1
|
Yao XL, Wang YZ, Meng HX, Zhang MH, Zhou X, Kang XT, Dong S, Yuan X, Li X, Gao L, Yang G, Chu X, Wang JG. Identification of systemic nitrogen signaling in foxtail millet (Setaria italica) roots based on split-root system and transcriptome analysis. PLANT CELL REPORTS 2024; 43:243. [PMID: 39340664 DOI: 10.1007/s00299-024-03338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
KEY MESSAGE The study established split-root system (SRS) in foxtail millet, and identified the molecular regulatory mechanisms and metabolic pathways related to systemic nitrogen signaling based on this system and transcriptome analysis. The growth of crops is primarily constrained by the availability of nitrogen (N), an essential nutrient. Foxtail millet (Setaria italica L.) is a significant orphan crop known for its strong tolerance to barren conditions. Despite this, the signaling pathway of nitrogen in foxtail millet remains largely unexplored. Identifying the candidate genes responsible for nitrogen response in foxtail millet is crucial for enhancing its agricultural productivity. This study utilized the split-root system (SRS) in foxtail millet to uncover genes associated with Systemic Nitrogen Signaling (SNS). Transcriptome analysis of the SRS revealed 2158 differentially expressed genes (DEGs) implicated in SNS, including those involved in cytokinin synthesis, transcription factors, E3 ubiquitin ligase, and ROS metabolism. Silencing of SiIPT5 and SiATL31 genes through RNAi in transgenic plants resulted in reduced SNS response, indicating their role in the nitrogen signaling pathway of foxtail millet. Furthermore, the induction of ROS metabolism-related genes in response to KNO3 of the split-root System (Sp.KNO3) suggests a potential involvement of ROS signaling in the SNS of foxtail millet. Overall, this study sheds light on the molecular regulatory mechanisms and metabolic pathways of foxtail millet in relation to SNS.
Collapse
Affiliation(s)
- Xin-Li Yao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- Houji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030801, China
| | - Yu-Ze Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Hui-Xin Meng
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Ming-Hua Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xuan Zhou
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xue-Ting Kang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Shuqi Dong
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaorui Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Lulu Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Guanghui Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaoqian Chu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Jia-Gang Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
- Houji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
2
|
Schnabel E, Bashyal S, Corbett C, Kassaw T, Nowak S, Rosales-García RA, Noorai RE, Müller LM, Frugoli J. The Defective in Autoregulation (DAR) gene of Medicago truncatula encodes a protein involved in regulating nodulation and arbuscular mycorrhiza. BMC PLANT BIOLOGY 2024; 24:766. [PMID: 39123119 PMCID: PMC11316349 DOI: 10.1186/s12870-024-05479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Legumes utilize a long-distance signaling feedback pathway, termed Autoregulation of Nodulation (AON), to regulate the establishment and maintenance of their symbiosis with rhizobia. Several proteins key to this pathway have been discovered, but the AON pathway is not completely understood. RESULTS We report a new hypernodulating mutant, defective in autoregulation, with disruption of a gene, DAR (Medtr2g450550/MtrunA17_Chr2g0304631), previously unknown to play a role in AON. The dar-1 mutant produces ten-fold more nodules than wild type, similar to AON mutants with disrupted SUNN gene function. As in sunn mutants, suppression of nodulation by CLE peptides MtCLE12 and MtCLE13 is abolished in dar. Furthermore, dar-1 also shows increased root length colonization by an arbuscular mycorrhizal fungus, suggesting a role for DAR in autoregulation of mycorrhizal symbiosis (AOM). However, unlike SUNN which functions in the shoot to control nodulation, DAR functions in the root. CONCLUSIONS DAR encodes a membrane protein that is a member of a small protein family in M. truncatula. Our results suggest that DAR could be involved in the subcellular transport of signals involved in symbiosis regulation, but it is not upregulated during symbiosis. DAR gene family members are also present in Arabidopsis, lycophytes, mosses, and microalgae, suggesting the AON and AOM may use pathway components common to other plants, even those that do not undergo either symbiosis.
Collapse
Affiliation(s)
- Elise Schnabel
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - Sagar Bashyal
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- School of Biological Sciences, University of California San Diego, San Diego, CA, 92093, USA
| | - Cameron Corbett
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
- Present addresses: Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Tessema Kassaw
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
- Present addresses: Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Stephen Nowak
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
- Present addresses: Center for Technology Licensing, Cornell University, Ithaca, NY, 14850, USA
| | - Ramsés Alejandro Rosales-García
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
- Clemson University Genomics and Bioinformatics Facility, Clemson University, Clemson, SC, 29634, USA
| | - Rooksana E Noorai
- Clemson University Genomics and Bioinformatics Facility, Clemson University, Clemson, SC, 29634, USA
| | - Lena Maria Müller
- Department of Biology, University of Miami, Coral Gables, FL, 33124, USA
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Julia Frugoli
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
3
|
Thomas J, Frugoli J. Mutation of BAM2 rescues the sunn hypernodulation phenotype in Medicago truncatula, suggesting that a signaling pathway like CLV1/BAM in Arabidopsis affects nodule number. FRONTIERS IN PLANT SCIENCE 2024; 14:1334190. [PMID: 38273950 PMCID: PMC10808729 DOI: 10.3389/fpls.2023.1334190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
The unique evolutionary adaptation of legumes for nitrogen-fixing symbiosis leading to nodulation is tightly regulated by the host plant. The autoregulation of nodulation (AON) pathway negatively regulates the number of nodules formed in response to the carbon/nitrogen metabolic status of the shoot and root by long-distance signaling to and from the shoot and root. Central to AON signaling in the shoots of Medicago truncatula is SUNN, a leucine-rich repeat receptor-like kinase with high sequence similarity with CLAVATA1 (CLV1), part of a class of receptors in Arabidopsis involved in regulating stem cell populations in the root and shoot. This class of receptors in Arabidopsis includes the BARELY ANY MERISTEM family, which, like CLV1, binds to CLE peptides and interacts with CLV1 to regulate meristem development. M. truncatula contains five members of the BAM family, but only MtBAM1 and MtBAM2 are highly expressed in the nodules 48 hours after inoculation. Plants carry mutations in individual MtBAMs, and several double BAM mutant combinations all displayed wild-type nodule number phenotypes. However, Mtbam2 suppressed the sunn-5 hypernodulation phenotype and partially rescued the short root length phenotype of sunn-5 when present in a sunn-5 background. Grafting determined that bam2 suppresses supernodulation from the roots, regardless of the SUNN status of the root. Overexpression of MtBAM2 in wild-type plants increases nodule numbers, while overexpression of MtBAM2 in some sunn mutants rescues the hypernodulation phenotype, but not the hypernodulation phenotypes of AON mutant rdn1-2 or crn. Relative expression measurements of the nodule transcription factor MtWOX5 downstream of the putative bam2 sunn-5 complex revealed disruption of meristem signaling; while both bam2 and bam2 sunn-5 influence MtWOX5 expression, the expression changes are in different directions. We propose a genetic model wherein the specific root interactions of BAM2/SUNN are critical for signaling in nodule meristem cell homeostasis in M. truncatula.
Collapse
Affiliation(s)
| | - Julia Frugoli
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| |
Collapse
|
4
|
Schnabel E, Thomas J, El-Hawaz R, Gao Y, Poehlman WL, Chavan S, Pasha A, Esteban E, Provart N, Feltus FA, Frugoli J. Laser Capture Microdissection Transcriptome Reveals Spatiotemporal Tissue Gene Expression Patterns of Medicago truncatula Roots Responding to Rhizobia. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:805-820. [PMID: 37717250 DOI: 10.1094/mpmi-03-23-0029-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
We report a public resource for examining the spatiotemporal RNA expression of 54,893 Medicago truncatula genes during the first 72 h of response to rhizobial inoculation. Using a methodology that allows synchronous inoculation and growth of more than 100 plants in a single media container, we harvested the same segment of each root responding to rhizobia in the initial inoculation over a time course, collected individual tissues from these segments with laser capture microdissection, and created and sequenced RNA libraries generated from these tissues. We demonstrate the utility of the resource by examining the expression patterns of a set of genes induced very early in nodule signaling, as well as two gene families (CLE peptides and nodule specific PLAT-domain proteins) and show that despite similar whole-root expression patterns, there are tissue differences in expression between the genes. Using a rhizobial response dataset generated from transcriptomics on intact root segments, we also examined differential temporal expression patterns and determined that, after nodule tissue, the epidermis and cortical cells contained the most temporally patterned genes. We circumscribed gene lists for each time and tissue examined and developed an expression pattern visualization tool. Finally, we explored transcriptomic differences between the inner cortical cells that become nodules and those that do not, confirming that the expression of 1-aminocyclopropane-1-carboxylate synthases distinguishes inner cortical cells that become nodules and provide and describe potential downstream genes involved in early nodule cell division. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Elise Schnabel
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, U.S.A
| | - Jacklyn Thomas
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, U.S.A
| | - Rabia El-Hawaz
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, U.S.A
| | - Yueyao Gao
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, U.S.A
| | - William L Poehlman
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, U.S.A
- Sage Bionetworks, Seattle, WA 98121, U.S.A
| | - Suchitra Chavan
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, U.S.A
- Leidos, Inc., Atlanta, GA 30345, U.S.A
| | - Asher Pasha
- Department of Cell and Systems Biology, University of Toronto, ON M5S 3B2, Canada
| | - Eddi Esteban
- Department of Cell and Systems Biology, University of Toronto, ON M5S 3B2, Canada
| | - Nicholas Provart
- Department of Cell and Systems Biology, University of Toronto, ON M5S 3B2, Canada
| | - F Alex Feltus
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, U.S.A
- Biomedical Data Science and Informatics Program, Clemson University, Clemson, SC 29634, U.S.A
- Clemson Center for Human Genetics, Clemson University, Greenwood, SC 29636, U.S.A
| | - Julia Frugoli
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, U.S.A
| |
Collapse
|
5
|
Schnabel EL, Chavan SA, Gao Y, Poehlman WL, Feltus FA, Frugoli JA. A Medicago truncatula Autoregulation of Nodulation Mutant Transcriptome Analysis Reveals Disruption of the SUNN Pathway Causes Constitutive Expression Changes in Some Genes, but Overall Response to Rhizobia Resembles Wild-Type, Including Induction of TML1 and TML2. Curr Issues Mol Biol 2023; 45:4612-4631. [PMID: 37367042 DOI: 10.3390/cimb45060293] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Nodule number regulation in legumes is controlled by a feedback loop that integrates nutrient and rhizobia symbiont status signals to regulate nodule development. Signals from the roots are perceived by shoot receptors, including a CLV1-like receptor-like kinase known as SUNN in Medicago truncatula. In the absence of functional SUNN, the autoregulation feedback loop is disrupted, resulting in hypernodulation. To elucidate early autoregulation mechanisms disrupted in SUNN mutants, we searched for genes with altered expression in the loss-of-function sunn-4 mutant and included the rdn1-2 autoregulation mutant for comparison. We identified constitutively altered expression of small groups of genes in sunn-4 roots and in sunn-4 shoots. All genes with verified roles in nodulation that were induced in wild-type roots during the establishment of nodules were also induced in sunn-4, including autoregulation genes TML2 and TML1. Only an isoflavone-7-O-methyltransferase gene was induced in response to rhizobia in wild-type roots but not induced in sunn-4. In shoot tissues of wild-type, eight rhizobia-responsive genes were identified, including a MYB family transcription factor gene that remained at a baseline level in sunn-4; three genes were induced by rhizobia in shoots of sunn-4 but not wild-type. We cataloged the temporal induction profiles of many small secreted peptide (MtSSP) genes in nodulating root tissues, encompassing members of twenty-four peptide families, including the CLE and IRON MAN families. The discovery that expression of TML2 in roots, a key factor in inhibiting nodulation in response to autoregulation signals, is also triggered in sunn-4 in the section of roots analyzed, suggests that the mechanism of TML regulation of nodulation in M. truncatula may be more complex than published models.
Collapse
Affiliation(s)
- Elise L Schnabel
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | | | - Yueyao Gao
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | | | - Frank Alex Feltus
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
- Biomedical Data Science and Informatics Program, Clemson University, Clemson, SC 29634, USA
- Clemson Center for Human Genetics, Clemson University, Greenwood, SC 29636, USA
| | - Julia A Frugoli
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
6
|
Korenblum E, Massalha H, Aharoni A. Plant-microbe interactions in the rhizosphere via a circular metabolic economy. THE PLANT CELL 2022; 34:3168-3182. [PMID: 35678568 PMCID: PMC9421461 DOI: 10.1093/plcell/koac163] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/25/2022] [Indexed: 05/30/2023]
Abstract
Chemical exchange often serves as the first step in plant-microbe interactions and exchanges of various signals, nutrients, and metabolites continue throughout the interaction. Here, we highlight the role of metabolite exchanges and metabolic crosstalk in the microbiome-root-shoot-environment nexus. Roots secret a diverse set of metabolites; this assortment of root exudates, including secondary metabolites such as benzoxazinoids, coumarins, flavonoids, indolic compounds, and terpenes, shapes the rhizosphere microbiome. In turn, the rhizosphere microbiome affects plant growth and defense. These inter-kingdom chemical interactions are based on a metabolic circular economy, a seemingly wasteless system in which rhizosphere members exchange (i.e. consume, reuse, and redesign) metabolites. This review also describes the recently discovered phenomenon "Systemically Induced Root Exudation of Metabolites" in which the rhizosphere microbiome governs plant metabolism by inducing systemic responses that shift the metabolic profiles of root exudates. Metabolic exchange in the rhizosphere is based on chemical gradients that form specific microhabitats for microbial colonization and we describe recently developed high-resolution methods to study chemical interactions in the rhizosphere. Finally, we propose an action plan to advance the metabolic circular economy in the rhizosphere for sustainable solutions to the cumulative degradation of soil health in agricultural lands.
Collapse
Affiliation(s)
- Elisa Korenblum
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Rishon LeTsiyon 7528809, Israel
| | - Hassan Massalha
- Theory of Condensed Matter Group, Cavendish Laboratory, Wellcome Sanger Institute, University of Cambridge, Cambridge CB2 1TN, UK
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
7
|
Current Techniques to Study Beneficial Plant-Microbe Interactions. Microorganisms 2022; 10:microorganisms10071380. [PMID: 35889099 PMCID: PMC9317800 DOI: 10.3390/microorganisms10071380] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Many different experimental approaches have been applied to elaborate and study the beneficial interactions between soil bacteria and plants. Some of these methods focus on changes to the plant and others are directed towards assessing the physiology and biochemistry of the beneficial plant growth-promoting bacteria (PGPB). Here, we provide an overview of some of the current techniques that have been employed to study the interaction of plants with PGPB. These techniques include the study of plant microbiomes; the use of DNA genome sequencing to understand the genes encoded by PGPB; the use of transcriptomics, proteomics, and metabolomics to study PGPB and plant gene expression; genome editing of PGPB; encapsulation of PGPB inoculants prior to their use to treat plants; imaging of plants and PGPB; PGPB nitrogenase assays; and the use of specialized growth chambers for growing and monitoring bacterially treated plants.
Collapse
|
8
|
Kafle A, Frank HER, Rose BD, Garcia K. Split down the middle: studying arbuscular mycorrhizal and ectomycorrhizal symbioses using split-root assays. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1288-1300. [PMID: 34791191 DOI: 10.1093/jxb/erab489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Most land plants symbiotically interact with soil-borne fungi to ensure nutrient acquisition and tolerance to various environmental stressors. Among these symbioses, arbuscular mycorrhizal and ectomycorrhizal associations can be found in a large proportion of plants, including many crops. Split-root assays are widely used in plant research to study local and systemic signaling responses triggered by local treatments, including nutrient availability, interaction with soil microbes, or abiotic stresses. However, split-root approaches have only been occasionally used to tackle these questions with regard to mycorrhizal symbioses. This review compiles and discusses split-root assays developed to study arbuscular mycorrhizal and ectomycorrhizal symbioses, with a particular emphasis on colonization by multiple beneficial symbionts, systemic resistance induced by mycorrhizal fungi, water and nutrient transport from fungi to colonized plants, and host photosynthate allocation from the host to fungal symbionts. In addition, we highlight how the use of split-root assays could result in a better understanding of mycorrhizal symbioses, particularly for a broader range of essential nutrients, and for multipartite interactions.
Collapse
Affiliation(s)
- Arjun Kafle
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Hannah E R Frank
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Benjamin D Rose
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
9
|
Mohiley A, Tielbörger K, Weber M, Clemens S, Gruntman M. Competition for light induces metal accumulation in a metal hyperaccumulating plant. Oecologia 2021; 197:157-165. [PMID: 34370097 DOI: 10.1007/s00442-021-05001-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/16/2021] [Indexed: 11/25/2022]
Abstract
Plants can respond to competition with a myriad of physiological or morphological changes. Competition has also been shown to affect the foraging decisions of plants belowground. However, a completely unexplored idea is that competition might also affect plants' foraging for specific elements required to inhibit the growth of their competitors. In this study, we examined the effect of simulated competition on root foraging and accumulation of heavy metals in the metal hyperaccumulating perennial plant Arabidopsis halleri, whose metal accumulation has been shown to provide allelopathic ability. A. halleri plants originating from both metalliferous and non-metalliferous soils were grown in a "split-root" setup with one root in a high-metal pot and the other in a low-metal one. The plants were then assigned to either simulated light competition or no-competition (control) treatments, using vertical green or clear plastic filters, respectively. While simulated light competition did not induce greater root allocation into the high-metal pots, it did result in enhanced metal accumulation by A. halleri, particularly in the less metal-tolerant plants, originating from non-metalliferous soils. Interestingly, this accumulation response was particularly enhanced for zinc rather than cadmium. These results provide support to the idea that the accumulation of metals by hyperaccumulating plants can be facultative and change according to their demand following competition.
Collapse
Affiliation(s)
- Anubhav Mohiley
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Katja Tielbörger
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Michael Weber
- Plant Physiology Department, University of Bayreuth, Bayreuth, Germany
| | - Stephan Clemens
- Plant Physiology Department, University of Bayreuth, Bayreuth, Germany
| | - Michal Gruntman
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany.
- School of Plant Sciences and Food Security, Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Thilakarathna MS, Cope KR. Split-root assays for studying legume-rhizobia symbioses, rhizodeposition, and belowground nitrogen transfer in legumes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5285-5299. [PMID: 33954584 DOI: 10.1093/jxb/erab198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Split-root assays have been used widely in studies focused on understanding the complex regulatory mechanisms in legume-rhizobia symbioses, root nitrogen rhizodeposition, and belowground nitrogen transfer, and the effects of different biotic/abiotic factors on this symbiotic interaction. This assay allows a plant to have a root system that is physically divided into two distinct sections that are both still attached to a common shoot. Thus, each root section can be treated separately to monitor local and systemic plant responses. Different techniques are used to establish split-root assemblies, including double-pot systems, divided growth pouches, elbow root assembly, twin-tube systems, a single pot or chamber with a partition in the center, and divided agar plates. This review is focused on discussing the various types of split-root assays currently used in legume-based studies, and their associated advantages and limitations. Furthermore, this review also focuses on how split-root assays have been used for studies on nitrogen rhizodeposition, belowground nitrogen transfer, systemic regulation of nodulation, and biotic and abiotic factors affecting legume-rhizobia symbioses.
Collapse
Affiliation(s)
- Malinda S Thilakarathna
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Kevin R Cope
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
11
|
Ghosh P, Adolphsen KN, Yurgel SN, Kahn ML. Sinorhizobium medicae WSM419 Genes That Improve Symbiosis between Sinorhizobium meliloti Rm1021 and Medicago truncatula Jemalong A17 and in Other Symbiosis Systems. Appl Environ Microbiol 2021; 87:e0300420. [PMID: 33990306 PMCID: PMC8276806 DOI: 10.1128/aem.03004-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/10/2021] [Indexed: 11/20/2022] Open
Abstract
Some soil bacteria, called rhizobia, can interact symbiotically with legumes, in which they form nodules on the plant roots, where they can reduce atmospheric dinitrogen to ammonia, a form of nitrogen that can be used by growing plants. Rhizobium-plant combinations can differ in how successful this symbiosis is: for example, Sinorhizobium meliloti Rm1021 forms a relatively ineffective symbiosis with Medicago truncatula Jemalong A17, but Sinorhizobium medicae WSM419 is able to support more vigorous plant growth. Using proteomic data from free-living and symbiotic S. medicae WSM419, we previously identified a subset of proteins that were not closely related to any S. meliloti Rm1021 proteins and speculated that adding one or more of these proteins to S. meliloti Rm1021 would increase its effectiveness on M. truncatula A17. Three genes, Smed_3503, Smed_5985, and Smed_6456, were cloned into S. meliloti Rm1021 downstream of the E. coli lacZ promoter. Strains with these genes increased nodulation and improved plant growth, individually and in combination with one another. Smed_3503, renamed iseA (increased symbiotic effectiveness), had the largest impact, increasing M. truncatula biomass by 61%. iseA homologs were present in all currently sequenced S. medicae strains but were infrequent in other Sinorhizobium isolates. Rhizobium leguminosarum bv. viciae 3841 containing iseA led to more nodules on pea and lentil. Split-root experiments with M. truncatula A17 indicated that S. meliloti Rm1021 carrying the S. medicae iseA is less sensitive to plant-induced resistance to rhizobial infection, suggesting an interaction with the plant's regulation of nodule formation. IMPORTANCE Legume symbiosis with rhizobia is highly specific. Rhizobia that can nodulate and fix nitrogen on one legume species are often unable to associate with a different species. The interaction can be more subtle. Symbiotically enhanced growth of the host plant can differ substantially when nodules are formed by different rhizobial isolates of a species, much like disease severity can differ when conspecific isolates of pathogenic bacteria infect different cultivars. Much is known about bacterial genes essential for a productive symbiosis, but less is understood about genes that marginally improve performance. We used a proteomic strategy to identify Sinorhizobium genes that contribute to plant growth differences that are seen when two different strains nodulate M. truncatula A17. These genes could also alter the symbiosis between R. leguminosarum bv. viciae 3841 and pea or lentil, suggesting that this approach identifies new genes that may more generally contribute to symbiotic productivity.
Collapse
Affiliation(s)
- Prithwi Ghosh
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Katie N. Adolphsen
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Svetlana N. Yurgel
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Michael L. Kahn
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
12
|
Saiz-Fernández I, Černý M, Skalák J, Brzobohatý B. Split-root systems: detailed methodology, alternative applications, and implications at leaf proteome level. PLANT METHODS 2021; 17:7. [PMID: 33422104 PMCID: PMC7797125 DOI: 10.1186/s13007-020-00706-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/31/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Split-root systems (SRS) have many applications in plant sciences, but their implementation, depending on the experimental design, can be difficult and time-consuming. Additionally, the system is not exempt from limitations, since the time required for the establishment of the SRS imposes a limit to how early in plant development experiments can be performed. Here, we optimized and explained in detail a method for establishing a SRS in young Arabidopsis thaliana seedlings, both in vitro and in soil. RESULTS We found that the partial de-rooting minimized the recovery time compared to total de-rooting, thus allowing the establishment of the split-root system in younger plants. Analysis of changes in the Arabidopsis leaf proteome following the de-rooting procedure highlighted the distinct metabolic alterations that totally and partially de-rooted plants undergo during the healing process. This system was also validated for its use in drought experiments, as it offers a way to apply water-soluble compounds to plants subjected to drought stress. By growing plants in a split-root system with both halves being water-deprived, it is possible to apply the required compound to one half of the root system, which can be cut from the main plant once the compound has been absorbed, thus minimizing rehydration and maintaining drought conditions. CONCLUSIONS Partial de-rooting is the suggested method for obtaining split-root systems in small plants like Arabidopsis thaliana, as growth parameters, survival rate, and proteomic analysis suggest that is a less stressful procedure than total de-rooting, leading to a final rosette area much closer to that of uncut plants. Additionally, we provide evidence that split root-systems can be used in drought experiments where water-soluble compounds are applied with minimal effects of rehydration.
Collapse
Affiliation(s)
- Iñigo Saiz-Fernández
- Phytophthora Research Centre, Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic.
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
| | - Jan Skalák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
- Functional Genomics & Proteomics of Plants, CEITEC MU, Central European Institute of Technology, Kamenice 5, 625 00, Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
- CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| |
Collapse
|
13
|
Poehlman WL, Schnabel EL, Chavan SA, Frugoli JA, Feltus FA. Identifying Temporally Regulated Root Nodulation Biomarkers Using Time Series Gene Co-Expression Network Analysis. FRONTIERS IN PLANT SCIENCE 2019; 10:1409. [PMID: 31737022 PMCID: PMC6836625 DOI: 10.3389/fpls.2019.01409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Root nodulation results from a symbiotic relationship between a plant host and Rhizobium bacteria. Synchronized gene expression patterns over the course of rhizobial infection result in activation of pathways that are unique but overlapping with the highly conserved pathways that enable mycorrhizal symbiosis. We performed RNA sequencing of 30 Medicago truncatula root maturation zone samples at five distinct time points. These samples included plants inoculated with Sinorhizobium medicae and control plants that did not receive any Rhizobium. Following gene expression quantification, we identified 1,758 differentially expressed genes at various time points. We constructed a gene co-expression network (GCN) from the same data and identified link community modules (LCMs) that were comprised entirely of differentially expressed genes at specific time points post-inoculation. One LCM included genes that were up-regulated at 24 h following inoculation, suggesting an activation of allergen family genes and carbohydrate-binding gene products in response to Rhizobium. We also identified two LCMs that were comprised entirely of genes that were down regulated at 24 and 48 h post-inoculation. The identity of the genes in these modules suggest that down-regulating specific genes at 24 h may result in decreased jasmonic acid production with an increase in cytokinin production. At 48 h, coordinated down-regulation of a specific set of genes involved in lipid biosynthesis may play a role in nodulation. We show that GCN-LCM analysis is an effective method to preliminarily identify polygenic candidate biomarkers of root nodulation and develop hypotheses for future discovery.
Collapse
|
14
|
Lombardi N, Vitale S, Turrà D, Reverberi M, Fanelli C, Vinale F, Marra R, Ruocco M, Pascale A, d'Errico G, Woo SL, Lorito M. Root Exudates of Stressed Plants Stimulate and Attract Trichoderma Soil Fungi. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:982-994. [PMID: 29547355 DOI: 10.1094/mpmi-12-17-0310-r] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant roots release complex mixtures of bioactive molecules, including compounds that affect the activity and modify the composition of the rhizosphere microbiome. In this work, we investigated the initial phase of the interaction between tomato and an effective biocontrol strain of Trichoderma harzianum (T22). We found that root exudates (RE), obtained from plants grown in a split-root system and exposed to various biotic and abiotic stress factors (wounding, salt, pathogen attack), were able to stimulate the growth and act as chemoattractants of the biocontrol fungus. On the other hand, some of the treatments did not result in an enhanced chemotropism on Fusarium oxysporum f. sp. lycopersici, indicating a mechanism that may be selective for nonpathogenic microbes. The involvement of peroxidases and oxylipins, both known to be released by roots in response to stress, was demonstrated by using RE fractions containing these molecules or their commercial purified analogs, testing the effect of an inhibitor, and characterizing the complex pattern of these metabolites released by tomato roots both locally and systemically.
Collapse
Affiliation(s)
- Nadia Lombardi
- 1 Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche
- 2 Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici (NA), Italy
| | - Stefania Vitale
- 3 Departamento de Genetica, Facultad de Ciencias, Campus Rabanales 14071 Córdoba, Spain
| | - David Turrà
- 3 Departamento de Genetica, Facultad de Ciencias, Campus Rabanales 14071 Córdoba, Spain
| | - Massimo Reverberi
- 4 Dipartimento di Biologia Ambientale, Università la Sapienza, 00185 Roma, Italy; and
| | - Corrado Fanelli
- 4 Dipartimento di Biologia Ambientale, Università la Sapienza, 00185 Roma, Italy; and
| | - Francesco Vinale
- 1 Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche
| | - Roberta Marra
- 2 Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici (NA), Italy
| | - Michelina Ruocco
- 1 Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche
| | - Alberto Pascale
- 2 Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici (NA), Italy
| | - Giada d'Errico
- 1 Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche
| | - Sheridan L Woo
- 1 Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche
- 5 Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | - Matteo Lorito
- 1 Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche
- 2 Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici (NA), Italy
| |
Collapse
|
15
|
Kassaw T, Nowak S, Schnabel E, Frugoli J. ROOT DETERMINED NODULATION1 Is Required for M. truncatula CLE12, But Not CLE13, Peptide Signaling through the SUNN Receptor Kinase. PLANT PHYSIOLOGY 2017; 174:2445-2456. [PMID: 28592666 PMCID: PMC5543944 DOI: 10.1104/pp.17.00278] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/01/2017] [Indexed: 05/06/2023]
Abstract
The combinatorial interaction of a receptor kinase and a modified CLE peptide is involved in several developmental processes in plants, including autoregulation of nodulation (AON), which allows legumes to limit the number of root nodules formed based on available nitrogen and previous rhizobial colonization. Evidence supports the modification of CLE peptides by enzymes of the hydroxyproline O-arabinosyltransferase (HPAT/RDN) family. Here, we show by grafting and genetic analysis in Medicago truncatula that, in the AON pathway, RDN1, functioning in the root, acts upstream of the receptor kinase SUNN, functioning in the shoot. As expected for a glycosyltransferase, we found that RDN1 and RDN2 proteins are localized to the Golgi, as was shown previously for AtHPAT1. Using composite plants with transgenic hairy roots, we show that RDN1 and RDN2 orthologs from dicots as well as a related RDN gene from rice (Oryza sativa) can rescue the phenotype of rdn1-2 when expressed constitutively, but the less related MtRDN3 cannot. The timing of the induction of MtCLE12 and MtCLE13 peptide genes (negative regulators of AON) in nodulating roots is not altered by the mutation of RDN1 or SUNN, although expression levels are higher. Plants with transgenic roots constitutively expressing MtCLE12 require both RDN1 and SUNN to prevent nodule formation, while plants constitutively expressing MtCLE13 require only SUNN, suggesting that the two CLEs have different requirements for function. Combined with previous work, these data support a model in which RDN1 arabinosylates MtCLE12, and this modification is necessary for the transport and/or reception of the AON signal by the SUNN kinase.
Collapse
Affiliation(s)
- Tessema Kassaw
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29630
| | - Stephen Nowak
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29630
| | - Elise Schnabel
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29630
| | - Julia Frugoli
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29630
| |
Collapse
|
16
|
Ma Y, He X, Zhang P, Zhang Z, Ding Y, Zhang J, Wang G, Xie C, Luo W, Zhang J, Zheng L, Chai Z, Yang K. Xylem and Phloem Based Transport of CeO 2 Nanoparticles in Hydroponic Cucumber Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5215-5221. [PMID: 28383248 DOI: 10.1021/acs.est.6b05998] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Uptake and translocation of manufactured nanoparticles (NPs) in plants have drawn much attention due to their potential toxicity to the environment, including food webs. In this paper, the xylem and phloem based transport of CeO2 NPs in hydroponic cucumber plants was investigated using a split-root system. One half of the root system was treated with 200 or 2000 mg/L of CeO2 NPs for 3 days, whereas the other half remained untreated, with both halves sharing the same aerial part. The quantitative distribution and speciation of Ce in different plant tissues and xylem sap were analyzed by inductively coupled plasma-mass spectrometry, transmission electron microscope, X-ray absorption near edge structure, and X-ray fluorescence. Results show that about 15% of Ce was reduced from Ce(IV) to Ce(III) in the roots of the treated-side (TS), while almost all of Ce remained Ce(IV) in the blank-side (BS). The detection of CeO2 or its transformation products in the xylem sap, shoots, and BS roots indicates that Ce was transported as a mixture of Ce(IV) and Ce(III) from roots to shoots through xylem, while it was transported almost only in the form of CeO2 from shoots back to roots through phloem. To our knowledge, this is the first report of root-to-shoot-to-root redistribution after transformation of CeO2 NPs in plants, which has significant implications for food safety and human health.
Collapse
Affiliation(s)
- Yuhui Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Xiao He
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Peng Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences , Beijing 100049, China
| | - Yayun Ding
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Junzhe Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Guohua Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Changjian Xie
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Wenhe Luo
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Zhifang Chai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Ke Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201204, China
| |
Collapse
|
17
|
Batstone RT, Dutton EM, Wang D, Yang M, Frederickson ME. The evolution of symbiont preference traits in the model legume Medicago truncatula. THE NEW PHYTOLOGIST 2017; 213:1850-1861. [PMID: 27864973 DOI: 10.1111/nph.14308] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/23/2016] [Indexed: 05/25/2023]
Abstract
Many hosts preferentially associate with or reward better symbionts, but how these symbiont preference traits evolve is an open question. Legumes often form more nodules with or provide more resources to rhizobia that fix more nitrogen (N), but they also acquire N from soil via root foraging. It is unclear whether root responses to abiotically and symbiotically derived N evolve independently. Here, we measured root foraging and both preferential allocation of root resources to and preferential association with an effective vs an ineffective N-fixing Ensifer meliloti strain in 35 inbred lines of the model legume Medicago truncatula. We found that M. truncatula is an efficient root forager and forms more nodules with the effective rhizobium; root biomass increases with the number of effective, but not ineffective, nodules, indicating preferential allocation to roots harbouring effective rhizobia; root foraging is not genetically correlated with either preferential allocation or association; and selection favours plant genotypes that form more effective nodules. Root foraging and symbiont preference traits appear to be genetically uncoupled in M. truncatula. Rather than evolving to exclude ineffective partners, our results suggest that preference traits probably evolve to take better advantage of effective symbionts.
Collapse
Affiliation(s)
- Rebecca T Batstone
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Emily M Dutton
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Donglin Wang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Molly Yang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
18
|
Crook AD, Schnabel EL, Frugoli JA. The systemic nodule number regulation kinase SUNN in Medicago truncatula interacts with MtCLV2 and MtCRN. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:108-119. [PMID: 27296908 DOI: 10.1111/tpj.13234] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 05/23/2023]
Abstract
Autoregulation of nodulation (AON), a systemic signaling pathway in legumes, limits the number of nodules formed by the legume in its symbiosis with rhizobia. Recent research suggests a model for the systemic regulation in Medicago truncatula in which root signaling peptides are translocated to the shoot where they bind to a shoot receptor complex containing the leucine-rich repeat receptor-like kinase SUNN, triggering signal transduction which terminates nodule formation in roots. Here we show that a tagged SUNN protein capable of rescuing the sunn-4 phenotype is localized to the plasma membrane and is associated with the plasmodesmata. Using bimolecular fluorescence complementation analysis we show that, like its sequence ortholog Arabidopsis CLV1, SUNN interacts with homologous CLV1-interacting proteins MtCLAVATA2 and MtCORYNE. All three proteins were also able to form homomers and MtCRN and MtCLV2 also interact with each other. A crn Tnt1 insertion mutant of M. truncatula displayed a shoot controlled increased nodulation phenotype, similar to the clv2 mutants of pea and Lotus japonicus. Together these data suggest that legume AON signaling could occur through a multi-protein complex and that both MtCRN and MtCLV2 may play roles in AON together with SUNN.
Collapse
Affiliation(s)
- Ashley D Crook
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29630-0318, USA
| | - Elise L Schnabel
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29630-0318, USA
| | - Julia A Frugoli
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29630-0318, USA.
| |
Collapse
|
19
|
Ostendorp A, Pahlow S, Deke J, Thieß M, Kehr J. Protocol: optimisation of a grafting protocol for oilseed rape (Brassica napus) for studying long-distance signalling. PLANT METHODS 2016; 12:22. [PMID: 27019668 PMCID: PMC4807576 DOI: 10.1186/s13007-016-0122-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/18/2016] [Indexed: 06/01/2023]
Abstract
BACKGROUND Grafting is a well-established technique for studying long-distance transport and signalling processes in higher plants. While oilseed rape has been the subject of comprehensive analyses of xylem and phloem sap to identify macromolecules potentially involved in long-distance information transfer, there is currently no standardised grafting method for this species published. RESULTS We developed a straightforward collar-free grafting protocol for Brassica napus plants with high reproducibility and success rates. Micrografting of seedlings was done on filter paper. Grafting success on different types of regeneration media was measured short-term after grafting and as the long-term survival rate (>14 days) of grafts after the transfer to hydroponic culture or soil. CONCLUSIONS We compared different methods for grafting B. napus seedlings. Grafting on filter paper with removed cotyledons, a truncated hypocotyl and the addition of low levels of sucrose under long day conditions allowed the highest grafting success. A subsequent long-term hydroponic cultivation of merged grafts showed highest survival rates and best reproducibility.
Collapse
Affiliation(s)
- Anna Ostendorp
- Molecular Plant Genetics, University Hamburg, Biocenter Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Steffen Pahlow
- Molecular Plant Genetics, University Hamburg, Biocenter Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Jennifer Deke
- Molecular Plant Genetics, University Hamburg, Biocenter Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Melanie Thieß
- Molecular Plant Genetics, University Hamburg, Biocenter Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Julia Kehr
- Molecular Plant Genetics, University Hamburg, Biocenter Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| |
Collapse
|
20
|
Multiple Autoregulation of Nodulation (AON) Signals Identified through Split Root Analysis of Medicago truncatula sunn and rdn1 Mutants. PLANTS 2015; 4:209-24. [PMID: 27135324 PMCID: PMC4844323 DOI: 10.3390/plants4020209] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/09/2015] [Accepted: 04/16/2015] [Indexed: 12/14/2022]
Abstract
Nodulation is energetically costly to the host: legumes balance the nitrogen demand with the energy expense by limiting the number of nodules through long-distance signaling. A split root system was used to investigate systemic autoregulation of nodulation (AON) in Medicago truncatula and the role of the AON genes RDN1 and SUNN in the regulatory circuit. Developing nodule primordia did not trigger AON in plants carrying mutations in RDN1 and SUNN genes, while wild type plants had fully induced AON within three days. However, despite lacking an early suppression response, AON mutants suppressed nodulation when roots were inoculated 10 days or more apart, correlated with the maturation of nitrogen fixing nodules. In addition to correlation between nitrogen fixation and suppression of nodulation, suppression by extreme nutrient stress was also observed in all genotypes and may be a component of the observed response due to the conditions of the assay. These results suggest there is more than one systemic regulatory circuit controlling nodulation in M. truncatula. While both signals are present in wild type plants, the second signal can only be observed in plants lacking the early repression (AON mutants). RDN1 and SUNN are not essential for response to the later signal.
Collapse
|
21
|
Larrainzar E, Gil-Quintana E, Arrese-Igor C, González EM, Marino D. Split-root systems applied to the study of the legume-rhizobial symbiosis: what have we learned? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:1118-24. [PMID: 24975457 DOI: 10.1111/jipb.12231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/22/2014] [Indexed: 05/28/2023]
Abstract
Split-root system (SRS) approaches allow the differential treatment of separate and independent root systems, while sharing a common aerial part. As such, SRS is a useful tool for the discrimination of systemic (shoot origin) versus local (root/nodule origin) regulation mechanisms. This type of approach is particularly useful when studying the complex regulatory mechanisms governing the symbiosis established between legumes and Rhizobium bacteria. The current work provides an overview of the main insights gained from the application of SRS approaches to understand how nodule number (nodulation autoregulation) and nitrogen fixation are controlled both under non-stressful conditions and in response to a variety of stresses. Nodule number appears to be mainly controlled at the systemic level through a signal which is produced by nodule/root tissue, translocated to the shoot, and transmitted back to the root system, involving shoot Leu-rich repeat receptor-like kinases. In contrast, both local and systemic mechanisms have been shown to operate for the regulation of nitrogenase activity in nodules. Under drought and heavy metal stress, the regulation is mostly local, whereas the application of exogenous nitrogen seems to exert a regulation of nitrogen fixation both at the local and systemic levels.
Collapse
Affiliation(s)
- Estíbaliz Larrainzar
- Department of Environmental Sciences, Public University of Navarra, Pamplona, E-31006, Spain
| | | | | | | | | |
Collapse
|
22
|
Zhang H, Franken P. Comparison of systemic and local interactions between the arbuscular mycorrhizal fungus Funneliformis mosseae and the root pathogen Aphanomyces euteiches in Medicago truncatula. MYCORRHIZA 2014; 24:419-430. [PMID: 24419810 DOI: 10.1007/s00572-013-0553-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/19/2013] [Indexed: 06/03/2023]
Abstract
It has been shown in a number of pathosystems that arbuscular mycorrhizal (AM) fungi confer resistance against root pathogens, including in interactions between Medicago truncatula and the root rot-causing oomycete Aphanomyces euteiches. For the current study of these interactions, a split root system was established for plant marker gene analysis in order to study systemic defense responses and to compare them with local interactions in conventional pot cultures. It turned out, however, that split root systems and pot cultures were in different physiological stages. Genes for pathogenesis-related proteins and for enzymes involved in flavonoid biosynthesis were generally more highly expressed in split root systems, accompanied by changes in RNA accumulation for genes encoding enzymes involved in phytohormone biosynthesis. Against expectations, the pathogen showed increased activity in these split root systems when the AM fungus Funneliformis mosseae was present separately in the distal part of the roots. Gene expression analysis revealed that this is associated in the pathogen-infected compartment with a systemic down-regulation of a gene coding for isochorismate synthase (ICS), a key enzyme of salicylic acid biosynthesis. At the same time, transcripts of genes encoding pathogenesis-related proteins and for enzymes involved in the biosynthesis of flavonoids accumulated to lower levels. In conventional pot cultures showing decreased A. euteiches activity in the presence of the AM fungus, the ICS gene was down regulated only if both the AM fungus and the pathogen were present in the root system. Such negative priming of salicylic acid biosynthesis could result in increased activities of jasmonate-regulated defense responses and could explain mycorrhiza-induced resistance. Altogether, this study shows that the split root system does not reflect a systemic interaction between F. mosseae and A. euteiches in M. truncatula and indicates the importance of testing such systems prior to the analysis of mycorrhiza-induced resistance.
Collapse
Affiliation(s)
- Haoqiang Zhang
- Leibniz-Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany
| | | |
Collapse
|