1
|
Kim EO, Park D, Ha IJ, Bae SE, Lee MY, Yun M, Kim K. The Secretion of Inflammatory Cytokines Triggered by TLR2 Through Calcium-Dependent and Calcium-Independent Pathways in Keratinocytes. Mediators Inflamm 2024; 2024:8892514. [PMID: 39588538 PMCID: PMC11588404 DOI: 10.1155/mi/8892514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024] Open
Abstract
Keratinocytes can be activated by Cutibacterium acnes, leading to the production of proinflammatory cytokines via toll-like receptors (TLRs) 2 and 4. Although several studies have investigated keratinocytes, the mechanism of calcium-mediated activation remains unclear. Herein, we investigated whether calcium influx via TLR2 and TLR4 stimulation was involved in cytokine secretion by keratinocytes in HaCaT cells. Although TLR2 stimulation by peptidoglycan (PGN) increased intracellular calcium influx, TLR4 stimulation by lipopolysaccharide (LPS) did not increase it, as analyzed using flow cytometry with the calcium indicator Fluo-3. However, activation by either TLR2 or TLR4 ligands upregulated the intracellular calcium influx in THP-1 monocytes. Additionally, the expression of major proinflammatory cytokines and chemokines, such as interleukin (IL)-6, IL-8, IL-1α, granulocyte-macrophage colony-stimulating factor (GM-CSF), and monocyte chemoattractant protein-1 (MCP-1), was significantly increased by TLR2 in HaCaT cells. Moreover, treatment with the intracellular calcium chelator, BAPTA-AM, disrupted PGN-mediated induction of IL-6, IL-8, and MCP-1 production. Real-time quantitative polymerase chain reaction (PCR) and western blotting revealed that TLR2 stimulation induced expression of the epidermal differentiation marker keratin 1. In conclusion, TLR2-induced intracellular calcium influx plays a pivotal role in the secretion of proinflammatory cytokines, such as IL-6 and MCP-1, in keratinocytes. Moreover, the continuous influx of calcium via TLR2 activation leads to keratinization. In vitro studies using HaCaT cells provide basic research on the effect of TLR2-induced calcium on C. acnes-mediated inflammation in keratinocytes. These studies are limited in their ability to clinically predict what happens in human keratinocytes. Clinical studies on patients with acne, including three-dimensional (3D) cultures of primary keratinocytes, are required to develop new diagnostic markers for determining the severity of acne vulgaris.
Collapse
Affiliation(s)
- Eun-Ok Kim
- Medical Science Research Center, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Dain Park
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02447, Republic of Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02447, Republic of Korea
| | - Se-Eun Bae
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Min Young Lee
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02447, Republic of Korea
| | - Miyong Yun
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Kyuseok Kim
- Department of Ophthalmology, Otolaryngology and Dermatology of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Tomita T, Nakajima Y, Ohmiya Y, Miyazaki K. Novel three-dimensional live skin-like in vitro composite for bioluminescence reporter gene assay. FEBS J 2024; 291:4619-4632. [PMID: 39148322 DOI: 10.1111/febs.17246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/20/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
We genetically manipulated HaCaT cells, a spontaneously immortalised normal keratinocyte cell line, to stably express two different coloured luciferase reporter genes, driven by interleukin 8 (IL-8) and ubiquitin-C (UBC) promoters, respectively. Subsequently, we generated a three-dimensional (3D) skin-like in vitro composite (SLIC) utilising these cells, with the objective of monitoring bioluminescence emitted from the SLIC. This SLIC was generated on non-woven silica fibre membranes in differentiation medium. Immunohistochemical analyses of skin differentiation markers in the SLIC revealed the expression of keratins 2 and 10, filaggrin, and involucrin, indicating mature skin characteristics. This engineered SLIC was employed for real-time bioluminescence monitoring, allowing the assessment of time- and dose-dependent responses to UV stress, as well as to hydrophilic and hydrophobic chemical loads. Notably, evaluation of responses to hydrophobic substances has been challenging with conventional 2D cell culture methods, suggesting the need for a new approach, which this technology could address. Our observations suggest that engineered SLIC with constitutively expressing reporters driven by selected promoters which are tailored to specific objectives, significantly facilitates assays exploring the physiological functions of skin cells based on genetic response mechanisms. It also highlights new avenues for evaluating the physiological impacts of various compounds designed for topical application to human skin.
Collapse
Affiliation(s)
- Tatsunosuke Tomita
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yoshihiro Nakajima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Japan
| | - Yoshihiro Ohmiya
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan
- Osaka Institute of Technology (OIT), Omiya, Japan
| | - Koyomi Miyazaki
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
3
|
Qu HQ, Kao C, Hakonarson H. Implications of the non-neuronal cholinergic system for therapeutic interventions of inflammatory skin diseases. Exp Dermatol 2024; 33:e15181. [PMID: 39422283 DOI: 10.1111/exd.15181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024]
Abstract
The pivotal roles of acetylcholine (ACh) in physiological processes encompass both the nervous and non-neuronal cholinergic systems (NNCS). This review delineates the synthesis, release, receptor interactions, and degradation of ACh within the nervous system, and explores the NNCS in depth within skin cells including keratinocytes, endothelial cells, fibroblasts, macrophages, and other immune cells. We highlight the NNCS's essential functions in maintaining epidermal barrier integrity, promoting wound healing, regulating microcirculation, and modulating inflammatory responses. The potential of the NNCS as a therapeutic target for localized ACh regulation in the skin is discussed, though the translation of these findings into clinical practice remains uncertain due to the complexity of cholinergic signalling and the lack of comprehensive human studies. The review progresses to therapeutic modulation strategies of the NNCS, including AChE inhibitors, nicotinic and muscarinic receptor agonists and antagonists, choline uptake enhancers, and botulinum toxin, highlighting their relevance in dermatology. We highlight the impact of the NNCS on prevalent skin diseases such as psoriasis, atopic dermatitis, rosacea, acne, bullous diseases, hyperhidrosis and hypohidrosis, illustrating its significance in disease pathogenesis and therapy. This comprehensive overview aims to enhance understanding of the NNCS's role in skin health and disease, offering a foundation for future research and therapeutic innovation.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Charlly Kao
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
4
|
Liu Y, Zhen N, Liao D, Niu J, Liu R, Li Z, Lei Z, Yang Z. Application of bacteriophage φPaP11-13 attenuates rat Cutibacterium acnes infection lesions by promoting keratinocytes apoptosis via inhibiting PI3K/Akt pathway. Microbiol Spectr 2024; 12:e0283823. [PMID: 38197658 PMCID: PMC10845971 DOI: 10.1128/spectrum.02838-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Acne vulgaris caused by antibiotic-resistant Cutibacterium acnes (C. acnes) infection is difficult to treat conventionally. Phages have been suggested as a potential solution, but research on the mechanism of phage treatment is inadequate. This research investigates the underlying molecular mechanisms of phage φPaP11-13 attenuating C. acnes-induced inflammation in rat models. We found that rats infected with C. acnes had higher average ear thickness, greater enrichment of inflammatory cells as shown by hematoxylin-eosin (HE) staining, and fewer TUNEL (TdT-mediated dUTP Nick-End Labeling)-positive keratinocytes visualized by IF staining. Moreover, an increase of IGF-1 and IGF-1 receptor (IGF-1r) was detected using the immunohistochemical (IHC) staining method, Western blot (WB), and quantitative real-time PCR (qRT-PCR) when infected with C. acnes, which was decreased after the application of phage φPaP11-13. By applying the IGF-1 antibody, it was demonstrated that the severity of C. acnes-induced inflammation was relevant to the expression of IGF-1. Through WB and qRT-PCR, activation of the PI3K/Akt pathway and a down-regulation of the BAD-mediated apoptosis pathway were discovered after C. acnes infection. Subsequently, it was shown that the activation of the PI3K/Akt pathway against BAD-mediated apoptosis pathway was alleviated after applying phage φPaP11-13. Furthermore, applying the IGF-1r inhibitor, Pan-PI3K inhibitor, and Akt inhibitor reversed the changing trends of BAD induced by C. acnes and phage φPaP11-13. This study demonstrates that one of the critical mechanisms underlying the attenuation of acne vulgaris by phage φPaP11-13 is lysing C. acnes and regulating keratinocyte apoptosis via the PI3K/Akt signaling pathway.IMPORTANCECutibacterium acnes infection-induced acne vulgaris may cause severe physical and psychological prognosis. However, the overuse of antibiotics develops drug resistance, bringing challenges in treating Cutibacterium acnes. Bacteriophages are currently proven effective in MDR (multiple drug-resistant) Cutibacterium acnes, but there is a significant lack of understanding of phage therapy. This study demonstrated a novel way of curing acne vulgaris by using phages through promoting cell death of excessive keratinocytes in acne lesions by lysing Cutibacterium acnes. However, the regulation of this cell cycle has not been proven to be directly mediated by phages. The hint of ternary relation among "phage-bacteria-host" inspires huge interest in future phage therapy studies.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University (the Third Military Medical University), Chongqing, China
- Cadet Brigade 4, College of Basic Medicine, Army Medical University (the Third Military Medical University), Chongqing, China
| | - Ni Zhen
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital Third Military Medical University, Chongqing, China
| | - Danxi Liao
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University (the Third Military Medical University), Chongqing, China
| | - Jiahui Niu
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University (the Third Military Medical University), Chongqing, China
- Cadet Brigade 4, College of Basic Medicine, Army Medical University (the Third Military Medical University), Chongqing, China
| | - Ruolan Liu
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University (the Third Military Medical University), Chongqing, China
| | - Zijiao Li
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University (the Third Military Medical University), Chongqing, China
- Cadet Brigade 4, College of Basic Medicine, Army Medical University (the Third Military Medical University), Chongqing, China
| | - Zeyuan Lei
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University (the Third Military Medical University), Chongqing, China
| | - Zichen Yang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University (the Third Military Medical University), Chongqing, China
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital Third Military Medical University, Chongqing, China
| |
Collapse
|
5
|
Li M, Gao X, Miao T, Sun H. Identification of biomarkers of acne based on transcriptome analysis and combined with network pharmacology to explore the therapeutic mechanism of Jinhuang ointment. Medicine (Baltimore) 2023; 102:e35642. [PMID: 37933032 PMCID: PMC10627606 DOI: 10.1097/md.0000000000035642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/22/2023] [Indexed: 11/08/2023] Open
Abstract
The incidence of acne is on the rise due to unhealthy diet and living habits. Jinhuang ointment (JHO) is a classic prescription composed of 10 kinds of commonly used Chinese herbal medicine, which has been widely used in clinical prevention and treatment of skin inflammatory diseases since ancient times. However, the pharmacological mechanism and target of JHO are not clear. The acne microarray dataset was downloaded from gene expression omnibus database to identify differentially expressed genes (DEG). Immune infiltration was analyzed by CiberSort algorithm. HUB gene was identified by protein-protein interaction network. The gene expression omnibus dataset validates the biomarkers of acne with high diagnostic value. The potential active components and targets of JHO were obtained through Traditional Chinese Medicine Systems Pharmacology database, and the therapeutic targets were obtained by crossing with disease targets. R-packet is used for enrichment analysis. Molecular docking using Auto Dock Tools. A total of 202 DEGs were identified from 12 skin samples in the GSE6475. Immune infiltration analysis showed that there were a large number of macrophages and mast cells in acne skin. Gene set enrichment analysis analysis showed that DEGS was mainly involved in bacterial reaction, inflammatory reaction and so on. Six central genes and gene cluster modules were identified by Cytoscape software. A total of 185 JHO active components and 220 targets were obtained, of which 10 targets were potential targets for JHO in the treatment of acne. Kyoto encyclopedia of genes and genomes enrichment analysis showed that JHO treatment of acne was mainly related to Toll-like receptors, IL-17 and other signal pathways. The results of molecular docking showed that 5 active compounds in JHO had strong binding activity to the core protein receptor. IL-1 β, CXCL8, toll-like receptor 2, CXCL2, LCN2, and secretory phosphoprotein 1 may be potential biomarkers for early diagnosis of acne. JHO active components may regulate skin cell metabolism and inflammatory response and improve cellular immune microenvironment by acting on core targets (CXCL8, ESR1, IL-1 β, MMP1, MMP3, secretory phosphoprotein 1), thus achieving the purpose of treating acne. This is the result of the joint action of multiple targets and multiple pathways. It provides an idea for the development of a new combination of drugs for the treatment of acne.
Collapse
Affiliation(s)
- Minghui Li
- Shandong Women’s University, Jinan City, Shandong Province, China
| | - Xue Gao
- Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, China
| | - Tianai Miao
- Shandong Women’s University, Jinan City, Shandong Province, China
| | - Hongfeng Sun
- Shandong Women’s University, Jinan City, Shandong Province, China
| |
Collapse
|
6
|
Joshi M, Hiremath P, John J, Ranadive N, Nandakumar K, Mudgal J. Modulatory role of vitamins A, B3, C, D, and E on skin health, immunity, microbiome, and diseases. Pharmacol Rep 2023; 75:1096-1114. [PMID: 37673852 PMCID: PMC10539462 DOI: 10.1007/s43440-023-00520-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/08/2023]
Abstract
Disruption of the skin barrier and immunity has been associated with several skin diseases, namely atopic dermatitis (AD), psoriasis, and acne. Resident and non-resident immune cells and the barrier system of the skin are integral to innate immunity. Recent advances in understanding skin microbiota have opened the scope of further understanding the various communications between these microbiota and skin immune cells. Vitamins, being one of the important micronutrients, have been reported to exert antioxidant, anti-inflammatory, and anti-microbial effects. The immunomodulatory action of vitamins can halt the progression of skin diseases, and thus, understanding the immuno-pharmacology of these vitamins, especially for skin diseases can pave the way for their therapeutic potential. At the same time, molecular and cellular markers modulated with these vitamins and their derivatives need to be explored. The present review is focused on significant vitamins (vitamins A, B3, C, D, and E) consumed as nutritional supplements to discuss the outcomes and scope of studies related to skin immunity, health, and diseases.
Collapse
Affiliation(s)
- Mahika Joshi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Priyanka Hiremath
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Jeena John
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Niraja Ranadive
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
7
|
Bocheva G, Slominski RM, Slominski AT. Environmental Air Pollutants Affecting Skin Functions with Systemic Implications. Int J Mol Sci 2023; 24:10502. [PMID: 37445680 PMCID: PMC10341863 DOI: 10.3390/ijms241310502] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The increase in air pollution worldwide represents an environmental risk factor that has global implications for the health of humans worldwide. The skin of billions of people is exposed to a mixture of harmful air pollutants, which can affect its physiology and are responsible for cutaneous damage. Some polycyclic aromatic hydrocarbons are photoreactive and could be activated by ultraviolet radiation (UVR). Therefore, such UVR exposure would enhance their deleterious effects on the skin. Air pollution also affects vitamin D synthesis by reducing UVB radiation, which is essential for the production of vitamin D3, tachysterol, and lumisterol derivatives. Ambient air pollutants, photopollution, blue-light pollution, and cigarette smoke compromise cutaneous structural integrity, can interact with human skin microbiota, and trigger or exacerbate a range of skin diseases through various mechanisms. Generally, air pollution elicits an oxidative stress response on the skin that can activate the inflammatory responses. The aryl hydrocarbon receptor (AhR) can act as a sensor for small molecules such as air pollutants and plays a crucial role in responses to (photo)pollution. On the other hand, targeting AhR/Nrf2 is emerging as a novel treatment option for air pollutants that induce or exacerbate inflammatory skin diseases. Therefore, AhR with downstream regulatory pathways would represent a crucial signaling system regulating the skin phenotype in a Yin and Yang fashion defined by the chemical nature of the activating factor and the cellular and tissue context.
Collapse
Affiliation(s)
- Georgeta Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Radomir M. Slominski
- Department of Genetics, Informatics Institute in the School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, Cancer Chemoprevention Program, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran Administration Medical Center, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Cohen G, Jakus J, Baroud S, Gvirtz R, Rozenblat S. Development of an Effective Acne Treatment Based on CBD and Herbal Extracts: Preliminary In Vitro, Ex Vivo, and Clinical Evaluation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:4474255. [PMID: 37101713 PMCID: PMC10125735 DOI: 10.1155/2023/4474255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 12/04/2022] [Accepted: 02/23/2023] [Indexed: 04/28/2023]
Abstract
Acne vulgaris, the most common form of acne, is characterized by a mixed eruption of inflammatory and noninflammatory skin lesions primarily affecting the face, upper arms, and trunk. The pathogenesis of acne is multifactorial and includes abnormal keratinization and plugging of the hair follicles, increased sebum production, proliferation and activation of Cutibacterium acnes (C. acnes; formerly Propionibacterium acnes, P. acnes), and finally inflammation. Recent studies have found that cannabidiol (CBD) may be beneficial in the treatment of acne. The aim of this study was to explore natural plant extracts that, when combined with CBD, act synergistically to treat acne by targeting different pathogenic factors while minimizing side effects. The first stage of the study investigated the capacity of different plant extracts and plant extract combinations to reduce C. acnes growth and decrease IL-1β and TNFα secretion from U937 cells. The results found that Centella asiatica triterpene (CAT) extract as well as silymarin (from Silybum marianum fruit extract) had significantly superior anti-inflammatory activity when combined with CBD compared to either ingredient alone. In addition, the CAT extract helped potentiate CBD-induced C. acnes growth inhibition. The three ingredients were integrated into a topical formulation and evaluated in ex vivo human skin organ cultures. The formulation was found to be safe and effective, reducing both IL-6 and IL-8 hypersecretion without hampering epidermal viability. Finally, a preliminary clinical study of this formulation conducted on 30 human subjects showed a statistically significant reduction in acne lesions (mainly inflammatory lesions) and porphyrin levels, thereby establishing a tight correlation between in vitro, ex vivo, and clinical results. Further studies must be conducted to verify the results, including placebo-controlled clinical assessment, to exclude any action of the formulation itself.
Collapse
Affiliation(s)
- Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel
- Ben Gurion University of the Negev, Eilat Campus, Eilat 8855630, Israel
| | - Jeannette Jakus
- SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Sumer Baroud
- SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Raanan Gvirtz
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel
| | | |
Collapse
|
9
|
Jurairattanaporn N, Suchonwanit P, Rattananukrom T, Vachiramon V. A Comparative Study of Dermatoscopic Features of Acne-related Postinflammatory Hyperpigmentation in Facial and Nonfacial Areas in Asian Patients. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2022; 15:16-21. [PMID: 36061483 PMCID: PMC9436223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Postinflammatory hyperpigmentation (PIH) is a common problem, especially in patients with darker skin tones. It can occur on any area of the body following external injuries or intense inflammatory conditions. However, there is limited evidence regarding the differences in dermatoscopic patterns between facial acne-related PIH and nonfacial acne-related PIH. OBJECTIVE We sought to determine the dermatoscopic features of acne-related PIH in facial and nonfacial areas in an Asian population. METHODS Patients with acne-related PIH in both facial and nonfacial areas were enrolled. Baseline demographic data, location, and duration of PIH were recorded. Dermatoscopic and clinical pictures of each patient were taken from the darkest PIH lesions of both areas. Differences in dermatoscopic patterns were analyzed. RESULTS Fifty patients were enrolled. The mean age was 26.74 (+ 6.75) years, and the Fitzpatrick Skin Types were III (66%) and IV (34%). In terms of morphological patterns of melanin, nonfacial PIH showed a significantly more regular pigment network than facial PIH (100% vs. 20%, p<0.05), while facial PIH exhibited a more pseudoreticular pigment network than nonfacial PIH (70% vs. 0%, p<0.05). In terms of vascularity, facial PIH demonstrated more telangiectasia and an increased vascular component compared to nonfacial PIH (56% vs. 16%, p<0.05). Moreover, hypopigmentation within the PIH lesion was demonstrated in both facial and nonfacial lesions (42% vs. 50%, p=0.541). CONCLUSION Acne-related PIH in facial and nonfacial areas showed different morphological pigment patterns and degrees of vascularity. Dermatoscopic examination should be performed before treatment initiation.
Collapse
Affiliation(s)
- Natthachat Jurairattanaporn
- Dr. Jurairattanaporn is also with the Department of Dermatology, Faculty of Medicine at Srinakharinwirot University in Bangkok, Thailand
| | - Poonkiat Suchonwanit
- All authors are with the Division of Dermatology, the Faculty of Medicine Ramathibodi Hospital at Mahidol University in Bangkok, Thailand
| | - Teerapong Rattananukrom
- All authors are with the Division of Dermatology, the Faculty of Medicine Ramathibodi Hospital at Mahidol University in Bangkok, Thailand
| | - Vasanop Vachiramon
- All authors are with the Division of Dermatology, the Faculty of Medicine Ramathibodi Hospital at Mahidol University in Bangkok, Thailand
| |
Collapse
|
10
|
Ruan SF, Hu Y, Wu WF, Du QQ, Wang ZX, Chen TT, Shen Q, Liu L, Jiang CP, Li H, Yi Y, Shen CY, Zhu HX, Liu Q. Explore the Anti-Acne Mechanism of Licorice Flavonoids Based on Metabonomics and Microbiome. Front Pharmacol 2022; 13:832088. [PMID: 35211023 PMCID: PMC8861462 DOI: 10.3389/fphar.2022.832088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Acne vulgaris is one of the most common inflammatory dermatoses in dermatological practice and can affect any gender or ethnic group. Although in previous studies, we had found that licorice flavonoids (LCF) play an anti-acne role by inhibiting PI3K-Akt signaling pathways and mitochondrial activity, the mechanism of LCF regulating skin metabolism, serum metabolism and skin microbes is still unclear. Here, we performed a full spectrum analysis of metabolites in the skin and serum using UHPLC-Triple TOF-MS. The results showed that LCF could treat acne by regulating the metabolic balance of amino acids, lipids and fatty acids in serum and skin. Similarly, we performed Illumina Hiseq sequencing of DNA from the skin microbes using 16S ribosomal DNA identification techniques. The results showed that LCF could treat acne by regulating the skin microbes to interfere with acne and make the microecology close to the normal skin state of rats. In summary, this study confirmed the anti-acne mechanism of LCF, namely by regulating metabolic balance and microbial balance. Therefore, this discovery will provide theoretical guidance for the preparation development and clinical application of the drug.
Collapse
Affiliation(s)
- Shi-Fa Ruan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wen-Feng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qun-Qun Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhu-Xian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ting-Ting Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qun Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Cui-Ping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hui Li
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Guangzhou, China
| | - Yankui Yi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chun-Yan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hong-Xia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
ElAttar Y, Mourad B, Alngomy HA, Deen ASE, Ismail M. Study of Interleukin-1Beta Expression in Acne Vulgaris and Acne Scars. J Cosmet Dermatol 2022; 21:4864-4870. [PMID: 35174608 DOI: 10.1111/jocd.14852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/16/2022] [Accepted: 02/10/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Acne vulgaris is a multifactorial disease that mostly heals by scarring. Interleukin-1 beta (IL-1β) is a proinflammatory cytokine, suggested to play a key role in acne pathogenesis. OBJECTIVE To study the immunohistochemical (IHC) expression of IL1β in acne vulgaris and acne scars to evaluate its possible role in their pathogenesis and to study the relation between expression of IL1β and the clinicopathological parameters. PATIENTS AND METHODS This study was conducted on sixty subjects (twenty patients with acne vulgaris and twenty patients with acne scars), and twenty healthy volunteers as controls. Skin biopsies were taken from patients and controls for routine histopathological examination with Hematoxylin and Eosin (H&E) stain and IHC staining of IL-1β. RESULTS There was a statistically significant increase in expression of IL-1β in acne vulgaris compared to post-acne scars and controls, (p<0.001) for both. IL-1β expression was significantly positively correlated with both clinical severity of acne vulgaris (p=0.022) and severity of histopathological inflammation (p=0.011). CONCLUSION IL-1β expression was associated with acne vulgaris and post acne scars with significant positive correlation to clinical and histopathological severity of acne vulgaris. Thus IL-1β could be a key player cytokine in acne pathogenesis, its severity and development of post acne scars.
Collapse
Affiliation(s)
- Yasmina ElAttar
- Department of Dermatology and Venereology, Faculty of medicine, Tanta University, Tanta, Egypt
| | - Basma Mourad
- Department of Dermatology and Venereology, Faculty of medicine, Tanta University, Tanta, Egypt
| | | | - Aliaa Shams El Deen
- Department of Pathology, Faculty of medicine, Tanta University, Tanta, Egypt
| | - Mayada Ismail
- Department of Dermatology and Venereology, Faculty of medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
12
|
Abolhasani R, Araghi F, Tabary M, Aryannejad A, Mashinchi B, Robati RM. The impact of air pollution on skin and related disorders: A comprehensive review. Dermatol Ther 2021; 34:e14840. [PMID: 33527709 DOI: 10.1111/dth.14840] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/29/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
Abstract
As the largest organ in the body, human skin is constantly exposed to harmful compounds existing in the surrounding environment as the first-line barrier. Studies have indicated that exposure to high concentrations of many environmental factors, such as ultraviolet (UV) radiation, outdoor air pollutants, including polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), particulate matter (PM), heavy metals, gaseous pollutants, such as carbon monoxide (CO), nitric oxides (NOx ), sulfur oxide (SO2 ), ozone (O3 ), and indoor air pollutants (solid fuels consumption), might interrupt the skin's normal barrier function. Besides, the intensity of the pollutants and the length of exposure might be a contributing factor. Air pollutants are believed to induce or exacerbate a range of skin conditions, such as aging, inflammatory diseases (atopic dermatitis, cellulitis, and psoriasis), acne, hair loss, and even skin cancers (mainly melanoma and Squamous Cell Carcinoma) through various mechanisms. The interaction between pollutants and the skin might differ based on each agent's particular characteristics. Also, damaging the skin barrier seems to be closely related to the increased production of reactive oxygen species (ROS), induction of oxidative stress, activation of aryl hydrocarbon receptor (AhR), and inflammatory cytokines. This article reviews recent studies on the correlation between air pollutants and skin diseases, along with related mechanisms.
Collapse
Affiliation(s)
| | - Farnaz Araghi
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Armin Aryannejad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Reza M Robati
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Dermatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Méhul B, Séraïdaris A, Blanchet-Réthoré S, Gamboa B, Bahadoran P, Queille-Roussel C, Voegel JJ, Mazuy A. Non-invasive profiling for cytokines, chemokines and growth factors in acne vulgaris. J Eur Acad Dermatol Venereol 2019; 33:e386-e388. [PMID: 31087481 DOI: 10.1111/jdv.15681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- B Méhul
- Galderma R&D, Nestlé Skin Health, Sophia Antipolis, France
| | - A Séraïdaris
- Galderma R&D, Nestlé Skin Health, Sophia Antipolis, France
| | | | - B Gamboa
- Galderma R&D, Nestlé Skin Health, Sophia Antipolis, France
| | - P Bahadoran
- Dermatology Department, Archet II Hospital, Nice, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Team 1, University of Nice Sophia Antipolis, Nice, France
| | - C Queille-Roussel
- Centre de Pharmacologie Clinique Appliquée à la Dermatologie (CPCAD), University Hospital of Nice, Nice, France
| | - J J Voegel
- Galderma R&D, Nestlé Skin Health, Sophia Antipolis, France
| | - A Mazuy
- Galderma R&D, Nestlé Skin Health, Sophia Antipolis, France
| |
Collapse
|
14
|
Costa A, Facchini G, Pinheiro ALTA, da Silva MS, Bonner MY, Arbiser J, Eberlin S. Honokiol protects skin cells against inflammation, collagenolysis, apoptosis, and senescence caused by cigarette smoke damage. Int J Dermatol 2017; 56:754-761. [PMID: 28229451 DOI: 10.1111/ijd.13569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/22/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Pollution, especially cigarette smoke, is a major cause of skin damage. OBJECTIVES To assess the effects of the small molecule polyphenol, honokiol, on reversing cigarette smoke-induced damage in vitro to relevant skin cells. METHODS Keratinocytes (HaCat) cultures were exposed to cigarette smoke and, after 48 hours, IL-1α and IL-8 were measured in cell supernatants. Moreover, TIMP-2 production, apoptosis rate, and senescence β-galactosidase expression were evaluated in primary human foreskin fibroblasts (HFF-1) cultures. RESULTS Honokiol at 10 μm reduced IL-1α production by 3.4 folds (P < 0.05) and at 10 and 20 μm reduced IL-8 by 23.9% and 53.1% (P < 0.001), respectively, in HaCat keratinocytes. In HFF-1, honokiol restored TIMP-2 production by 96.9% and 91.9% (P < 0.001), respectively, at 10 and 20 μm, as well as reduced apoptosis by 47.1% (P < 0.001) and 41.3% (P < 0.01), respectively. Finally, honokiol reduced senescence-associated β-galactosidase expression in HFF-1. CONCLUSION Honokiol protects both HFF-1 and HaCat against cigarette smoke-induced inflammation, collagenolysis, apoptosis, and senescence.
Collapse
Affiliation(s)
- Adilson Costa
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, Atlanta, GA, USA
| | - Gustavo Facchini
- KOLderma Clinical Trials Institute - Kosmoscience Group, Campinas, SP, Brazil
| | | | - Michelle S da Silva
- KOLderma Clinical Trials Institute - Kosmoscience Group, Campinas, SP, Brazil
| | - Michael Y Bonner
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, Atlanta, GA, USA
| | - Jack Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, Atlanta, GA, USA
| | - Samara Eberlin
- KOLderma Clinical Trials Institute - Kosmoscience Group, Campinas, SP, Brazil
| |
Collapse
|
15
|
Benson KF, Newman RA, Jensen GS. Water-soluble egg membrane enhances the immunoactivating properties of an Aloe vera-based extract of Nerium oleander leaves. Clin Cosmet Investig Dermatol 2016; 9:393-403. [PMID: 27843333 PMCID: PMC5098409 DOI: 10.2147/ccid.s114471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective To evaluate a blend of two natural ingredients on immune parameters relevant for their current topical use and potential support of microcirculation in skin tissue. Materials and methods A blend (BL) of Aloe vera-based Nerium oleander extract (NAE-8i, oleandrin-free) and hydrolyzed water-soluble egg membrane (WSEM) was applied to human whole-blood cultures for 24 hours, with each separate ingredient serving as a control. Immune-cell subsets were analyzed for expression levels of the activation markers CD69 and CD25. Culture supernatants were analyzed for cytokines, chemokines, and immunoregulating peptides. Results BL increased CD69 expression on lymphocytes, monocytes, and CD3–CD56+ natural killer cells, and CD25 expression on natural killer cells. The number of CD69+CD25+ lymphocytes increased in cultures treated with BL and the separate ingredients. BL triggered production of multiple cytokines and chemokines, where CC chemokines MIP1α and MIP3α, as well as cytokines involved in wound healing – Groα, Groβ, ENA78, and fractalkine – reached levels manyfold above treatment with either NAE-8i or WSEM alone. Conclusion Data on BL showed that WSEM strongly enhanced NAE-8i’s effects on immunoactivation in vitro. This has potential relevance for support of immunity in skin tissue, including antibacterial and antiviral defense mechanisms, wrinkle reduction, and wound care.
Collapse
Affiliation(s)
| | - Robert A Newman
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston; Nerium Biotechnology Inc, San Antonio, TX, USA
| | | |
Collapse
|
16
|
Kim KE, Cho D, Park HJ. Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases. Life Sci 2016; 152:126-34. [DOI: 10.1016/j.lfs.2016.03.039] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 03/09/2016] [Accepted: 03/21/2016] [Indexed: 12/26/2022]
|
17
|
Comparison of fractional microneedling radiofrequency and bipolar radiofrequency on acne and acne scar and investigation of mechanism: comparative randomized controlled clinical trial. Arch Dermatol Res 2015; 307:897-904. [DOI: 10.1007/s00403-015-1601-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 09/06/2015] [Accepted: 09/24/2015] [Indexed: 10/22/2022]
|
18
|
Nikolakis G, Seltmann H, Hossini AM, Makrantonaki E, Knolle J, Zouboulis CC. Ex vivohuman skin and SZ95 sebocytes exhibit a homoeostatic interaction in a novel coculture contact model. Exp Dermatol 2015; 24:497-502. [DOI: 10.1111/exd.12712] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Georgios Nikolakis
- Departments of Dermatology, Venereology, Allergology and Immunology; Dessau Medical Center; Dessau Germany
| | - Holger Seltmann
- Departments of Dermatology, Venereology, Allergology and Immunology; Dessau Medical Center; Dessau Germany
| | - Amir M. Hossini
- Departments of Dermatology, Venereology, Allergology and Immunology; Dessau Medical Center; Dessau Germany
| | - Evgenia Makrantonaki
- Departments of Dermatology, Venereology, Allergology and Immunology; Dessau Medical Center; Dessau Germany
| | - Jürgen Knolle
- Institute of Pathology; Dessau Medical Center; Dessau Germany
| | - Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology; Dessau Medical Center; Dessau Germany
| |
Collapse
|
19
|
Propionibacterium acnes Augments Antitumor, Anti-Angiogenesis and Immunomodulatory Effects of Melatonin on Breast Cancer Implanted in Mice. PLoS One 2015; 10:e0124384. [PMID: 25919398 PMCID: PMC4412818 DOI: 10.1371/journal.pone.0124384] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/01/2015] [Indexed: 01/11/2023] Open
Abstract
Breast cancer is one of the most invasive cancers with high mortality. The immune stimulating Propionibacterium acnes is a Gram positive bacterium that has the ability to cause inflammation and activate Th1-type cytokine immune response. Antitumor response was associated with the inflammation induced by P. acnes, but the antitumor effect of this bacterium was not evaluated in combination with other agents. The aim of this study was to test the antitumor potential of a combination of melatonin and P. acnes against breast cancer implanted in mice. Balb/C mice were transplanted with EMT6/P cell line and in vivo antitumor effect was assessed for P. acnes, melatonin, and a combination of melatonin and P. acnes. Tumor and organs sections were examined using hematoxylin/eosin staining protocol, and TUNEL colorimetric assay was used to detect apoptosis. The expression of vascular endothelial growth factor (VEGF) was measured in tumor sections and serum levels of INF-γ, and IL-4 were measured to evaluate the immune system function. To evaluate the toxicity of our combination, AST and ALT levels were measured in the serum of treated mice. The combination of melatonin and P. acnes has high efficiency in targeting breast cancer in mice. Forty percent of treated mice were completely cured using this combination and the combination inhibited metastasis of cancer cells to other organs. The combination therapy reduced angiogenesis, exhibited no toxicity, induced apoptosis, and stimulates strong Th1-type cytokine antitumor immune response. The combination of melatonin and P. acnes represents a promising option to treat breast cancer. However, carful preclinical and clinical evaluation is needed before considering this combination for human therapy.
Collapse
|
20
|
Baran U, Li Y, Choi WJ, Kalkan G, Wang RK. High resolution imaging of acne lesion development and scarring in human facial skin using OCT-based microangiography. Lasers Surg Med 2015; 47:231-8. [PMID: 25740313 DOI: 10.1002/lsm.22339] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND OBJECTIVE Acne is a common skin disease that often leads to scarring. Collagen and other tissue damage from the inflammation of acne give rise to permanent skin texture and microvascular changes. In this study, we demonstrate the capabilities of optical coherence tomography-based microangiography in detecting high-resolution, three-dimensional structural, and microvascular features of in vivo human facial skin during acne lesion initiation and scar development. MATERIALS AND METHODS A real time swept source optical coherence tomography system is used in this study to acquire volumetric images of human skin. The system operates on a central wavelength of 1,310 nm with an A-line rate of 100 kHz, and with an extended imaging range (∼12 mm in air). The system uses a handheld imaging probe to image acne lesion on a facial skin of a volunteer. We utilize optical microangiography (OMAG) technique to evaluate the changes in microvasculature and tissue structure. RESULTS Thanks to the high sensitivity of OMAG, we are able to image microvasculature up to capillary level and visualize the remodeled vessels around the acne lesion. Moreover, vascular density change derived from OMAG measurement is provided as an alternative biomarker for the assessment of human skin diseases. In contrast to other techniques like histology or microscopy, our technique made it possible to image 3D tissue structure and microvasculature up to 1.5 mm depth in vivo without the need of exogenous contrast agents. CONCLUSIONS The presented results are promising to facilitate clinical trials aiming to treat acne lesion scarring, as well as other prevalent skin diseases, by detecting cutaneous blood flow and structural changes within human skin in vivo.
Collapse
Affiliation(s)
- Utku Baran
- Department of Bioengineering, University of Washington, Seattle, Washington; Department of Electrical Engineering, University of Washington, Seattle, Washington
| | | | | | | | | |
Collapse
|
21
|
Baran U, Li Y, Choi WJ, Kalkan G, Wang RK. High resolution imaging of acne lesion development and scarring in human facial skin using OCT-based microangiography. Lasers Surg Med 2015. [PMID: 25740313 DOI: 10.1002/lsm.v47.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND OBJECTIVE Acne is a common skin disease that often leads to scarring. Collagen and other tissue damage from the inflammation of acne give rise to permanent skin texture and microvascular changes. In this study, we demonstrate the capabilities of optical coherence tomography-based microangiography in detecting high-resolution, three-dimensional structural, and microvascular features of in vivo human facial skin during acne lesion initiation and scar development. MATERIALS AND METHODS A real time swept source optical coherence tomography system is used in this study to acquire volumetric images of human skin. The system operates on a central wavelength of 1,310 nm with an A-line rate of 100 kHz, and with an extended imaging range (∼12 mm in air). The system uses a handheld imaging probe to image acne lesion on a facial skin of a volunteer. We utilize optical microangiography (OMAG) technique to evaluate the changes in microvasculature and tissue structure. RESULTS Thanks to the high sensitivity of OMAG, we are able to image microvasculature up to capillary level and visualize the remodeled vessels around the acne lesion. Moreover, vascular density change derived from OMAG measurement is provided as an alternative biomarker for the assessment of human skin diseases. In contrast to other techniques like histology or microscopy, our technique made it possible to image 3D tissue structure and microvasculature up to 1.5 mm depth in vivo without the need of exogenous contrast agents. CONCLUSIONS The presented results are promising to facilitate clinical trials aiming to treat acne lesion scarring, as well as other prevalent skin diseases, by detecting cutaneous blood flow and structural changes within human skin in vivo.
Collapse
Affiliation(s)
- Utku Baran
- Department of Bioengineering, University of Washington, Seattle, Washington; Department of Electrical Engineering, University of Washington, Seattle, Washington
| | | | | | | | | |
Collapse
|
22
|
Si X, Ge L, Xin H, Cao W, Sun X, Li W. Erythrodermic psoriasis with bullous pemphigoid: combination treatment with methotrexate and compound glycyrrhizin. Diagn Pathol 2014; 9:102. [PMID: 24885087 PMCID: PMC4047554 DOI: 10.1186/1746-1596-9-102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 05/11/2014] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED We report a case of erythrodermic psoriasis with bullous pemphigoid (BP) in a 68-year-old male. The patient had a history of psoriasis for 35 years and tense, blisterlike lesions for 4 months. He presented with diffuse flushing, infiltrative swelling, and tense blisterlike lesions on his head, trunk, and limbs. This patient was successfully treated by a combination of methotrexate and compound glycyrrhizin. We also discuss the clinical manifestations, histopathological features, and differentiation of erythrodermic psoriasis with BP and present a review of the pertinent literature. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1853737109114076.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenfei Li
- Department of Dermatology, Qianfoshan Hospital, Shandong University, Jinan 250014, China.
| |
Collapse
|
23
|
Kanda N, Hau CS, Tada Y, Tatsuta A, Sato S, Watanabe S. Visfatin enhances CXCL8, CXCL10, and CCL20 production in human keratinocytes. Endocrinology 2011; 152:3155-64. [PMID: 21673103 DOI: 10.1210/en.2010-1481] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Psoriasis patients are frequently associated with metabolic syndromes. Such associations are possibly mediated by adipokines. We investigated the in vitro effects of visfatin (an adipokine) on chemokine expression in human keratinocytes. Normal human keratinocytes were incubated with visfatin, and their chemokine production was analyzed by ELISA and RT-PCR. Visfatin enhanced TNF-α-induced CXC chemokine ligand (CXCL) 8, CXCL10, and CC chemokine ligand (CCL) 20 secretion and mRNA expression in keratinocytes, although visfatin alone was ineffective. A small interfering RNA against nuclear factor-κB (NF-κB) p65 suppressed the visfatin-induced production of CXCL8, CXCL10, and CCL20 whereas a small interfering RNA against signal transducer and activator of transcription (STAT) 3 suppressed CXCL8 induction. This indicates the involvement of NF-κB in CXCL8, CXCL10, and CCL20 induction by visfatin and the involvement of STAT3 in CXCL8 induction. Visfatin alone increased the transcriptional activity and tyrosine phosphorylation of STAT3, which was suppressed by Janus kinase (JAK) 2 inhibitor. Visfatin enhanced basal and TNF-α-induced NF-κB activity and inhibitory κB (IκB) α phosphorylation, which was suppressed by IκB kinase inhibitor. Visfatin induced the tyrosine and serine phosphorylation of JAK2 and IκB kinase α/β, respectively. Intraperitoneal injection of visfatin elevated mRNA and protein levels of CXCL1, CXCL10, and CCL20 in murine skin. These results suggest that visfatin enhances CXCL8, CXCL10, and CCL20 production in human keratinocytes and homologous chemokine production in murine skin. Visfatin may induce the infiltration of type 1 or type 17 helper T cells or neutrophils to the skin via chemokine induction and thus link metabolic syndromes to psoriasis.
Collapse
Affiliation(s)
- N Kanda
- Department of Dermatology, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Jung JY, Kwon HH, Yeom KB, Yoon MY, Suh DH. Clinical and histological evaluation of 1% nadifloxacin cream in the treatment of acne vulgaris in Korean patients. Int J Dermatol 2011; 50:350-7. [DOI: 10.1111/j.1365-4632.2010.04701.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Drott JB, Alexeyev O, Bergström P, Elgh F, Olsson J. Propionibacterium acnes infection induces upregulation of inflammatory genes and cytokine secretion in prostate epithelial cells. BMC Microbiol 2010; 10:126. [PMID: 20420679 PMCID: PMC2867951 DOI: 10.1186/1471-2180-10-126] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 04/26/2010] [Indexed: 01/09/2023] Open
Abstract
Background The immune stimulating bacterium Propionibacterium acnes is a frequent colonizer of benign and malignant prostate tissue. To understand the pathogenesis of the earliest phase of this infection, we examined the P. acnes triggered immune response in cultivated prostate epithelial cells. Results Prostate epithelial cells are triggered to secrete IL-6, IL-8 and GM-CSF when infected with P. acnes. The secretion of cytokines is accompanied by NFκB related upregulation of the secreted cytokines as well as several components of the TLR2-NFκB signaling pathway. Conclusions P. acnes has potential to trigger a strong immune reaction in the prostate glandular epithelium. Upon infection of prostate via the retrograde urethral route, the induced inflammatory reaction might facilitate bacterial colonization deeper in the prostate tissue where persistent inflammation may impact the development of prostate diseases as hyperplasia and/or malignancy.
Collapse
Affiliation(s)
- Johanna B Drott
- Department of Clinical Microbiology/Virology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | |
Collapse
|
26
|
Jung JY, Choi YS, Yoon MY, Min SU, Suh DH. Comparison of a Pulsed Dye Laser and a Combined 585/1,064-nm Laser in the Treatment of Acne Vulgaris. Dermatol Surg 2009; 35:1181-7. [PMID: 19175372 DOI: 10.1111/j.1524-4725.2008.34427.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jae Yoon Jung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
27
|
Antibodies elicited by inactivated propionibacterium acnes-based vaccines exert protective immunity and attenuate the IL-8 production in human sebocytes: relevance to therapy for acne vulgaris. J Invest Dermatol 2008; 128:2451-7. [PMID: 18463682 DOI: 10.1038/jid.2008.117] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Propionibacterium acnes is a key pathogen involved in the progression of inflammation in acne vulgaris. We examined whether vaccination against P. acnes suppressed P. acnes-induced skin inflammation. Inactivation of P. acnes with heat was employed to create a P. acnes-based vaccine. Intranasal immunization in mice with this inactivated vaccine provoked specific antibodies against P. acnes. Most notably, immunization with inactivated vaccines generated in vivo protective immunity against P. acnes challenge and facilitated the resolution of ear inflammation in mice. In addition, antibodies elicited by inactivated vaccines effectively neutralized the cytotoxicity of P. acnes and attenuated the production of proinflammatory cytokine IL-8 in human sebocyte SZ95 cells. Intranasal immunization using heat-inactivated P. acnes-based vaccines provided a simple modality to develop acne vaccines. These observations highlight the concept that development of vaccines targeting microbial products may represent an alternative strategy to conventional antibiotic therapy.
Collapse
|
28
|
Nakatsuji T, Liu YT, Huang CP, Gallo RL, Huang CM. Vaccination targeting a surface sialidase of P. acnes: implication for new treatment of acne vulgaris. PLoS One 2008; 3:e1551. [PMID: 18253498 PMCID: PMC2212713 DOI: 10.1371/journal.pone.0001551] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 01/02/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acne vulgaris afflicts more than fifty million people in the United State and the severity of this disorder is associated with the immune response to Propionibacterium acnes (P. acnes). Systemic therapies for acne target P. acnes using antibiotics, or target the follicle with retinoids such as isotretinoin. The latter systemic treatment is highly effective but also carries a risk of side effects including immune imbalance, hyperlipidemia, and teratogenicity. Despite substantial research into potential new therapies for this common disease, vaccines against acne vulgaris are not yet available. METHODS AND FINDINGS Here we create an acne vaccine targeting a cell wall-anchored sialidase of P. acnes. The importance of sialidase to disease pathogenesis is shown by treatment of a human sebocyte cell line with recombinant sialidase that increased susceptibility to P. acnes cytotoxicity and adhesion. Mice immunized with sialidase elicit a detectable antibody; the anti-sialidase serum effectively neutralized the cytotoxicity of P. acnes in vitro and P. acnes-induced interleukin-8 (IL-8) production in human sebocytes. Furthermore, the sialidase-immunized mice provided protective immunity against P. acnes in vivo as this treatment blocked an increase in ear thickness and release of pro-inflammatory macrophage inflammatory protein (MIP-2) cytokine. CONCLUSIONS Results indicated that acne vaccines open novel therapeutic avenues for acne vulgaris and other P. acnes-associated diseases.
Collapse
Affiliation(s)
- Teruaki Nakatsuji
- Division of Dermatology, Department of Medicine, University of California San Diego, San Diego, California, United States of America
- Veterans Affairs (VA) San Diego Healthcare Center, San Diego, California, United States of America
| | - Yu-Tsueng Liu
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
| | - Cheng-Po Huang
- Veterans Affairs (VA) San Diego Healthcare Center, San Diego, California, United States of America
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
| | - Richard L. Gallo
- Division of Dermatology, Department of Medicine, University of California San Diego, San Diego, California, United States of America
- Veterans Affairs (VA) San Diego Healthcare Center, San Diego, California, United States of America
| | - Chun-Ming Huang
- Division of Dermatology, Department of Medicine, University of California San Diego, San Diego, California, United States of America
- Veterans Affairs (VA) San Diego Healthcare Center, San Diego, California, United States of America
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
- La Jolla Institute for Molecular Medicine, San Diego, California, United States of America
- *E-mail:
| |
Collapse
|