1
|
Graf A, Bassukas AEL, Xiao Y, Barbosa ICR, Mergner J, Grill P, Michalke B, Kuster B, Schwechheimer C. D6PK plasma membrane polarity requires a repeated CXX(X)P motif and PDK1-dependent phosphorylation. NATURE PLANTS 2024; 10:300-314. [PMID: 38278951 PMCID: PMC10881395 DOI: 10.1038/s41477-023-01615-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/15/2023] [Indexed: 01/28/2024]
Abstract
D6 PROTEIN KINASE (D6PK) is a polarly localized plasma-membrane-associated kinase from Arabidopsis thaliana that activates polarly distributed PIN-FORMED auxin transporters. D6PK moves rapidly to and from the plasma membrane, independent of its PIN-FORMED targets. The middle D6PK domain, an insertion between kinase subdomains VII and VIII, is required and sufficient for association and polarity of the D6PK plasma membrane. How D6PK polarity is established and maintained remains to be shown. Here we show that cysteines from repeated middle domain CXX(X)P motifs are S-acylated and required for D6PK membrane association. While D6PK S-acylation is not detectably regulated during intracellular transport, phosphorylation of adjacent serine residues, in part in dependence on the upstream 3-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE, promotes D6PK transport, controls D6PK residence time at the plasma membrane and prevents its lateral diffusion. We thus identify new mechanisms for the regulation of D6PK plasma membrane interaction and polarity.
Collapse
Affiliation(s)
- Alina Graf
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | - Yao Xiao
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Freising, Germany
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Inês C R Barbosa
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Julia Mergner
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
- Bavarian Center for Biomolecular Mass Spectrometry at Klinikum rechts der Isar, Center for Translational Cancer Research, Munich, Germany
| | - Peter Grill
- Helmholtz Zentrum München, German Research Center for Environmental Health, Analytical BioGeoChemistry, Neuherberg, Germany
| | - Bernhard Michalke
- Helmholtz Zentrum München, German Research Center for Environmental Health, Analytical BioGeoChemistry, Neuherberg, Germany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Claus Schwechheimer
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
2
|
Quinn O, Kumar M, Turner S. The role of lipid-modified proteins in cell wall synthesis and signaling. PLANT PHYSIOLOGY 2023; 194:51-66. [PMID: 37682865 PMCID: PMC10756762 DOI: 10.1093/plphys/kiad491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
The plant cell wall is a complex and dynamic extracellular matrix. Plant primary cell walls are the first line of defense against pathogens and regulate cell expansion. Specialized cells deposit a secondary cell wall that provides support and permits water transport. The composition and organization of the cell wall varies between cell types and species, contributing to the extensibility, stiffness, and hydrophobicity required for its proper function. Recently, many of the proteins involved in the biosynthesis, maintenance, and remodeling of the cell wall have been identified as being post-translationally modified with lipids. These modifications exhibit diverse structures and attach to proteins at different sites, which defines the specific role played by each lipid modification. The introduction of relatively hydrophobic lipid moieties promotes the interaction of proteins with membranes and can act as sorting signals, allowing targeted delivery to the plasma membrane regions and secretion into the apoplast. Disruption of lipid modification results in aberrant deposition of cell wall components and defective cell wall remodeling in response to stresses, demonstrating the essential nature of these modifications. Although much is known about which proteins bear lipid modifications, many questions remain regarding the contribution of lipid-driven membrane domain localization and lipid heterogeneity to protein function in cell wall metabolism. In this update, we highlight the contribution of lipid modifications to proteins involved in the formation and maintenance of plant cell walls, with a focus on the addition of glycosylphosphatidylinositol anchors, N-myristoylation, prenylation, and S-acylation.
Collapse
Affiliation(s)
- Oliver Quinn
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Manoj Kumar
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Simon Turner
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| |
Collapse
|
3
|
Liu X, Chen Z, Huang L, Ouyang Y, Wang Z, Wu S, Ye W, Yu B, Zhang Y, Yang C, Lai J. Salicylic acid attenuates brassinosteroid signaling via protein de-S-acylation. EMBO J 2023; 42:e112998. [PMID: 37211868 PMCID: PMC10308364 DOI: 10.15252/embj.2022112998] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023] Open
Abstract
Brassinosteroids (BRs) are important plant hormones involved in many aspects of development. Here, we show that BRASSINOSTEROID SIGNALING KINASEs (BSKs), key components of the BR pathway, are precisely controlled via de-S-acylation mediated by the defense hormone salicylic acid (SA). Most Arabidopsis BSK members are substrates of S-acylation, a reversible protein lipidation that is essential for their membrane localization and physiological function. We establish that SA interferes with the plasma membrane localization and function of BSKs by decreasing their S-acylation levels, identifying ABAPT11 (ALPHA/BETA HYDROLASE DOMAIN-CONTAINING PROTEIN 17-LIKE ACYL PROTEIN THIOESTERASE 11) as an enzyme whose expression is quickly induced by SA. ABAPT11 de-S-acylates most BSK family members, thus integrating BR and SA signaling for the control of plant development. In summary, we show that BSK-mediated BR signaling is regulated by SA-induced protein de-S-acylation, which improves our understanding of the function of protein modifications in plant hormone cross talk.
Collapse
Affiliation(s)
- Xiaoshi Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Zian Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Liting Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Youwei Ouyang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Zhiying Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Shuang Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Weixian Ye
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Boya Yu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Yihang Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| |
Collapse
|
4
|
Zhang L, Thapa Magar MS, Wang Y, Cheng Y. Tip growth defective1 interacts with cellulose synthase A3 to regulate cellulose biosynthesis in Arabidopsis. PLANT MOLECULAR BIOLOGY 2022; 110:1-12. [PMID: 35644016 DOI: 10.1007/s11103-022-01283-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
AtTIP1 physically and genetically interacts with AtCESA3. AtCESA3 undergoes S-acylation, possibly mediated by AtTIP1, suggesting a specific role of AtTIP1 in cellulose biosynthesis and plant development. S-acylation is a reversible post-translational lipid modification of proteins catalyzed by protein S-acyl transferases (PATs). S-acylation is important for various biological molecular mechanisms including cellulose biosynthesis. Cellulose is synthesized by the cellulose synthase A (CESA) complexes (CSCs) at the plasma membrane. However, specific PAT involving in cellulose biosynthesis has not been identified and the precise mechanism by which PAT regulates the CESAs is largely unknown. Here, we report isolation of tip1-5, an allele of Tip Growth Defective1 (AtTIP1/AtPAT24) with a premature stop codon. tip1-5 genetically interacts with ixr1-2, a point mutant of AtCESA3 which encodes a catalytic subunit of CSC synthesizing primary wall cellulose. We show that AtTIP1 physically interacts with AtCESA3. AtCESA3 undergoes S-acylation, which is possibly mediated by AtTIP1, suggesting a functional relationship between AtTIP1 and AtCESA3. Moreover, the interfascicular fiber cells in the primary inflorescence stems of tip1-5 ixr1-2 double mutant contain thinner cell walls and significantly less crystalline cellulose compared to the single mutants. These results highlight the positive regulation of AtTIP1 in cellulose biosynthesis, and a specific role of AtPAT in plant development.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Madhu Shudan Thapa Magar
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Plant Resources, Ministry of Forests and Environment, Government of Nepal, Kathmandu, 44600, Nepal
| | - Yanning Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youfa Cheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
5
|
Li J, Zhang M, Zhou L. Protein S-acyltransferases and acyl protein thioesterases, regulation executors of protein S-acylation in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:956231. [PMID: 35968095 PMCID: PMC9363829 DOI: 10.3389/fpls.2022.956231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Protein S-acylation, also known as palmitoylation, is an important lipid post-translational modification of proteins in eukaryotes. S-acylation plays critical roles in a variety of protein functions involved in plant development and responses to abiotic and biotic stresses. The status of S-acylation on proteins is dynamic and reversible, which is catalyzed by protein S-acyltransferases (PATs) and reversed by acyl protein thioesterases. The cycle of S-acylation and de-S-acylation provides a molecular mechanism for membrane-associated proteins to undergo cycling and trafficking between different cell compartments and thus works as a switch to initiate or terminate particular signaling transductions on the membrane surface. In plants, thousands of proteins have been identified to be S-acylated through proteomics. Many S-acylated proteins and quite a few PAT-substrate pairs have been functionally characterized. A recently characterized acyl protein thioesterases family, ABAPT family proteins in Arabidopsis, has provided new insights into the de-S-acylation process. However, our understanding of the regulatory mechanisms controlling the S-acylation and de-S-acylation process is surprisingly incomplete. In this review, we discuss how protein S-acylation level is regulated with the focus on catalyzing enzymes in plants. We also propose the challenges and potential developments for the understanding of the regulatory mechanisms controlling protein S-acylation in plants.
Collapse
Affiliation(s)
- Jincheng Li
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Manqi Zhang
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lijuan Zhou
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
6
|
Yue N, Jiang Z, Zhang X, Li Z, Wang X, Wen Z, Gao Z, Pi Q, Zhang Y, Wang X, Han C, Yu J, Li D. Palmitoylation of γb protein directs a dynamic switch between Barley stripe mosaic virus replication and movement. EMBO J 2022; 41:e110060. [PMID: 35642376 PMCID: PMC9251889 DOI: 10.15252/embj.2021110060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
Viral replication and movement are intimately linked; however, the molecular mechanisms regulating the transition between replication and subsequent movement remain largely unknown. We previously demonstrated that the Barley stripe mosaic virus (BSMV) γb protein promotes viral replication and movement by interacting with the αa replicase and TGB1 movement proteins. Here, we found that γb is palmitoylated at Cys-10, Cys-19, and Cys-60 in Nicotiana benthamiana, which supports BSMV infection. Intriguingly, non-palmitoylated γb is anchored to chloroplast replication sites and enhances BSMV replication, whereas palmitoylated γb protein recruits TGB1 to the chloroplasts and forms viral replication-movement intermediate complexes. At the late stages of replication, γb interacts with NbPAT15 and NbPAT21 and is palmitoylated at the chloroplast periphery, thereby shifting viral replication to intracellular and intercellular movement. We also show that palmitoylated γb promotes virus cell-to-cell movement by interacting with NbREM1 to inhibit callose deposition at the plasmodesmata. Altogether, our experiments reveal a model whereby palmitoylation of γb directs a dynamic switch between BSMV replication and movement events during infection.
Collapse
Affiliation(s)
- Ning Yue
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhihao Jiang
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xuan Zhang
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhenggang Li
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xueting Wang
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhiyan Wen
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zongyu Gao
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Qinglin Pi
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yongliang Zhang
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xian‐Bing Wang
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Chenggui Han
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jialin Yu
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Dawei Li
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
7
|
Kumar M, Carr P, Turner SR. An atlas of Arabidopsis protein S-acylation reveals its widespread role in plant cell organization and function. NATURE PLANTS 2022. [PMID: 35681017 DOI: 10.1101/2020.05.12.090415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
S-acylation is the addition of a fatty acid to a cysteine residue of a protein. While this modification may profoundly alter protein behaviour, its effects on the function of plant proteins remains poorly characterized, largely as a result of the lack of basic information regarding which proteins are S-acylated and where in the proteins the modification occurs. To address this gap in our knowledge, we used an optimized acyl-resin-assisted capture assay to perform a comprehensive analysis of plant protein S-acylation from six separate tissues. In our high- and medium-confidence groups, we identified 1,849 cysteines modified by S-acylation, which were located in 1,640 unique peptides from 1,094 different proteins. This represents around 6% of the detectable Arabidopsis proteome and suggests an important role for S-acylation in many essential cellular functions including trafficking, signalling and metabolism. To illustrate the potential of this dataset, we focus on cellulose synthesis and confirm the S-acylation of a number of proteins known to be involved in cellulose synthesis and trafficking of the cellulose synthase complex. In the secondary cell walls, cellulose synthesis requires three different catalytic subunits (CESA4, CESA7 and CESA8) that all exhibit striking sequence similarity and are all predicted to possess a RING-type zinc finger at their amino terminus composed of eight cysteines. For CESA8, we find evidence for S-acylation of these cysteines that is incompatible with any role in coordinating metal ions. We show that while CESA7 may possess a RING-type domain, the same region of CESA8 appears to have evolved a very different structure. Together, the data suggest that this study represents an atlas of S-acylation in Arabidopsis that will facilitate the broader study of this elusive post-translational modification in plants as well as demonstrating the importance of further work in this area.
Collapse
Affiliation(s)
- Manoj Kumar
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Paul Carr
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Holiferm, Manchester, UK
| | - Simon R Turner
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
8
|
Tian Y, Zeng H, Wu J, Huang J, Gao Q, Tang D, Cai L, Liao Z, Wang Y, Liu X, Lin J. Screening DHHCs of S-acylated proteins using an OsDHHC cDNA library and bimolecular fluorescence complementation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1763-1780. [PMID: 35411551 DOI: 10.1111/tpj.15769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 05/28/2023]
Abstract
S-acylation is an important lipid modification that primarily involves DHHC proteins (DHHCs) and associated S-acylated proteins. No DHHC-S-acylated protein pair has been reported so far in rice (Oryza sativa L.) and the molecular mechanisms underlying S-acylation in plants are largely unknown. We constructed an OsDHHC cDNA library for screening corresponding pairs of DHHCs and S-acylated proteins using bimolecular fluorescence complementation assays. Five DHHC-S-acylated protein pairs (OsDHHC30-OsCBL2, OsDHHC30-OsCBL3, OsDHHC18-OsNOA1, OsDHHC13-OsNAC9, and OsDHHC14-GSD1) were identified in rice. Among the pairs, OsCBL2 and OsCBL3 were S-acylated by OsDHHC30 in yeast and rice. The localization of OsCBL2 and OsCBL3 in the endomembrane depended on S-acylation mediated by OsDHHC30. Meanwhile, all four OsDHHCs screened complemented the thermosensitive phenotype of an akr1 yeast mutant, and their DHHC motifs were required for S-acyltransferase activity. Overexpression of OsDHHC30 in rice plants improved their salt and oxidative tolerance. Together, these results contribute to our understanding of the molecular mechanism underlying S-acylation in plants.
Collapse
Affiliation(s)
- Ye Tian
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Hui Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Jicai Wu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Jian Huang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Qiang Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Dongying Tang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Lipeng Cai
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Zhaoyi Liao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Yan Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Jianzhong Lin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| |
Collapse
|
9
|
Kumar M, Carr P, Turner SR. An atlas of Arabidopsis protein S-acylation reveals its widespread role in plant cell organization and function. NATURE PLANTS 2022; 8:670-681. [PMID: 35681017 DOI: 10.1038/s41477-022-01164-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/04/2022] [Indexed: 05/28/2023]
Abstract
S-acylation is the addition of a fatty acid to a cysteine residue of a protein. While this modification may profoundly alter protein behaviour, its effects on the function of plant proteins remains poorly characterized, largely as a result of the lack of basic information regarding which proteins are S-acylated and where in the proteins the modification occurs. To address this gap in our knowledge, we used an optimized acyl-resin-assisted capture assay to perform a comprehensive analysis of plant protein S-acylation from six separate tissues. In our high- and medium-confidence groups, we identified 1,849 cysteines modified by S-acylation, which were located in 1,640 unique peptides from 1,094 different proteins. This represents around 6% of the detectable Arabidopsis proteome and suggests an important role for S-acylation in many essential cellular functions including trafficking, signalling and metabolism. To illustrate the potential of this dataset, we focus on cellulose synthesis and confirm the S-acylation of a number of proteins known to be involved in cellulose synthesis and trafficking of the cellulose synthase complex. In the secondary cell walls, cellulose synthesis requires three different catalytic subunits (CESA4, CESA7 and CESA8) that all exhibit striking sequence similarity and are all predicted to possess a RING-type zinc finger at their amino terminus composed of eight cysteines. For CESA8, we find evidence for S-acylation of these cysteines that is incompatible with any role in coordinating metal ions. We show that while CESA7 may possess a RING-type domain, the same region of CESA8 appears to have evolved a very different structure. Together, the data suggest that this study represents an atlas of S-acylation in Arabidopsis that will facilitate the broader study of this elusive post-translational modification in plants as well as demonstrating the importance of further work in this area.
Collapse
Affiliation(s)
- Manoj Kumar
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Paul Carr
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Holiferm, Manchester, UK
| | - Simon R Turner
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
10
|
Liu X, Li M, Li Y, Chen Z, Zhuge C, Ouyang Y, Zhao Y, Lin Y, Xie Q, Yang C, Lai J. An ABHD17-like hydrolase screening system to identify de-S-acylation enzymes of protein substrates in plant cells. THE PLANT CELL 2021; 33:3235-3249. [PMID: 34338800 PMCID: PMC8505870 DOI: 10.1093/plcell/koab199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/29/2021] [Indexed: 05/25/2023]
Abstract
Protein S-acylation is an important post-translational modification in eukaryotes, regulating the subcellular localization, trafficking, stability, and activity of substrate proteins. The dynamic regulation of this reversible modification is mediated inversely by protein S-acyltransferases and de-S-acylation enzymes, but the de-S-acylation mechanism remains unclear in plant cells. Here, we characterized a group of putative protein de-S-acylation enzymes in Arabidopsis thaliana, including 11 members of Alpha/Beta Hydrolase Domain-containing Protein 17-like acyl protein thioesterases (ABAPTs). A robust system was then established for the screening of de-S-acylation enzymes of protein substrates in plant cells, based on the effects of substrate localization and confirmed via the protein S-acylation levels. Using this system, the ABAPTs, which specifically reduced the S-acylation levels and disrupted the plasma membrane localization of five immunity-related proteins, were identified respectively in Arabidopsis. Further results indicated that the de-S-acylation of RPM1-Interacting Protein 4, which was mediated by ABAPT8, resulted in an increase of cell death in Arabidopsis and Nicotiana benthamiana, supporting the physiological role of the ABAPTs in plants. Collectively, our current work provides a powerful and reliable system to identify the pairs of plant protein substrates and de-S-acylation enzymes for further studies on the dynamic regulation of plant protein S-acylation.
Collapse
Affiliation(s)
- Xiaoshi Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Min Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zian Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chun Zhuge
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Youwei Ouyang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yawen Zhao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuxin Lin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
11
|
Pan X, Fang L, Liu J, Senay-Aras B, Lin W, Zheng S, Zhang T, Guo J, Manor U, Van Norman J, Chen W, Yang Z. Auxin-induced signaling protein nanoclustering contributes to cell polarity formation. Nat Commun 2020; 11:3914. [PMID: 32764676 PMCID: PMC7410848 DOI: 10.1038/s41467-020-17602-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 07/05/2020] [Indexed: 11/25/2022] Open
Abstract
Cell polarity is fundamental to the development of both eukaryotes and prokaryotes, yet the mechanisms behind its formation are not well understood. Here we found that, phytohormone auxin-induced, sterol-dependent nanoclustering of cell surface transmembrane receptor kinase 1 (TMK1) is critical for the formation of polarized domains at the plasma membrane (PM) during the morphogenesis of cotyledon pavement cells (PC) in Arabidopsis. Auxin-induced TMK1 nanoclustering stabilizes flotillin1-associated ordered nanodomains, which in turn promote the nanoclustering of ROP6 GTPase that acts downstream of TMK1 to regulate cortical microtubule organization. In turn, cortical microtubules further stabilize TMK1- and flotillin1-containing nanoclusters at the PM. Hence, we propose a new paradigm for polarity formation: A diffusive signal triggers cell polarization by promoting cell surface receptor-mediated nanoclustering of signaling components and cytoskeleton-mediated positive feedback that reinforces these nanodomains into polarized domains.
Collapse
Affiliation(s)
- Xue Pan
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Linjing Fang
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jianfeng Liu
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Betul Senay-Aras
- Department of Mathematics, University of California, Riverside, CA, 92521, USA
| | - Wenwei Lin
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Shuan Zheng
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tong Zhang
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jingzhe Guo
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jaimie Van Norman
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Weitao Chen
- Department of Mathematics, University of California, Riverside, CA, 92521, USA.
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
12
|
Identification and characterization of differentially expressed genes in the rice root following exogenous application of spermidine during salt stress. Genomics 2020; 112:4125-4136. [PMID: 32650100 DOI: 10.1016/j.ygeno.2020.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 12/26/2019] [Accepted: 07/02/2020] [Indexed: 11/24/2022]
Abstract
Salinity is a major limiting factor in crop production. Exogenous spermidine (spd) effectively ameliorates salt injury, though the underlying molecular mechanism is poorly understood. We have used a suppression subtractive hybridization method to construct a cDNA library that has identified up-regulated genes from rice root under the treatment of spd and salt. Total 175 high-quality ESTs of about 100-500 bp in length with an average size of 200 bp are isolated, clustered and assembled into a collection of 62 unigenes. Gene ontology analysis using the KEGG pathway annotation database has classified the unigenes into 5 main functional categories and 13 subcategories. The transcripts abundance has been validated using Real-Time PCR. We have observed seven different types of post-translational modifications in the DEPs. 44 transmembrane helixes are predicted in 6 DEPs. This above information can be used as first-hand data for dissecting the administrative role of spd during salinity.
Collapse
|
13
|
Zhang X, Mi Y, Mao H, Liu S, Chen L, Qin F. Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1271-1283. [PMID: 31692165 PMCID: PMC7152618 DOI: 10.1111/pbi.13290] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/04/2019] [Accepted: 10/29/2019] [Indexed: 05/03/2023]
Abstract
Drought is a major abiotic stress that threatens maize production globally. A previous genome-wide association study identified a significant association between the natural variation of ZmTIP1 and the drought tolerance of maize seedlings. Here, we report on comprehensive genetic and functional analysis, indicating that ZmTIP1, which encodes a functional S-acyltransferase, plays a positive role in regulating the length of root hairs and the level of drought tolerance in maize. We show that enhancing ZmTIP1 expression in transgenic Arabidopsis and maize increased root hair length, as well as plant tolerance to water deficit. In contrast, ZmTIP1 transposon-insertional mutants displayed the opposite phenotype. A calcium-dependent protein kinase, ZmCPK9, was identified as a substrate protein of ZmTIP1, and ZmTIP1-mediated palmitoylation of two cysteine residues facilitated the ZmCPK9 PM association. The results of this research enrich our knowledge about ZmTIP1-mediated protein S-acylation modifications in relation to the regulation of root hair elongation and drought tolerance. Additionally, the identification of a favourable allele of ZmTIP1 also provides a valuable genetic resource or selection target for the genetic improvement of maize.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yue Mi
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityShaanxiChina
| | - Shengxue Liu
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Limei Chen
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijingChina
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Feng Qin
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijingChina
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
14
|
S-acylation in plants: an expanding field. Biochem Soc Trans 2020; 48:529-536. [DOI: 10.1042/bst20190703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
S-acylation is a common yet poorly understood fatty acid-based post-translational modification of proteins in all eukaryotes, including plants. While exact roles for S-acylation in protein function are largely unknown the reversibility of S-acylation indicates that it is likely able to play a regulatory role. As more studies reveal the roles of S-acylation within the cell it is becoming apparent that how S-acylation affects proteins is conceptually different from other reversible modifications such as phosphorylation or ubiquitination; a new mind-set is therefore required to fully integrate these data into our knowledge of plant biology. This review aims to highlight recent advances made in the function and enzymology of S-acylation in plants, highlights current and emerging technologies for its study and suggests future avenues for investigation.
Collapse
|
15
|
Chen W, Hsu W, Hsu H, Yang C. A tetraspanin gene regulating auxin response and affecting orchid perianth size and various plant developmental processes. PLANT DIRECT 2019; 3:e00157. [PMID: 31406958 PMCID: PMC6680136 DOI: 10.1002/pld3.157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 05/25/2023]
Abstract
The competition between L (lip) and SP (sepal/petal) complexes in P-code model determines the identity of complex perianth patterns in orchids. Orchid tetraspanin gene Auxin Activation Factor (AAF) orthologs, whose expression strongly correlated with the expansion and size of the perianth after P code established, were identified. Virus-induced gene silencing (VIGS) of OAGL6-2 in L complex resulted in smaller lips and the down-regulation of Oncidium OnAAF. VIGS of PeMADS9 in L complex resulted in the enlarged lips and up-regulation of Phalaenopsis PaAAF. Furthermore, the larger size of Phalaenopsis variety flowers was associated with higher PaAAF expression, larger and more cells in the perianth. Thus, a rule is established that whenever bigger perianth organs are made in orchids, higher OnAAF/PaAAF expression is observed after their identities are determined by P-code complexes. Ectopic expression Arabidopsis AtAAF significantly increased the size of flower organs by promoting cell expansion in transgenic Arabidopsis due to the enhancement of the efficiency of the auxin response and the subsequent suppression of the jasmonic acid (JA) biosynthesis genes (DAD1/OPR3) and BIGPETAL gene during late flower development. In addition, auxin-controlled phenotypes, such as indehiscent anthers, enhanced drought tolerance, and increased lateral root formation, were also observed in 35S::AtAAF plants. Furthermore, 35S::AtAAF root tips maintained gravitropism during auxin treatment. In contrast, the opposite phenotype was observed in palmitoylation-deficient AtAAF mutants. Our data demonstrate an interaction between the tetraspanin AAF and auxin/JA that regulates the size of flower organs and impacts various developmental processes.
Collapse
Affiliation(s)
- Wei‐Hao Chen
- Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Wei‐Han Hsu
- Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Hsing‐Fun Hsu
- Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Chang‐Hsien Yang
- Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan, ROC
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
| |
Collapse
|
16
|
Determination of Protein S-Acylation State by Enhanced Acyl-Switch Methods. Methods Mol Biol 2019. [PMID: 31152391 DOI: 10.1007/978-1-4939-9532-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
S-Acylation is increasingly being recognized as an important dynamic posttranslational modification of cysteine residues in proteins. Various approaches have been described for assaying protein S-acylation with acyl-switch approaches being the most common and accessible. However, these approaches can be time-consuming with low reproducibility as a result of multiple protein precipitation/resuspension cleanup steps. Here we present a faster, cleaner, and more sensitive acyl-switch approach for detecting the S-acylation state of any protein, from any cell or tissue type, that can be detected by western blotting. In the case of acyl-RAC, the procedure is now performed without protein precipitation, greatly increasing speed and improving sample handling in the assay. This also allows for more samples to be processed simultaneously and opens the way for medium-throughput assays. Overall, maleimide scavenging improves the reliability of determination and quantification of protein S-acylation state by acyl-switch methods.
Collapse
|
17
|
Shen J, Zhao Q, Wang X, Gao C, Zhu Y, Zeng Y, Jiang L. A plant Bro1 domain protein BRAF regulates multivesicular body biogenesis and membrane protein homeostasis. Nat Commun 2018; 9:3784. [PMID: 30224707 PMCID: PMC6141507 DOI: 10.1038/s41467-018-05913-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Plant development, defense, and many physiological processes rely on the endosomal sorting complex required for transport (ESCRT) machinery to control the homeostasis of membrane proteins by selective vacuolar degradation. Although ESCRT core components are conserved among higher eukaryotes, the regulators that control the function of the ESCRT machinery remain elusive. We recently identified a plant-specific ESCRT component, FREE1, that is essential for multivesicular body/prevacuolar compartment (MVB/PVC) biogenesis and vacuolar sorting of membrane proteins. Here we identify a plant-specific Bro1-domain protein BRAF, which regulates FREE1 recruitment to the MVB/PVC membrane by competitively binding to the ESCRT-I component Vps23. Altogether, we have successfully identified a role for BRAF, whose function as a unique evolutionary ESCRT regulator in orchestrating intraluminal vesicle formation in MVB/PVCs and the sorting of membrane proteins for degradation in plants makes it an important regulatory mechanism underlying the ESCRT machinery in higher eukaryotes.
Collapse
Affiliation(s)
- Jinbo Shen
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Linan, Hangzhou, 311300, China.
| | - Qiong Zhao
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiangfeng Wang
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Caiji Gao
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, 510631, China
| | - Ying Zhu
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China.
| |
Collapse
|
18
|
Carluccio AV, Prigigallo MI, Rosas-Diaz T, Lozano-Duran R, Stavolone L. S-acylation mediates Mungbean yellow mosaic virus AC4 localization to the plasma membrane and in turns gene silencing suppression. PLoS Pathog 2018; 14:e1007207. [PMID: 30067843 PMCID: PMC6089456 DOI: 10.1371/journal.ppat.1007207] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 08/13/2018] [Accepted: 07/11/2018] [Indexed: 11/19/2022] Open
Abstract
RNA silencing plays a critical role in plant resistance against viruses. To counteract host defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that interfere with the cellular silencing machinery through various mechanisms not always well understood. We examined the role of Mungbean yellow mosaic virus (MYMV) AC4 and showed that it is essential for infectivity but not for virus replication. It acts as a determinant of pathogenicity and counteracts virus induced gene silencing by strongly suppressing the systemic phase of silencing whereas it does not interfere with local production of siRNA. We demonstrate the ability of AC4 to bind native 21-25 nt siRNAs in vitro by electrophoretic mobility shift assay. While most of the known VSRs have cytoplasmic localization, we observed that despite its hydrophilic nature and the absence of trans-membrane domain, MYMV AC4 specifically accumulates to the plasma membrane (PM). We show that AC4 binds to PM via S-palmitoylation, a process of post-translational modification regulating membrane-protein interactions, not known for plant viral protein before. When localized to the PM, AC4 strongly suppresses systemic silencing whereas its delocalization impairs VSR activity of the protein. We also show that AC4 interacts with the receptor-like kinase (RLK) BARELY ANY MERISTEM 1 (BAM1), a positive regulator of the cell-to-cell movement of RNAi. The absolute requirement of PM localization for direct silencing suppression activity of AC4 is novel and intriguing. We discuss a possible model of action: palmitoylated AC4 anchors to the PM by means of palmitate to acquire the optimal conformation to bind siRNAs, hinder their systemic movement and hence suppress the spread of the PTGS signal in the plant.
Collapse
Affiliation(s)
- Anna Vittoria Carluccio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle ricerche, Bari, Italia
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Maria Isabella Prigigallo
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle ricerche, Bari, Italia
| | - Tabata Rosas-Diaz
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
- Chinese Academy of Sciences–John Innes Centre Center of Excellence for Plant and Microbial Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Livia Stavolone
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle ricerche, Bari, Italia
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| |
Collapse
|
19
|
Cowan GH, Roberts AG, Jones S, Kumar P, Kalyandurg PB, Gil JF, Savenkov EI, Hemsley PA, Torrance L. Potato Mop-Top Virus Co-Opts the Stress Sensor HIPP26 for Long-Distance Movement. PLANT PHYSIOLOGY 2018; 176:2052-2070. [PMID: 29374107 PMCID: PMC5841704 DOI: 10.1104/pp.17.01698] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/12/2018] [Indexed: 05/03/2023]
Abstract
Virus movement proteins facilitate virus entry into the vascular system to initiate systemic infection. The potato mop-top virus (PMTV) movement protein, TGB1, is involved in long-distance movement of both viral ribonucleoprotein complexes and virions. Here, our analysis of TGB1 interactions with host Nicotiana benthamiana proteins revealed an interaction with a member of the heavy metal-associated isoprenylated plant protein family, HIPP26, which acts as a plasma membrane-to-nucleus signal during abiotic stress. We found that knockdown of NbHIPP26 expression inhibited virus long-distance movement but did not affect cell-to-cell movement. Drought and PMTV infection up-regulated NbHIPP26 gene expression, and PMTV infection protected plants from drought. In addition, NbHIPP26 promoter-reporter fusions revealed vascular tissue-specific expression. Mutational and biochemical analyses indicated that NbHIPP26 subcellular localization at the plasma membrane and plasmodesmata was mediated by lipidation (S-acylation and prenylation), as nonlipidated NbHIPP26 was predominantly in the nucleus. Notably, coexpression of NbHIPP26 with TGB1 resulted in a similar nuclear accumulation of NbHIPP26. TGB1 interacted with the carboxyl-terminal CVVM (prenyl) domain of NbHIPP26, and bimolecular fluorescence complementation revealed that the TGB1-HIPP26 complex localized to microtubules and accumulated in the nucleolus, with little signal at the plasma membrane or plasmodesmata. These data support a mechanism where interaction with TGB1 negates or reverses NbHIPP26 lipidation, thus releasing membrane-associated NbHIPP26 and redirecting it via microtubules to the nucleus, thereby activating the drought stress response and facilitating virus long-distance movement.
Collapse
Affiliation(s)
- Graham H Cowan
- James Hutton Institute, Invergowrie DD2 5DA, United Kingdom
| | | | - Susan Jones
- James Hutton Institute, Invergowrie DD2 5DA, United Kingdom
| | - Pankaj Kumar
- School of Biology, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom
| | - Pruthvi B Kalyandurg
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre of Plant Biology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Jose F Gil
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre of Plant Biology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Eugene I Savenkov
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre of Plant Biology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Piers A Hemsley
- James Hutton Institute, Invergowrie DD2 5DA, United Kingdom
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, United Kingdom
| | - Lesley Torrance
- James Hutton Institute, Invergowrie DD2 5DA, United Kingdom
- School of Biology, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom
| |
Collapse
|
20
|
Fu S, Xu Y, Li C, Li Y, Wu J, Zhou X. Rice Stripe Virus Interferes with S-acylation of Remorin and Induces Its Autophagic Degradation to Facilitate Virus Infection. MOLECULAR PLANT 2018; 11:269-287. [PMID: 29229567 DOI: 10.1016/j.molp.2017.11.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/02/2017] [Accepted: 11/23/2017] [Indexed: 05/23/2023]
Abstract
Remorins are plant-specific membrane-associated proteins and were proposed to play crucial roles in plant-pathogen interactions. However, little is known about how pathogens counter remorin-mediated host responses. In this study, by quantitative whole-proteome analysis we found that the remorin protein (NbREM1) is downregulated early in Rice stripe virus (RSV) infection. We further discovered that the turnover of NbREM1 is regulated by S-acylation modification and its degradation is mediated mainly through the autophagy pathway. Interestingly, RSV can interfere with the S-acylation of NbREM1, which is required to negatively regulate RSV infection by restricting virus cell-to-cell trafficking. The disruption of NbREM1 S-acylation affects its targeting to the plasma membrane microdomain, and the resulting accumulation of non-targeted NbREM1 is subjected to autophagic degradation, causing downregulation of NbREM1. Moreover, we found that RSV-encoded movement protein, NSvc4, alone can interfere with NbREM1 S-acylation through binding with the C-terminal domain of NbREM1 the S-acylation of OsREM1.4, the homologous remorin of NbREM1, and thus remorin-mediated defense against RSV in rice, the original host of RSV, indicating that downregulation of the remorin protein level by interfering with its S-acylation is a common strategy adopted by RSV to overcome remorin-mediated inhibition of virus movement.
Collapse
Affiliation(s)
- Shuai Fu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yi Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chenyang Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
21
|
Duan M, Zhang R, Zhu F, Zhang Z, Gou L, Wen J, Dong J, Wang T. A Lipid-Anchored NAC Transcription Factor Is Translocated into the Nucleus and Activates Glyoxalase I Expression during Drought Stress. THE PLANT CELL 2017; 29:1748-1772. [PMID: 28684428 PMCID: PMC5559744 DOI: 10.1105/tpc.17.00044] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/09/2017] [Accepted: 07/04/2017] [Indexed: 05/18/2023]
Abstract
The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play a vital role in the response to drought stress. Here, we report a lipid-anchored NACsa TF in Medicago falcata MfNACsa is an essential regulator of plant tolerance to drought stress, resulting in the differential expression of genes involved in oxidation reduction and lipid transport and localization. MfNACsa is associated with membranes under unstressed conditions and, more specifically, is targeted to the plasma membrane through S-palmitoylation. However, a Cys26-to-Ser mutation or inhibition of S-palmitoylation results in MfNACsa retention in the endoplasmic reticulum/Golgi. Under drought stress, MfNACsa translocates to the nucleus through de-S-palmitoylation mediated by the thioesterase MtAPT1, as coexpression of APT1 results in the nuclear translocation of MfNACsa, whereas mutation of the catalytic site of APT1 results in colocalization with MfNACsa and membrane retention of MfNACsa. Specifically, the nuclear MfNACsa binds the glyoxalase I (MtGlyl) promoter under drought stress, resulting in drought tolerance by maintaining the glutathione pool in a reduced state, and the process is dependent on the APT1-NACsa regulatory module. Our findings reveal a novel mechanism for the nuclear translocation of an S-palmitoylated NAC in response to stress.
Collapse
Affiliation(s)
- Mei Duan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Rongxue Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Crop Research Institute of Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Fugui Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhenqian Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lanming Gou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangqi Wen
- Plant Biology Division, Samuel Roberts Noble Research Institute, Ardmore, Oklahoma 73401
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
22
|
Hemsley PA. An outlook on protein S-acylation in plants: what are the next steps? JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3155-3164. [PMID: 28158736 DOI: 10.1093/jxb/erw497] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
S-acylation, also known as palmitoylation, is the reversible post-translational addition of fatty acids to proteins. Historically thought primarily to be a means for anchoring otherwise soluble proteins to membranes, evidence now suggests that reversible S-acylation may be an important dynamic regulatory mechanism. Importantly S-acylation affects the function of many integral membrane proteins, making it an important factor to consider in understanding processes such as cell wall synthesis, membrane trafficking, signalling across membranes and regulating ion, hormone and metabolite transport through membranes. This review summarises the latest thoughts, ideas and findings in the field as well discussing future research directions to gain a better understanding of the role of this enigmatic regulatory protein modification.
Collapse
Affiliation(s)
- Piers A Hemsley
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, UK
| |
Collapse
|
23
|
Hurst CH, Turnbull D, Plain F, Fuller W, Hemsley PA. Maleimide scavenging enhances determination of protein S-palmitoylation state in acyl-exchange methods. Biotechniques 2017; 62:69-75. [PMID: 28193150 PMCID: PMC5400063 DOI: 10.2144/000114516] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/09/2016] [Indexed: 11/23/2022] Open
Abstract
S-palmitoylation (S-acylation) is emerging as an important dynamic post-translational modification of cysteine residues within proteins. Current assays for protein S-palmitoylation involve either in vivo labeling or chemical cleavage of S-palmitoyl groups to reveal a free cysteine sulfhydryl that can be subsequently labeled with an affinity handle (acyl-exchange). Assays for protein S-palmitoylation using acyl-exchange chemistry therefore require blocking of non-S-palmitoylated cysteines, typically using N-ethylmaleimide (NEM), to prevent non-specific detection. This in turn necessitates multiple precipitation-based clean-up steps to remove reagents between stages, often leading to variable sample loss, reduced signal, or protein aggregation. These combine to reduce the sensitivity, reliability, and accuracy of these assays, which also require a substantial amount of time to perform. By substituting these precipitation steps with chemical scavenging of NEM by 2,3-dimethyl-1,3-butadiene in an aqueous Diels-Alder 4+2 cyclo-addition reaction, it is possible to greatly improve sensitivity and accuracy while reducing the hands-on time and overall time required for the assay.
Collapse
Affiliation(s)
- Charlotte H. Hurst
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, UK
| | - Dionne Turnbull
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
| | - Fiona Plain
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, School of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, UK
| | - William Fuller
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, School of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, UK
| | - Piers A. Hemsley
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, UK
| |
Collapse
|
24
|
Li Y, Qi B. Progress toward Understanding Protein S-acylation: Prospective in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:346. [PMID: 28392791 PMCID: PMC5364179 DOI: 10.3389/fpls.2017.00346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 02/28/2017] [Indexed: 05/02/2023]
Abstract
S-acylation, also known as S-palmitoylation or palmitoylation, is a reversible post-translational lipid modification in which long chain fatty acid, usually the 16-carbon palmitate, covalently attaches to a cysteine residue(s) throughout the protein via a thioester bond. It is involved in an array of important biological processes during growth and development, reproduction and stress responses in plant. S-acylation is a ubiquitous mechanism in eukaryotes catalyzed by a family of enzymes called Protein S-Acyl Transferases (PATs). Since the discovery of the first PAT in yeast in 2002 research in S-acylation has accelerated in the mammalian system and followed by in plant. However, it is still a difficult field to study due to the large number of PATs and even larger number of putative S-acylated substrate proteins they modify in each genome. This is coupled with drawbacks in the techniques used to study S-acylation, leading to the slower progress in this field compared to protein phosphorylation, for example. In this review we will summarize the discoveries made so far based on knowledge learnt from the characterization of protein S-acyltransferases and the S-acylated proteins, the interaction mechanisms between PAT and its specific substrate protein(s) in yeast and mammals. Research in protein S-acylation and PATs in plants will also be covered although this area is currently less well studied in yeast and mammalian systems.
Collapse
|
25
|
Kumar M, Wightman R, Atanassov I, Gupta A, Hurst CH, Hemsley PA, Turner S. S-Acylation of the cellulose synthase complex is essential for its plasma membrane localization. Science 2016; 353:166-9. [DOI: 10.1126/science.aaf4009] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/06/2016] [Indexed: 01/30/2023]
|
26
|
Zhang Y, Zheng Q, Sun C, Song J, Gao L, Zhang S, Muñoz A, Read ND, Lu L. Palmitoylation of the Cysteine Residue in the DHHC Motif of a Palmitoyl Transferase Mediates Ca2+ Homeostasis in Aspergillus. PLoS Genet 2016; 12:e1005977. [PMID: 27058039 PMCID: PMC4825924 DOI: 10.1371/journal.pgen.1005977] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 03/15/2016] [Indexed: 01/08/2023] Open
Abstract
Finely tuned changes in cytosolic free calcium ([Ca2+]c) mediate numerous intracellular functions resulting in the activation or inactivation of a series of target proteins. Palmitoylation is a reversible post-translational modification involved in membrane protein trafficking between membranes and in their functional modulation. However, studies on the relationship between palmitoylation and calcium signaling have been limited. Here, we demonstrate that the yeast palmitoyl transferase ScAkr1p homolog, AkrA in Aspergillus nidulans, regulates [Ca2+]c homeostasis. Deletion of akrA showed marked defects in hyphal growth and conidiation under low calcium conditions which were similar to the effects of deleting components of the high-affinity calcium uptake system (HACS). The [Ca2+]c dynamics in living cells expressing the calcium reporter aequorin in different akrA mutant backgrounds were defective in their [Ca2+]c responses to high extracellular Ca2+ stress or drugs that cause ER or plasma membrane stress. All of these effects on the [Ca2+]c responses mediated by AkrA were closely associated with the cysteine residue of the AkrA DHHC motif, which is required for palmitoylation by AkrA. Using the acyl-biotin exchange chemistry assay combined with proteomic mass spectrometry, we identified protein substrates palmitoylated by AkrA including two new putative P-type ATPases (Pmc1 and Spf1 homologs), a putative proton V-type proton ATPase (Vma5 homolog) and three putative proteins in A. nidulans, the transcripts of which have previously been shown to be induced by extracellular calcium stress in a CrzA-dependent manner. Thus, our findings provide strong evidence that the AkrA protein regulates [Ca2+]c homeostasis by palmitoylating these protein candidates and give new insights the role of palmitoylation in the regulation of calcium-mediated responses to extracellular, ER or plasma membrane stress. Palmitoylation is a reversible post-translational modification catalyzed by palmitoyl acyltransferases (PATs) and proteins that undergo this modification are involved in numerous intracellular functions. Yeast Akr1p was the first characterized PAT whilst HIP14, an Akr1p homolog in human, is one of the most highly conserved of 23 human PATs that catalyze the addition of palmitate to the Huntington protein which is of major importance in Huntington’s disease. Calcium serves numerous signaling and structural functions in all eukaryotes. However, studies on the relationship between calcium signaling and palmitoylation are lacking. In this study, we demonstrate that the palmitoyl transferase Akr1 homolog in the filamentous fungus Aspergillus nidulans, similar to the high-affinity calcium uptake system (HACS), is required for normal growth and sporulation in the presence of low extracellular calcium. We find that AkrA dysfunction decreases the transient increase in cytosolic free calcium induced by a high extracellular calcium stress, tunicamycin (which induces endoplasmic reticulum stress) or the antifungal agent itraconazole (which induces plasma membrane stress). The influence of AkrA on all of these processes involves its DHHC motif, which is required for palmitoylation of various proteins associated with many processes including calcium signaling and membrane trafficking. Our findings provide evidence for a crucial link between calcium signaling and palmitoylation, suggesting a possible role in the mechanistic basis of human PAT-related diseases. These results also indicate that regulators of posttranslational modification may provide promising antifungal targets for new therapies.
Collapse
Affiliation(s)
- Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qingqing Zheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Congcong Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jinxing Song
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lina Gao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shizhu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Alberto Muñoz
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Nick D. Read
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences, Nanjing Normal University, Nanjing, China
- * E-mail:
| |
Collapse
|
27
|
Goswami S, Kumar RR, Dubey K, Singh JP, Tiwari S, Kumar A, Smita S, Mishra DC, Kumar S, Grover M, Padaria JC, Kala YK, Singh GP, Pathak H, Chinnusamy V, Rai A, Praveen S, Rai RD. SSH Analysis of Endosperm Transcripts and Characterization of Heat Stress Regulated Expressed Sequence Tags in Bread Wheat. FRONTIERS IN PLANT SCIENCE 2016; 7:1230. [PMID: 27582756 PMCID: PMC4988357 DOI: 10.3389/fpls.2016.01230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/02/2016] [Indexed: 05/11/2023]
Abstract
Heat stress is one of the major problems in agriculturally important cereal crops, especially wheat. Here, we have constructed a subtracted cDNA library from the endosperm of HS-treated (42°C for 2 h) wheat cv. HD2985 by suppression subtractive hybridization (SSH). We identified ~550 recombinant clones ranging from 200 to 500 bp with an average size of 300 bp. Sanger's sequencing was performed with 205 positive clones to generate the differentially expressed sequence tags (ESTs). Most of the ESTs were observed to be localized on the long arm of chromosome 2A and associated with heat stress tolerance and metabolic pathways. Identified ESTs were BLAST search using Ensemble, TriFLD, and TIGR databases and the predicted CDS were translated and aligned with the protein sequences available in pfam and InterProScan 5 databases to predict the differentially expressed proteins (DEPs). We observed eight different types of post-translational modifications (PTMs) in the DEPs corresponds to the cloned ESTs-147 sites with phosphorylation, 21 sites with sumoylation, 237 with palmitoylation, 96 sites with S-nitrosylation, 3066 calpain cleavage sites, and 103 tyrosine nitration sites, predicted to sense the heat stress and regulate the expression of stress genes. Twelve DEPs were observed to have transmembrane helixes (TMH) in their structure, predicted to play the role of sensors of HS. Quantitative Real-Time PCR of randomly selected ESTs showed very high relative expression of HSP17 under HS; up-regulation was observed more in wheat cv. HD2985 (thermotolerant), as compared to HD2329 (thermosusceptible) during grain-filling. The abundance of transcripts was further validated through northern blot analysis. The ESTs and their corresponding DEPs can be used as molecular marker for screening or targeted precision breeding program. PTMs identified in the DEPs can be used to elucidate the thermotolerance mechanism of wheat-a novel step toward the development of "climate-smart" wheat.
Collapse
Affiliation(s)
- Suneha Goswami
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
- *Correspondence: Suneha Goswami
| | - Ranjeet R. Kumar
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
- Ranjeet R. Kumar
| | - Kavita Dubey
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Jyoti P. Singh
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Sachidanand Tiwari
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Ashok Kumar
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Shuchi Smita
- Centre for Agricultural Bio-Informatics, Indian Agricultural Statistics Research InstituteNew Delhi, India
| | - Dwijesh C. Mishra
- Centre for Agricultural Bio-Informatics, Indian Agricultural Statistics Research InstituteNew Delhi, India
| | - Sanjeev Kumar
- Centre for Agricultural Bio-Informatics, Indian Agricultural Statistics Research InstituteNew Delhi, India
| | - Monendra Grover
- Centre for Agricultural Bio-Informatics, Indian Agricultural Statistics Research InstituteNew Delhi, India
| | | | - Yugal K. Kala
- Division of Genetics, Indian Agricultural Research InstituteNew Delhi, India
| | - Gyanendra P. Singh
- Division of Genetics, Indian Agricultural Research InstituteNew Delhi, India
| | - Himanshu Pathak
- Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research InstituteNew Delhi, India
| | | | - Anil Rai
- Centre for Agricultural Bio-Informatics, Indian Agricultural Statistics Research InstituteNew Delhi, India
| | - Shelly Praveen
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Raj D. Rai
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| |
Collapse
|
28
|
Boyle PC, Schwizer S, Hind SR, Kraus CM, De la Torre Diaz S, He B, Martin GB. Detecting N-myristoylation and S-acylation of host and pathogen proteins in plants using click chemistry. PLANT METHODS 2016; 12:38. [PMID: 27493678 PMCID: PMC4972946 DOI: 10.1186/s13007-016-0138-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/20/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND The plant plasma membrane is a key battleground in the war between plants and their pathogens. Plants detect the presence of pathogens at the plasma membrane using sensor proteins, many of which are targeted to this lipophilic locale by way of fatty acid modifications. Pathogens secrete effector proteins into the plant cell to suppress the plant's defense mechanisms. These effectors are able to access and interfere with the surveillance machinery at the plant plasma membrane by hijacking the host's fatty acylation apparatus. Despite the important involvement of protein fatty acylation in both plant immunity and pathogen virulence mechanisms, relatively little is known about the role of this modification during plant-pathogen interactions. This dearth in our understanding is due largely to the lack of methods to monitor protein fatty acid modifications in the plant cell. RESULTS We describe a rapid method to detect two major forms of fatty acylation, N-myristoylation and S-acylation, of candidate proteins using alkyne fatty acid analogs coupled with click chemistry. We applied our approach to confirm and decisively demonstrate that the archetypal pattern recognition receptor FLS2, the well-characterized pathogen effector AvrPto, and one of the best-studied intracellular resistance proteins, Pto, all undergo plant-mediated fatty acylation. In addition to providing a means to readily determine fatty acylation, particularly myristoylation, of candidate proteins, this method is amenable to a variety of expression systems. We demonstrate this using both Arabidopsis protoplasts and stable transgenic Arabidopsis plants and we leverage Agrobacterium-mediated transient expression in Nicotiana benthamiana leaves as a means for high-throughput evaluation of candidate proteins. CONCLUSIONS Protein fatty acylation is a targeting tactic employed by both plants and their pathogens. The metabolic labeling approach leveraging alkyne fatty acid analogs and click chemistry described here has the potential to provide mechanistic details of the molecular tactics used at the host plasma membrane in the battle between plants and pathogens.
Collapse
Affiliation(s)
- Patrick C. Boyle
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853 USA
- Monsanto Company, St. Louis, MO 63141 USA
| | - Simon Schwizer
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853 USA
- Plant Pathology and Plant–Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Sarah R. Hind
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853 USA
| | - Christine M. Kraus
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853 USA
- Plant Pathology and Plant–Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | | | - Bin He
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 USA
- College of Pharmacy, Guiyang Medical University, Guiyang, 550004 Guizhou China
| | - Gregory B. Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853 USA
- Plant Pathology and Plant–Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
29
|
Liu Z, Persson S, Zhang Y. The connection of cytoskeletal network with plasma membrane and the cell wall. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:330-40. [PMID: 25693826 PMCID: PMC4405036 DOI: 10.1111/jipb.12342] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/14/2015] [Indexed: 05/18/2023]
Abstract
The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosynthesis and modifications, and aim to provide a platform for further studies in this field.
Collapse
Affiliation(s)
- Zengyu Liu
- Max-Planck Institute for Molecular Plant Physiology14476 Potsdam, Germany
| | - Staffan Persson
- Max-Planck Institute for Molecular Plant Physiology14476 Potsdam, Germany
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of MelbourneParkville, 3010, Victoria, Australia
| | - Yi Zhang
- Max-Planck Institute for Molecular Plant Physiology14476 Potsdam, Germany
| |
Collapse
|
30
|
Gui J, Zheng S, Shen J, Li L. Grain setting defect1 (GSD1) function in rice depends on S-acylation and interacts with actin 1 (OsACT1) at its C-terminal. FRONTIERS IN PLANT SCIENCE 2015; 6:804. [PMID: 26483819 PMCID: PMC4590517 DOI: 10.3389/fpls.2015.00804] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/15/2015] [Indexed: 05/19/2023]
Abstract
Grain setting defect1 (GSD1), a plant-specific remorin protein specifically localized at the plasma membrane (PM) and plasmodesmata of phloem companion cells, affects grain setting in rice through regulating the transport of photoassimilates. Here, we show new evidence demonstrating that GSD1 is localized at the cytoplasmic face of the PM and a stretch of 45 amino acid residues at its C-terminal is required for its localization. Association with the PM is mediated by S-acylation of cysteine residues Cys-524 and Cys-527, in a sequence of 45 amino acid residues essential for GSD1 function in rice. Furthermore, the coiled-coil domain in GSD1 is necessary for sufficient interaction with OsACT1. Together, these results reveal that GSD1 attaches to the PM through S-acylation and interacts with OsACT1 through its coiled-coil domain structure to regulate plasmodesmata conductance for photoassimilate transport in rice.
Collapse
Affiliation(s)
| | | | | | - Laigeng Li
- *Correspondence: Laigeng Li, National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China,
| |
Collapse
|
31
|
Hemsley PA. The importance of lipid modified proteins in plants. THE NEW PHYTOLOGIST 2015; 205:476-89. [PMID: 25283240 DOI: 10.1111/nph.13085] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/22/2014] [Indexed: 05/18/2023]
Abstract
Membranes have long been known to act as more than physical barriers within and between plant cells. Trafficking of membrane proteins, signalling from and across membranes, organisation of membranes and transport through membranes are all essential processes for plant cellular function. These processes rely on a myriad array of proteins regulated in a variety of manners and are frequently required to be directly associated with membranes. For integral membrane proteins, the mode of membrane association is readily apparent, but many peripherally associated membrane proteins are outwardly soluble proteins. In these cases the proteins are frequently modified by the addition of lipids allowing direct interaction with the hydrophobic core of membranes. These modifications include N-myristoylation, S-acylation (palmitoylation), prenylation and GPI anchors but until recently little was truly known about their function in plants. New data suggest that these modifications are able to act as more than just membrane anchors, and dynamic S-acylation in particular is emerging as a means of regulating protein function in a similar manner to phosphorylation. This review discusses how these modifications occur, their impact on protein function, how they are regulated, recent advances in the field and technical approaches for studying these modifications.
Collapse
Affiliation(s)
- Piers A Hemsley
- Division of Plant Sciences, University of Dundee, Dundee, UK; Cell and Molecular Sciences, The James Hutton Institute, Dundee, UK
| |
Collapse
|
32
|
Avila JR, Lee JS, Torii KU. Co-Immunoprecipitation of Membrane-Bound Receptors. THE ARABIDOPSIS BOOK 2015; 13:e0180. [PMID: 26097438 PMCID: PMC4470539 DOI: 10.1199/tab.0180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The study of cell-surface receptor dynamics is critical for understanding how cells sense and respond to changing environments. Therefore, elucidating the mechanisms by which signals are perceived and communicated into the cell is necessary to understand immunity, development, and stress. Challenges in testing interactions of membrane-bound proteins include their dynamic nature, their abundance, and the complex dual environment (lipid/soluble) in which they reside. Co-Immunoprecipitation (Co-IP) of tagged membrane proteins is a widely used approach to test protein-protein interaction in vivo. In this protocol we present a method to perform Co-IP using enriched membrane proteins in isolated microsomal fractions. The different variations of this protocol are highlighted, including recommendations and troubleshooting guides in order to optimize its application. This Co-IP protocol has been developed to test the interaction of receptor-like kinases, their interacting partners, and peptide ligands in stable Arabidopsis thaliana lines, but can be modified to test interactions in transiently expressed proteins in tobacco, and potentially in other plant models, or scaled for large-scale protein-protein interactions at the membrane.
Collapse
Affiliation(s)
- Julian R. Avila
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
- Department of Biology, University of Washington, Seattle, WA 98195
| | - Jin Suk Lee
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
- Department of Biology, University of Washington, Seattle, WA 98195
| | - Keiko U. Torii
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
- Department of Biology, University of Washington, Seattle, WA 98195
- Address correspondence to
| |
Collapse
|
33
|
Konrad SSA, Popp C, Stratil TF, Jarsch IK, Thallmair V, Folgmann J, Marín M, Ott T. S-acylation anchors remorin proteins to the plasma membrane but does not primarily determine their localization in membrane microdomains. THE NEW PHYTOLOGIST 2014; 203:758-69. [PMID: 24897938 DOI: 10.1111/nph.12867] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/22/2014] [Indexed: 05/06/2023]
Abstract
Remorins are well-established marker proteins for plasma membrane microdomains. They specifically localize to the inner membrane leaflet despite an overall hydrophilic amino acid composition. Here, we determined amino acids and post-translational lipidations that are required for membrane association of remorin proteins. We used a combination of cell biological and biochemical approaches to localize remorin proteins and truncated variants of those in living cells and determined S-acylation on defined residues in these proteins. S-acylation of cysteine residues in a C-terminal hydrophobic core contributes to membrane association of most remorin proteins. While S-acylation patterns differ between members of this multi-gene family, initial membrane association is mediated by protein-protein or protein-lipid interactions. However, S-acylation is not a key determinant for the localization of remorins in membrane microdomains. Although remorins bind via a conserved mechanism to the plasma membrane, other membrane-resident proteins may be involved in the recruitment of remorins into membrane domains. S-acylation probably occurs after an initial targeting of the proteins to the plasma membrane and locks remorins in this compartment. As S-acylation is a reversible post-translational modification, stimulus-dependent intracellular trafficking of these proteins can be envisioned.
Collapse
Affiliation(s)
- Sebastian S A Konrad
- Ludwig-Maximilians-University (LMU) Munich, Institute of Genetics, 82152, Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Progress in Research Methods for Protein Palmitoylation. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1016/s1872-2040(13)60727-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Qi D, Dubiella U, Kim SH, Sloss DI, Dowen RH, Dixon JE, Innes RW. Recognition of the protein kinase AVRPPHB SUSCEPTIBLE1 by the disease resistance protein RESISTANCE TO PSEUDOMONAS SYRINGAE5 is dependent on s-acylation and an exposed loop in AVRPPHB SUSCEPTIBLE1. PLANT PHYSIOLOGY 2014; 164:340-51. [PMID: 24225654 PMCID: PMC3875812 DOI: 10.1104/pp.113.227686] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/12/2013] [Indexed: 05/06/2023]
Abstract
The recognition of pathogen effector proteins by plants is typically mediated by intracellular receptors belonging to the nucleotide-binding leucine-rich repeat (NLR) family. NLR proteins often detect pathogen effector proteins indirectly by detecting modification of their targets. How NLR proteins detect such modifications is poorly understood. To address these questions, we have been investigating the Arabidopsis (Arabidopsis thaliana) NLR protein RESISTANCE TO PSEUDOMONAS SYRINGAE5 (RPS5), which detects the Pseudomonas syringae effector protein Avirulence protein Pseudomonas phaseolicolaB (AvrPphB). AvrPphB is a cysteine protease that specifically targets a subfamily of receptor-like cytoplasmic kinases, including the Arabidopsis protein kinase AVRPPHB Susceptible1 (PBS1). RPS5 is activated by the cleavage of PBS1 at the apex of its activation loop. Here, we show that RPS5 activation requires that PBS1 be localized to the plasma membrane and that plasma membrane localization of PBS1 is mediated by amino-terminal S-acylation. We also describe the development of a high-throughput screen for mutations in PBS1 that block RPS5 activation, which uncovered four new pbs1 alleles, two of which blocked cleavage by AvrPphB. Lastly, we show that RPS5 distinguishes among closely related kinases by the amino acid sequence (SEMPH) within an exposed loop in the C-terminal one-third of PBS1. The SEMPH loop is located on the opposite side of PBS1 from the AvrPphB cleavage site, suggesting that RPS5 associates with the SEMPH loop while leaving the AvrPphB cleavage site exposed. These findings provide support for a model of NLR activation in which NLR proteins form a preactivation complex with effector targets and then sense a conformational change in the target induced by effector modification.
Collapse
Affiliation(s)
| | | | | | - D. Isaiah Sloss
- Department of Biology, Indiana University, Bloomington, Indiana 47405 (D.Q., U.D., S.H.K., D.I.S., R.W.I.)
- Departments of Pharmacology, Cellular and Molecular Medicine, and Chemistry and Biochemistry and Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093 (R.H.D, J.E.D.); and
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815 (J.E.D.)
| | - Robert H. Dowen
- Department of Biology, Indiana University, Bloomington, Indiana 47405 (D.Q., U.D., S.H.K., D.I.S., R.W.I.)
- Departments of Pharmacology, Cellular and Molecular Medicine, and Chemistry and Biochemistry and Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093 (R.H.D, J.E.D.); and
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815 (J.E.D.)
| | - Jack E. Dixon
- Department of Biology, Indiana University, Bloomington, Indiana 47405 (D.Q., U.D., S.H.K., D.I.S., R.W.I.)
- Departments of Pharmacology, Cellular and Molecular Medicine, and Chemistry and Biochemistry and Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093 (R.H.D, J.E.D.); and
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815 (J.E.D.)
| | | |
Collapse
|
36
|
Hemsley PA, Weimar T, Lilley K, Dupree P, Grierson C. Palmitoylation in plants: new insights through proteomics. PLANT SIGNALING & BEHAVIOR 2013; 8:25209. [PMID: 23759553 PMCID: PMC3999067 DOI: 10.4161/psb.25209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 05/20/2023]
Abstract
Palmitoylation is the post-translational addition of lipids to proteins though thioester bonds and acts to promote association with membranes. Palmitoylation also acts to target proteins to specific membrane compartments, control residence in and movement between membrane microdomains and regulate protein conformation and activity. Palmitoylation is unique among lipid modifications of proteins as it is reversible, allowing for dynamic control over all palmitoylation dependent processes. Palmitoylation cannot be predicted from protein sequence and as a result is understudied when compared with other post-translational modifications. We recently published a proteomic analysis of palmitoylation in plants and increased the number of proposed palmitoylated proteins in plants from ~30 to over 500. The wide range of identified proteins indicates that palmitoylation is likely important for a variety of different functions in plants. Many supposedly well characterized proteins were identified as palmitoylated and our new data provides novel insight into regulatory mechanisms and potential explanations for observed phenomena. These data represent a new resource for plant biologist and will allow the study of palmitoylated proteins in plants to expand and move forward.
Collapse
Affiliation(s)
- Piers A. Hemsley
- Division of Plant Sciences; University of Dundee at the James Hutton Institute; Invergowrie, UK
- Cell and Molecular Sciences; James Hutton Institute; Invergowrie, UK
- Correspondence to: Piers A. Hemsley,
| | - Thilo Weimar
- Department of Biochemistry; University of Cambridge; Cambridge, UK
| | - Kathryn Lilley
- Cambridge Center for Proteomics; University of Cambridge; Cambridge, UK
| | - Paul Dupree
- Department of Biochemistry; University of Cambridge; Cambridge, UK
| | - Claire Grierson
- School of Biological Sciences; University of Bristol; Bristol, UK
| |
Collapse
|
37
|
Hemsley PA, Weimar T, Lilley KS, Dupree P, Grierson CS. A proteomic approach identifies many novel palmitoylated proteins in Arabidopsis. THE NEW PHYTOLOGIST 2013; 197:805-814. [PMID: 23252521 DOI: 10.1111/nph.12077] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/31/2012] [Indexed: 05/06/2023]
Abstract
S-acylation (palmitoylation) is a poorly understood post-translational modification of proteins involving the addition of acyl lipids to cysteine residues. S-acylation promotes the association of proteins with membranes and influences protein stability, microdomain partitioning, membrane targeting and activation state. No consensus motif for S-acylation exists and it therefore requires empirical identification. Here, we describe a biotin switch isobaric tagging for relative and absolute quantification (iTRAQ)-based method to identify S-acylated proteins from Arabidopsis. We use these data to predict and confirm S-acylation of proteins not in our dataset. We identified c. 600 putative S-acylated proteins affecting diverse cellular processes. These included proteins involved in pathogen perception and response, mitogen-activated protein kinases (MAPKs), leucine-rich repeat receptor-like kinases (LRR-RLKs) and RLK superfamily members, integral membrane transporters, ATPases, soluble N-ethylmaleimide-sensitive factor-activating protein receptors (SNAREs) and heterotrimeric G-proteins. The prediction of S-acylation of related proteins was demonstrated by the identification and confirmation of S-acylation sites within the SNARE and LRR-RLK families. We showed that S-acylation of the LRR-RLK FLS2 is required for a full response to elicitation by the flagellin derived peptide flg22, but is not required for localization to the plasma membrane. Arabidopsis contains many more S-acylated proteins than previously thought. These data can be used to identify S-acylation sites in related proteins. We also demonstrated that S-acylation is required for full LRR-RLK function.
Collapse
Affiliation(s)
- Piers A Hemsley
- School of Biological Science, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
| | - Thilo Weimar
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Claire S Grierson
- School of Biological Science, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
| |
Collapse
|
38
|
Abstract
S-acylation is increasingly being recognized as an important posttranslational modification of proteins controlling activity, subcellular localization, microdomain residence, and stability. Heterotrimeric G-proteins and GPCRs are particularly well studied S-acylated proteins, and fast, cheap, reliable methods are required for the analysis of S-acylation states of these proteins. Various approaches have been developed to study S-acylation, but they are time consuming, expensive, frequently require radiolabels and generally only suitable for cell culture, making them impractical for work in plant systems. Here a rapid and inexpensive method is described for the analysis of the S-acylation state of AGG2 that can be performed on any cell or tissue sample using standard laboratory equipment and methods. This method is also applicable to any protein that can be detected by western blotting.
Collapse
Affiliation(s)
- Piers A Hemsley
- Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
39
|
Sorek N, Akerman A, Yalovsky S. Analysis of protein prenylation and S-acylation using gas chromatography-coupled mass spectrometry. Methods Mol Biol 2013; 1043:121-134. [PMID: 23913042 DOI: 10.1007/978-1-62703-532-3_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Lipid modifications play a key role in protein targeting and function. The two Arabidopsis Gγ subunits, AGG1 and AGG2, have been shown to undergo prenylation (AGG1) and S-acylation (AGG2). Prenylation involves covalent nonreversible attachment of either farnesyl (15 carbons) or geranylgeranyl (20 carbons) isoprenoids to conserved cysteine residues at or near the C-terminus of proteins. S-acylation, frequently referred to as palmitoylation, involves the attachment of acyl fatty acids to thiol groups of cysteine residues through a reversible thioester bond. The procedures described below allow direct analysis of the prenyl and acyl moieties using gas chromatography-coupled mass spectrometry (GC-MS). These methods are based on (1) cleavage of prenyl groups with the Raney nickel catalyst and (2) analysis of protein S-acylation following cleavage of the acyl fatty acids from proteins by hydrogenation with platinum (IV) oxide. The hydrogenation under these conditions causes an acid transesterification of the acyl moieties, adding an ethyl group to the carboxyl head of the fatty acid. The addition of the ethyl group reduces the polarity of the fatty acids, allowing their efficient separation by gas chromatography.
Collapse
Affiliation(s)
- Nadav Sorek
- Energy Biosciences Institute, Berkeley, CA, USA
| | | | | |
Collapse
|
40
|
Batistic O. Genomics and localization of the Arabidopsis DHHC-cysteine-rich domain S-acyltransferase protein family. PLANT PHYSIOLOGY 2012; 160:1597-612. [PMID: 22968831 PMCID: PMC3490592 DOI: 10.1104/pp.112.203968] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/07/2012] [Indexed: 05/18/2023]
Abstract
Protein lipid modification of cysteine residues, referred to as S-palmitoylation or S-acylation, is an important secondary and reversible modification that regulates membrane association, trafficking, and function of target proteins. This enzymatic reaction is mediated by protein S-acyl transferases (PATs). Here, the phylogeny, genomic organization, protein topology, expression, and localization pattern of the 24 PAT family members from Arabidopsis (Arabidopsis thaliana) is described. Most PATs are expressed at ubiquitous levels and tissues throughout the development, while few genes are expressed especially during flower development preferentially in pollen and stamen. The proteins display large sequence and structural variations but exhibit a common protein topology that is preserved in PATs from various organisms. Arabidopsis PAT proteins display a complex targeting pattern and were detected at the endoplasmic reticulum, Golgi, endosomal compartments, and the vacuolar membrane. However, most proteins were targeted to the plasma membrane. This large concentration of plant PAT activity to the plasma membrane suggests that the plant cellular S-acylation machinery is functionally different compared with that of yeast (Saccharomyces cerevisiae) and mammalians.
Collapse
Affiliation(s)
- Oliver Batistic
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany.
| |
Collapse
|
41
|
Lipid body biogenesis and the role of microtubules in lipid synthesis in Ornithogalum umbellatum lipotubuloids. Cell Biol Int 2012; 36:455-62. [PMID: 22295975 DOI: 10.1042/cbi20100638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid bodies present in lipotubuloids of Ornithogalum umbellatum ovary epidermis take the form of a lens between leaflets of ER (endoplasmic reticulum) membrane filled with a highly osmiophilic substance. The two enzymes, DGAT1 [DAG (diacylglycerol) acyltransferase 1] and DGAT2 (DAG acyltransferase 2), involved in this process are synthesized on rough ER and localized in the ER near a monolayer surrounding entities like lipid bodies. After reaching the appropriate size, newly formed lipid bodies transform into mature spherical lipid bodies filled with less osmiophilic content. They appear to be surrounded by a half-unit membrane, with numerous microtubules running adjacently in different directions. The ER, no longer continuous with lipid bodies, makes contact with them through microtubules. At this stage, lipid synthesis takes place at the periphery of lipid bodies. This presumption, and a hypothesis that microtubules are involved in lipid synthesis delivering necessary components to lipid bodies, is based on strong arguments: (i) silver grains first appear over microtubules after a short [3H]palmitic acid incubation and before they are observed over lipid bodies; (ii) blockade of [3H]palmitic acid incorporation into lipotubuloids by propyzamide, an inhibitor of microtubule function; and (iii) the presence of gold grains above the microtubules after DGAT1 and DGAT2 reactions, as also near microtubules after an immunogold method that identifies phospholipase D1.
Collapse
|
42
|
The ankyrin repeats and DHHC S-acyl transferase domain of AKR1 act independently to regulate switching from vegetative to mating states in yeast. PLoS One 2011; 6:e28799. [PMID: 22174902 PMCID: PMC3234281 DOI: 10.1371/journal.pone.0028799] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 11/15/2011] [Indexed: 11/19/2022] Open
Abstract
Signal transduction from G-protein coupled receptors to MAPK cascades through heterotrimeric G-proteins has been described for many eukaryotic systems. One of the best-characterised examples is the yeast pheromone response pathway, which is negatively regulated by AKR1. AKR1-like proteins are present in all eukaryotes and contain a DHHC domain and six ankyrin repeats. Whilst the DHHC domain dependant S-acyl transferase (palmitoyl transferase) function of AKR1 is well documented it is not known whether the ankyrin repeats are also required for this activity. Here we show that the ankyrin repeats of AKR1 are required for full suppression of the yeast pheromone response pathway, by sequestration of the Gβγ dimer, and act independently of AKR1 S-acylation function. Importantly, the functions provided by the AKR1 ankyrin repeats and DHHC domain are not required on the same molecule to fully restore WT phenotypes and function. We also show that AKR1 molecules are S-acylated at locations other than the DHHC cysteine, increasing the abundance of AKR1 in the cell. Our results have important consequences for studies of AKR1 function, including recent attempts to characterise S-acylation enzymology and kinetics. Proteins similar to AKR1 are found in all eukaryotes and our results have broad implications for future work on these proteins and the control of switching between Gβγ regulated pathways.
Collapse
|
43
|
Bond AE, Row PE, Dudley E. Post-translation modification of proteins; methodologies and applications in plant sciences. PHYTOCHEMISTRY 2011; 72:975-96. [PMID: 21353264 DOI: 10.1016/j.phytochem.2011.01.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/21/2010] [Accepted: 01/21/2011] [Indexed: 05/03/2023]
Abstract
Proteins have the potential to undergo a variety of post-translational modifications and the different methods available to study these cellular processes has advanced rapidly with the continuing development of proteomic technologies. In this review we aim to detail five major post-translational modifications (phosphorylation, glycosylaion, lipid modification, ubiquitination and redox-related modifications), elaborate on the techniques that have been developed for their analysis and briefly discuss the study of these modifications in selected areas of plant science.
Collapse
Affiliation(s)
- A E Bond
- Biochemistry Group, College of Medicine, Swansea University, Swansea, UK
| | | | | |
Collapse
|
44
|
Sorek N, Yalovsky S. Analysis of protein S-acylation by gas chromatography-coupled mass spectrometry using purified proteins. Nat Protoc 2010; 5:834-40. [PMID: 20379138 DOI: 10.1038/nprot.2010.33] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
S-acylation, also known as palmitoylation, involves the attachment of acyl fatty acids to thiol groups of cysteine residues through a reversible thioester bond. Owing to its reversibility, S-acylation is important in regulation of diverse signaling cascades, including Ras-associated cancers in mammals, stress response and metabolic regulation. Here we describe a simple protocol for analysis of protein S-acylation using gas chromatography-coupled mass spectrometry. Analysis can be carried out with as little as 1 microg of purified protein and allows chemical identification and, potentially, quantification of the acyl moieties. The method is based on cleavage of the fatty acids from proteins by hydrogenation with platinum (IV) oxide. This causes an acid transesterification of the acyl groups, adding an ethyl group to the carboxyl head of the fatty acid. The addition of the ethyl group reduces the polarity of the fatty acids, allowing their efficient separation by gas chromatography.
Collapse
Affiliation(s)
- Nadav Sorek
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
45
|
|
46
|
Subcellular localization directs signaling specificity of the Cryptococcus neoformans Ras1 protein. EUKARYOTIC CELL 2008; 8:181-9. [PMID: 19098128 DOI: 10.1128/ec.00351-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the human fungal pathogen Cryptococcus neoformans, Ras signaling mediates sexual differentiation, morphogenesis, and pathogenesis. By studying Ras prenylation and palmitoylation in this organism, we have found that the subcellular localization of this protein dictates its downstream signaling specificity. Inhibiting C. neoformans Ras1 prenylation results in the defective general membrane targeting of this protein and the loss of all Ras function. In contrast, palmitoylation mediates localization of Ras1 to the plasma membrane and is required for normal morphogenesis and survival at high temperatures. However, palmitoylation and plasma membrane localization are not required for Ras-dependent sexual differentiation. Likely as a result of its effect on thermotolerance, Ras1 palmitoylation is also required for the pathogenesis of C. neoformans. These data support an emerging paradigm of compartmentalized Ras signaling. However, our studies also demonstrate fundamental differences between the Ras pathways in different organisms that emphasize the functional flexibility of conserved signaling cascades.
Collapse
|