.)
| | - Annie-Pierre Jonville-Béra
- Université de Tours, Université de Nantes, INSERM, Methods in Patients-Centered Outcomes and Health Research (SPHERE), UMR 1246, CHRU de Tours, Service de Pharmacosurveillance, Centre Régional de Pharmacovigilance Centre-Val de Loire, Tours, France (A.-P.J.-B.)
| | - Stephan Ehrmann
- Université de Tours, INSERM, Centre d'étude des Pathologies Respiratoires (CEPR), UMR 1100, CHRU de Tours, Service de Médecine Intensive Réanimation, CIC 1415, réseau CRICS-TRIGGERSEP F-CRIN Research Network, Tours, France (S.E.)
| | - Sophie Gautier
- Université de Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille Neuroscience & Cognition, Unité Mixte de Recherche (UMR) 1172, équipe Troubles Cognitifs Dégénératifs et Vasculaires, Centre Hospitalier Universitaire (CHU) de Lille, Service de Pharmacologie Médicale, Centre Régional de Pharmacovigilance, France (S.B., S.G., R.B.)
| | - Régis Bordet
- Université de Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille Neuroscience & Cognition, Unité Mixte de Recherche (UMR) 1172, équipe Troubles Cognitifs Dégénératifs et Vasculaires, Centre Hospitalier Universitaire (CHU) de Lille, Service de Pharmacologie Médicale, Centre Régional de Pharmacovigilance, France (S.B., S.G., R.B.)
| |
Collapse
|
12
|
Sitnikova E. Behavioral and Cognitive Comorbidities in Genetic Rat Models of Absence Epilepsy (Focusing on GAERS and WAG/Rij Rats). Biomedicines 2024; 12:122. [PMID: 38255227 PMCID: PMC10812980 DOI: 10.3390/biomedicines12010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Absence epilepsy is a non-convulsive type of epilepsy characterized by the sudden loss of awareness. It is associated with thalamo-cortical impairment, which may cause neuropsychiatric and neurocognitive problems. Rats with spontaneous absence-like seizures are widely used as in vivo genetic models for absence epilepsy; they display behavioral and cognitive problems similar to epilepsy in humans, such as genetic absence epilepsy rats from Strasbourg (GAERS) and Wistar Albino rats from Rijswijk (WAG/Rij). Depression- and anxiety-like behaviors were apparent in GAERS, but no anxiety and depression-like symptoms were found in WAG/Rij rats. Deficits in executive functions and memory impairment in WAG/Rij rats, i.e., cognitive comorbidities, were linked to the severity of epilepsy. Wistar rats can develop spontaneous seizures in adulthood, so caution is advised when using them as a control epileptic strain. This review discusses challenges in the field, such as putative high emotionality in genetically prone rats, sex differences in the expression of cognitive comorbidities, and predictors of cognitive problems or biomarkers of cognitive comorbidities in absence epilepsy, as well as the concept of "the cognitive thalamus". The current knowledge of behavioral and cognitive comorbidities in drug-naive rats with spontaneous absence epilepsy is beneficial for understanding the pathophysiology of absence epilepsy, and for finding new treatment strategies.
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow 117485, Russia
| |
Collapse
|
13
|
Grosu ȘA, Chirilă M, Rad F, Enache A, Handra CM, Ghiță I. The Effects of Four Compounds That Act on the Dopaminergic and Serotonergic Systems on Working Memory in Animal Studies; A Literature Review. Brain Sci 2023; 13:brainsci13040546. [PMID: 37190512 DOI: 10.3390/brainsci13040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The dopaminergic and serotonergic systems are two of the most important neuronal pathways in the human brain. Almost all psychotropic medications impact at least one neurotransmitter system. As a result, investigating how they affect memory could yield valuable insights into potential therapeutic applications or unanticipated side effects. The aim of this literature review was to collect literature data from animal studies regarding the effects on memory of four drugs known to act on the serotonergic and dopaminergic systems. The studies included in this review were identified in the PubMed database using selection criteria from the PRISMA protocol. We analyzed 29 articles investigating one of four different dopaminergic or serotonergic compounds. Studies conducted on bromocriptine have shown that stimulating D2 receptors may enhance working memory in rodents, whereas inhibiting these receptors could have the opposite effect, reducing working memory performance. The effects of serotonin on working memory are not clearly established as studies on fluoxetine and ketanserin have yielded conflicting results. Further studies with better-designed methodologies are necessary to explore the impact of compounds that affect both the dopaminergic and serotonergic systems on working memory.
Collapse
|
14
|
Galvano E, Pandit H, Sepulveda J, Ng CAS, Becher MK, Mandelblatt JS, Van Dyk K, Rebeck GW. Behavioral and transcriptomic effects of the cancer treatment tamoxifen in mice. Front Neurosci 2023; 17:1068334. [PMID: 36845433 PMCID: PMC9951777 DOI: 10.3389/fnins.2023.1068334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Tamoxifen is a common treatment for estrogen receptor-positive breast cancer. While tamoxifen treatment is generally accepted as safe, there are concerns about adverse effects on cognition. Methods We used a mouse model of chronic tamoxifen exposure to examine the effects of tamoxifen on the brain. Female C57/BL6 mice were exposed to tamoxifen or vehicle control for six weeks; brains of 15 mice were analyzed for tamoxifen levels and transcriptomic changes, and an additional 32 mice were analyzed through a battery of behavioral tests. Results Tamoxifen and its metabolite 4-OH-tamoxifen were found at higher levels in the brain than in the plasma, demonstrating the facile entry of tamoxifen into the CNS. Behaviorally, tamoxifen-exposed mice showed no impairment in assays related to general health, exploration, motor function, sensorimotor gating, and spatial learning. Tamoxifen-treated mice showed a significantly increased freezing response in a fear conditioning paradigm, but no effects on anxiety measures in the absence of stressors. RNA sequencing analysis of whole hippocampi showed tamoxifen-induced reductions in gene pathways related to microtubule function, synapse regulation, and neurogenesis. Discussion These findings of the effects of tamoxifen exposure on fear conditioning and on gene expression related to neuronal connectivity suggest that there may be CNS side effects of this common breast cancer treatment.
Collapse
Affiliation(s)
- Elena Galvano
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Harshul Pandit
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Jordy Sepulveda
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Christi Anne S. Ng
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Melanie K. Becher
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Jeanne S. Mandelblatt
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Kathleen Van Dyk
- Department of Psychiatry, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, United States
| | - G. William Rebeck
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
15
|
Rosso M, Wirz R, Loretan AV, Sutter NA, Pereira da Cunha CT, Jaric I, Würbel H, Voelkl B. Reliability of common mouse behavioural tests of anxiety: A systematic review and meta-analysis on the effects of anxiolytics. Neurosci Biobehav Rev 2022; 143:104928. [DOI: 10.1016/j.neubiorev.2022.104928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
16
|
How Well Do Rodent Models of Parkinson's Disease Recapitulate Early Non-Motor Phenotypes? A Systematic Review. Biomedicines 2022; 10:biomedicines10123026. [PMID: 36551782 PMCID: PMC9775565 DOI: 10.3390/biomedicines10123026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The prodromal phase of Parkinson's disease (PD) is characterised by many non-motor symptoms, and these have recently been posited to be predictive of later diagnosis. Genetic rodent models can develop non-motor phenotypes, providing tools to identify mechanisms underlying the early development of PD. However, it is not yet clear how reproducible non-motor phenotypes are amongst genetic PD rodent models, whether phenotypes are age-dependent, and the translatability of these phenotypes has yet to be explored. A systematic literature search was conducted on studies using genetic PD rodent models to investigate non-motor phenotypes; cognition, anxiety/depressive-like behaviour, gastrointestinal (GI) function, olfaction, circadian rhythm, cardiovascular and urinary function. In total, 51 genetic models of PD across 150 studies were identified. We found outcomes of most phenotypes were inconclusive due to inadequate studies, assessment at different ages, or variation in experimental and environmental factors. GI dysfunction was the most reproducible phenotype across all genetic rodent models. The mouse model harbouring mutant A53T, and the wild-type hα-syn overexpression (OE) model recapitulated the majority of phenotypes, albeit did not reliably produce concurrent motor deficits and nigral cell loss. Furthermore, animal models displayed different phenotypic profiles, reflecting the distinct genetic risk factors and heterogeneity of disease mechanisms. Currently, the inconsistent phenotypes within rodent models pose a challenge in the translatability and usefulness for further biomechanistic investigations. This review highlights opportunities to improve phenotype reproducibility with an emphasis on phenotypic assay choice and robust experimental design.
Collapse
|
17
|
van den Berg H. Evaluating the validity of animal models of mental disorder: from modeling syndromes to modeling endophenotypes. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2022; 44:59. [PMID: 36357538 PMCID: PMC9649475 DOI: 10.1007/s40656-022-00537-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
This paper provides a historical analysis of a shift in the way animal models of mental disorders were conceptualized: the shift from the mid-twentieth-century view, adopted by some, that animal models model syndromes classified in manuals such as the Diagnostic and Statistical Manual of Mental Disorders (DSM), to the later widespread view that animal models model component parts of psychiatric syndromes. I argue that in the middle of the twentieth century the attempt to maximize the face validity of animal models sometimes led to the pursuit of the ideal of an animal model that represented a behaviorally defined psychiatric syndrome as described in manuals such as the DSM. I show how developments within psychiatric genetics and related criticism of the DSM in the 1990s and 2000s led to the rejection of this ideal and how researchers in the first decade of the twenty-first century came to believe that animal models of mental disorders should model component parts of mental disorders, adopting a so-called endophenotype approach.
Collapse
Affiliation(s)
- Hein van den Berg
- Department of Philosophy, Institute for Logic, Language and Computation, University of Amsterdam, Postbus 94201 1090 GE, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Atehortua Martinez LA, Curis E, Mekdad N, Larrieu C, Courtin C, Jourdren L, Blugeon C, Laplanche JL, Megarbane B, Marie-Claire C, Benturquia N. Individual differences in cocaine-induced conditioned place preference in male rats: Behavioral and transcriptomic evidence. J Psychopharmacol 2022; 36:1161-1175. [PMID: 36121009 PMCID: PMC9548661 DOI: 10.1177/02698811221123047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Substance use disorder emerges in a small proportion of drug users and has the characteristics of a chronic relapsing pathology. AIMS Our study aimed to demonstrate and characterize the variability in the expression of the rewarding effects of cocaine in the conditioned place preference (CPP) paradigm. METHODS A cocaine-CPP paradigm in male Sprague-Dawley rats with an extinction period of 12 days and reinstatement was conducted. A statistical model was developed to distinguish rats expressing or not a cocaine-induced place preference. RESULTS Two groups of rats were identified: rats that did express rewarding effects (CPP expression (CPPE), score >102 s) and rats that did not (no CPP expression (nCPPE), score between -85 and 59 s). These two groups did not show significant differences in a battery of behavioral tests. To identify differentially expressed genes in the CPPE and nCPPE groups, a whole-transcriptome ribonucleic acid-sequencing analysis was performed in the nucleus accumbens (NAc) 24 h after the CPP test. Four immediate early genes (Fos, Egr2, Nr4a1, and Zbtb37) were differentially expressed in the NAc of CPPE rats after expression of CPP. Variability in cocaine-induced place preference persisted in the CPPE and nCPPE groups after the extinction and reinstatement phases. Transcriptomic differences observed after reinstatement were distinct from those observed immediately after expression of CPP. CONCLUSION These new findings provide insights into the identification of mechanisms underlying interindividual variability in the response to cocaine's rewarding effects.
Collapse
Affiliation(s)
- Luisa Alessandra Atehortua Martinez
- Institut National de la Santé et de la Recherche Médicale UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
| | - Emmanuel Curis
- UR 7537 BioSTM, Université Paris Cité, Paris, France
- Laboratoire d’Hématologie, Hôpital Lariboisière, APHP, Paris, France
| | - Nawel Mekdad
- Institut National de la Santé et de la Recherche Médicale UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
| | - Claire Larrieu
- Institut National de la Santé et de la Recherche Médicale UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
| | - Cindie Courtin
- Institut National de la Santé et de la Recherche Médicale UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
| | - Laurent Jourdren
- Genomic Facility, Institut de Biologie de l’École Normale Supérieure, École Normale Supérieure, Centre National pour la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, PSL Research University, Paris, France
| | - Corinne Blugeon
- Genomic Facility, Institut de Biologie de l’École Normale Supérieure, École Normale Supérieure, Centre National pour la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, PSL Research University, Paris, France
| | - Jean-Louis Laplanche
- Institut National de la Santé et de la Recherche Médicale UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
| | - Bruno Megarbane
- Institut National de la Santé et de la Recherche Médicale UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
| | - Cynthia Marie-Claire
- Institut National de la Santé et de la Recherche Médicale UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
| | - Nadia Benturquia
- Institut National de la Santé et de la Recherche Médicale UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
| |
Collapse
|
19
|
Ahnaou A, Whim D. REM sleep behavior and olfactory dysfunction: improving the utility and translation of animal models in the search for neuroprotective therapies for Parkinson's disease. Neurosci Biobehav Rev 2022; 143:104897. [PMID: 36183864 DOI: 10.1016/j.neubiorev.2022.104897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is a heterogeneous neurodegenerative disease that belongs to the family of synucleiopathies, varying in age, symptoms and progression. Hallmark of the disease is the accumulation of misfolded α-synuclein protein (α-Syn) in neuronal and non-neuronal brain cells. In past decades, diagnosis and treatment of PD has focused on motor deficits, which for the clinical endpoint, have contributed to the prevalence of deficits in the nigrostriatal dopaminergic system and animal models related to motor behavior to study disease. However, clinical trials have failed to translate results from animal models into effective treatments. PD as a multisystem disorder therefore requires additional assessment of motor and non-motor symptoms. Braak's staging revealed early α-Syn pathology in pontine brainstem and olfactory circuits controlling rapid eye movement sleep behavior disorder (RBD) and olfaction, respectively. Recent converging evidence from multicenter clinical studies supports that RBD is the most important risk factor for prodromal PD and the conduct of neuroprotective therapeutic trials in RBD-enriched cohorts has been recommended. Animal models of RBD and olfaction dysfunction can aid to fill the gap in translational research.
Collapse
Affiliation(s)
- A Ahnaou
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV. Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - Drinkenburg Whim
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV. Turnhoutseweg 30, B-2340 Beerse, Belgium
| |
Collapse
|
20
|
Evaluation of Rhesus Macaque Models for Cerebral Palsy. Brain Sci 2022; 12:brainsci12091243. [PMID: 36138978 PMCID: PMC9496883 DOI: 10.3390/brainsci12091243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Animal models play a central role in all areas of biomedical research. The similarities in anatomical structure and physiological characteristics shared by non-human primates (NHPs) and humans make NHPs ideal models with which to study human disorders, such as cerebral palsy (CP). However, the methodologies for systematically evaluating NHP models of CP have rarely been assessed, despite the long history of using NHP models to understand CP. Such models should be evaluated using multidisciplinary approaches prior to being used to research the diagnosis and treatment of CP. In this study, we evaluated rhesus macaque CP models established by partial resection of the motor cortex and intrathecal injection of bilirubin. Abnormal posture, motor dysfunction, gross and fine motor behavior, and muscular tension were evaluated, and changes in the cerebral cortex and basal ganglia were observed using 9.4 T magnetic resonance imaging. The results clearly demonstrated the utility of the established evaluation methodology for assessing CP models. This model evaluation methodology may guide researchers through the model building process.
Collapse
|
21
|
Petković A, Chaudhury D. Encore: Behavioural animal models of stress, depression and mood disorders. Front Behav Neurosci 2022; 16:931964. [PMID: 36004305 PMCID: PMC9395206 DOI: 10.3389/fnbeh.2022.931964] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Animal studies over the past two decades have led to extensive advances in our understanding of pathogenesis of depressive and mood disorders. Among these, rodent behavioural models proved to be of highest informative value. Here, we present a comprehensive overview of the most popular behavioural models with respect to physiological, circuit, and molecular biological correlates. Behavioural stress paradigms and behavioural tests are assessed in terms of outcomes, strengths, weaknesses, and translational value, especially in the domain of pharmacological studies.
Collapse
Affiliation(s)
| | - Dipesh Chaudhury
- Laboratory of Neural Systems and Behaviour, Department of Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
22
|
Lin X, Wang Q, He Z, Huang L, Wen C, Zhou D. Evaluating the Similarity of Different Collagen-Induced Arthritis Models to the Pre-Clinical Phase of RA in Female Rats. Inflammation 2022; 45:1559-1567. [PMID: 35260952 DOI: 10.1007/s10753-022-01641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 11/24/2022]
Abstract
Since the development of RA is a multistep process, it is critical to take action to prevent RA in the pre-clinical phase. Animal models are currently one of the important methods to study RA, but there are very few animal models for studying the pre-clinical phase of RA (Pre-RA). This study aimed to evaluate the similarity of different collagen-induced arthritis models to Pre-RA in rats. Three types of collagen-induced arthritis (CIA) were as follows: (i) standard collagen-induced group (Std-CIA), injected with 200 μg type II collagen at day 0 and 100 μg type II collagen at day 7; (ii) single collagen-induced group (Mono-CIA), injected with 200 μg type II collagen at day 0; (iii) half-dose collagen-induced group (Half-CIA), injected with 100 μg type II collagen at day 0 and 50 μg type II collagen at day 7. Arthritis score, hind paw swelling, serum antibodies, and inflammatory cytokines were measured every 7 days. Gut microbiota analyses were performed on days 0, 11, 21, 28, and 35. Pain threshold measurement, digital radiography, and joint pathology were also assessed. Both Std-CIA and Mono-CIA could successfully cause RA symptoms, including joint swelling and bone erosion, Half-CIA induced only mild swelling in rats. Serum autoantibodies (anti-CCP and anti-CoII) showed no difference among the three types of CIA models, and so did the pain threshold at day 42. In addition, the pathological changes of joint tissues in the Mono-CIA group were the slightest among the collagen-immunized groups. Gut microbiota analysis demonstrated that Half-CIA could impose similar effects on upregulating genus Prevotella as Std-CIA, but Mono-CIA was weaker than them in rats. According to the characteristics of pre-RA, the Half-CIA model is the best suitable animal model for pre-RA among three types of CIA models in rats and can be a valuable model for pre-RA research.
Collapse
Affiliation(s)
- Xiaoying Lin
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qiao Wang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhixing He
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lin Huang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chengping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Donghai Zhou
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|
23
|
Nowinski CJ, Bureau SC, Buckland ME, Curtis MA, Daneshvar DH, Faull RLM, Grinberg LT, Hill-Yardin EL, Murray HC, Pearce AJ, Suter CM, White AJ, Finkel AM, Cantu RC. Applying the Bradford Hill Criteria for Causation to Repetitive Head Impacts and Chronic Traumatic Encephalopathy. Front Neurol 2022; 13:938163. [PMID: 35937061 PMCID: PMC9355594 DOI: 10.3389/fneur.2022.938163] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with a history of repetitive head impacts (RHI). CTE was described in boxers as early as the 1920s and by the 1950s it was widely accepted that hits to the head caused some boxers to become "punch drunk." However, the recent discovery of CTE in American and Australian-rules football, soccer, rugby, ice hockey, and other sports has resulted in renewed debate on whether the relationship between RHI and CTE is causal. Identifying the strength of the evidential relationship between CTE and RHI has implications for public health and medico-legal issues. From a public health perspective, environmentally caused diseases can be mitigated or prevented. Medico-legally, millions of children are exposed to RHI through sports participation; this demographic is too young to legally consent to any potential long-term risks associated with this exposure. To better understand the strength of evidence underlying the possible causal relationship between RHI and CTE, we examined the medical literature through the Bradford Hill criteria for causation. The Bradford Hill criteria, first proposed in 1965 by Sir Austin Bradford Hill, provide a framework to determine if one can justifiably move from an observed association to a verdict of causation. The Bradford Hill criteria include nine viewpoints by which to evaluate human epidemiologic evidence to determine if causation can be deduced: strength, consistency, specificity, temporality, biological gradient, plausibility, coherence, experiment, and analogy. We explored the question of causation by evaluating studies on CTE as it relates to RHI exposure. Through this lens, we found convincing evidence of a causal relationship between RHI and CTE, as well as an absence of evidence-based alternative explanations. By organizing the CTE literature through this framework, we hope to advance the global conversation on CTE mitigation efforts.
Collapse
Affiliation(s)
- Christopher J. Nowinski
- Concussion Legacy Foundation, Boston, MA, United States,*Correspondence: Christopher J. Nowinski
| | | | - Michael E. Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Maurice A. Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Daniel H. Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States,Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, United States,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Richard L. M. Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Lea T. Grinberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States,Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States,Department of Pathology, University of Sao Paulo Medical School, São Paulo, Brazil,Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| | - Elisa L. Hill-Yardin
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia,Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Helen C. Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Alan J. Pearce
- College of Science, Health, and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Catherine M. Suter
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Adam J. White
- Department of Sport, Health Science, and Social Work, Oxford Brookes University, Oxford, United Kingdom,Concussion Legacy Foundation UK, Cheltenham, United Kingdom
| | - Adam M. Finkel
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Robert C. Cantu
- Concussion Legacy Foundation, Boston, MA, United States,Department of Neurology, Boston University School of Medicine, Boston, MA, United States,Department of Neurosurgery, Emerson Hospital, Concord, MA, United States
| |
Collapse
|
24
|
Baratta AM, Brandner AJ, Plasil SL, Rice RC, Farris SP. Advancements in Genomic and Behavioral Neuroscience Analysis for the Study of Normal and Pathological Brain Function. Front Mol Neurosci 2022; 15:905328. [PMID: 35813067 PMCID: PMC9259865 DOI: 10.3389/fnmol.2022.905328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Psychiatric and neurological disorders are influenced by an undetermined number of genes and molecular pathways that may differ among afflicted individuals. Functionally testing and characterizing biological systems is essential to discovering the interrelationship among candidate genes and understanding the neurobiology of behavior. Recent advancements in genetic, genomic, and behavioral approaches are revolutionizing modern neuroscience. Although these tools are often used separately for independent experiments, combining these areas of research will provide a viable avenue for multidimensional studies on the brain. Herein we will briefly review some of the available tools that have been developed for characterizing novel cellular and animal models of human disease. A major challenge will be openly sharing resources and datasets to effectively integrate seemingly disparate types of information and how these systems impact human disorders. However, as these emerging technologies continue to be developed and adopted by the scientific community, they will bring about unprecedented opportunities in our understanding of molecular neuroscience and behavior.
Collapse
Affiliation(s)
- Annalisa M. Baratta
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Adam J. Brandner
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sonja L. Plasil
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rachel C. Rice
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sean P. Farris
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
25
|
Mehra S, Ul Ahsan A, Seth E, Chopra M. Critical Evaluation of Valproic Acid-Induced Rodent Models of Autism: Current and Future Perspectives. J Mol Neurosci 2022; 72:1259-1273. [DOI: 10.1007/s12031-022-02033-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/21/2022] [Indexed: 11/29/2022]
|
26
|
How Can Animal Models Inform the Understanding of Cognitive Inflexibility in Patients with Anorexia Nervosa? J Clin Med 2022; 11:jcm11092594. [PMID: 35566718 PMCID: PMC9105411 DOI: 10.3390/jcm11092594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 02/04/2023] Open
Abstract
Deficits in cognitive flexibility are consistently seen in patients with anorexia nervosa (AN). This type of cognitive impairment is thought to be associated with the persistence of AN because it leads to deeply ingrained patterns of thought and behaviour that are highly resistant to change. Neurobiological drivers of cognitive inflexibility have some commonalities with the abnormal brain functional outcomes described in patients with AN, including disrupted prefrontal cortical function, and dysregulated dopamine and serotonin neurotransmitter systems. The activity-based anorexia (ABA) model recapitulates the key features of AN in human patients, including rapid weight loss caused by self-starvation and hyperactivity, supporting its application in investigating the cognitive and neurobiological causes of pathological weight loss. The aim of this review is to describe the relationship between AN, neural function and cognitive flexibility in human patients, and to highlight how new techniques in behavioural neuroscience can improve the utility of animal models of AN to inform the development of novel therapeutics.
Collapse
|
27
|
Soto-Montenegro ML, García-Vázquez V, Lamanna-Rama N, López-Montoya G, Desco M, Ambrosio E. Neuroimaging reveals distinct brain glucose metabolism patterns associated with morphine consumption in Lewis and Fischer 344 rat strains. Sci Rep 2022; 12:4643. [PMID: 35301397 PMCID: PMC8931060 DOI: 10.1038/s41598-022-08698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/08/2022] [Indexed: 11/14/2022] Open
Abstract
Vulnerability to addiction may be given by the individual's risk of developing an addiction during their lifetime. A challenge in the neurobiology of drug addiction is understanding why some people become addicted to drugs. Here, we used positron emission tomography (PET) and statistical parametric mapping (SPM) to evaluate changes in brain glucose metabolism in response to chronic morphine self-administration (MSA) in two rat strains with different vulnerability to drug abuse, Lewis (LEW) and Fischer 344 (F344). Four groups of animals were trained to self-administer morphine or saline for 15 days. 2-deoxy-2-[18F]-fluoro-d-glucose (FDG)-PET studies were performed on the last day of MSA (acquisition phase) and after 15 days of withdrawal. PET data were analyzed using SPM12. LEW-animals self-administered more morphine injections per session than F344-animals. We found significant brain metabolic differences between LEW and F344 strains in the cortex, hypothalamus, brainstem, and cerebellum. In addition, the different brain metabolic patterns observed after the MSA study between these rat strains indicate differences in the efficiency of neural substrates to translate the drug effects, which could explain the differences in predisposition to morphine abuse between one individual and another. These findings have important implications for the use of these rat strains in translational morphine and opiate research.
Collapse
Affiliation(s)
- Mª Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,CIBER de Salud Mental (CIBERSAM), Madrid, Spain. .,Laboratorio de Imagen, Medicina Experimental, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007, Madrid, Spain.
| | | | - Nicolás Lamanna-Rama
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Bioingeniería E Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Gonzalo López-Montoya
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Psicobiología, Facultad de Psicología, Universidad de Educación Nacional a Distancia (UNED), Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,CIBER de Salud Mental (CIBERSAM), Madrid, Spain. .,Departamento de Bioingeniería E Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain. .,Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain. .,Laboratorio de Imagen, Medicina Experimental, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007, Madrid, Spain.
| | - Emilio Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, Universidad de Educación Nacional a Distancia (UNED), Madrid, Spain. .,Laboratorio de Imagen, Medicina Experimental, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007, Madrid, Spain.
| |
Collapse
|
28
|
de Alencar MVOB, Islam MT, dos Reis AC, de Oliveira Santos JV, Nunes AMV, da Silva FCC, da Conceição Machado K, de Castro e Sousa JM, Reiner Ž, Martorell M, Fagoonee S, Sharifi-Rad J, de Carvalho Melo-Cavalcante AA. Oxidative stress mediated cytogenotoxicological effects of phytol in wistar albino rats. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00628-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Leite-Almeida H, Castelhano-Carlos MJ, Sousa N. New Horizons for Phenotyping Behavior in Rodents: The Example of Depressive-Like Behavior. Front Behav Neurosci 2022; 15:811987. [PMID: 35069144 PMCID: PMC8766962 DOI: 10.3389/fnbeh.2021.811987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/15/2021] [Indexed: 01/08/2023] Open
Abstract
The evolution of the field of behavioral neuroscience is significantly dependent on innovative disruption triggered by our ability to model and phenotype animal models of neuropsychiatric disorders. The ability to adequately elicit and measure behavioral parameters are the fundaments on which the behavioral neuroscience community establishes the pathophysiological mechanisms of neuropsychiatric disorders as well as contributes to the development of treatment strategies for those conditions. Herein, we review how mood disorders, in particular depression, are currently modeled in rodents, focusing on the limitations of these models and particularly on the analyses of the data obtained with different behavioral tests. Finally, we propose the use of new paradigms to study behavior using multidimensional strategies that better encompasses the complexity of psychiatric conditions, namely depression; these paradigms provide holistic phenotyping that is applicable to other conditions, thus promoting the emergence of novel findings that will leverage this field.
Collapse
Affiliation(s)
- Hugo Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center—Braga, Braga, Portugal
| | - Magda J. Castelhano-Carlos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center—Braga, Braga, Portugal
- *Correspondence: Nuno Sousa,
| |
Collapse
|
30
|
Ray SK, Mukherjee S. Clinical Practice of Umbilical Cord Blood Stem Cells in Transplantation and Regenerative Medicine - Prodigious Promise for Imminent Times. Recent Pat Biotechnol 2021; 16:16-34. [PMID: 34702158 DOI: 10.2174/1872208315666211026103227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/22/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022]
Abstract
The umbilical cord blood is usually disposed of as an unwanted material after parturition; however, today, it is viewed as a regenerative medication so as to create the organ tissues. This cord blood gathered from the umbilical cord is made up of mesenchymal stem cells, hematopoietic stem cells, and multipotent non-hematopoietic stem cells having many therapeutic effects as these stem cells are utilized to treat malignancies, hematological ailments, inborn metabolic problem, and immune deficiencies. Presently, numerous clinical applications for human umbilical cord blood inferred stem cells, as stem cell treatment initiate new research. These cells are showing such a boon to stem cell treatment; it is nevertheless characteristic that the prospect of conservation of umbilical cord blood is gaining impetus. Current research works have demonstrated that about 80 diseases, including cancer, can be treated or relieved utilizing umbilical cord blood stem cells, and every year, many transplants have been effectively done around the world. However, in terms of factors, including patient selection, cell preparation, dosing, and delivery process, the treatment procedure for therapy with minimally manipulated stem cells can be patented. It is also worth thinking about how this patent could affect cord blood banks. Meanwhile, the utilization of cord blood cells is controversial and adult-derived cells may not be as successful, so numerous clinicians have begun working with stem cells that are acquired from umbilical cord blood. This review epitomizes a change in outlook from what has been completed with umbilical cord blood cell research and cord blood banking on the grounds that cord blood cells do not require much in the method of handling for cryopreservation or for transplantation in regenerative medicine.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya Pradesh-462020. 0
| |
Collapse
|
31
|
Abstract
BACKGROUND Animal models are critical to improve our understanding of the neuronal mechanisms underlying nicotine withdrawal. Nicotine dependence in rodents can be established by repeated nicotine injections, chronic nicotine infusion via osmotic minipumps, oral nicotine intake, tobacco smoke exposure, nicotine vapor exposure, and e-cigarette aerosol exposure. The time course of nicotine withdrawal symptoms associated with these methods has not been reviewed in the literature. AIM The goal of this review is to discuss nicotine withdrawal symptoms associated with the cessation of nicotine, tobacco smoke, nicotine vapor, and e-cigarette aerosol exposure in rats and mice. Furthermore, age and sex differences in nicotine withdrawal symptoms are reviewed. RESULTS Cessation of nicotine, tobacco smoke, nicotine vapor, and e-cigarette aerosol exposure leads to nicotine withdrawal symptoms such as somatic withdrawal signs, changes in locomotor activity, anxiety- and depressive-like behavior, learning and memory deficits, attention deficits, hyperalgesia, and dysphoria. These withdrawal symptoms are most pronounced within the first week after cessation of nicotine exposure. Anxiety- and depressive-like behavior, and deficits in learning and memory may persist for several months. Adolescent (4-6 weeks old) rats and mice display fewer nicotine withdrawal symptoms than adults (>8 weeks old). In adult rats and mice, females show fewer nicotine withdrawal symptoms than males. The smoking cessation drugs bupropion and varenicline reduce nicotine withdrawal symptoms in rodents. CONCLUSION The nicotine withdrawal symptoms that are observed in rodents are similar to those observed in humans. Tobacco smoke and e-cigarette aerosol contain chemicals and added flavors that enhance the reinforcing properties of nicotine. Therefore, more valid animal models of tobacco and e-cigarette use need to be developed by using tobacco smoke and e-cigarette aerosol exposure methods to induce dependence.
Collapse
Affiliation(s)
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, USA
| | | | - Ryann Wilson
- Department of Psychiatry, University of Florida, Gainesville, USA
| | - Vijayapandi Pandy
- Department of Pharmacology, Chalapathi Institute of Pharmaceutical Sciences, Guntur, India
| | | |
Collapse
|
32
|
Blümel L, Brosda J, Bert B, Hamann M, Dietz GPH. Moderately aged OFA rats as a novel model for mild age-related alterations in learning and memory. Brain Cogn 2021; 154:105799. [PMID: 34543909 DOI: 10.1016/j.bandc.2021.105799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 11/27/2022]
Abstract
Aged rodents have been used as preclinical models of age-associated cognitive decline. Most of those models displayed substantial impairments in learning and memory. The initial, more subtle changes that precede more severe losses in cognitive abilities have not been well characterized. Here, we established a model detecting initial subtle cognitive changes by comparing the performance of moderately aged Oncins France Strain A Sprague Dawley rats with young rats in the Morris water maze (MWM) and the Open Field (OF) test. Both age groups improved their performance during the training period at a similar rate; however, the older rats performed worse in several parameters measured in the MWM. Our results suggest that already at the age of 18-20 months rats show changes in their approach to solve the spatial memory task while their ability to learn is not yet diminished. The disparate spatial information processing of the moderately aged rats provides a novel animal model for early age-related cognitive alterations that could be useful to test the effect of early intervention strategies. Moreover, our results suggest that the sensitivity of cognitive tests in the elderly could be substantially enhanced if they assess both the improvement after several trials, and the strategy used to solve a certain task.
Collapse
Affiliation(s)
- Linda Blümel
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Germany.
| | - Jan Brosda
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Germany.
| | - Bettina Bert
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Germany.
| | - Melanie Hamann
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Germany.
| | - Gunnar P H Dietz
- Department of Global Medical Affairs, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany.
| |
Collapse
|
33
|
Mitra S, Bult-Ito A. Bidirectional Behavioral Selection in Mice: A Novel Pre-clinical Approach to Examining Compulsivity. Front Psychiatry 2021; 12:716619. [PMID: 34566718 PMCID: PMC8458042 DOI: 10.3389/fpsyt.2021.716619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) and related disorders (OCRD) is one of the most prevalent neuropsychiatric disorders with no definitive etiology. The pathophysiological attributes of OCD are driven by a multitude of factors that involve polygenic mechanisms, gender, neurochemistry, physiological status, environmental exposures and complex interactions among these factors. Such complex intertwining of contributing factors imparts clinical heterogeneity to the disorder making it challenging for therapeutic intervention. Mouse strains selected for excessive levels of nest- building behavior exhibit a spontaneous, stable and predictable compulsive-like behavioral phenotype. These compulsive-like mice exhibit heterogeneity in expression of compulsive-like and other adjunct behaviors that might serve as a valuable animal equivalent for examining the interactions of genetics, sex and environmental factors in influencing the pathophysiology of OCD. The current review summarizes the existing findings on the compulsive-like mice that bolster their face, construct and predictive validity for studying various dimensions of compulsive and associated behaviors often reported in clinical OCD and OCRD.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Abel Bult-Ito
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States
- OCRD Biomed LLC, Fairbanks, AK, United States
| |
Collapse
|
34
|
Souza TP, Franscescon F, Stefanello FV, Müller TE, Santos LW, Rosemberg DB. Acute effects of ethanol on behavioral responses of male and female zebrafish in the open field test with the influence of a non-familiar object. Behav Processes 2021; 191:104474. [PMID: 34371127 DOI: 10.1016/j.beproc.2021.104474] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/26/2022]
Abstract
In this report, we investigate whether the acute effects of different ethanol (EtOH) concentrations are sex-dependent in zebrafish subjected to the open field test (OFT) with the influence of a non-familiar object. Male and female zebrafish were separated into four groups and exposed to EtOH (0%, 0.25%, 0.5%, or 1.0% v/v) for 1 h. Fish were tested individually in the OFT, in which tank was divided into three areas: periphery, intermediate, and center area. An object (black sphere; diameter: 1 cm) was placed in the center of the tank and behaviors were recorded for 5 min. At the baseline, females had a distinct exploratory activity and interaction pattern with the object, reflecting a more anxious and shyer behavior in relation to males. Females exposed to 0.5% EtOH performed more rapid investigation to the object than males, while 1.0% EtOH reduced locomotion in both sexes and increased immobility only in males. Principal component analyses revealed that anxiety-like behaviors, exploratory activity, and locomotion were the components that most accounted for total variances. Collectively, our novel findings show the existence of a sex-dependent effect in the zebrafish models acutely exposed to EtOH tested in the OFT with a non-familiar object.
Collapse
Affiliation(s)
- Thiele P Souza
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Francini Franscescon
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Flavia V Stefanello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Talise E Müller
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Laura W Santos
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA, 70458, USA.
| |
Collapse
|
35
|
Du Preez A, Eum J, Eiben I, Eiben P, Zunszain PA, Pariante CM, Thuret S, Fernandes C. Do different types of stress differentially alter behavioural and neurobiological outcomes associated with depression in rodent models? A systematic review. Front Neuroendocrinol 2021; 61:100896. [PMID: 33359461 DOI: 10.1016/j.yfrne.2020.100896] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
Cataloguing the effects of different types of stress on behaviour and physiology in rodent models has not been comprehensively attempted. Here, we systematically review whether chronic exposure to physical stress, psychosocial stress, or both types of stress can induce different behavioural and neurobiological outcomes in male and female rodents. We found that physical stress consistently increased depressive-like behaviour, impaired social interaction and decreased body weight, while psychosocial stress consistently increased both anxiety- and depressive-like behaviour, impaired social interaction and learning and memory, increased HPA axis activity, peripheral inflammation and microglial activation, and decreased hippocampal neurogenesis in male rodents. Moreover, we found that the combined effect of both stress types resulted in a more severe pathological state defined by increased anxiety- and depressive-like behaviour, impaired social interaction and learning and memory, increased HPA axis activity and central inflammation, and reduced hippocampal neurogenesis and neural plasticity in male rodents. Phenotypes for females were less consistent, irrespective of the type of stress exposure, on account of the limited number of studies using females. This review highlights that the type of stress may indeed matter and will help animal researchers to more appropriately choose a stress/depression model that fits their research purposes.
Collapse
Affiliation(s)
- Andrea Du Preez
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Josephine Eum
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Inez Eiben
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Paola Eiben
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, UK
| |
Collapse
|
36
|
Salminen AV, Silvani A, Allen RP, Clemens S, Garcia-Borreguero D, Ghorayeb I, Ferré S, Li Y, Ondo W, Picchietti DL, Rye D, Siegel JM, Winkelman JW, Manconi M. Consensus Guidelines on Rodent Models of Restless Legs Syndrome. Mov Disord 2021; 36:558-569. [PMID: 33382140 PMCID: PMC8313425 DOI: 10.1002/mds.28401] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/29/2020] [Accepted: 10/26/2020] [Indexed: 01/18/2023] Open
Abstract
Restless legs syndrome (RLS) is a chronic sensorimotor disorder diagnosed by clinical symptoms. It is challenging to translate the diagnostic self-reported features of RLS to animals. To help researchers design their experiments, a task force was convened to develop consensus guidelines for experimental readouts in RLS animal models. The RLS clinical diagnostic criteria were used as a starting point. After soliciting additional important clinical features of RLS, a consensus set of methods and outcome measures intent on capturing these features-in the absence of a face-to-face interview-was generated and subsequently prioritized by the task force. These were, in turn, translated into corresponding methods and outcome measures for research on laboratory rats and mice and used to generate the final recommendations. The task force recommended activity monitoring and polysomnography as principal tools in assessing RLS-like behavior in rodents. Data derived from these methods were determined to be the preferred surrogate measures for the urge to move, the principal defining feature of RLS. The same tools may be used to objectively demonstrate sleep-state features highly associated with RLS, such as sleep disturbance and number and periodicity of limb movements. Pharmacological challenges and dietary or other manipulations that affect iron availability are desirable to aggravate or improve RLS-like behavior and lend greater confidence that the animal model being proffered replicates key clinical features of RLS. These guidelines provide the first consensus experimental framework for researchers to use when developing new rodent models of RLS. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Aaro V. Salminen
- Institute of Neurogenomics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany,Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Richard P. Allen
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | | | - Imad Ghorayeb
- Département de Neurophysiologie Clinique, Pôle Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France,Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, UMR 5287, Bordeaux, France,CNRS, Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, UMR 5287, Bordeaux, France
| | - Sergi Ferré
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - William Ondo
- Houston Methodist Hospital Neurological Institute, Weill Cornell Medical School, Houston, Texas, USA
| | - Daniel L. Picchietti
- University of Illinois School of Medicine, Carle Illinois College of Medicine and Carle Foundation Hospital, Urbana, Illinois, USA
| | - David Rye
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jerome M. Siegel
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA,Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, North Hills, California, USA
| | - John W. Winkelman
- Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mauro Manconi
- Sleep Medicine Unit, Regional Hospital of Lugano, Neurocenter of Southern Switzerland, Lugano, Switzerland,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland,Department of Neurology, University Hospital Inselspital, Bern, Switzerland,Correspondence to: Dr. Mauro Manconi, Sleep Medicine, Neurocenter of Southern Switzerland, Via Tesserete 46, Regional Hospital of Lugano, 6900 Lugano, Switzerland;
| | | |
Collapse
|
37
|
Iotchev IB, Kubinyi E. Shared and unique features of mammalian sleep spindles - insights from new and old animal models. Biol Rev Camb Philos Soc 2021; 96:1021-1034. [PMID: 33533183 DOI: 10.1111/brv.12688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/29/2022]
Abstract
Sleep spindles are phasic events observed in mammalian non-rapid eye movement sleep. They are relevant today in the study of memory consolidation, sleep quality, mental health and ageing. We argue that our advanced understanding of their mechanisms has not exhausted the utility and need for animal model work. This is both because some topics, like cognitive ageing, have not yet been addressed sufficiently in comparative efforts and because the evolutionary history of this oscillation is still poorly understood. Comparisons across species often are either limited to referencing the classical cat and rodent models, or are over-inclusive, uncritically including reports of sleep spindles in rarely studied animals. In this review, we discuss the emergence of new (dog and sheep) models for sleep spindles and compare the strengths and shortcomings of new and old models based on the three validation criteria for animal models - face, predictive, and construct validity. We conclude that an emphasis on cognitive ageing might dictate the future of comparative sleep spindle studies, a development that is already becoming visible in studies on dogs. Moreover, reconstructing the evolutionary history of sleep spindles will require more stringent criteria for their identification, across more species. In particular, a stronger emphasis on construct and predictive validity can help verify if spindle-like events in other species are actual sleep spindles. Work in accordance with such stricter validation suggests that sleep spindles display more universally shared features, like defining frequency, than previously thought.
Collapse
Affiliation(s)
- Ivaylo Borislavov Iotchev
- Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Eniko Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| |
Collapse
|
38
|
D'Elia A, Schiavi S, Soluri A, Massari R, Soluri A, Trezza V. Role of Nuclear Imaging to Understand the Neural Substrates of Brain Disorders in Laboratory Animals: Current Status and Future Prospects. Front Behav Neurosci 2020; 14:596509. [PMID: 33362486 PMCID: PMC7759612 DOI: 10.3389/fnbeh.2020.596509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Molecular imaging, which allows the real-time visualization, characterization and measurement of biological processes, is becoming increasingly used in neuroscience research. Scintigraphy techniques such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) provide qualitative and quantitative measurement of brain activity in both physiological and pathological states. Laboratory animals, and rodents in particular, are essential in neuroscience research, providing plenty of models of brain disorders. The development of innovative high-resolution small animal imaging systems together with their radiotracers pave the way to the study of brain functioning and neurotransmitter release during behavioral tasks in rodents. The assessment of local changes in the release of neurotransmitters associated with the performance of a given behavioral task is a turning point for the development of new potential drugs for psychiatric and neurological disorders. This review addresses the role of SPECT and PET small animal imaging systems for a better understanding of brain functioning in health and disease states. Brain imaging in rodent models faces a series of challenges since it acts within the boundaries of current imaging in terms of sensitivity and spatial resolution. Several topics are discussed, including technical considerations regarding the strengths and weaknesses of both technologies. Moreover, the application of some of the radioligands developed for small animal nuclear imaging studies is discussed. Then, we examine the changes in metabolic and neurotransmitter activity in various brain areas during task-induced neural activation with special regard to the imaging of opioid, dopaminergic and cannabinoid receptors. Finally, we discuss the current status providing future perspectives on the most innovative imaging techniques in small laboratory animals. The challenges and solutions discussed here might be useful to better understand brain functioning allowing the translation of preclinical results into clinical applications.
Collapse
Affiliation(s)
- Annunziata D'Elia
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
- Section of Biomedical Sciences and Technologies, Department of Science, University “Roma Tre”, Rome, Italy
| | - Sara Schiavi
- Section of Biomedical Sciences and Technologies, Department of Science, University “Roma Tre”, Rome, Italy
| | - Andrea Soluri
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
| | - Roberto Massari
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
| | - Alessandro Soluri
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
| | - Viviana Trezza
- Section of Biomedical Sciences and Technologies, Department of Science, University “Roma Tre”, Rome, Italy
| |
Collapse
|
39
|
Exploring test batteries for depression- and anxiety-like behaviours in female and male ICR and black Swiss mice. Acta Neuropsychiatr 2020; 32:293-302. [PMID: 32378506 DOI: 10.1017/neu.2020.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective and rationale: Animal models are critical for the study of mental disorders and their treatments but are repeatedly criticized for problems with validity and reproducibility. One approach to enhance validity and reproducibility of models is to use test batteries rather than single tests. Yet, a question regarding batteries is whether one can expect a consistent individual behavioural phenotype in mice across tests that can be presumed to be part of the same construct. This study was designed to explore the relationship between the behaviours of mice across tests in some variations of test batteries for depression- and anxiety-like behaviours. Methods: Female and male healthy, intact, and untreated mice from the ICR and black Swiss strains were used in four separate experiments. With some variations, mice were exposed to a battery of behavioural tests representing affective- and anxiety-like behaviours. Data were analysed for differences between sexes and for correlations between behaviours within and across the tests in the battery. Results: No differences were found between the sexes. With very few exceptions, we found correlations within tests (when one test has more than one measure or is repeated) but not across different tests within the battery. Conclusions: The results cast some doubt on the utility of behavioural test batteries to represent different facets of emotional behaviour in healthy intact outbred mice, without any interventions or treatments. Additional studies are designed to explore whether stronger relationship between the tests will appear after manipulations or drug treatments.
Collapse
|
40
|
Impetigo Animal Models: A Review of Their Feasibility and Clinical Utility for Therapeutic Appraisal of Investigational Drug Candidates. Antibiotics (Basel) 2020; 9:antibiotics9100694. [PMID: 33066386 PMCID: PMC7602235 DOI: 10.3390/antibiotics9100694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 01/12/2023] Open
Abstract
Impetigo (school sores), a superficial skin infection commonly seen in children, is caused by the gram-positive bacteria Staphylococcus aureus and/or Streptococcus pyogenes. Antibiotic treatments, often topical, are used as the first-line therapy for impetigo. The efficacy of potential new antimicrobial compounds is first tested in in vitro studies and, if effective, followed by in vivo studies using animal models and/or humans. Animal models are critical means for investigating potential therapeutics and characterizing their safety profile prior to human trials. Although several reviews of animal models for skin infections have been published, there is a lack of a comprehensive review of animal models simulating impetigo for the selection of therapeutic drug candidates. This review critically examines the existing animal models for impetigo and their feasibility for testing the in vivo efficacy of topical treatments for impetigo and other superficial bacterial skin infections.
Collapse
|
41
|
Italia M, Forastieri C, Longaretti A, Battaglioli E, Rusconi F. Rationale, Relevance, and Limits of Stress-Induced Psychopathology in Rodents as Models for Psychiatry Research: An Introductory Overview. Int J Mol Sci 2020; 21:E7455. [PMID: 33050350 PMCID: PMC7589795 DOI: 10.3390/ijms21207455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
Emotional and cognitive information processing represent higher-order brain functions. They require coordinated interaction of specialized brain areas via a complex spatial and temporal equilibrium among neuronal cell-autonomous, circuitry, and network mechanisms. The delicate balance can be corrupted by stressful experiences, increasing the risk of developing psychopathologies in vulnerable individuals. Neuropsychiatric disorders affect twenty percent of the western world population, but therapies are still not effective for some patients. Elusive knowledge of molecular pathomechanisms and scarcity of objective biomarkers in humans present complex challenges, while the adoption of rodent models helps to improve our understanding of disease correlate and aids the search for novel pharmacological targets. Stress administration represents a strategy to induce, trace, and modify molecular and behavioral endophenotypes of mood disorders in animals. However, a mouse or rat model will only display one or a few endophenotypes of a specific human psychopathology, which cannot be in any case recapitulated as a whole. To override this issue, shared criteria have been adopted to deconstruct neuropsychiatric disorders, i.e., depression, into specific behavioral aspects, and inherent neurobiological substrates, also recognizable in lower mammals. In this work, we provide a rationale for rodent models of stress administration. In particular, comparing each rodent model with a real-life human traumatic experience, we intend to suggest an introductive guide to better comprehend and interpret these paradigms.
Collapse
|
42
|
Cognitive Impairment in the 3xTg-AD Mouse Model of Alzheimer's Disease is Affected by Aβ-ImmunoTherapy and Cognitive Stimulation. Pharmaceutics 2020; 12:pharmaceutics12100944. [PMID: 33023109 PMCID: PMC7601886 DOI: 10.3390/pharmaceutics12100944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Clinical symptoms of Alzheimer’s Disease (AD) include behavioral alterations and cognitive impairment. These functional phenotypes early occur in triple-transgenic (3xTg-AD) mice. Specifically, behavioral alterations are first detected when mice are at around 2.5 months old and cognitive impairment in between 3- and 5-month-old mice. In this work, the effect of chronic Aβ-immunotherapy on behavioral and cognitive abilities was tested by monthly administering the antibody fragment scFv-h3D6 to 3xTg-AD female mice from 5 to 9 months of age. An untreated group was used as a reference, as well as to attain some information on the effect of training during the longitudinal study. Behavioral and psychological symptoms of dementia (BPSD)-like symptoms were already evident in 5-month-old mice, in the form of neophobia and anxious-like behavior. The exploratory activity decreased over the longitudinal study, not only for 3xTgAD mice but also for the corresponding non-transgenic mice (NTg). Learning abilities of 3xTg-AD mice were not seriously compromised but an impairment in long-term spatial memory was evident at 5 months of age. Interestingly, scFv-h3D6-treatment affected the cognitive impairment displayed by 5-month-old 3xTg-AD mice. It is worth noting that training also reduced cognitive impairment of 3xTg-AD mice over the longitudinal study, suggesting that to properly quantify the isolated therapeutic potential of any drug on cognition using this model it is convenient to perform a prompt, age-matched study rather than a longitudinal study. In addition, a combination of both training and Aβ-immunotherapy could constitute a possible approach to treat Alzheimer’s disease.
Collapse
|
43
|
Morrison KE. Animal models built for women's brain health: Progress and potential. Front Neuroendocrinol 2020; 59:100872. [PMID: 32961121 PMCID: PMC7669558 DOI: 10.1016/j.yfrne.2020.100872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/29/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022]
Abstract
Women and men have different levels of risk for a variety of brain disorders. Despite this well-known epidemiological finding, preclinical work utilizing animal models has historically only included male animals. The policies of funders to require consideration of sex as a biological variable has shifted the momentum to include female animals in preclinical neuroscience and to report findings by sex. However, there are many biological questions related to brain health that go beyond sex differences and are indeed specific to women. Here, the focus is on why animal models should be utilized in the pursuit of understanding women's brain health, a brief overview of what they have provided thus far, and why they still hold tremendous promise. This review concludes with a set of suggestions for how to begin to pursue translational animal models in a way that facilitates rapid success and harnesses the most powerful aspects of animal models.
Collapse
|
44
|
Nwagwu CD, Defensor E, Jiang MY, Rolle-McFarland DA, Carbonell AME, Carbonell WS. Endpoint in ovarian cancer xenograft model predicted by nighttime motion metrics. Lab Anim (NY) 2020; 49:227-232. [PMID: 32690932 DOI: 10.1038/s41684-020-0594-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 06/08/2020] [Indexed: 11/09/2022]
Abstract
Despite several therapeutics showing promise in nonclinical studies, survival from ovarian cancer remains poor. New technologies are urgently needed to optimize the translation of nonclinical studies into clinical successes. While most nonclinical settings utilize subjective measures of physiological parameters, which can hamper the accuracy of the results, this study assessed the physical activity of mice in real time using an objective, non-invasive, cloud-based, digital vivarium monitoring platform. An initial range-finding study in which varying numbers of ovarian cancer cells were inoculated in mice was conducted to characterize disease progression using digital metrics such as motion and breathing rate. Data from the range-finding study were used to establish a motion threshold (MT) that might predict terminal endpoint. Using the MT, the efficacies of cisplatin and OS2966, an anti-CD29 antibody, were assessed. Results showed that MT predicted terminal endpoint significantly earlier than traditional parameters and correlated with therapeutic efficacy. Thus, continuous motion monitoring sensitively predicts terminal endpoint in nonclinical ovarian cancer models and could be applicable for drug efficacy testing.
Collapse
|
45
|
Sher LD, Geddie H, Olivier L, Cairns M, Truter N, Beselaar L, Essop MF. Chronic stress and endothelial dysfunction: mechanisms, experimental challenges, and the way ahead. Am J Physiol Heart Circ Physiol 2020; 319:H488-H506. [PMID: 32618516 DOI: 10.1152/ajpheart.00244.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although chronic stress is an important risk factor for cardiovascular diseases (CVD) onset, the underlying mechanisms driving such pathophysiological complications remain relatively unknown. Here, dysregulation of innate stress response systems and the effects of downstream mediators are strongly implicated, with the vascular endothelium emerging as a primary target of excessive glucocorticoid and catecholamine action. Therefore, this review article explores the development of stress-related endothelial dysfunction by focusing on the following: 1) assessing the phenomenon of stress and complexities surrounding this notion, 2) discussing mechanistic links between chronic stress and endothelial dysfunction, and 3) evaluating the utility of various preclinical models currently employed to study mechanisms underlying the onset of stress-mediated complications such as endothelial dysfunction. The data reveal that preclinical models play an important role in our efforts to gain an increased understanding of mechanisms underlying stress-mediated endothelial dysfunction. It is our understanding that this provides a good foundation going forward, and we propose that further efforts should be made to 1) more clearly define the concept of stress and 2) standardize protocols of animal models with specific guidelines to better indicate the mental complications that are simulated.
Collapse
Affiliation(s)
- Lucien Derek Sher
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Hannah Geddie
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Lukas Olivier
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Megan Cairns
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Nina Truter
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Leandrie Beselaar
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - M Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
46
|
Kittay EF. We Have Seen the Mutants-and They Are Us: Gifts and Burdens of a Genetic Diagnosis. Hastings Cent Rep 2020; 50 Suppl 1:S44-S53. [PMID: 32597523 DOI: 10.1002/hast.1155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this essay, I recount and examine my response to a genetic diagnosis of my disabled daughter. My daughter was forty-nine before the diagnosis came. All her disabilities were traceable to a de novo single gene variant on the PURA gene that was discovered only in 2014. I speak of the jolt and the recalibration that this discovery engendered, concluding that, while it seemed that everything had changed, nothing had changed. But my family did discover a community in which Sesha joins other PURA-perfect sons and daughters and where we as a family acquire a "horizontal identity" marked by a genetic variant.
Collapse
|
47
|
Reproducibility of animal research in light of biological variation. Nat Rev Neurosci 2020; 21:384-393. [PMID: 32488205 DOI: 10.1038/s41583-020-0313-3] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
Context-dependent biological variation presents a unique challenge to the reproducibility of results in experimental animal research, because organisms' responses to experimental treatments can vary with both genotype and environmental conditions. In March 2019, experts in animal biology, experimental design and statistics convened in Blonay, Switzerland, to discuss strategies addressing this challenge. In contrast to the current gold standard of rigorous standardization in experimental animal research, we recommend the use of systematic heterogenization of study samples and conditions by actively incorporating biological variation into study design through diversifying study samples and conditions. Here we provide the scientific rationale for this approach in the hope that researchers, regulators, funders and editors can embrace this paradigm shift. We also present a road map towards better practices in view of improving the reproducibility of animal research.
Collapse
|
48
|
Nie J, Gao Q, Fu J, He Y. Grafting of 3D Bioprinting to In Vitro Drug Screening: A Review. Adv Healthc Mater 2020; 9:e1901773. [PMID: 32125787 DOI: 10.1002/adhm.201901773] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 01/09/2023]
Abstract
The inadequacy of conventional cell-monolayer planar cultures and animal experiments in predicting the toxicity and clinical efficacy of drug candidates has led to an imminent need for in vitro methods with the ability to better represent in vivo conditions and facilitate the systematic investigation of drug candidates. Recent advances in 3D bioprinting have prompted the precise manipulation of cells and biomaterials, rendering it a promising technology for the construction of in vitro tissue/organ models and drug screening devices. This review presents state-of-the-art in vitro methods used for preclinical drug screening and discusses the limitations of these methods. In particular, the significance of constructing 3D in vitro tissue/organ models and microfluidic analysis devices for drug screening is emphasized, and a focus is placed on the grafting process of 3D bioprinting technology to the construction of such models and devices. The in vitro methods for drug screening are generalized into three types: mini-tissue, organ-on-a-chip, and tissue/organ construct. The revolutionary process of the in vitro methods is demonstrated in detail, and relevant studies are listed as examples. Specifically, the tumor model is adopted as a precedent to illustrate the possible grafting of 3D bioprinting to antitumor drug screening.
Collapse
Affiliation(s)
- Jing Nie
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
| |
Collapse
|
49
|
Gill KK, Rajan JRS, Goldowitz D, Zwicker JG. Using a mouse model to gain insights into developmental coordination disorder. GENES BRAIN AND BEHAVIOR 2020; 19:e12647. [PMID: 32096334 DOI: 10.1111/gbb.12647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 11/27/2022]
Abstract
Motor impairments are a common feature of many neurodevelopmental disorders; in fact, over 50% of children with Attentional Deficit Hyperactivity Disorder or Autism Spectrum Disorder may have a co-occurring diagnosis of developmental coordination disorder (DCD). DCD is a neurodevelopmental disorder of unknown etiology that affects motor coordination and learning, significantly impacting a child's ability to carry out everyday activities. Animal models play an important role in scientific investigation of behaviour and the mechanisms and processes that are involved in control of motor actions. The purpose of this paper is to present an approach in the mouse directed to gain behavioral and genetic insights into DCD that is designed with high face validity, construct validity and predictive validity. Pre-clinical and clinical expertise is used to establish a set of scientific criteria that the model will meet in order to investigate the potential underlying causes of DCD.
Collapse
Affiliation(s)
- Kamaldeep K Gill
- Rehabilitation Sciences, University of British Columbia, Vancouver, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Jeffy Rajan Soundara Rajan
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Daniel Goldowitz
- British Columbia Children's Hospital Research Institute, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Jill G Zwicker
- British Columbia Children's Hospital Research Institute, Vancouver, Canada.,Department of Occupational Science & Occupational Therapy, University of British Columbia, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada.,Sunny Hill Health Centre for Children, Vancouver, Canada
| |
Collapse
|
50
|
Teixeira NB, Sant'Anna MB, Giardini AC, Araujo LP, Fonseca LA, Basso AS, Cury Y, Picolo G. Crotoxin down-modulates pro-inflammatory cells and alleviates pain on the MOG 35-55-induced experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Brain Behav Immun 2020; 84:253-268. [PMID: 31843645 DOI: 10.1016/j.bbi.2019.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a Central Nervous System inflammatory demyelinating disease that has as primary symptoms losses of sensory and motor functions, including chronic pain. To date, however, few studies have investigated the mechanisms of chronic pain in animal models of MS since locomotor impairments render difficult its evaluation. It was previously demonstrated that in the MOG35-55-induced EAE, an animal model of MS, the hypernociception appears before the onset of motor disability, allowing for the study of these two phenomena separately. Here, we evaluated the effect of crotoxin (CTX), a neurotoxin isolated from the Crotalus durissus terrificus snake venom that displays, at non-toxic dose, antinociceptive, anti-inflammatory and immunomodulatory effects, in the pain and in symptoms progression of EAE. The pain threshold of female C57BL/6 mice decreased at the 4th day after immunization, while the first sign of disease appeared around the 11st-12nd days, coinciding with the onset of motor abnormalities. CTX (40 µg/kg, s.c.) administered in a single dose on the 5th day after immunization, induced a long-lasting analgesic effect (5 days), without interfering with the clinical signs of the disease. On the other hand, when crotoxin was administered for 5 consecutive days, from 5th-9th day after immunization, it induced analgesia and also reduced EAE progression. The antinociceptive effect of crotoxin was blocked by Boc-2 (0.5 mg/kg, i.p.), a selective antagonist of formyl peptide receptors, by NDGA (30 μg/kg, i.p.), a lipoxygenase inhibitor and by atropine sulfate (10 mg/kg, i.p.), an antagonist of muscarinic receptors, administered 30 min before CTX. CTX was also effective in decreasing EAE clinical signs even when administered after its onset. Regarding the interactions between neurons and immunocompetent cells, CTX, in vitro, was able to reduce T cell proliferation, decreasing Th1 and Th17 and increasing Treg cell differentiation. Furthermore, in EAE model, the treatment with 5 consecutive doses of CTX inhibited IFN-γ-producing T cells, GM-CSF-producing T cells, reduced the frequency of activated microglia/macrophages within the CNS and decreased the number of migrating cell to spinal cord and cerebellum at the peak of the disease. These results suggest that CTX is a potential treatment not only for pain alteration but also for clinical progression induced by the disease as well as an useful tool for the development of new therapeutic approaches for the multiple sclerosis control.
Collapse
Affiliation(s)
- N B Teixeira
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - M B Sant'Anna
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - A C Giardini
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - L P Araujo
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of Sao Paulo, UNIFESP, Sao Paulo, Brazil
| | - L A Fonseca
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - A S Basso
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of Sao Paulo, UNIFESP, Sao Paulo, Brazil
| | - Y Cury
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - G Picolo
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil.
| |
Collapse
|