1
|
Kar S, Deis R, Ahmad A, Bogoch Y, Dominitz A, Shvaizer G, Sasson E, Mytlis A, Ben-Zvi A, Elkouby YM. The Balbiani body is formed by microtubule-controlled molecular condensation of Buc in early oogenesis. Curr Biol 2025; 35:315-332.e7. [PMID: 39793567 DOI: 10.1016/j.cub.2024.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 10/01/2024] [Accepted: 11/22/2024] [Indexed: 01/13/2025]
Abstract
Vertebrate oocyte polarity has been observed for two centuries and is essential for embryonic axis formation and germline specification, yet its underlying mechanisms remain unknown. In oocyte polarization, critical RNA-protein (RNP) granules delivered to the oocyte's vegetal pole are stored by the Balbiani body (Bb), a membraneless organelle conserved across species from insects to humans. However, the mechanisms of Bb formation are still unclear. Here, we elucidate mechanisms of Bb formation in zebrafish through developmental biomolecular condensation. Using super-resolution microscopy, live imaging, biochemical, and genetic analyses in vivo, we demonstrate that Bb formation is driven by molecular condensation through phase separation of the essential intrinsically disordered protein Bucky ball (Buc). Live imaging, molecular analyses, and fluorescence recovery after photobleaching (FRAP) experiments in vivo reveal Buc-dependent changes in the Bb condensate's dynamics and apparent material properties, transitioning from liquid-like condensates to a solid-like stable compartment. Furthermore, we identify a multistep regulation by microtubules that controls Bb condensation: first through dynein-mediated trafficking of early condensing Buc granules, then by scaffolding condensed granules, likely through molecular crowding, and finally by caging the mature Bb to prevent overgrowth and maintain shape. These regulatory steps ensure the formation of a single intact Bb, which is considered essential for oocyte polarization and embryonic development. Our work offers insight into the long-standing question of the origins of embryonic polarity in non-mammalian vertebrates, supports a paradigm of cellular control over molecular condensation by microtubules, and highlights biomolecular condensation as a key process in female reproduction.
Collapse
Affiliation(s)
- Swastik Kar
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Rachael Deis
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Adam Ahmad
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Yoel Bogoch
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Avichai Dominitz
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Gal Shvaizer
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Esther Sasson
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Avishag Mytlis
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Ayal Ben-Zvi
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Yaniv M Elkouby
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel.
| |
Collapse
|
2
|
Gupta M, Pazour GJ. Intraflagellar transport: A critical player in photoreceptor development and the pathogenesis of retinal degenerative diseases. Cytoskeleton (Hoboken) 2024; 81:556-568. [PMID: 38140908 PMCID: PMC11193844 DOI: 10.1002/cm.21823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
In vertebrate vision, photons are detected by highly specialized sensory cilia called outer segments. Photoreceptor outer segments form by remodeling the membrane of a primary cilium into a stack of flattened disks. Intraflagellar transport (IFT) is critical to the formation of most types of eukaryotic cilia including the outer segments. This review covers the state of knowledge of the role of IFT in the formation and maintenance of outer segments and the human diseases that result from mutations in genes encoding the IFT complex and associated motors.
Collapse
Affiliation(s)
- Mohona Gupta
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Morningside Graduate School of Biological Sciences, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
3
|
Leung M, Steinman J, Li D, Lor A, Gruesen A, Sadah A, van Kuijk FJ, Montezuma SR, Kondkar AA, Radhakrishnan R, Lobo GP. The Logistical Backbone of Photoreceptor Cell Function: Complementary Mechanisms of Dietary Vitamin A Receptors and Rhodopsin Transporters. Int J Mol Sci 2024; 25:4278. [PMID: 38673863 PMCID: PMC11050646 DOI: 10.3390/ijms25084278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In this review, we outline our current understanding of the mechanisms involved in the absorption, storage, and transport of dietary vitamin A to the eye, and the trafficking of rhodopsin protein to the photoreceptor outer segments, which encompasses the logistical backbone required for photoreceptor cell function. Two key mechanisms of this process are emphasized in this manuscript: ocular and systemic vitamin A membrane transporters, and rhodopsin transporters. Understanding the complementary mechanisms responsible for the generation and proper transport of the retinylidene protein to the photoreceptor outer segment will eventually shed light on the importance of genes encoded by these proteins, and their relationship on normal visual function and in the pathophysiology of retinal degenerative diseases.
Collapse
Affiliation(s)
- Matthias Leung
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Jeremy Steinman
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Dorothy Li
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Anjelynt Lor
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Andrew Gruesen
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Ahmed Sadah
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Frederik J. van Kuijk
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Sandra R. Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Altaf A. Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 12271, Saudi Arabia;
| | - Rakesh Radhakrishnan
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Glenn P. Lobo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| |
Collapse
|
4
|
Haggerty KN, Eshelman SC, Sexton LA, Frimpong E, Rogers LM, Agosto MA, Robichaux MA. Super-resolution mapping in rod photoreceptors identifies rhodopsin trafficking through the inner segment plasma membrane as an essential subcellular pathway. PLoS Biol 2024; 22:e3002467. [PMID: 38190419 PMCID: PMC10773939 DOI: 10.1371/journal.pbio.3002467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/10/2023] [Indexed: 01/10/2024] Open
Abstract
Photoreceptor cells in the vertebrate retina have a highly compartmentalized morphology for efficient phototransduction and vision. Rhodopsin, the visual pigment in rod photoreceptors, is densely packaged into the rod outer segment sensory cilium and continuously renewed through essential synthesis and trafficking pathways housed in the rod inner segment. Despite the importance of this region for rod health and maintenance, the subcellular organization of rhodopsin and its trafficking regulators in the mammalian rod inner segment remain undefined. We used super-resolution fluorescence microscopy with optimized retinal immunolabeling techniques to perform a single molecule localization analysis of rhodopsin in the inner segments of mouse rods. We found that a significant fraction of rhodopsin molecules was localized at the plasma membrane, at the surface, in an even distribution along the entire length of the inner segment, where markers of transport vesicles also colocalized. Thus, our results collectively establish a model of rhodopsin trafficking through the inner segment plasma membrane as an essential subcellular pathway in mouse rod photoreceptors.
Collapse
Affiliation(s)
- Kristen N. Haggerty
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Shannon C. Eshelman
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Lauren A. Sexton
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Emmanuel Frimpong
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Leah M. Rogers
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Melina A. Agosto
- Retina and Optic Nerve Research Laboratory, Department of Physiology and Biophysics, and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michael A. Robichaux
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
5
|
Campagna CM, McMahon H, Nechipurenko I. The G protein alpha chaperone and guanine-nucleotide exchange factor RIC-8 regulates cilia morphogenesis in Caenorhabditis elegans sensory neurons. PLoS Genet 2023; 19:e1011015. [PMID: 37910589 PMCID: PMC10642896 DOI: 10.1371/journal.pgen.1011015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/13/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Heterotrimeric G (αβγ) proteins are canonical transducers of G-protein-coupled receptor (GPCR) signaling and play critical roles in communication between cells and their environment. Many GPCRs and heterotrimeric G proteins localize to primary cilia and modulate cilia morphology via mechanisms that are not well understood. Here, we show that RIC-8, a cytosolic guanine nucleotide exchange factor (GEF) and chaperone for Gα protein subunits, shapes cilia membrane morphology in a subset of Caenorhabditis elegans sensory neurons. Consistent with its role in ciliogenesis, C. elegans RIC-8 localizes to cilia in different sensory neuron types. Using domain mutagenesis, we demonstrate that while the GEF function alone is not sufficient, both the GEF and Gα-interacting chaperone motifs of RIC-8 are required for its role in cilia morphogenesis. We identify ODR-3 as the RIC-8 Gα client and demonstrate that RIC-8 functions in the same genetic pathway with another component of the non-canonical G protein signaling AGS-3 to shape cilia morphology. Notably, despite defects in AWC cilia morphology, ags-3 null mutants exhibit normal chemotaxis toward benzaldehyde unlike odr-3 mutant animals. Collectively, our findings describe a novel function for the evolutionarily conserved protein RIC-8 and non-canonical RIC-8-AGS-3-ODR-3 signaling in cilia morphogenesis and uncouple Gα ODR-3 functions in ciliogenesis and olfaction.
Collapse
Affiliation(s)
- Christina M. Campagna
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Hayley McMahon
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Inna Nechipurenko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| |
Collapse
|
6
|
Masek M, Bachmann-Gagescu R. Control of protein and lipid composition of photoreceptor outer segments-Implications for retinal disease. Curr Top Dev Biol 2023; 155:165-225. [PMID: 38043951 DOI: 10.1016/bs.ctdb.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Vision is arguably our most important sense, and its loss brings substantial limitations to daily life for affected individuals. Light is perceived in retinal photoreceptors (PRs), which are highly specialized neurons subdivided into several compartments with distinct functions. The outer segments (OSs) of photoreceptors represent highly specialized primary ciliary compartments hosting the phototransduction cascade, which transforms incoming light into a neuronal signal. Retinal disease can result from various pathomechanisms originating in distinct subcompartments of the PR cell, or in the retinal pigment epithelium which supports the PRs. Dysfunction of primary cilia causes human disorders known as "ciliopathies", in which retinal disease is a common feature. This chapter focuses on PR OSs, discussing the mechanisms controlling their complex structure and composition. A sequence of tightly regulated sorting and trafficking events, both upstream of and within this ciliary compartment, ensures the establishment and maintenance of the adequate proteome and lipidome required for signaling in response to light. We discuss in particular our current understanding of the role of ciliopathy proteins involved in multi-protein complexes at the ciliary transition zone (CC2D2A) or BBSome (BBS1) and how their dysfunction causes retinal disease. While the loss of CC2D2A prevents the fusion of vesicles and delivery of the photopigment rhodopsin to the ciliary base, leading to early OS ultrastructural defects, BBS1 deficiency results in precocious accumulation of cholesterol in mutant OSs and decreased visual function preceding morphological changes. These distinct pathomechanisms underscore the central role of ciliary proteins involved in multiple processes controlling OS protein and lipid composition.
Collapse
Affiliation(s)
- Markus Masek
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; University Research Priority Program AdaBD, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Campagna CM, McMahon H, Nechipurenko I. The G protein alpha Chaperone and Guanine-Nucleotide Exchange Factor RIC-8 Regulates Cilia Morphogenesis in Caenorhabditis elegans Sensory Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554856. [PMID: 37662329 PMCID: PMC10473713 DOI: 10.1101/2023.08.25.554856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Heterotrimeric G (αβγ) proteins are canonical transducers of G-protein-coupled receptor (GPCR) signaling and play critical roles in communication between cells and their environment. Many GPCRs and heterotrimeric G proteins localize to primary cilia and modulate cilia morphology via mechanisms that are not well understood. Here, we show that RIC-8, a cytosolic guanine nucleotide exchange factor (GEF) and chaperone for Gα protein subunits, shapes cilia membrane morphology in a subset of Caenorhabditis elegans sensory neurons. Consistent with its role in ciliogenesis, C. elegans RIC-8 localizes to cilia in different sensory neuron types. Using domain mutagenesis, we demonstrate that while the GEF function alone is not sufficient, both the GEF and Gα-interacting chaperone motifs of RIC-8 are required for its role in cilia morphogenesis. We identify ODR-3 as the RIC-8 Gα client and demonstrate that RIC-8 functions in the same genetic pathway with another component of the non-canonical G protein signaling AGS-3 to shape cilia morphology. Notably, despite severe defects in AWC cilia morphology, ags-3 null mutants exhibit normal chemotaxis toward benzaldehyde unlike odr-3 mutant animals. Collectively, our findings describe a novel function for the evolutionarily conserved protein RIC-8 and non-canonical RIC-8-AGS-3-ODR-3 signaling in cilia morphogenesis and uncouple Gα ODR-3 functions in ciliogenesis and olfaction.
Collapse
Affiliation(s)
- Christina M. Campagna
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Hayley McMahon
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Inna Nechipurenko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| |
Collapse
|
8
|
Haggerty KN, Eshelman SC, Sexton LA, Frimpong E, Rogers LM, Agosto MA, Robichaux MA. Mapping rhodopsin trafficking in rod photoreceptors with quantitative super-resolution microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537413. [PMID: 37131638 PMCID: PMC10153271 DOI: 10.1101/2023.04.20.537413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Photoreceptor cells in the vertebrate retina have a highly compartmentalized morphology for efficient long-term phototransduction. Rhodopsin, the visual pigment in rod photoreceptors, is densely packaged into the rod outer segment sensory cilium and continuously renewed through essential synthesis and trafficking pathways housed in the rod inner segment. Despite the importance of this region for rod health and maintenance, the subcellular organization of rhodopsin and its trafficking regulators in the mammalian rod inner segment remain undefined. We used super-resolution fluorescence microscopy with optimized retinal immunolabeling techniques to perform a single molecule localization analysis of rhodopsin in the inner segments of mouse rods. We found that a significant fraction of rhodopsin molecules was localized at the plasma membrane in an even distribution along the entire length of the inner segment, where markers of transport vesicles also colocalized. Thus, our results collectively establish a model of rhodopsin trafficking through the inner segment plasma membrane as an essential subcellular pathway in mouse rod photoreceptors.
Collapse
Affiliation(s)
- Kristen N. Haggerty
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Shannon C. Eshelman
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Lauren A. Sexton
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Emmanuel Frimpong
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Leah M. Rogers
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Melina A. Agosto
- Retina and Optic Nerve Research Laboratory, Department of Physiology and Biophysics, and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Michael A. Robichaux
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| |
Collapse
|
9
|
Zhang J, Jing M, Li P, Sun L, Pi X, Jiang N, Zhu KK, Li H, Li J, Wang M, Zhang J, Liu M, Mu H, Hu Y, Cui X. Knockout of DLIC1 leads to retinal cone degeneration via disturbing Rab8 transport in zebrafish. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166645. [PMID: 36682603 DOI: 10.1016/j.bbadis.2023.166645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/28/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
Retinal photoreceptors execute phototransduction functions and require an efficient system for the transport of materials (e.g. proteins and lipids) from inner segments to outer segments. Cytoplasmic dynein 1 is a minus-end-directed microtubule motor and participates in cargo transport in the cytoplasm. However, the roles of dynein 1 motor in photoreceptor cargo transport and retinal development are still ambiguous. In our present study, the light intermediate chain protein DLIC1 (encoded by dync1li1), links activating adaptors to bind diverse cargos in the dynein 1 motor, was depleted using CRISPR-Cas9 technology in zebrafish. The dync1li1-/- zebrafish displayed progressive degeneration of retinal cone photoreceptors, especially blue cones. The retinal rods were not affected in dync1li1-/- zebrafish. Knockout of DLIC1 resulted in abnormal expression and localization of cone opsins in dync1li1-/- retinas. TUNEL staining suggested that apoptosis was induced after aberrant accumulation of cone opsins in photoreceptors of dync1li1-/- zebrafish. Instead of Rab11 transport, Rab8 transport was disturbed in dync1li1-/- retinas. Our data demonstrate that DLIC1 is required for function maintenance and survival of cone photoreceptors, and hint at an essential role of the cytoplasmic dynein 1 motor in photoreceptor cargo transport.
Collapse
Affiliation(s)
- Jing Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Min Jing
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Ping Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Luqian Sun
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Xiahui Pi
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Ning Jiang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Ke-Ke Zhu
- Kaifeng Key Lab of Myopia and Cataract, Kaifeng Central Hospital, Kaifeng, China
| | - Hui Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Jing Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Mingli Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Jun Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Mugen Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Mu
- Kaifeng Key Lab of Myopia and Cataract, Kaifeng Central Hospital, Kaifeng, China.
| | - Yanzhong Hu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China; Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xiukun Cui
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China.
| |
Collapse
|
10
|
Grimaud B, Frétaud M, Terras F, Bénassy A, Duroure K, Bercier V, Trippé-Allard G, Mohammedi R, Gacoin T, Del Bene F, Marquier F, Langevin C, Treussart F. In Vivo Fast Nonlinear Microscopy Reveals Impairment of Fast Axonal Transport Induced by Molecular Motor Imbalances in the Brain of Zebrafish Larvae. ACS NANO 2022; 16:20470-20487. [PMID: 36459488 DOI: 10.1021/acsnano.2c06799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cargo transport by molecular motors along microtubules is essential for the function of eukaryotic cells, in particular neurons in which axonal transport defects constitute the early pathological features of neurodegenerative diseases. Mainly studied in motor and sensory neurons, axonal transport is still difficult to characterize in neurons of the brain in absence of appropriate in vivo tools. Here, we measured fast axonal transport by tracing the second harmonic generation (SHG) signal of potassium titanyl phosphate (KTP) nanocrystals (nanoKTP) endocytosed by brain neurons of zebrafish (Zf) larvae. Thanks to the optical translucency of Zf larvae and to the perfect photostability of nanoKTP SHG, we achieved a high scanning speed of 20 frames (of ≈90 μm × 60 μm size) per second in Zf brain. We focused our study on endolysosomal vesicle transport in axons of known polarization, separately analyzing kinesin and dynein motor-driven displacements. To validate our assay, we used either loss-of-function mutations of dynein or kinesin 1 or the dynein inhibitor dynapyrazole and quantified several transport parameters. We successfully demonstrated that dynapyrazole reduces the nanoKTP mobile fraction and retrograde run length consistently, while the retrograde run length increased in kinesin 1 mutants. Taking advantage of nanoKTP SHG directional emission, we also quantified fluctuations of vesicle orientation. Thus, by combining endocytosis of nanocrystals having a nonlinear response, fast two-photon microscopy, and high-throughput analysis, we are able to finely monitor fast axonal transport in vivo in the brain of a vertebrate and reveal subtle axonal transport alterations. The high spatiotemporal resolution achieved in our model may be relevant to precisely investigate axonal transport impairment associated with disease models.
Collapse
Affiliation(s)
- Baptiste Grimaud
- ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, Université Paris-Saclay, 91190Gif-sur-Yvette, France
| | - Maxence Frétaud
- INRAE, IERP, Université Paris-Saclay, 78350Jouy-ens-Josas, France
- INRAE, VIM, Université Paris-Saclay, 78350Jouy-en-Josas, France
| | - Feriel Terras
- ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, Université Paris-Saclay, 91190Gif-sur-Yvette, France
| | - Antoine Bénassy
- ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, Université Paris-Saclay, 91190Gif-sur-Yvette, France
| | - Karine Duroure
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, 75012Paris, France
| | - Valérie Bercier
- Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, 3000Leuven, Belgium
| | - Gaëlle Trippé-Allard
- ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, Université Paris-Saclay, 91190Gif-sur-Yvette, France
| | - Rabei Mohammedi
- Laboratory of Condensed Matter Physics, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128Palaiseau Cedex, France
| | - Thierry Gacoin
- Laboratory of Condensed Matter Physics, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128Palaiseau Cedex, France
| | - Filippo Del Bene
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, 75012Paris, France
| | - François Marquier
- ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, Université Paris-Saclay, 91190Gif-sur-Yvette, France
| | | | - François Treussart
- ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, Université Paris-Saclay, 91190Gif-sur-Yvette, France
| |
Collapse
|
11
|
Zhang L, Wan M, Tohti R, Jin D, Zhong TP. Requirement of Zebrafish Adcy3a and Adcy5 in Melanosome Dispersion and Melanocyte Stripe Formation. Int J Mol Sci 2022; 23:ijms232214182. [PMID: 36430661 PMCID: PMC9693263 DOI: 10.3390/ijms232214182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
cAMP-PKA signaling plays a pivotal role in melanin synthesis and melanosome transport by responding to the binding of the α-melanocyte-stimulating hormone (α-MSH) to melanocortin-1 receptor (MC1R). Adenylate cyclases (ADCYs) are the enzymes responsible for the synthesis of cAMP from ATP, which comprises nine transmembrane isoforms (ADCYs 1-9) and one soluble adenylate cyclase (ADCY 10) in mammals. However, little is known about which and how ADCY isoforms regulate melanocyte generation, melanin biosynthesis, and melanosome transport in vivo. In this study, we have generated a series of single and double mutants of Adcy isoforms in zebrafish. Among them, adcy3a-/- and adcy5-/- double mutants cause defects in melanosome dispersion but do not impair melanoblast differentiation and melanocyte regeneration during the embryonic or larval stages. Activation of PKA, the main effector of cAMP signaling, significantly ameliorates the defects in melanosome dispersion in adcy3a-/- and adcy5-/- double mutants. Mechanistically, Adcy3a and Adcy5 regulate melanosome dispersion by activating kinesin-1 while inhibiting cytoplasmic dynein-1. In adult zebrafish, Adcy3a and Adcy5 participate in the regulation of the expression of microphthalmia transcription factor (Mitfa) and melanin synthesis enzymes Tyr, Dct, and Trp1b. The deletion of Adcy3a and Adcy5 inhibits melanin production and reduces pigmented melanocyte numbers, causing a defect in establishing adult melanocyte stripes. Hence, our studies demonstrate that Adcy3a and Adcy5 play essential but redundant functions in mediating α-MSH-MC1R/cAMP-PKA signaling for regulating melanin synthesis and melanosome dispersion.
Collapse
|
12
|
Oliwa A, Joseph S, Millar E, Horrocks I, Penman D, Baptista J, Cullup T, Constantinou P, Heuchan AM, Hamilton R, Longman C. Cataract, abnormal electroretinogram and visual evoked potentials in a child with SMA-LED2 - extending the phenotype. J Neuromuscul Dis 2022; 9:803-808. [PMID: 36057830 DOI: 10.3233/jnd-220818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This case report describes a girl who presented antenatal arthrogryposis and postnatal hypotonia, generalized and respiratory weakness, joint deformities particularly affecting the lower limbs and poor swallow. By 5 months, cataracts, abnormal electroretinograms, visual evoked potentials and global developmental impairments were recognized. No causative variants were identified on targeted gene panels. After her unexpected death at 11 months, gene-agnostic trio whole exome sequencing revealed a likely pathogenic de novo BICD2 missense variant, NM_001003800.1, c.593T>C, p.(Leu198Pro), confirming the diagnosis of spinal muscular atrophy lower extremity predominant type 2 (SMA-LED2). We propose that cataracts and abnormal electroretinograms are novel features of SMA-LED2.
Collapse
Affiliation(s)
- Agata Oliwa
- Undergraduate Medical School, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shuko Joseph
- Fraser of Allander Neurosciences Unit, Royal Hospital for Children, Glasgow, UK
| | - Eoghan Millar
- Department of Ophthalmology, Royal Hospital for Children, Glasgow, UK
| | - Iain Horrocks
- Fraser of Allander Neurosciences Unit, Royal Hospital for Children, Glasgow, UK
| | - Dawn Penman
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Julia Baptista
- Peninsula Medical School, Faculty of Heath, University of Plymouth, Plymouth, UK
| | - Thomas Cullup
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Panayiotis Constantinou
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Ruth Hamilton
- Department of Clinical Physics and Bioengineering, Royal Hospital for Children, NHS Greater Glasgow & Clyde, Glasgow, UK
| | - Cheryl Longman
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
13
|
Fasano G, Compagnucci C, Dallapiccola B, Tartaglia M, Lauri A. Teleost Fish and Organoids: Alternative Windows Into the Development of Healthy and Diseased Brains. Front Mol Neurosci 2022; 15:855786. [PMID: 36034498 PMCID: PMC9403253 DOI: 10.3389/fnmol.2022.855786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The variety in the display of animals’ cognition, emotions, and behaviors, typical of humans, has its roots within the anterior-most part of the brain: the forebrain, giving rise to the neocortex in mammals. Our understanding of cellular and molecular events instructing the development of this domain and its multiple adaptations within the vertebrate lineage has progressed in the last decade. Expanding and detailing the available knowledge on regionalization, progenitors’ behavior and functional sophistication of the forebrain derivatives is also key to generating informative models to improve our characterization of heterogeneous and mechanistically unexplored cortical malformations. Classical and emerging mammalian models are irreplaceable to accurately elucidate mechanisms of stem cells expansion and impairments of cortex development. Nevertheless, alternative systems, allowing a considerable reduction of the burden associated with animal experimentation, are gaining popularity to dissect basic strategies of neural stem cells biology and morphogenesis in health and disease and to speed up preclinical drug testing. Teleost vertebrates such as zebrafish, showing conserved core programs of forebrain development, together with patients-derived in vitro 2D and 3D models, recapitulating more accurately human neurogenesis, are now accepted within translational workflows spanning from genetic analysis to functional investigation. Here, we review the current knowledge of common and divergent mechanisms shaping the forebrain in vertebrates, and causing cortical malformations in humans. We next address the utility, benefits and limitations of whole-brain/organism-based fish models or neuronal ensembles in vitro for translational research to unravel key genes and pathological mechanisms involved in neurodevelopmental diseases.
Collapse
|
14
|
Ciampi L, Mantica F, López-Blanch L, Permanyer J, Rodriguez-Marín C, Zang J, Cianferoni D, Jiménez-Delgado S, Bonnal S, Miravet-Verde S, Ruprecht V, Neuhauss SCF, Banfi S, Carrella S, Serrano L, Head SA, Irimia M. Specialization of the photoreceptor transcriptome by Srrm3-dependent microexons is required for outer segment maintenance and vision. Proc Natl Acad Sci U S A 2022; 119:e2117090119. [PMID: 35858306 PMCID: PMC9303857 DOI: 10.1073/pnas.2117090119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 05/28/2022] [Indexed: 01/14/2023] Open
Abstract
Retinal photoreceptors have a distinct transcriptomic profile compared to other neuronal subtypes, likely reflecting their unique cellular morphology and function in the detection of light stimuli by way of the ciliary outer segment. We discovered a layer of this molecular specialization by revealing that the vertebrate retina expresses the largest number of tissue-enriched microexons of all tissue types. A subset of these microexons is included exclusively in photoreceptor transcripts, particularly in genes involved in cilia biogenesis and vesicle-mediated transport. This microexon program is regulated by Srrm3, a paralog of the neural microexon regulator Srrm4. Despite the fact that both proteins positively regulate retina microexons in vitro, only Srrm3 is highly expressed in mature photoreceptors. Its deletion in zebrafish results in widespread down-regulation of microexon inclusion from early developmental stages, followed by other transcriptomic alterations, severe photoreceptor defects, and blindness. These results shed light on the transcriptomic specialization and functionality of photoreceptors, uncovering unique cell type-specific roles for Srrm3 and microexons with implications for retinal diseases.
Collapse
Affiliation(s)
- Ludovica Ciampi
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Federica Mantica
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Laura López-Blanch
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Jon Permanyer
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Cristina Rodriguez-Marín
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Jingjing Zang
- Department of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Damiano Cianferoni
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Senda Jiménez-Delgado
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Sophie Bonnal
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Samuel Miravet-Verde
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Verena Ruprecht
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
- Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Stephan C. F. Neuhauss
- Department of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Sandro Banfi
- Medical Genetics, Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Sabrina Carrella
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Luis Serrano
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
- Universitat Pompeu Fabra, 08002 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Sarah A. Head
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
- Universitat Pompeu Fabra, 08002 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
15
|
Robichaux MA, Nguyen V, Chan F, Kailasam L, He F, Wilson JH, Wensel TG. Subcellular localization of mutant P23H rhodopsin in an RFP fusion knock-in mouse model of retinitis pigmentosa. Dis Model Mech 2022; 15:274688. [PMID: 35275162 PMCID: PMC9092655 DOI: 10.1242/dmm.049336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
The P23H mutation in rhodopsin (Rho), the rod visual pigment, is the most common allele associated with autosomal-dominant retinitis pigmentosa (adRP). The fate of misfolded mutant Rho in rod photoreceptors has yet to be elucidated. We generated a new mouse model, in which the P23H-Rho mutant allele is fused to the fluorescent protein Tag-RFP-T (P23HhRhoRFP). In heterozygotes, outer segments formed, and wild-type (WT) rhodopsin was properly localized, but mutant P23H-Rho protein was mislocalized in the inner segments. Heterozygotes exhibited slowly progressing retinal degeneration. Mislocalized P23HhRhoRFP was contained in greatly expanded endoplasmic reticulum (ER) membranes. Quantification of mRNA for markers of ER stress and the unfolded protein response revealed little or no increases. mRNA levels for both the mutant human rhodopsin allele and the WT mouse rhodopsin were reduced, but protein levels revealed selective degradation of the mutant protein. These results suggest that the mutant rods undergo an adaptative process that prolongs survival despite unfolded protein accumulation in the ER. The P23H-Rho-RFP mouse may represent a useful tool for the future study of the pathology and treatment of P23H-Rho and adRP. This article has an associated First Person interview with the first author of the paper. Summary: A mouse line with a knock-in of the human rhodopsin gene altered to contain the P23H mutation and a red fluorescent protein fusion provides a new model for autosomal-dominant retinitis pigmentosa.
Collapse
Affiliation(s)
- Michael A Robichaux
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.,Departments of Ophthalmology and Biochemistry, West Virginia University, 108 Biomedical Road, Morgantown, WV 26506, USA
| | - Vy Nguyen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Fung Chan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Lavanya Kailasam
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Feng He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - John H Wilson
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
16
|
Radhakrishnan R, Dronamraju VR, Leung M, Gruesen A, Solanki AK, Walterhouse S, Roehrich H, Song G, da Costa Monsanto R, Cureoglu S, Martin R, Kondkar AA, van Kuijk FJ, Montezuma SR, Knöelker HJ, Hufnagel RB, Lobo GP. The role of motor proteins in photoreceptor protein transport and visual function. Ophthalmic Genet 2022; 43:285-300. [PMID: 35470760 DOI: 10.1080/13816810.2022.2062391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Rods and cones are photoreceptor neurons in the retina that are required for visual sensation in vertebrates, wherein the perception of vision is initiated when these neurons respond to photons in the light stimuli. The photoreceptor cell is structurally studied as outer segments (OS) and inner segments (IS) where proper protein sorting, localization, and compartmentalization are critical for phototransduction, visual function, and survival. In human retinal diseases, improper protein transport to the OS or mislocalization of proteins to the IS and other cellular compartments could lead to impaired visual responses and photoreceptor cell degeneration that ultimately cause loss of visual function. RESULTS Therefore, studying and identifying mechanisms involved in facilitating and maintaining proper protein transport in photoreceptor cells would help our understanding of pathologies involving retinal cell degeneration in inherited retinal dystrophies, age-related macular degeneration, and Usher Syndrome. CONCLUSIONS Our mini-review will discuss mechanisms of protein transport within photoreceptors and introduce a novel role for an unconventional motor protein, MYO1C, in actin-based motor transport of the visual chromophore Rhodopsin to the OS, in support of phototransduction and visual function.
Collapse
Affiliation(s)
- Rakesh Radhakrishnan
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Venkateshwara R Dronamraju
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matthias Leung
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew Gruesen
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ashish K Solanki
- Department of Medicine, Drug Discovery Building, Medical University of South Carolina, South Carolina, USA
| | - Stephen Walterhouse
- Department of Medicine, Drug Discovery Building, Medical University of South Carolina, South Carolina, USA
| | - Heidi Roehrich
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Grace Song
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rafael da Costa Monsanto
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sebahattin Cureoglu
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - René Martin
- Faculty of Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Altaf A Kondkar
- Department of Ophthalmology.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Frederik J van Kuijk
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sandra R Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Glenn P Lobo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Medicine, Drug Discovery Building, Medical University of South Carolina, South Carolina, USA.,Department of Ophthalmology, Medical University of South Carolina, South Carolina, USA
| |
Collapse
|
17
|
Dahl TM, Reed M, Gerstner CD, Baehr W. Conditional Deletion of Cytoplasmic Dynein Heavy Chain in Postnatal Photoreceptors. Invest Ophthalmol Vis Sci 2021; 62:23. [PMID: 34807236 PMCID: PMC8626856 DOI: 10.1167/iovs.62.14.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Cytoplasmic dynein-1 (henceforth dynein) moves cargo in conjunction with dynactin toward the minus end of microtubules. The dynein heavy chain, DYNC1H1, comprises the backbone of dynein, a retrograde motor. Deletion of Dync1h1 abrogates dynein function. The purpose of this communication is to demonstrate effects of photoreceptor dynein inactivation during late postnatal development and in adult retina. Methods We mated Dync1h1F/F mice with iCre75 and Prom1-CreERT2 mice to generate conditional rod and tamoxifen-induced knockout in rods and cones, respectively. We documented retina degeneration with confocal microscopy at postnatal day (P) 10 to P30 for the iCre75 line and 1 to 4 weeks post tamoxifen induction (wPTI) for the Prom1-CreERT2 line. We performed scotopic and photopic electroretinography (ERG) at P16 to P30 in the iCre75 line and at 1-week increments in the Prom1-CreERT2 line. Results were evaluated statistically using Student's t-test, two-factor ANOVA, and Welch's ANOVA. Results Cre-induced homologous recombination of Dync1h1F/F mice truncated DYNC1H1 after exon 23. rodDync1h1-/- photoreceptors degenerated after P14, reducing outer nuclear layer (ONL) thickness and combined inner segment/outer segment (IS/OS) length significantly by P18. Scotopic ERG a-wave amplitudes decreased by P16 and were extinguished at P30. Cones were stable under rod-knockout conditions until P21 but inactive at P30. In tamDync1h1-/- photoreceptors, the IS/OS began shortening by 3wPTI and were nearly eliminated by 4wPTI. The ONL shrank significantly over this interval, indicating rapid photoreceptor degeneration following the loss of dynein. Conclusions Our results demonstrate dynein is essential for the secretory pathway, formation of outer segments, and photoreceptor maintenance.
Collapse
Affiliation(s)
- Tiffanie M Dahl
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States
| | - Michelle Reed
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States
| | - Cecilia D Gerstner
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States
| | - Wolfgang Baehr
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States.,Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, Utah, United States.,Department of Biology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
18
|
Dahl TM, Baehr W. Review: Cytoplasmic dynein motors in photoreceptors. Mol Vis 2021; 27:506-517. [PMID: 34526758 PMCID: PMC8410232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/30/2021] [Indexed: 12/04/2022] Open
Abstract
Cytoplasmic dyneins (dynein-1 and dynein-2) transport cargo toward the minus end of microtubules and thus, are termed the "retrograde" cellular motor. Dynein-1 cargo may include nuclei, mitochondria, membrane vesicles, lysosomes, phagosomes, and other organelles. For example, dynein-1 works in the cell body of eukaryotes to move cargo toward the microtubule minus end and positions the Golgi complex. Dynein-1 also participates in the movement of chromosomes and the positioning of mitotic spindles during cell division. In contrast, dynein-2 is present almost exclusively within cilia where it participates in retrograde intraflagellar transport (IFT) along the axoneme to return kinesin-2 subunits, BBSome, and IFT particles to the cell body. Cytoplasmic dyneins are hefty 1.5 MDa complexes comprised of dimers of heavy, intermediate, light intermediate, and light chains. Missense mutations of human DYNC1H1 are associated with malformations of cortical development (MCD) or spinal muscular atrophy with lower extremity predominance (SMA-LED). Missense mutations in DYNC2H1 are causative of short-rib polydactyly syndrome type III and nonsyndromic retinitis pigmentosa. We review mutations of the two dynein heavy chains and their effect on postnatal retina development and discuss consequences of deletion of DYNC1H1 in the mouse retina.
Collapse
Affiliation(s)
- Tiffanie M. Dahl
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, UT
| | - Wolfgang Baehr
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, UT,Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, UT,Department of Biology, University of Utah, Salt Lake City, UT
| |
Collapse
|
19
|
Aghaizu ND, Warre-Cornish KM, Robinson MR, Waldron PV, Maswood RN, Smith AJ, Ali RR, Pearson RA. Repeated nuclear translocations underlie photoreceptor positioning and lamination of the outer nuclear layer in the mammalian retina. Cell Rep 2021; 36:109461. [PMID: 34348137 PMCID: PMC8356022 DOI: 10.1016/j.celrep.2021.109461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 11/19/2019] [Accepted: 07/09/2021] [Indexed: 12/28/2022] Open
Abstract
In development, almost all stratified neurons must migrate from their birthplace to the appropriate neural layer. Photoreceptors reside in the most apical layer of the retina, near their place of birth. Whether photoreceptors require migratory events for fine-positioning and/or retention within this layer is not well understood. Here, we show that photoreceptor nuclei of the developing mouse retina cyclically exhibit rapid, dynein-1-dependent translocation toward the apical surface, before moving more slowly in the basal direction, likely due to passive displacement by neighboring retinal nuclei. Attenuating dynein 1 function in rod photoreceptors results in their ectopic basal displacement into the outer plexiform layer and inner nuclear layer. Synapse formation is also compromised in these displaced cells. We propose that repeated, apically directed nuclear translocation events are necessary to ensure retention of post-mitotic photoreceptors within the emerging outer nuclear layer during retinogenesis, which is critical for correct neuronal lamination.
Collapse
Affiliation(s)
- Nozie D Aghaizu
- University College London Institute of Ophthalmology, London EC1V 9EL, UK.
| | | | - Martha R Robinson
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
| | - Paul V Waldron
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
| | - Ryea N Maswood
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
| | - Alexander J Smith
- University College London Institute of Ophthalmology, London EC1V 9EL, UK; Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Robin R Ali
- University College London Institute of Ophthalmology, London EC1V 9EL, UK; Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Rachael A Pearson
- University College London Institute of Ophthalmology, London EC1V 9EL, UK; Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London SE1 9RT, UK.
| |
Collapse
|
20
|
Dahl TM, Reed M, Gerstner CD, Ying G, Baehr W. Effect of conditional deletion of cytoplasmic dynein heavy chain DYNC1H1 on postnatal photoreceptors. PLoS One 2021; 16:e0248354. [PMID: 33705456 PMCID: PMC7951903 DOI: 10.1371/journal.pone.0248354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/24/2021] [Indexed: 11/19/2022] Open
Abstract
Cytoplasmic dynein (dynein 1), a major retrograde motor of eukaryotic cells, is a 1.4 MDa protein complex consisting of a pair of heavy chains (DYNC1H1) and a set of heterodimeric noncatalytic accessory components termed intermediate, light intermediate and light chains. DYNC1H1 (4644 amino acids) is the dynein backbone encoded by a gene consisting of 77 exons. We generated a floxed Dync1h1 allele that excises exons 24 and 25 and truncates DYNC1H1 during Six3Cre-induced homologous recombination. Truncation results in loss of the motor and microtubule-binding domain. Dync1h1F/F;Six3Cre photoreceptors degenerated rapidly within two postnatal weeks. In the postnatal day 6 (P6) Dync1h1F/F;Six3Cre central retina, outer and inner nuclear layers were severely disorganized and lacked a recognizable outer plexiform layer (OPL). Although the gene was effectively silenced by P6, DYNC1H1 remnants persisted and aggregated together with rhodopsin, PDE6 and centrin-2-positive centrosomes in the outer nuclear layer. As photoreceptor degeneration is delayed in the Dync1h1F/F;Six3Cre retina periphery, retinal lamination and outer segment elongation are in part preserved. DYNC1H1 strongly persisted in the inner plexiform layer (IPL) beyond P16 suggesting lack of clearance of the DYNC1H1 polypeptide. This persistence of DYNC1H1 allows horizontal, rod bipolar, amacrine and ganglion cells to survive past P12. The results show that cytoplasmic dynein is essential for retina lamination, nuclear positioning, vesicular trafficking of photoreceptor membrane proteins and inner/outer segment elaboration.
Collapse
Affiliation(s)
- Tiffanie M. Dahl
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
| | - Michelle Reed
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
| | - Cecilia D. Gerstner
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
| | - Guoxin Ying
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
| | - Wolfgang Baehr
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
21
|
Frederick JM, Hanke-Gogokhia C, Ying G, Baehr W. Diffuse or hitch a ride: how photoreceptor lipidated proteins get from here to there. Biol Chem 2019; 401:573-584. [DOI: 10.1515/hsz-2019-0375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/02/2019] [Indexed: 12/23/2022]
Abstract
Abstract
Photoreceptors are polarized neurons, with specific subcellular compartmentalization and unique requirements for protein expression and trafficking. Each photoreceptor contains an outer segment (OS) where vision begins, an inner segment (IS) where protein synthesis occurs and a synaptic terminal for signal transmission to second-order neurons. The OS is a large, modified primary cilium attached to the IS by a slender connecting cilium (CC), the equivalent of the transition zone (TZ). Daily renewal of ~10% of the OS requires massive protein biosynthesis in the IS with reliable transport and targeting pathways. Transport of lipidated (‘sticky’) proteins depends on solubilization factors, phosphodiesterase δ (PDEδ) and uncoordinated protein-119 (UNC119), and the cargo dispensation factor (CDF), Arf-like protein 3-guanosine triphosphate (ARL3-GTP). As PDE6 and transducin still reside prominently in the OS of PDEδ and UNC119 germline knockout mice, respectively, we propose the existence of an alternate trafficking pathway, whereby lipidated proteins migrate in rhodopsin-containing vesicles of the secretory pathway.
Collapse
Affiliation(s)
- Jeanne M. Frederick
- Department of Ophthalmology and Visual Sciences , University of Utah Health Science Center , 65 Mario Capecchi Drive , Salt Lake City , UT 84132 , USA
| | - Christin Hanke-Gogokhia
- Department of Ophthalmology and Visual Sciences , University of Utah Health Science Center , 65 Mario Capecchi Drive , Salt Lake City , UT 84132 , USA
| | - Guoxin Ying
- Department of Ophthalmology and Visual Sciences , University of Utah Health Science Center , 65 Mario Capecchi Drive , Salt Lake City , UT 84132 , USA
| | - Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences , University of Utah Health Science Center , 65 Mario Capecchi Drive , Salt Lake City , UT 84132 , USA
- Department of Neurobiology and Anatomy , University of Utah , Salt Lake City , UT 84112 , USA
- Department of Biology , University of Utah , Salt Lake City , UT 84132 , USA
| |
Collapse
|
22
|
Bremer J, Marsden KC, Miller A, Granato M. The ubiquitin ligase PHR promotes directional regrowth of spinal zebrafish axons. Commun Biol 2019; 2:195. [PMID: 31149640 PMCID: PMC6531543 DOI: 10.1038/s42003-019-0434-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/16/2019] [Indexed: 01/05/2023] Open
Abstract
To reconnect with their synaptic targets, severed axons need to regrow robustly and directionally along the pre-lesional trajectory. While mechanisms directing axonal regrowth are poorly understood, several proteins direct developmental axon outgrowth, including the ubiquitin ligase PHR (Mycbp2). Invertebrate PHR also limits regrowth of injured axons, whereas its role in vertebrate axonal regrowth remains elusive. Here we took advantage of the high regrowth capacity of spinal zebrafish axons and observed robust and directional regrowth following laser transection of spinal Mauthner axons. We found that PHR directs regrowing axons along the pre-lesional trajectory and across the transection site. At the transection site, initial regrowth of wild-type axons was multidirectional. Over time, misdirected sprouts were corrected in a PHR-dependent manner. Ablation of cyfip2, known to promote F-actin-polymerization and pharmacological inhibition of JNK reduced misdirected regrowth of PHR-deficient axons, suggesting that PHR controls directional Mauthner axonal regrowth through cyfip2- and JNK-dependent pathways.
Collapse
Affiliation(s)
- Juliane Bremer
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA USA
| | - Kurt C. Marsden
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA USA
- Present Address: Department of Biological Sciences, North Carolina State University, Raleigh, 27607 NC USA
| | - Adam Miller
- Institute of Neuroscience, University of Oregon, Eugene, 97405 OR USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA USA
| |
Collapse
|
23
|
Dynein promotes sustained axonal growth and Schwann cell remodeling early during peripheral nerve regeneration. PLoS Genet 2019; 15:e1007982. [PMID: 30779743 PMCID: PMC6396928 DOI: 10.1371/journal.pgen.1007982] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 03/01/2019] [Accepted: 01/23/2019] [Indexed: 11/19/2022] Open
Abstract
Following injury, axons of the peripheral nervous system have retained the capacity for regeneration. While it is well established that injury signals require molecular motors for their transport from the injury site to the nucleus, whether kinesin and dynein motors play additional roles in peripheral nerve regeneration is not well understood. Here we use genetic mutants of motor proteins in a zebrafish peripheral nerve regeneration model to visualize and define in vivo roles for kinesin and dynein. We find that both kinesin-1 and dynein are required for zebrafish peripheral nerve regeneration. While loss of kinesin-1 reduced the overall robustness of axonal regrowth, loss of dynein dramatically impaired axonal regeneration and also reduced injury-induced Schwann cell remodeling. Chimeras between wild type and dynein mutant embryos demonstrate that dynein function in neurons is sufficient to promote axonal regrowth. Finally, by simultaneously monitoring actin and microtubule dynamics in regenerating axons we find that dynein appears dispensable to initiate axonal regrowth, but is critical to stabilize microtubules, thereby sustaining axonal regeneration. These results reveal two previously unappreciated roles for dynein during peripheral nerve regeneration, initiating injury induced Schwann cell remodeling and stabilizing axonal microtubules to sustain axonal regrowth. Nerve regeneration requires coordinated responses from multiple cell types after injury. Axons must extend from the neuronal cell body back towards their targets, while surrounding Schwann cells enter a repair cell state in which they promote regeneration. While nerves of the peripheral nervous system can regrow, it is estimated that fewer than 10 percent of patients fully recover function after nerve injury. In order to understand the mechanisms by which peripheral nerves regrow, we used live cell imaging in the zebrafish to observe the process of nerve regeneration, monitoring axons and Schwann cells simultaneously during this process. Using genetic mutants, we identified a role for the molecular motors kinesin-1 and dynein in promoting axonal regrowth. Furthermore, we found that dynein plays an additional role in Schwann cell response to injury. Thus, we demonstrate that molecular motors are required in multiple cell types to promote nerve regeneration.
Collapse
|
24
|
Abstract
Eukaryotic cells depend on precise genome organization within the nucleus to maintain an appropriate gene-expression profile. Critical to this process is the packaging of functional domains of open and closed chromatin to specific regions of the nucleus, but how this is regulated remains unclear. In this study, we show that the zinc finger protein Casz1 regulates higher-order nuclear organization of rod photoreceptors in the mouse retina by repressing nuclear lamina function, which leads to central localization of heterochromatin. Loss of Casz1 in rods leads to an abnormal transcriptional profile followed by degeneration. These results identify Casz1 as a regulator of higher-order genome organization. Genome organization plays a fundamental role in the gene-expression programs of numerous cell types, but determinants of higher-order genome organization are poorly understood. In the developing mouse retina, rod photoreceptors represent a good model to study this question. They undergo a process called “chromatin inversion” during differentiation, in which, as opposed to classic nuclear organization, heterochromatin becomes localized to the center of the nucleus and euchromatin is restricted to the periphery. While previous studies showed that the lamin B receptor participates in this process, the molecular mechanisms regulating lamina function during differentiation remain elusive. Here, using conditional genetics, we show that the zinc finger transcription factor Casz1 is required to establish and maintain the inverted chromatin organization of rod photoreceptors and to safeguard their gene-expression profile and long-term survival. At the mechanistic level, we show that Casz1 interacts with the polycomb repressor complex in a splice variant-specific manner and that both are required to suppress the expression of the nuclear envelope intermediate filament lamin A/C in rods. Lamin A is in turn sufficient to regulate heterochromatin organization and nuclear position. Furthermore, we show that Casz1 is sufficient to expand and centralize the heterochromatin of fibroblasts, suggesting a general role for Casz1 in nuclear organization. Together, these data support a model in which Casz1 cooperates with polycomb to control rod genome organization, in part by silencing lamin A/C.
Collapse
|
25
|
Lewis TR, Zareba M, Link BA, Besharse JC. Cone myoid elongation involves unidirectional microtubule movement mediated by dynein-1. Mol Biol Cell 2017; 29:180-190. [PMID: 29142075 PMCID: PMC5909930 DOI: 10.1091/mbc.e17-08-0525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 12/03/2022] Open
Abstract
Using structured illumination microscopy and photoconvertible tubulin in zebrafish photoreceptors, it is shown that microtubules move together during myoid elongation, a dark adaptive process in cone photoreceptors. Additionally, cytoplasmic dynein-1, localized at the base of the elongating myoid, mediates this unidirectional movement of microtubules. Teleosts and amphibians exhibit retinomotor movements, morphological changes in photoreceptors regulated by light and circadian rhythms. Cone myoid elongation occurs during dark adaptation, leading to the positioning of the cone outer segment closer to the retinal pigment epithelium. Although it has been shown that microtubules are essential for cone myoid elongation, the underlying mechanism has not been established. In this work, we generated a transgenic line of zebrafish expressing a photoconvertible form of α-tubulin (tdEOS-tubulin) specifically in cone photoreceptors. Using superresolution structured illumination microscopy in conjunction with both pharmacological and genetic manipulation, we show that cytoplasmic dynein-1, which localizes to the junction between the ellipsoid and myoid, functions to shuttle microtubules from the ellipsoid into the myoid during the course of myoid elongation. We propose a novel model by which stationary complexes of cytoplasmic dynein-1 are responsible for the shuttling of microtubules between the ellipsoid and myoid is the underlying force for the morphological change of myoid elongation.
Collapse
Affiliation(s)
- Tylor R Lewis
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Mariusz Zareba
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Brian A Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Joseph C Besharse
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226 .,Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
26
|
Song P, Dudinsky L, Fogerty J, Gaivin R, Perkins BD. Arl13b Interacts With Vangl2 to Regulate Cilia and Photoreceptor Outer Segment Length in Zebrafish. Invest Ophthalmol Vis Sci 2017; 57:4517-26. [PMID: 27571019 PMCID: PMC5015978 DOI: 10.1167/iovs.16-19898] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Mutations in the gene ARL13B cause the classical form of Joubert syndrome, an autosomal recessive ciliopathy with variable degrees of retinal degeneration. As second-site modifier alleles can contribute to retinal pathology in ciliopathies, animal models provide a unique platform to test how genetic interactions modulate specific phenotypes. In this study, we analyzed the zebrafish arl13b mutant for retinal degeneration and for epistatic relationships with the planar cell polarity protein (PCP) component vangl2. METHODS Photoreceptor and cilia structure was examined by light and electron microscopy. Immunohistochemistry was performed to examine ciliary markers. Genetic interactions were tested by pairwise crosses of heterozygous animals. Genetic mosaic animals were generated by blastula transplantation and analyzed by fluorescence microscopy. RESULTS At 5 days after fertilization, photoreceptor outer segments were shorter in zebrafish arl13b-/- mutants compared to wild-type larvae, no overt signs of retinal degeneration were observed by light or electron microscopy. Starting at 14 days after fertilization (dpf) and continuing through 30 dpf, cells lacking Arl13b died following transplantation into wild-type host animals. Photoreceptors of arl13b-/-;vangl2-/- mutants were more compromised than the photoreceptors of single mutants. Finally, when grown within a wild-type retina, the vangl2-/- mutant cone photoreceptors displayed normal basal body positioning. CONCLUSIONS We show that arl13b-/- mutants have shortened cilia and photoreceptor outer segments and exhibit a slow, progressive photoreceptor degeneration that occurs over weeks. The data suggest that loss of Arl13b leads to slow photoreceptor degeneration, but can be exacerbated by the loss of vangl2. Importantly, the data show that Arl13b can genetically and physically interact with Vangl2 and this association is important for normal photoreceptor structure. The loss of vangl2, however, does not affect basal body positioning.
Collapse
Affiliation(s)
- Ping Song
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Lynn Dudinsky
- Department of Biology, Texas A&M University, College Station, Texas, United States
| | - Joseph Fogerty
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Robert Gaivin
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Brian D Perkins
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States 2Department of Biology, Texas A&M University, College Station, Texas, United States
| |
Collapse
|
27
|
May-Simera H, Nagel-Wolfrum K, Wolfrum U. Cilia - The sensory antennae in the eye. Prog Retin Eye Res 2017; 60:144-180. [PMID: 28504201 DOI: 10.1016/j.preteyeres.2017.05.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
Abstract
Cilia are hair-like projections found on almost all cells in the human body. Originally believed to function merely in motility, the function of solitary non-motile (primary) cilia was long overlooked. Recent research has demonstrated that primary cilia function as signalling hubs that sense environmental cues and are pivotal for organ development and function, tissue hoemoestasis, and maintenance of human health. Cilia share a common anatomy and their diverse functional features are achieved by evolutionarily conserved functional modules, organized into sub-compartments. Defects in these functional modules are responsible for a rapidly growing list of human diseases collectively termed ciliopathies. Ocular pathogenesis is common in virtually all classes of syndromic ciliopathies, and disruptions in cilia genes have been found to be causative in a growing number of non-syndromic retinal dystrophies. This review will address what is currently known about cilia contribution to visual function. We will focus on the molecular and cellular functions of ciliary proteins and their role in the photoreceptor sensory cilia and their visual phenotypes. We also highlight other ciliated cell types in tissues of the eye (e.g. lens, RPE and Müller glia cells) discussing their possible contribution to disease progression. Progress in basic research on the cilia function in the eye is paving the way for therapeutic options for retinal ciliopathies. In the final section we describe the latest advancements in gene therapy, read-through of non-sense mutations and stem cell therapy, all being adopted to treat cilia dysfunction in the retina.
Collapse
Affiliation(s)
- Helen May-Simera
- Institute of Molecular Physiology, Cilia Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
| |
Collapse
|
28
|
Drerup CM, Herbert AL, Monk KR, Nechiporuk AV. Regulation of mitochondria-dynactin interaction and mitochondrial retrograde transport in axons. eLife 2017; 6:22234. [PMID: 28414272 PMCID: PMC5413347 DOI: 10.7554/elife.22234] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 04/12/2017] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial transport in axons is critical for neural circuit health and function. While several proteins have been found that modulate bidirectional mitochondrial motility, factors that regulate unidirectional mitochondrial transport have been harder to identify. In a genetic screen, we found a zebrafish strain in which mitochondria fail to attach to the dynein retrograde motor. This strain carries a loss-of-function mutation in actr10, a member of the dynein-associated complex dynactin. The abnormal axon morphology and mitochondrial retrograde transport defects observed in actr10 mutants are distinct from dynein and dynactin mutant axonal phenotypes. In addition, Actr10 lacking the dynactin binding domain maintains its ability to bind mitochondria, arguing for a role for Actr10 in dynactin-mitochondria interaction. Finally, genetic interaction studies implicated Drp1 as a partner in Actr10-dependent mitochondrial retrograde transport. Together, this work identifies Actr10 as a factor necessary for dynactin-mitochondria interaction, enhancing our understanding of how mitochondria properly localize in axons. DOI:http://dx.doi.org/10.7554/eLife.22234.001
Collapse
Affiliation(s)
- Catherine M Drerup
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, United States.,National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Amy L Herbert
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| | - Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| | - Alex V Nechiporuk
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, United States
| |
Collapse
|
29
|
Lee SH, Lee MS, Choi TI, Hong H, Seo JY, Kim CH, Kim J. MCRS1 associates with cytoplasmic dynein and mediates pericentrosomal material recruitment. Sci Rep 2016; 6:27284. [PMID: 27263857 PMCID: PMC4893664 DOI: 10.1038/srep27284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022] Open
Abstract
MCRS1 is involved in multiple cellular activities, including mitotic spindle assembly, mTOR signaling and tumorigenesis. Although MCRS1 has been reported to bind to the dynein regulator NDE1, a functional interaction between MCRS1 and cytoplasmic dynein remains unaddressed. Here, we demonstrate that MCRS1 is required for dynein-dependent cargo transport to the centrosome and also plays a role in primary cilium formation. MCRS1 localized to centriolar satellites. Knockdown of MCRS1 resulted in a dispersion of centriolar satellites whose establishment depends on cytoplasmic dynein. By contrast, NDE1 was not necessary for the proper distribution of centriolar satellites, indicating a functional distinction between MCRS1 and NDE1. Unlike NDE1, MCRS1 played a positive role for the initiation of ciliogenesis, possibly through its interaction with TTBK2. Zebrafish with homozygous mcrs1 mutants exhibited a reduction in the size of the brain and the eye due to excessive apoptosis. In addition, mcrs1 mutants failed to develop distinct layers in the retina, and showed a defect in melatonin-induced aggregation of melanosomes in melanophores. These phenotypes are reminiscent of zebrafish dynein mutants. Reduced ciliogenesis was also apparent in the olfactory placode of mcrs1 mutants. Collectively, our findings identify MCRS1 as a dynein-interacting protein critical for centriolar satellite formation and ciliogenesis.
Collapse
Affiliation(s)
- Si-Hyung Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Mi-Sun Lee
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Hyowon Hong
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Jun-Young Seo
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
30
|
Zhao L, Chen Y, Bajaj AO, Eblimit A, Xu M, Soens ZT, Wang F, Ge Z, Jung SY, He F, Li Y, Wensel TG, Qin J, Chen R. Integrative subcellular proteomic analysis allows accurate prediction of human disease-causing genes. Genome Res 2016; 26:660-9. [PMID: 26912414 PMCID: PMC4864458 DOI: 10.1101/gr.198911.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 02/19/2016] [Indexed: 12/04/2022]
Abstract
Proteomic profiling on subcellular fractions provides invaluable information regarding both protein abundance and subcellular localization. When integrated with other data sets, it can greatly enhance our ability to predict gene function genome-wide. In this study, we performed a comprehensive proteomic analysis on the light-sensing compartment of photoreceptors called the outer segment (OS). By comparing with the protein profile obtained from the retina tissue depleted of OS, an enrichment score for each protein is calculated to quantify protein subcellular localization, and 84% accuracy is achieved compared with experimental data. By integrating the protein OS enrichment score, the protein abundance, and the retina transcriptome, the probability of a gene playing an essential function in photoreceptor cells is derived with high specificity and sensitivity. As a result, a list of genes that will likely result in human retinal disease when mutated was identified and validated by previous literature and/or animal model studies. Therefore, this new methodology demonstrates the synergy of combining subcellular fractionation proteomics with other omics data sets and is generally applicable to other tissues and diseases.
Collapse
Affiliation(s)
- Li Zhao
- Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yiyun Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Amol Onkar Bajaj
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Aiden Eblimit
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mingchu Xu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zachry T Soens
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Feng Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zhongqi Ge
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Feng He
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Theodore G Wensel
- Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jun Qin
- Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Rui Chen
- Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
31
|
Taverna E, Mora-Bermúdez F, Strzyz PJ, Florio M, Icha J, Haffner C, Norden C, Wilsch-Bräuninger M, Huttner WB. Non-canonical features of the Golgi apparatus in bipolar epithelial neural stem cells. Sci Rep 2016; 6:21206. [PMID: 26879757 PMCID: PMC4754753 DOI: 10.1038/srep21206] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/19/2016] [Indexed: 12/13/2022] Open
Abstract
Apical radial glia (aRG), the stem cells in developing neocortex, are unique bipolar epithelial cells, extending an apical process to the ventricle and a basal process to the basal lamina. Here, we report novel features of the Golgi apparatus, a central organelle for cell polarity, in mouse aRGs. The Golgi was confined to the apical process but not associated with apical centrosome(s). In contrast, in aRG-derived, delaminating basal progenitors that lose apical polarity, the Golgi became pericentrosomal. The aRG Golgi underwent evolutionarily conserved, accordion-like compression and extension concomitant with cell cycle-dependent nuclear migration. Importantly, in line with endoplasmic reticulum but not Golgi being present in the aRG basal process, its plasma membrane contained glycans lacking Golgi processing, consistent with direct ER-to-cell surface membrane traffic. Our study reveals hitherto unknown complexity of neural stem cell polarity, differential Golgi contribution to their specific architecture, and fundamental Golgi re-organization upon cell fate change.
Collapse
Affiliation(s)
- Elena Taverna
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Felipe Mora-Bermúdez
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Paulina J Strzyz
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Marta Florio
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Jaroslav Icha
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Christiane Haffner
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Caren Norden
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | | | - Wieland B Huttner
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| |
Collapse
|
32
|
Mutations in the Dynein1 Complex are Permissible for Basal Body Migration in Photoreceptors but Alter Rab6 Localization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:209-15. [PMID: 26427413 DOI: 10.1007/978-3-319-17121-0_28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The photoreceptor outer segment is a specialized primary cilium, and anchoring of the basal body at the apical membrane is required for outer segment formation. We hypothesized that basal body localization and outer segment formation would require the microtubule motor dynein 1 and analyzed the zebrafish cannonball and mike oko mutants, which carry mutations in the heavy chain subunit of cytoplasmic dynein 1 (dync1h1) and the p150(Glued) subunit of Dynactin (dctn1a). The distribution of Rab6, a player in the post-Golgi trafficking of rhodopsin, was also examined. Basal body docking was unaffected in both mutants, but Rab6 expression was reduced. The results suggest that dynein 1 is dispensable for basal body docking but that outer segment defects may be due to defects in post-Golgi trafficking.
Collapse
|
33
|
Dona M, Bachmann-Gagescu R, Texier Y, Toedt G, Hetterschijt L, Tonnaer EL, Peters TA, van Beersum SEC, Bergboer JGM, Horn N, de Vrieze E, Slijkerman RWN, van Reeuwijk J, Flik G, Keunen JE, Ueffing M, Gibson TJ, Roepman R, Boldt K, Kremer H, van Wijk E. NINL and DZANK1 Co-function in Vesicle Transport and Are Essential for Photoreceptor Development in Zebrafish. PLoS Genet 2015; 11:e1005574. [PMID: 26485514 PMCID: PMC4617706 DOI: 10.1371/journal.pgen.1005574] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/16/2015] [Indexed: 12/04/2022] Open
Abstract
Ciliopathies are Mendelian disorders caused by dysfunction of cilia, ubiquitous organelles involved in fluid propulsion (motile cilia) or signal transduction (primary cilia). Retinal dystrophy is a common phenotypic characteristic of ciliopathies since photoreceptor outer segments are specialized primary cilia. These ciliary structures heavily rely on intracellular minus-end directed transport of cargo, mediated at least in part by the cytoplasmic dynein 1 motor complex, for their formation, maintenance and function. Ninein-like protein (NINL) is known to associate with this motor complex and is an important interaction partner of the ciliopathy-associated proteins lebercilin, USH2A and CC2D2A. Here, we scrutinize the function of NINL with combined proteomic and zebrafish in vivo approaches. We identify Double Zinc Ribbon and Ankyrin Repeat domains 1 (DZANK1) as a novel interaction partner of NINL and show that loss of Ninl, Dzank1 or both synergistically leads to dysmorphic photoreceptor outer segments, accumulation of trans-Golgi-derived vesicles and mislocalization of Rhodopsin and Ush2a in zebrafish. In addition, retrograde melanosome transport is severely impaired in zebrafish lacking Ninl or Dzank1. We further demonstrate that NINL and DZANK1 are essential for intracellular dynein-based transport by associating with complementary subunits of the cytoplasmic dynein 1 motor complex, thus shedding light on the structure and stoichiometry of this important motor complex. Altogether, our results support a model in which the NINL-DZANK1 protein module is involved in the proper assembly and folding of the cytoplasmic dynein 1 motor complex in photoreceptor cells, a process essential for outer segment formation and function. The cytoplasmic dynein 1 motor complex is known to be essential for photoreceptor outer segment formation and function. NINL, an important interaction partner of three ciliopathy-associated proteins (lebercilin, USH2A and CC2D2A), was previously shown to associate with this motor complex. In this work, we scrutinize the role of NINL using a combination of affinity proteomics and zebrafish studies, in order to gain insight into the pathogenic mechanisms underlying these three associated hereditary disorders. We identify DZANK1 as an important interaction partner of NINL and show that loss of Ninl, Dzank1, or a combination of both synergistically results in impaired transport of trans Golgi-derived vesicles and, as a consequence, defective photoreceptor outer segment formation. Using affinity proteomics, we demonstrate that NINL and DZANK1 associate with complementary subunits of the cytoplasmic dynein 1 complex. Our results support a model in which the NINL-DZANK1 protein module is essential for the proper assembly and folding of the cytoplasmic dynein 1 motor complex, shedding light on the structure and stoichiometry of this important motor complex.
Collapse
Affiliation(s)
- Margo Dona
- Department of Otorhinolaryngology, Radboud University Medical Centre, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Ruxandra Bachmann-Gagescu
- Institute of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- Institute of Medical Genetics, University of Zurich, Zürich, Switzerland
| | - Yves Texier
- Division of Experimental Ophthalmology, and Medical Proteome Center, Centre for Ophthalmology, Eberhard Karls University Tuebingen, Tübingen, Germany
| | - Grischa Toedt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lisette Hetterschijt
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Edith L. Tonnaer
- Department of Otorhinolaryngology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Theo A. Peters
- Department of Otorhinolaryngology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Sylvia E. C. van Beersum
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Judith G. M. Bergboer
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Nicola Horn
- Division of Experimental Ophthalmology, and Medical Proteome Center, Centre for Ophthalmology, Eberhard Karls University Tuebingen, Tübingen, Germany
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Radboud University Medical Centre, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Ralph W. N. Slijkerman
- Department of Otorhinolaryngology, Radboud University Medical Centre, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Jeroen van Reeuwijk
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Gert Flik
- Department of Organismal Animal Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Jan E. Keunen
- Department of Ophthalmology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Marius Ueffing
- Division of Experimental Ophthalmology, and Medical Proteome Center, Centre for Ophthalmology, Eberhard Karls University Tuebingen, Tübingen, Germany
| | - Toby J. Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ronald Roepman
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Karsten Boldt
- Division of Experimental Ophthalmology, and Medical Proteome Center, Centre for Ophthalmology, Eberhard Karls University Tuebingen, Tübingen, Germany
| | - Hannie Kremer
- Department of Otorhinolaryngology, Radboud University Medical Centre, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Radboud University Medical Centre, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
- * E-mail:
| |
Collapse
|
34
|
Abstract
Visual defects affect a large proportion of humanity, have a significant negative impact on quality of life, and cause significant economic burden. The wide variety of visual disorders and the large number of gene mutations responsible require a flexible animal model system to carry out research for possible causes and cures for the blinding conditions. With eyes similar to humans in structure and function, zebrafish are an important vertebrate model organism that is being used to study genetic and environmental eye diseases, including myopia, glaucoma, retinitis pigmentosa, ciliopathies, albinism, and diabetes. This review details the use of zebrafish in modeling human ocular diseases.
Collapse
Affiliation(s)
- Brian A Link
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; ,
| | - Ross F Collery
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; ,
| |
Collapse
|
35
|
Yang ML, Shin J, Kearns CA, Langworthy MM, Snell H, Walker MB, Appel B. CNS myelination requires cytoplasmic dynein function. Dev Dyn 2015; 244:134-45. [PMID: 25488883 DOI: 10.1002/dvdy.24238] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cytoplasmic dynein provides the main motor force for minus-end-directed transport of cargo on microtubules. Within the vertebrate central nervous system (CNS), proliferation, neuronal migration, and retrograde axon transport are among the cellular functions known to require dynein. Accordingly, mutations of DYNC1H1, which encodes the heavy chain subunit of cytoplasmic dynein, have been linked to developmental brain malformations and axonal pathologies. Oligodendrocytes, the myelinating glial cell type of the CNS, migrate from their origins to their target axons and subsequently extend multiple long processes that ensheath axons with specialized insulating membrane. These processes are filled with microtubules, which facilitate molecular transport of myelin components. However, whether oligodendrocytes require cytoplasmic dynein to ensheath axons with myelin is not known. RESULTS We identified a mutation of zebrafish dync1h1 in a forward genetic screen that caused a deficit of oligodendrocytes. Using in vivo imaging and gene expression analyses, we additionally found evidence that dync1h1 promotes axon ensheathment and myelin gene expression. CONCLUSIONS In addition to its well known roles in axon transport and neuronal migration, cytoplasmic dynein contributes to neural development by promoting myelination.
Collapse
|
36
|
Mutation screen reveals novel variants and expands the phenotypes associated with DYNC1H1. J Neurol 2015; 262:2124-34. [PMID: 26100331 DOI: 10.1007/s00415-015-7727-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 12/21/2022]
Abstract
Dynein, cytoplasmic 1, heavy chain 1 (DYNC1H1) encodes a necessary subunit of the cytoplasmic dynein complex, which traffics cargo along microtubules. Dominant DYNC1H1 mutations are implicated in neural diseases, including spinal muscular atrophy with lower extremity dominance (SMA-LED), intellectual disability with neuronal migration defects, malformations of cortical development, and Charcot-Marie-Tooth disease, type 2O. We hypothesized that additional variants could be found in these and novel motoneuron and related diseases. Therefore, we analyzed our database of 1024 whole exome sequencing samples of motoneuron and related diseases for novel single nucleotide variations. We filtered these results for significant variants, which were further screened using segregation analysis in available family members. Analysis revealed six novel, rare, and highly conserved variants. Three of these are likely pathogenic and encompass a broad phenotypic spectrum with distinct disease clusters. Our findings suggest that DYNC1H1 variants can cause not only lower, but also upper motor neuron disease. It thus adds DYNC1H1 to the growing list of spastic paraplegia related genes in microtubule-dependent motor protein pathways.
Collapse
|
37
|
Rhodopsin Trafficking and Mistrafficking: Signals, Molecular Components, and Mechanisms. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:39-71. [PMID: 26055054 DOI: 10.1016/bs.pmbts.2015.02.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rhodopsin is a seven-transmembrane G protein-coupled receptor (GPCR) and is the main component of the photoreceptor outer segment (OS), a ciliary compartment essential for vision. Because the OSs are incapable of protein synthesis, rhodopsin must first be synthesized in the inner segments (ISs) and subsequently trafficked across the connecting cilia to the OSs where it participates in the phototransduction cascade. Rapid turnover of the OS necessitates a high rate of synthesis and efficient trafficking of rhodopsin to the cilia. This cilia-targeting mechanism is shared among other ciliary-localized GPCRs. In this review, we will discuss the process of rhodopsin trafficking from the IS to the OS beginning with the trafficking signals present on the protein. Starting from the endoplasmic reticulum and the Golgi apparatus within the IS, we will cover the molecular components assisting the biogenesis and the proper sorting. We will also review the confirmed binding and interacting partners that help target rhodopsin toward the connecting cilium as well as the cilia-localized components which direct proteins into the proper compartments of the OS. While rhodopsin is the most critical and abundant component of the photoreceptor OS, mutations in the rhodopsin gene commonly lead to its mislocalization within the photoreceptors. In addition to covering the trafficking patterns of rhodopsin, we will also review some of the most common rhodopsin mutants which cause mistrafficking and subsequent death of photoreceptors. Toward the goal of understanding the pathogenesis, three major mechanisms of aberrant trafficking as well as putative mechanisms of photoreceptor degeneration will be discussed.
Collapse
|
38
|
Paulus JD, Link BA. Loss of optineurin in vivo results in elevated cell death and alters axonal trafficking dynamics. PLoS One 2014; 9:e109922. [PMID: 25329564 PMCID: PMC4199637 DOI: 10.1371/journal.pone.0109922] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/12/2014] [Indexed: 12/11/2022] Open
Abstract
Mutations in Optineurin have been associated with ALS, glaucoma, and Paget’s disease of bone in humans, but little is known about how these mutations contribute to disease. Most of the cellular consequences of Optineurin loss have come from in vitro studies, and it remains unclear whether these same defects would be seen in vivo. To answer this question, we assessed the cellular consequences of Optineurin loss in zebrafish embryos to determine if they showed the same defects as have been described in the in vitro studies. We found that loss of Optineurin resulted in increased cell death, as well as subtle cell morphology, cell migration and vesicle trafficking defects. However, unlike experiments on cells in culture, we found no indication that the Golgi apparatus was disrupted or that NF-κB target genes were upregulated. Therefore, we conclude that in vivo loss of Optineurin shows some, but not all, of the defects seen in in vitro work.
Collapse
Affiliation(s)
- Jeremiah D. Paulus
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Brian A. Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States of America
- * E-mail:
| |
Collapse
|
39
|
Tian G, Lodowski KH, Lee R, Imanishi Y. Retrograde intraciliary trafficking of opsin during the maintenance of cone-shaped photoreceptor outer segments of Xenopus laevis. J Comp Neurol 2014; 522:3577-3589. [PMID: 24855015 DOI: 10.1002/cne.23630] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 12/21/2022]
Abstract
Photoreceptor outer segments (OSs) are essential for our visual perception, and take either rod or cone forms. The cell biological basis for the formation of rods is well established; however, the mechanism of cone formation is ill characterized. While Xenopus rods are called rods, they exhibit cone-shaped OSs during the early process of development. To visualize the dynamic reorganization of disk membranes, opsin and peripherin/rds were fused to a fluorescent protein, Dendra2, and expressed in early developing rod photoreceptors, in which OSs are still cone-shaped. Dendra2 is a fluorescent protein which can be converted from green to red irreversibly, and thus allows spatiotemporal labeling of proteins. Using a photoconversion technique, we found that disk membranes are assembled at the base of cone-shaped OSs. After incorporation into disks, however, Opsin-Dendra2 was also trafficked from old to new disk membranes, consistent with the hypothesis that retrograde trafficking of membrane components contributes to the larger disk membrane observed toward the base of the cone-shaped OS. Such retrograde trafficking is cargo-specific and was not observed for peripherin/rds-Dendra2. The trafficking is unlikely mediated by diffusion, since the disk membranes have a closed configuration, as evidenced by CNGA1 labeling of the plasma membrane. Consistent with retrograde trafficking, the axoneme, which potentially mediates retrograde intraflagellar trafficking, runs through the entire axis of OSs. This study provides an insight into the role of membrane reorganization in developing photoreceptor OSs, and proves that retrograde trafficking of membrane cargoes can occur there.
Collapse
Affiliation(s)
- Guilian Tian
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | - Kerrie H Lodowski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | - Richard Lee
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | - Yoshikazu Imanishi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| |
Collapse
|
40
|
Weber I, Ramos A, Strzyz P, Leung L, Young S, Norden C. Mitotic Position and Morphology of Committed Precursor Cells in the Zebrafish Retina Adapt to Architectural Changes upon Tissue Maturation. Cell Rep 2014; 7:386-397. [DOI: 10.1016/j.celrep.2014.03.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 01/13/2014] [Accepted: 03/05/2014] [Indexed: 11/25/2022] Open
|
41
|
Vacaru AM, Unlu G, Spitzner M, Mione M, Knapik EW, Sadler KC. In vivo cell biology in zebrafish - providing insights into vertebrate development and disease. J Cell Sci 2014; 127:485-95. [PMID: 24481493 PMCID: PMC4007761 DOI: 10.1242/jcs.140194] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over the past decades, studies using zebrafish have significantly advanced our understanding of the cellular basis for development and human diseases. Zebrafish have rapidly developing transparent embryos that allow comprehensive imaging of embryogenesis combined with powerful genetic approaches. However, forward genetic screens in zebrafish have generated unanticipated findings that are mirrored by human genetic studies: disruption of genes implicated in basic cellular processes, such as protein secretion or cytoskeletal dynamics, causes discrete developmental or disease phenotypes. This is surprising because many processes that were assumed to be fundamental to the function and survival of all cell types appear instead to be regulated by cell-specific mechanisms. Such discoveries are facilitated by experiments in whole animals, where zebrafish provides an ideal model for visualization and manipulation of organelles and cellular processes in a live vertebrate. Here, we review well-characterized mutants and newly developed tools that underscore this notion. We focus on the secretory pathway and microtubule-based trafficking as illustrative examples of how studying cell biology in vivo using zebrafish has broadened our understanding of the role fundamental cellular processes play in embryogenesis and disease.
Collapse
Affiliation(s)
- Ana M. Vacaru
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Gokhan Unlu
- Division of Genetic Medicine, Department of Medicine, and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Marie Spitzner
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Marina Mione
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Ela W. Knapik
- Division of Genetic Medicine, Department of Medicine, and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kirsten C. Sadler
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| |
Collapse
|
42
|
Synaptojanin 1 is required for endolysosomal trafficking of synaptic proteins in cone photoreceptor inner segments. PLoS One 2014; 9:e84394. [PMID: 24392132 PMCID: PMC3879297 DOI: 10.1371/journal.pone.0084394] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/16/2013] [Indexed: 11/19/2022] Open
Abstract
Highly polarized cells such as photoreceptors require precise and efficient strategies for establishing and maintaining the proper subcellular distribution of proteins. The signals and molecular machinery that regulate trafficking and sorting of synaptic proteins within cone inner segments is mostly unknown. In this study, we show that the polyphosphoinositide phosphatase Synaptojanin 1 (SynJ1) is critical for this process. We used transgenic markers for trafficking pathways, electron microscopy, and immunocytochemistry to characterize trafficking defects in cones of the zebrafish mutant, nrc(a14) , which is deficient in phosphoinositide phosphatase, SynJ1. The outer segments and connecting cilia of nrc(a14) cone photoreceptors are normal, but RibeyeB and VAMP2/synaptobrevin, which normally localize to the synapse, accumulate in the nrc(a14) inner segment. The structure of the Endoplasmic Reticulum in nrc(a14) mutant cones is normal. Golgi develop normally, but later become disordered. Large vesicular structures accumulate within nrc(a14) cone photoreceptor inner segments, particularly after prolonged incubation in darkness. Cone inner segments of nrc (a14) mutants also have enlarged acidic vesicles, abnormal late endosomes, and a disruption in autophagy. This last pathway also appears exacerbated by darkness. Taken altogether, these findings show that SynJ1 is required in cones for normal endolysosomal trafficking of synaptic proteins.
Collapse
|
43
|
Schiavo G, Greensmith L, Hafezparast M, Fisher EMC. Cytoplasmic dynein heavy chain: the servant of many masters. Trends Neurosci 2013; 36:641-51. [PMID: 24035135 PMCID: PMC3824068 DOI: 10.1016/j.tins.2013.08.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/23/2013] [Accepted: 08/05/2013] [Indexed: 12/20/2022]
Abstract
The cytoplasmic dynein complex is the main retrograde motor in all eukaryotic cells. This complex is built around a dimer of cytoplasmic dynein heavy chains (DYNC1H1). Mouse DYNC1H1 mutants have sensory defects, but motor defects have been controversial. Now human DYNC1H1 mutations with sensory, motor, and cognitive deficits are being found. The study of these mutations will give us new insight into DYNC1H1 function in the nervous system.
Cytoplasmic dynein is the main retrograde motor in all eukaryotic cells. This complex comprises different subunits assembled on a cytoplasmic dynein heavy chain 1 (DYNC1H1) dimer. Cytoplasmic dynein is particularly important for neurons because it carries essential signals and organelles from distal sites to the cell body. In the past decade, several mouse models have helped to dissect the numerous functions of DYNC1H1. Additionally, several DYNC1H1 mutations have recently been found in human patients that give rise to a broad spectrum of developmental and midlife-onset disorders. Here, we discuss the effects of mutations of mouse and human DYNC1H1 and how these studies are giving us new insight into the many critical roles DYNC1H1 plays in the nervous system.
Collapse
Affiliation(s)
- Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, National Hospital for Neurology and Neurosurgery, University College London, Queen Square, London WC1N 3BG, UK; Molecular NeuroPathobiology, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| | | | | | | |
Collapse
|
44
|
Nishiwaki Y, Yoshizawa A, Kojima Y, Oguri E, Nakamura S, Suzuki S, Yuasa-Kawada J, Kinoshita-Kawada M, Mochizuki T, Masai I. The BH3-only SNARE BNip1 mediates photoreceptor apoptosis in response to vesicular fusion defects. Dev Cell 2013; 25:374-87. [PMID: 23725763 DOI: 10.1016/j.devcel.2013.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 03/15/2013] [Accepted: 04/27/2013] [Indexed: 11/25/2022]
Abstract
Intracellular vesicular transport is important for photoreceptor function and maintenance. However, the mechanism underlying photoreceptor degeneration in response to vesicular transport defects is unknown. Here, we report that photoreceptors undergo apoptosis in a zebrafish β-soluble N-ethylmaleimide-sensitive factor attachment protein (β-SNAP) mutant. β-SNAP cooperates with N-ethylmaleimide-sensitive factor to recycle the SNAP receptor (SNARE), a key component of the membrane fusion machinery, by disassembling the cis-SNARE complex generated in the vesicular fusion process. We found that photoreceptor apoptosis in the β-SNAP mutant was dependent on the BH3-only protein BNip1. BNip1 functions as a component of the syntaxin-18 SNARE complex and regulates retrograde transport from the Golgi to the endoplasmic reticulum. Failure to disassemble the syntaxin-18 cis-SNARE complex caused BNip1-dependent apoptosis. These data suggest that the syntaxin-18 cis-SNARE complex functions as an alarm factor that monitors vesicular fusion competence and that BNip1 transforms vesicular fusion defects into photoreceptor apoptosis.
Collapse
Affiliation(s)
- Yuko Nishiwaki
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0412, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kong S, Du X, Du X, Peng C, Wu Y, Li H, Jin X, Hou L, Deng K, Xu T, Tao W. Dlic1 deficiency impairs ciliogenesis of photoreceptors by destabilizing dynein. Cell Res 2013; 23:835-50. [PMID: 23628724 DOI: 10.1038/cr.2013.59] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cytoplasmic dynein 1 is fundamentally important for transporting a variety of essential cargoes along microtubules within eukaryotic cells. However, in mammals, few mutants are available for studying the effects of defects in dynein-controlled processes in the context of the whole organism. Here, we deleted mouse Dlic1 gene encoding DLIC1, a subunit of the dynein complex. Dlic1(-/-) mice are viable, but display severe photoreceptor degeneration. Ablation of Dlic1 results in ectopic accumulation of outer segment (OS) proteins, and impairs OS growth and ciliogenesis of photoreceptors by interfering with Rab11-vesicle trafficking and blocking efficient OS protein transport from Golgi to the basal body. Our studies show that Dlic1 deficiency partially blocks vesicle export from endoplasmic reticulum (ER), but seems not to affect vesicle transport from the ER to Golgi. Further mechanistic study reveals that lack of Dlic1 destabilizes dynein subunits and alters the normal subcellular distribution of dynein in photoreceptors, probably due to the impaired transport function of dynein. Our results demonstrate that Dlic1 plays important roles in ciliogenesis and protein transport to the OS, and is required for photoreceptor development and survival. The Dlic1(-/-) mice also provide a new mouse model to study human retinal degeneration.
Collapse
Affiliation(s)
- Shanshan Kong
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, School of Life Science, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pearring JN, Salinas RY, Baker SA, Arshavsky VY. Protein sorting, targeting and trafficking in photoreceptor cells. Prog Retin Eye Res 2013; 36:24-51. [PMID: 23562855 DOI: 10.1016/j.preteyeres.2013.03.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 01/24/2023]
Abstract
Vision is the most fundamental of our senses initiated when photons are absorbed by the rod and cone photoreceptor neurons of the retina. At the distal end of each photoreceptor resides a light-sensing organelle, called the outer segment, which is a modified primary cilium highly enriched with proteins involved in visual signal transduction. At the proximal end, each photoreceptor has a synaptic terminal, which connects this cell to the downstream neurons for further processing of the visual information. Understanding the mechanisms involved in creating and maintaining functional compartmentalization of photoreceptor cells remains among the most fascinating topics in ocular cell biology. This review will discuss how photoreceptor compartmentalization is supported by protein sorting, targeting and trafficking, with an emphasis on the best-studied cases of outer segment-resident proteins.
Collapse
Affiliation(s)
- Jillian N Pearring
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
47
|
Abstract
BACKGROUND Interaction of Schwann cells with axons triggers signal transduction that drives expression of Pou3f1 and Egr2 transcription factors, which in turn promote myelination. Signal transduction appears to be mediated, at least in part, by cyclic adenosine monophosphate (cAMP) because elevation of cAMP levels can stimulate myelination in the absence of axon contact. The mechanisms by which the myelinating signal is conveyed remain unclear. RESULTS By analyzing mutations that disrupt myelination in zebrafish, we learned that Dynein cytoplasmic 1 heavy chain 1 (Dync1h1), which functions as a motor for intracellular molecular trafficking, is required for peripheral myelination. In dync1h1 mutants, Schwann cell progenitors migrated to peripheral nerves but then failed to express Pou3f1 and Egr2 or make myelin membrane. Genetic mosaic experiments revealed that robust Myelin Basic Protein expression required Dync1h1 function within both Schwann cells and axons. Finally, treatment of dync1h1 mutants with a drug to elevate cAMP levels stimulated myelin gene expression. CONCLUSION Dync1h1 is required for retrograde transport in axons and mutations of Dync1h1 have been implicated in axon disease. Our data now provide evidence that Dync1h1 is also required for efficient myelination of peripheral axons by Schwann cells, perhaps by facilitating signal transduction necessary for myelination.
Collapse
Affiliation(s)
- Melissa M Langworthy
- Departments of Pediatrics and Cell and Developmental Biology, University of Colorado School of Medicine, MS 8108, Aurora, CO, 80045, USA
| | - Bruce Appel
- Departments of Pediatrics and Cell and Developmental Biology, University of Colorado School of Medicine, MS 8108, Aurora, CO, 80045, USA
| |
Collapse
|
48
|
Gestri G, Link BA, Neuhauss SCF. The visual system of zebrafish and its use to model human ocular diseases. Dev Neurobiol 2012; 72:302-27. [PMID: 21595048 DOI: 10.1002/dneu.20919] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Free swimming zebrafish larvae depend mainly on their sense of vision to evade predation and to catch prey. Hence, there is strong selective pressure on the fast maturation of visual function and indeed the visual system already supports a number of visually driven behaviors in the newly hatched larvae.The ability to exploit the genetic and embryonic accessibility of the zebrafish in combination with a behavioral assessment of visual system function has made the zebrafish a popular model to study vision and its diseases.Here, we review the anatomy, physiology, and development of the zebrafish eye as the basis to relate the contributions of the zebrafish to our understanding of human ocular diseases.
Collapse
Affiliation(s)
- Gaia Gestri
- Department of Cell and Developmental Biology, University College, London,UK.
| | | | | |
Collapse
|
49
|
Reynolds AL, Blacque OE, Kennedy BN. The genetics of outer segment morphogenesis in zebrafish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:431-41. [PMID: 22183362 DOI: 10.1007/978-1-4614-0631-0_55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Alison L Reynolds
- UCD School of Biomedical and Biomolecular Sciences, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | |
Collapse
|
50
|
Randlett O, Norden C, Harris WA. The vertebrate retina: a model for neuronal polarization in vivo. Dev Neurobiol 2011; 71:567-83. [PMID: 21557506 DOI: 10.1002/dneu.20841] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The vertebrate retina develops rapidly from a proliferative neuroepithelium into a highly ordered laminated structure, with five distinct neuronal cell types. Like all neurons, these cells need to polarize in appropriate orientations order integrate their neuritic connections efficiently into functional networks. Its relative simplicity, amenability to in vivo imaging and experimental manipulation, as well as the opportunity to study varied cell types within a single tissue, make the retina a powerful model to uncover how neurons polarize in vivo. Here we review the progress that has been made thus far in understanding how the different retinal neurons transform from neuroepithelial cells into mature neurons, and how the orientation of polarization may be specified by a combination of pre-established intrinsic cellular polarity set up within neuroepithelial cells, and extrinsic cues acting upon these differentiating neurons.
Collapse
Affiliation(s)
- Owen Randlett
- Department of Physiology, Development and Neuroscience, Cambridge University, Downing Street, Cambridge, United Kingdom
| | | | | |
Collapse
|