1
|
He Q, Zhang S, Wang J, Ma T, Ma D, Wu L, Zhou M, Zhao L, Chen Y, Liu J, Chen W. The Synergistic Effect Study of Lipopolysaccharide (LPS) and A53T-α-Synuclein: Intranasal LPS Exposure on the A53T-α-Synuclein Transgenic Mouse Model of Parkinson's Disease. Mol Neurobiol 2024; 61:7046-7065. [PMID: 38367134 DOI: 10.1007/s12035-024-04020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Aging and interactions between genetic and environmental factors are believed to be involved the chronic development of Parkinson's disease (PD). Among PD patients, abnormally aggregated α-synuclein is a major component of the Lewy body. Generally, the intranasal route is believed to be a gate way to the brain, and it assists environmental neurotoxins in entering the brain and is related to anosmia during early PD. The current study applies the chronic intranasal application of lipopolysaccharides (LPS) in 4-, 8-, 12- and 16-month-old A53T-α-synuclein (A53T-α-Syn) transgenic C57BL/6 mice at 2-day intervals for a 2-month period, for evaluating the behavioral, pathological, and biochemical changes and microglial activation in these animals. According to our results, after intranasal administration of LPS, A53T-α-Syn mice showed severe progressive anosmia, hypokinesia, selective dopaminergic (DAergic) neuronal losses, decreased striatal dopamine (DA) level, and enhanced α-synuclein accumulation within the substantia nigra (SN) in an age-dependent way. In addition, we found obvious NF-кB activation, Nurr1 inhibition, IL-1β, and TNF-α generation within the microglia of the SN. Conversely, the wild-type (WT) mice showed mild, whereas A53T-α-Syn mice had moderate PD-like changes among the old mice. This study demonstrated the synergistic effect of intranasal LPS and α-synuclein burden on PD development. Its underlying mechanism may be associated with Nurr1 inhibition within microglia and the amplification of CNS neuroinflammation. The mice with multiple factors, including aging, neuroinflammation, and α-synuclein mutation, have played a significant role in enhancing our understanding of how inflammation and α-synuclein mutation contribute to the neurodegeneration observed in PD.
Collapse
Affiliation(s)
- Qing He
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuzhen Zhang
- Institute of Neuroscience, Chinese Academy of Sciences (CAS) Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jian Wang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tengfei Ma
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ding Ma
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxi Zhou
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zhao
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yajing Chen
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianren Liu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei Chen
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Pereira MF, Shyti R, Testa G. In and out: Benchmarking in vitro, in vivo, ex vivo, and xenografting approaches for an integrative brain disease modeling pipeline. Stem Cell Reports 2024; 19:767-795. [PMID: 38865969 PMCID: PMC11390705 DOI: 10.1016/j.stemcr.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 06/14/2024] Open
Abstract
Human cellular models and their neuronal derivatives have afforded unprecedented advances in elucidating pathogenic mechanisms of neuropsychiatric diseases. Notwithstanding their indispensable contribution, animal models remain the benchmark in neurobiological research. In an attempt to harness the best of both worlds, researchers have increasingly relied on human/animal chimeras by xenografting human cells into the animal brain. Despite the unparalleled potential of xenografting approaches in the study of the human brain, literature resources that systematically examine their significance and advantages are surprisingly lacking. We fill this gap by providing a comprehensive account of brain diseases that were thus far subjected to all three modeling approaches (transgenic rodents, in vitro human lineages, human-animal xenografting) and provide a critical appraisal of the impact of xenografting approaches for advancing our understanding of those diseases and brain development. Next, we give our perspective on integrating xenografting modeling pipeline with recent cutting-edge technological advancements.
Collapse
Affiliation(s)
- Marlene F Pereira
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Neurogenomics Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| | - Reinald Shyti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Neurogenomics Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Neurogenomics Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| |
Collapse
|
3
|
Sturchio A, Rocha EM, Kauffman MA, Marsili L, Mahajan A, Saraf AA, Vizcarra JA, Guo Z, Espay AJ. Recalibrating the Why and Whom of Animal Models in Parkinson Disease: A Clinician's Perspective. Brain Sci 2024; 14:151. [PMID: 38391726 PMCID: PMC10887152 DOI: 10.3390/brainsci14020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024] Open
Abstract
Animal models have been used to gain pathophysiologic insights into Parkinson's disease (PD) and aid in the translational efforts of interventions with therapeutic potential in human clinical trials. However, no disease-modifying therapy for PD has successfully emerged from model predictions. These translational disappointments warrant a reappraisal of the types of preclinical questions asked of animal models. Besides the limitations of experimental designs, the one-size convergence and oversimplification yielded by a model cannot recapitulate the molecular diversity within and between PD patients. Here, we compare the strengths and pitfalls of different models, review the discrepancies between animal and human data on similar pathologic and molecular mechanisms, assess the potential of organoids as novel modeling tools, and evaluate the types of questions for which models can guide and misguide. We propose that animal models may be of greatest utility in the evaluation of molecular mechanisms, neural pathways, drug toxicity, and safety but can be unreliable or misleading when used to generate pathophysiologic hypotheses or predict therapeutic efficacy for compounds with potential neuroprotective effects in humans. To enhance the translational disease-modification potential, the modeling must reflect the biology not of a diseased population but of subtypes of diseased humans to distinguish What data are relevant and to Whom.
Collapse
Affiliation(s)
- Andrea Sturchio
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Emily M. Rocha
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Marcelo A. Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología José María Ramos Mejía, Buenos Aires C1221ADC, Argentina;
| | - Luca Marsili
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Abhimanyu Mahajan
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Ameya A. Saraf
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Joaquin A. Vizcarra
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 15213, USA;
| | - Ziyuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children’s Hospital, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Alberto J. Espay
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| |
Collapse
|
4
|
Suthar SK, Lee SY. Truncation or proteolysis of α-synuclein in Parkinsonism. Ageing Res Rev 2023; 90:101978. [PMID: 37286088 DOI: 10.1016/j.arr.2023.101978] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/28/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Posttranslational modifications of α-synuclein, such as truncation or abnormal proteolysis, are implicated in Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). A key focus of this article includes the proteases responsible for inducing truncation, the specific sites susceptible to truncation, and the resultant influence of these truncated species on the seeding and aggregation of endogenous α-synuclein. We also shed light on the unique structural attributes of these truncated species, and how these modifications can lead to distinctive forms of synucleinopathies. In addition, we explore the comparative toxic potentials of various α-synuclein species. An extensive analysis of available evidence of truncated α-synuclein species in human-synucleinopathy brains is also provided. Lastly, we delve into the detrimental impact of truncated species on key cellular structures such as the mitochondria and endoplasmic reticulum. Our article discusses enzymes involved in α-synuclein truncation, including 20 S proteasome, cathepsins, asparagine endopeptidase, caspase-1, calpain-1, neurosin/kallikrein-6, matrix metalloproteinase-1/-3, and plasmin. Truncation patterns impact α-synuclein aggregation - C-terminal truncation accelerates aggregation with larger truncations correlated with shortened aggregation lag times. N-terminal truncation affects aggregation differently based on the truncation location. C-terminally truncated α-synuclein forms compact, shorter fibrils compared to the full-length (FL) protein. N-terminally truncated monomers form fibrils similar in length to FL α-synuclein. Truncated forms show distinct fibril morphologies, increased β-sheet structures, and greater protease resistance. Misfolded α-synuclein can adopt various conformations, leading to unique aggregates and distinct synucleinopathies. Fibrils, with prion-like transmission, are potentially more toxic than oligomers, though this is still debated. Different α-synuclein variants with N- and C-terminal truncations, namely 5-140, 39-140, 65-140, 66-140, 68-140, 71-140, 1-139, 1-135, 1-133, 1-122, 1-119, 1-115, 1-110, and 1-103 have been found in PD, DLB, and MSA patients' brains. In Parkinsonism, excess misfolded α-synuclein overwhelms the proteasome degradation system, resulting in truncated protein production and accumulation in the mitochondria and endoplasmic reticulum.
Collapse
Affiliation(s)
| | - Sang-Yoon Lee
- Neuroscience Research Institute, Gachon University, Incheon, South Korea; Department of Neuroscience, College of Medicine, Gachon University, Incheon, South Korea.
| |
Collapse
|
5
|
Santulli C, Bon C, De Cecco E, Codrich M, Narkiewicz J, Parisse P, Perissinotto F, Santoro C, Persichetti F, Legname G, Espinoza S, Gustincich S. Neuronal haemoglobin induces loss of dopaminergic neurons in mouse Substantia nigra, cognitive deficits and cleavage of endogenous α-synuclein. Cell Death Dis 2022; 13:1048. [PMID: 36526614 PMCID: PMC9758156 DOI: 10.1038/s41419-022-05489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) presents the selective loss of A9 dopaminergic (DA) neurons of Substantia Nigra pars compacta (SNpc) and the presence of intracellular aggregates called Lewy bodies. α-synuclein (α-syn) species truncated at the carboxy-terminal (C-terminal) accumulate in pathological inclusions and promote α-syn aggregation and toxicity. Haemoglobin (Hb) is the major oxygen carrier protein in erythrocytes. In addition, Hb is expressed in A9 DA neurons where it influences mitochondrial activity. Hb overexpression increases cells' vulnerability in a neurochemical model of PD in vitro and forms cytoplasmic and nucleolar aggregates upon short-term overexpression in mouse SNpc. In this study, α and β-globin chains were co-expressed in DA cells of SNpc in vivo upon stereotaxic injections of an Adeno-Associated Virus isotype 9 (AAV9) and in DA iMN9D cells in vitro. Long-term Hb over-expression in SNpc induced the loss of about 50% of DA neurons, mild motor impairments, and deficits in recognition and spatial working memory. Hb triggered the formation of endogenous α-syn C-terminal truncated species. Similar α-syn fragments were found in vitro in DA iMN9D cells over-expressing α and β- globins when treated with pre-formed α-syn fibrils. Our study positions Hb as a relevant player in PD pathogenesis for its ability to trigger DA cells' loss in vivo and the formation of C-terminal α-syn fragments.
Collapse
Affiliation(s)
- Chiara Santulli
- grid.5970.b0000 0004 1762 9868Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Carlotta Bon
- grid.25786.3e0000 0004 1764 2907Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Elena De Cecco
- grid.5970.b0000 0004 1762 9868Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Marta Codrich
- grid.5970.b0000 0004 1762 9868Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Joanna Narkiewicz
- grid.5970.b0000 0004 1762 9868Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Pietro Parisse
- grid.5942.a0000 0004 1759 508XElettra – Sincrotrone Trieste S.C.p.A., Trieste, Italy ,grid.472635.10000 0004 6476 9521Istituto Officina dei Materiali – Consiglio Nazionale delle Ricerche, Trieste, Italy
| | - Fabio Perissinotto
- grid.5942.a0000 0004 1759 508XElettra – Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | - Claudio Santoro
- grid.16563.370000000121663741Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Francesca Persichetti
- grid.16563.370000000121663741Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Giuseppe Legname
- grid.5970.b0000 0004 1762 9868Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy ,grid.5942.a0000 0004 1759 508XElettra – Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | - Stefano Espinoza
- grid.25786.3e0000 0004 1764 2907Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy ,grid.16563.370000000121663741Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Stefano Gustincich
- grid.5970.b0000 0004 1762 9868Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy ,grid.25786.3e0000 0004 1764 2907Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| |
Collapse
|
6
|
Lorenzo-Betancor O, Galosi L, Bonfili L, Eleuteri AM, Cecarini V, Verin R, Dini F, Attili AR, Berardi S, Biagini L, Robino P, Stella MC, Yearout D, Dorschner MO, Tsuang DW, Rossi G, Zabetian CP. Homozygous CADPS2 Mutations Cause Neurodegenerative Disease with Lewy Body-like Pathology in Parrots. Mov Disord 2022; 37:2345-2354. [PMID: 36086934 PMCID: PMC9772200 DOI: 10.1002/mds.29211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/19/2022] [Accepted: 08/12/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Several genetic models that recapitulate neurodegenerative features of Parkinson's disease (PD) exist, which have been largely based on genes discovered in monogenic PD families. However, spontaneous genetic mutations have not been linked to the pathological hallmarks of PD in non-human vertebrates. OBJECTIVE To describe the genetic and pathological findings of three Yellow-crowned parrot (Amazona ochrocepahala) siblings with a severe and rapidly progressive neurological phenotype. METHODS The phenotype of the three parrots included severe ataxia, rigidity, and tremor, while their parents were phenotypically normal. Tests to identify avian viral infections and brain imaging studies were all negative. Due to their severe impairment, they were all euthanized at age 3 months and their brains underwent neuropathological examination and proteasome activity assays. Whole genome sequencing (WGS) was performed on the three affected parrots and their parents. RESULTS The brains of affected parrots exhibited neuronal loss, spongiosis, and widespread Lewy body-like inclusions in many regions including the midbrain, basal ganglia, and neocortex. Proteasome activity was significantly reduced in these animals compared to a control (P < 0.05). WGS identified a single homozygous missense mutation (p.V559L) in a highly conserved amino acid within the pleckstrin homology (PH) domain of the calcium-dependent secretion activator 2 (CADPS2) gene. CONCLUSIONS Our data suggest that a homozygous mutation in the CADPS2 gene causes a severe neurodegenerative phenotype with Lewy body-like pathology in parrots. Although CADPS2 variants have not been reported to cause PD, further investigation of the gene might provide important insights into the pathophysiology of Lewy body disorders. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Oswaldo Lorenzo-Betancor
- Veterans Affairs Puget Sound Health Care System, Seattle,
Washington, USA,Department of Neurology, University of Washington School of
Medicine, Seattle, Washington, USA
| | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science,
University of Padova “Agripolis”, Legnaro, Italy
| | - Fabrizio Dini
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Anna-Rita Attili
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Sara Berardi
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Lucia Biagini
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Patrizia Robino
- Department of Veterinary Sciences, University of Torino,
Torino, Italy
| | | | - Dora Yearout
- Veterans Affairs Puget Sound Health Care System, Seattle,
Washington, USA
| | - Michael O. Dorschner
- Department of Pathology, Center for Precision Diagnostics,
University of Washington, Seattle, Washington, USA
| | - Debby W. Tsuang
- Veterans Affairs Puget Sound Health Care System, Seattle,
Washington, USA,Department of Psychiatry, University of Washington School
of Medicine, Seattle, Washington, USA,Correspondence to: Dr. Cyrus P.
Zabetian, Veterans Affairs Puget Sound Health Care System, Seattle, Washington
98108, USA; ; Dr. Giacomo Rossi, School of
Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy;
; Dr. Debby W. Tsuang, Veterans
Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA;
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy,Correspondence to: Dr. Cyrus P.
Zabetian, Veterans Affairs Puget Sound Health Care System, Seattle, Washington
98108, USA; ; Dr. Giacomo Rossi, School of
Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy;
; Dr. Debby W. Tsuang, Veterans
Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA;
| | - Cyrus P. Zabetian
- Veterans Affairs Puget Sound Health Care System, Seattle,
Washington, USA,Department of Neurology, University of Washington School of
Medicine, Seattle, Washington, USA,Correspondence to: Dr. Cyrus P.
Zabetian, Veterans Affairs Puget Sound Health Care System, Seattle, Washington
98108, USA; ; Dr. Giacomo Rossi, School of
Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy;
; Dr. Debby W. Tsuang, Veterans
Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA;
| |
Collapse
|
7
|
Helwig M, Ulusoy A, Rollar A, O’Sullivan SA, Lee SSL, Aboutalebi H, Pinto-Costa R, Jevans B, Klinkenberg M, Di Monte DA. Neuronal hyperactivity-induced oxidant stress promotes in vivo α-synuclein brain spreading. SCIENCE ADVANCES 2022; 8:eabn0356. [PMID: 36044566 PMCID: PMC9432848 DOI: 10.1126/sciadv.abn0356] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 07/15/2022] [Indexed: 05/31/2023]
Abstract
Interneuronal transfer and brain spreading of pathogenic proteins are features of neurodegenerative diseases. Pathophysiological conditions and mechanisms affecting this spreading remain poorly understood. This study investigated the relationship between neuronal activity and interneuronal transfer of α-synuclein, a Parkinson-associated protein, and elucidated mechanisms underlying this relationship. In a mouse model of α-synuclein brain spreading, hyperactivity augmented and hypoactivity attenuated protein transfer. Important features of neuronal hyperactivity reported here were an exacerbation of oxidative and nitrative reactions, pronounced accumulation of nitrated α-synuclein, and increased protein aggregation. Data also pointed to mitochondria as key targets and likely sources of reactive oxygen and nitrogen species within hyperactive neurons. Rescue experiments designed to counteract the increased burden of reactive oxygen species reversed hyperactivity-induced α-synuclein nitration, aggregation, and interneuronal transfer, providing first evidence of a causal link between these pathological effects of neuronal stimulation and indicating a mechanistic role of oxidant stress in hyperactivity-induced α-synuclein spreading.
Collapse
Affiliation(s)
- Michael Helwig
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Ayse Ulusoy
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Angela Rollar
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | | | - Shirley S. L. Lee
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Helia Aboutalebi
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Rita Pinto-Costa
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Benjamin Jevans
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | | | - Donato A. Di Monte
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
8
|
Imbriani P, Martella G, Bonsi P, Pisani A. Oxidative stress and synaptic dysfunction in rodent models of Parkinson's disease. Neurobiol Dis 2022; 173:105851. [PMID: 36007757 DOI: 10.1016/j.nbd.2022.105851] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022] Open
Abstract
Parkinson's disease (PD) is a multifactorial disorder involving a complex interplay between a variety of genetic and environmental factors. In this scenario, mitochondrial impairment and oxidative stress are widely accepted as crucial neuropathogenic mechanisms, as also evidenced by the identification of PD-associated genes that are directly involved in mitochondrial function. The concept of mitochondrial dysfunction is closely linked to that of synaptic dysfunction. Indeed, compelling evidence supports the role of mitochondria in synaptic transmission and plasticity, although many aspects have not yet been fully elucidated. Here, we will provide a brief overview of the most relevant evidence obtained in different neurotoxin-based and genetic rodent models of PD, focusing on mitochondrial impairment and synaptopathy, an early central event preceding overt nigrostriatal neurodegeneration. The identification of early deficits occurring in PD pathogenesis is crucial in view of the development of potential disease-modifying therapeutic strategies.
Collapse
Affiliation(s)
- Paola Imbriani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
9
|
Zhang C, Pei Y, Zhang Z, Xu L, Liu X, Jiang L, Pielak GJ, Zhou X, Liu M, Li C. C-terminal truncation modulates α-Synuclein's cytotoxicity and aggregation by promoting the interactions with membrane and chaperone. Commun Biol 2022; 5:798. [PMID: 35945337 PMCID: PMC9363494 DOI: 10.1038/s42003-022-03768-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/25/2022] [Indexed: 12/20/2022] Open
Abstract
α-Synuclein (α-syn) is the main protein component of Lewy bodies, the major pathological hallmarks of Parkinson's disease (PD). C-terminally truncated α-syn is found in the brain of PD patients, reduces cell viability and tends to form fibrils. Nevertheless, little is known about the mechanisms underlying the role of C-terminal truncation on the cytotoxicity and aggregation of α-syn. Here, we use nuclear magnetic resonance spectroscopy to show that the truncation alters α-syn conformation, resulting in an attractive interaction of the N-terminus with membranes and molecular chaperone, protein disulfide isomerase (PDI). The truncated protein is more toxic to mitochondria than full-length protein and diminishes the effect of PDI on α-syn fibrillation. Our findings reveal a modulatory role for the C-terminus in the cytotoxicity and aggregation of α-syn by interfering with the N-terminus binding to membranes and chaperone, and provide a molecular basis for the pathological role of C-terminal truncation in PD pathogenesis.
Collapse
Affiliation(s)
- Cai Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- Graduate University of Chinese Academy of Science, 100049, Beijing, China
| | - Yunshan Pei
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- Graduate University of Chinese Academy of Science, 100049, Beijing, China
| | - Zeting Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430071, Wuhan, China.
| | - Lingling Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Xiaoli Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430071, Wuhan, China
| | - Gary J Pielak
- Department of Chemistry, Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430071, Wuhan, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- Graduate University of Chinese Academy of Science, 100049, Beijing, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430071, Wuhan, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China.
- Graduate University of Chinese Academy of Science, 100049, Beijing, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430071, Wuhan, China.
| |
Collapse
|
10
|
Huang S, Mo X, Wang J, Ye X, Yu H, Liu Y. α-Synuclein phase separation and amyloid aggregation are modulated by C-terminal truncations. FEBS Lett 2022; 596:1388-1400. [PMID: 35485974 DOI: 10.1002/1873-3468.14361] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/10/2022] [Accepted: 04/16/2022] [Indexed: 11/11/2022]
Abstract
The aggregation of α-synuclein (α-Syn) is a key pathological hallmark of Parkinson's disease (PD). α-Syn undergoes liquid-liquid phase separation (LLPS) to drive amyloid aggregation. How the LLPS of α-Syn is regulated remains largely unknown. Here, we discovered that the C-terminal region modulates α-Syn phase separation through electrostatic interactions. The wild-type (WT) and PD disease-related truncated α-Syn can co-exist in the condensates. The truncated α-Syn could dramatically promote WT α-Syn phase separation. Further studies demonstrated that the truncated α-Syn accelerated WT α-Syn turning to amyloid aggregates by modulation of phase separation. Together, our findings disclose the role of the C-terminal domain in the LLPS of α-Syn and pave the path for understanding the mechanism of truncated α-Syn in PD pathology.
Collapse
Affiliation(s)
- Shuai Huang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaoli Mo
- Biology Department, Clark University, Worcester, Massachusetts, 01610, USA
| | - Jieyi Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xinyi Ye
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yinghui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
11
|
Golomidov IM, Latypova EM, Ryabova EV, Bolshakova OI, Komissarov AE, Sarantseva SV. Reduction of the α-synuclein expression promotes slowing down early neuropathology development in the Drosophila model of Parkinson's disease. J Neurogenet 2022; 36:1-10. [PMID: 35467466 DOI: 10.1080/01677063.2022.2064462] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterised by the formation of Lewy bodies and progressive loss of dopaminergic (DA) neurons in the substantia nigra. Lewy bodies mainly consist of α-synuclein, which plays a critical role in the pathophysiology of PD. The α-synuclein is encoded by the SNCA gene and is the first identified gene associated with hereditary PD. Currently, there are at least six disease-associated mutations in α-synuclein that cause dominantly inherited familial forms of PD. Targeted expression of human SNCA.WT/SNCA.A30P/SNCA.A53T gene in Drosophila melanogaster over specific times employing a temperature-dependent UAS/GAL4 - GAL80 system allows for the evaluation of neurodegenerative processes. In this study, SNCA was expressed only in the adult stage of Drosophila development for 1 or 2 weeks, followed by repression of gene expression for the rest of the fly's life. It was demonstrated that the level of pathology significantly depends on the duration of α-synuclein expression. SNCA gene expression over a longer period of time caused the death of DA neurons, decreased levels of dopamine and locomotor ability. In this case, the observed neurodegenerative processes correlated with the accumulation of α-synuclein in the Drosophila brain. Importantly, repression of α-synuclein expression led to elimination of the soluble protein fraction, in contrast to the insoluble fraction. No further significant development of characteristic signs of pathology was observed after the α-synuclein expression was blocked. Thus, we suggest that reduction of α-synuclein expression alone contributes to slowing down the development of PD-like symptoms.
Collapse
Affiliation(s)
- Ilia M Golomidov
- Petersburg Nuclear Physics Institute named by B.P.Konstantinov of NRC «Kurchatov Institute», Gatchina, Russia
| | - Evgenia M Latypova
- Petersburg Nuclear Physics Institute named by B.P.Konstantinov of NRC «Kurchatov Institute», Gatchina, Russia
| | - Elena V Ryabova
- Petersburg Nuclear Physics Institute named by B.P.Konstantinov of NRC «Kurchatov Institute», Gatchina, Russia
| | - Olga I Bolshakova
- Petersburg Nuclear Physics Institute named by B.P.Konstantinov of NRC «Kurchatov Institute», Gatchina, Russia
| | - Artem E Komissarov
- Petersburg Nuclear Physics Institute named by B.P.Konstantinov of NRC «Kurchatov Institute», Gatchina, Russia
| | - Svetlana V Sarantseva
- Petersburg Nuclear Physics Institute named by B.P.Konstantinov of NRC «Kurchatov Institute», Gatchina, Russia
| |
Collapse
|
12
|
Li S, Raja A, Noroozifar M, Kerman K. Understanding the Inhibitory and Antioxidant Effects of Pyrroloquinoline Quinone (PQQ) on Copper(II)-Induced α-Synuclein-119 Aggregation. ACS Chem Neurosci 2022; 13:1178-1186. [PMID: 35413176 DOI: 10.1021/acschemneuro.1c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Parkinson's disease (PD) is associated with the aggregation and misfolding of a-synuclein (a-syn) protein in dopaminergic neurons. The misfolding process is heavily linked to copper dysregulation in PD. Experimental evidence supports the hypothesis that the co-presence of Cu(II) and α-syn facilitates the aggregation of α-syn, affecting the pathological development of PD. Recent literature has shown that pyrroloquinoline quinone (PQQ) contains strong neuroprotective activity by reducing the reactive oxygen species (ROS) production by α-syn. Despite these known facts, minimal studies have been done on the antioxidant effect of PQQ against ROS formation in the presence of Cu(II) and α-syn-119. Thus, it is of great significance to study the interaction between all three components, PQQ, Cu(II), and α-syn-119. In this proof-of-concept study, a variety of chemical techniques were employed to examine the antioxidant effect of PQQ on ROS that α-syn-119 produced in the presence of Cu(II). Our results showed that PQQ effectively prevented ROS formation in SH-SY5Y human differentiated neuronal cells. Thioflavin T (ThT) fluorescence assay, circular dichroism (CD) spectroscopy, and transmission electron microscopy (TEM) were applied, where PQQ was able to actively prevent fibrillation of α-syn-119 in the presence of Cu(II). This finding was further confirmed using electrochemical impedance spectroscopy (EIS), where the binding of PQQ to the α-syn-119 suppressed the aggregation process on the electrode surface. With these encouraging results, we envisage that PQQ and its derivatives can be a promising candidate for further studies as a multitarget therapeutic agent toward PD therapy.
Collapse
Affiliation(s)
- ShaoPei Li
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Aruna Raja
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
13
|
Van Den Berge N, Ulusoy A. Animal models of brain-first and body-first Parkinson's disease. Neurobiol Dis 2022; 163:105599. [DOI: 10.1016/j.nbd.2021.105599] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
|
14
|
Tian Y, He M, Pan L, Yuan X, Xiong M, Meng L, Yao Z, Yu Z, Ye K, Zhang Z. Transgenic Mice Expressing Human α-Synuclein 1-103 Fragment as a Novel Model of Parkinson's Disease. Front Aging Neurosci 2021; 13:760781. [PMID: 34744697 PMCID: PMC8569470 DOI: 10.3389/fnagi.2021.760781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders. However, its cellular and molecular mechanisms still wrap in the mist. This is partially caused by the absence of appropriate animal models mimicking sporadic PD that constitutes the majority of cases. Previously, we reported that a cysteine protease, asparagine endopeptidase (AEP), is activated in an age-dependent manner, and cleaves α-synuclein in the brain of sporadic PD patients. The AEP-derived α-synuclein 1-103 fragment is required for the pathogenesis of PD. Thus, we designed and characterized a novel transgenic mouse line expressing α-synuclein 1-103 (designated N103 mice). This model shows an abundant accumulation of pathological α-synuclein in the central nervous system, loss of dopaminergic neurons in the substantia nigra, and progressive striatal synaptic degeneration. The N103 mice also manifest age-dependent PD-like behavioral impairments. Notably, the mice show weight loss and constipation, which are the common non-motor symptoms in PD. The RNA-sequencing analysis found that the transcriptomics pattern was extensively altered in N103 mice. In conclusion, the N103 mouse line, as a brand-new tool, might provide new insights into PD research.
Collapse
Affiliation(s)
- Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingyang He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lina Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Yuan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Yao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Martinez Hernandez A, Silbern I, Geffers I, Tatenhorst L, Becker S, Urlaub H, Zweckstetter M, Griesinger C, Eichele G. Low-Expressing Synucleinopathy Mouse Models Based on Oligomer-Forming Mutations and C-Terminal Truncation of α-Synuclein. Front Neurosci 2021; 15:643391. [PMID: 34220415 PMCID: PMC8248494 DOI: 10.3389/fnins.2021.643391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
α-synuclein (αSyn) is the main protein component of Lewy bodies, intracellular inclusions found in the brain of Parkinson's disease (PD) patients. Neurotoxic αSyn species are broadly modified post-translationally and, in patients with genetic forms of PD, carry genetically encoded amino acid substitutions. Mutations and C-terminal truncation can increase αSyn oligomerization and fibrillization. Although several genetic mouse models based on αSyn mutations and/or truncations exist, there is still a lack of mouse models for synucleinopathies not relying on overexpression. We report here two synucleinopathy mouse models, which are based on a triple alanine to proline mutation and a C-terminal truncation of αSyn, but do not overexpress the mutant protein when compared to the endogenous mouse protein. We knocked hαSyn TP or hαSynΔ119 (h stands for "human") into the murine αSyn locus. hαSynTP is a structure-based mutant with triple alanine to proline substitutions that favors oligomers, is neurotoxic and evokes PD-like symptoms in Drosophila melanogaster. hαSynΔ119 lacks 21 amino acids at the C-terminus, favors fibrillary aggregates and occurs in PD. Knocking-in of hαSyn TP or hαSynΔ119 into the murine αSyn locus places the mutant protein under the control of the endogenous regulatory elements while simultaneously disrupting the mαSyn gene. Mass spectrometry revealed that hαSyn TP and hαSynΔ119 mice produced 12 and 10 times less mutant protein, compared to mαSyn in wild type mice. We show phenotypes in 1 and 1.5 years old hαSyn TP and hαSynΔ119 mice, despite the lower levels of hαSynTP and hαSynΔ119 expression. Direct comparison of the two mouse models revealed many commonalities but also aspects unique to each model. Commonalities included strong immunoactive state, impaired olfaction and motor coordination deficits. Neither model showed DAergic neuronal loss. Impaired climbing abilities at 1 year of age and a deviant gait pattern at 1.5 years old were specific for hαSynΔ119 mice, while a compulsive behavior was exclusively detected in hαSyn TP mice starting at 1 year of age. We conclude that even at very moderate levels of expression the two αSyn variants evoke measurable and progressive deficiencies in mutant mice. The two transgenic mouse models can thus be suitable to study αSyn-variant-based pathology in vivo and test new therapeutic approaches.
Collapse
Affiliation(s)
- Ana Martinez Hernandez
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ivan Silbern
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany.,Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Insa Geffers
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Lars Tatenhorst
- Department of Neurology, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany.,Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Becker
- NMR-Based Structural Biology Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany.,Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Markus Zweckstetter
- Department of Neurology, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany.,NMR-Based Structural Biology Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,German Center for Neurodegenerative Diseases, DZNE, Göttingen, Germany
| | - Christian Griesinger
- Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany.,NMR-Based Structural Biology Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Gregor Eichele
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
16
|
Argyrofthalmidou M, Spathis AD, Maniati M, Poula A, Katsianou MA, Sotiriou E, Manousaki M, Perier C, Papapanagiotou I, Papadopoulou-Daifoti Z, Pitychoutis PM, Alexakos P, Vila M, Stefanis L, Vassilatis DK. Nurr1 repression mediates cardinal features of Parkinson's disease in α-synuclein transgenic mice. Hum Mol Genet 2021; 30:1469-1483. [PMID: 33902111 PMCID: PMC8330896 DOI: 10.1093/hmg/ddab118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 11/26/2022] Open
Abstract
Duplication/triplication mutations of the SNCA locus, encoding alpha-synuclein (ASYN), and loss of function mutations in Nurr1, a nuclear receptor guiding midbrain dopaminergic neuron development, are associated with familial Parkinson’s disease (PD). As we age, the expression levels of these two genes in midbrain dopaminergic neurons follow opposite directions and ASYN expression increases while the expression of Nurr1 decreases. We investigated the effect of ASYN and Nurr1 age-related expression alterations in the pathogenesis of PD by coupling Nurr1 hemizygous with ASYN(s) (heterozygote) or ASYN(d) (homozygote) transgenic mice. ASYN(d)/Nurr1+/− (2-hit) mice, contrary to the individual genetic traits, developed phenotypes consistent with dopaminergic dysfunction. Aging ‘2-hit’ mice manifested kyphosis, severe rigid paralysis, L-DOPA responsive movement impairment and cachexia and died prematurely. Pathological abnormalities of phenotypic mice included SN neuron degeneration, extensive neuroinflammation and enhanced ASYN aggregation. Mice with two wt Nurr1 alleles [ASYN(d)/Nurr1+/+] or with reduced ASYN load [ASYN(s)/Nurr1+/−] did not develop the phenotype or pathology. Critically, we found that aging ASYN(d), in contrast to ASYN(s), mice suppress Nurr1-protein levels in a brain region–specific manner, which in addition to Nurr1 hemizygosity is necessary to instigate PD pathogenesis. Our experiments demonstrate that ASYN-dependent PD-related pathophysiology is mediated at least in part by Nurr1 down-regulation.
Collapse
Affiliation(s)
- Maria Argyrofthalmidou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Athanasios D Spathis
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Matina Maniati
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Amalia Poula
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Maira A Katsianou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Evangelos Sotiriou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Maria Manousaki
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Celine Perier
- Research Institute, University Hospital Vall d'Hebron, Barcelona 08035, Spain
| | - Ioanna Papapanagiotou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | | | - Pothitos M Pitychoutis
- Department of Pharmacology, Medical School, University of Athens, Athens 11527, Greece.,Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH 45469-2320, USA
| | - Pavlos Alexakos
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Miquel Vila
- Research Institute, University Hospital Vall d'Hebron, Barcelona 08035, Spain
| | - Leonidas Stefanis
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece.,Second Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens 11527, Greece
| | - Demetrios K Vassilatis
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| |
Collapse
|
17
|
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder resulting from the death of dopamine neurons in the substantia nigra pars compacta. Our understanding of PD biology has been enriched by the identification of genes involved in its rare, inheritable forms, termed PARK genes. These genes encode proteins including α-syn, LRRK2, VPS35, parkin, PINK1, and DJ1, which can cause monogenetic PD when mutated. Investigating the cellular functions of these proteins has been instrumental in identifying signaling pathways that mediate pathology in PD and neuroprotective mechanisms active during homeostatic and pathological conditions. It is now evident that many PD-associated proteins perform multiple functions in PD-associated signaling pathways in neurons. Furthermore, several PARK proteins contribute to non-cell-autonomous mechanisms of neuron death, such as neuroinflammation. A comprehensive understanding of cell-autonomous and non-cell-autonomous pathways involved in PD is essential for developing therapeutics that may slow or halt its progression.
Collapse
Affiliation(s)
- Nikhil Panicker
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Preston Ge
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA.,Diana Helis Henry Medical Research Foundation, New Orleans, LA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA.,Diana Helis Henry Medical Research Foundation, New Orleans, LA
| |
Collapse
|
18
|
Polissidis A, Koronaiou M, Kollia V, Koronaiou E, Nakos-Bimpos M, Bogiongko M, Vrettou S, Karali K, Casadei N, Riess O, Sardi SP, Xilouri M, Stefanis L. Psychosis-Like Behavior and Hyperdopaminergic Dysregulation in Human α-Synuclein BAC Transgenic Rats. Mov Disord 2020; 36:716-728. [PMID: 33200461 DOI: 10.1002/mds.28383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/28/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Parkinson's disease psychosis is a prevalent yet underreported and understudied nonmotor manifestation of Parkinson's disease and, arguably, the most debilitating. It is unknown if α-synuclein plays a role in psychosis, and if so, this endophenotype may be crucial for elucidating the neurodegenerative process. OBJECTIVES We sought to dissect the underlying neurobiology of novelty-induced hyperactivity, reminiscent of psychosis-like behavior, in human α-synuclein BAC rats. RESULTS Herein, we demonstrate a prodromal psychosis-like phenotype, including late-onset sensorimotor gating disruption, striatal hyperdopaminergic signaling, and persistent novelty-induced hyperactivity (up to 18 months), albeit reduced baseline locomotor activity, that is augmented by d-amphetamine and reversed by classical and atypical antipsychotics. MicroRNA-mediated α-synuclein downregulation in the ventral midbrain rescues the hyperactive phenotype and restores striatal dopamine levels. This phenotype is accompanied by an abundance of age-, brain region- and gene dose-dependent aberrant α-synuclein, including hyperphosphorylation, C-terminal truncation, aggregation pathology, and mild nigral neurodegeneration (27%). CONCLUSIONS Our findings demonstrate a potential role of α-synuclein in Parkinson's disease psychosis and provide evidence of region-specific perturbations prior to neurodegeneration phenoconversion. The reported phenotype coincides with the latest clinical findings that suggest a premotor hyperdopaminergic state may occur, while at the same time, premotor psychotic symptoms are increasingly being recognized. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alexia Polissidis
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Maria Koronaiou
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Vasia Kollia
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Effrosyni Koronaiou
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Modestos Nakos-Bimpos
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Marios Bogiongko
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Sofia Vrettou
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Katerina Karali
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sergio P Sardi
- Rare and Neurologic Diseases Research Therapeutic Area, Framingham, Massachusetts, USA
| | - Maria Xilouri
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Leonidas Stefanis
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.,1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
19
|
Sorrentino ZA, Giasson BI. The emerging role of α-synuclein truncation in aggregation and disease. J Biol Chem 2020; 295:10224-10244. [PMID: 32424039 DOI: 10.1074/jbc.rev120.011743] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
α-Synuclein (αsyn) is an abundant brain neuronal protein that can misfold and polymerize to form toxic fibrils coalescing into pathologic inclusions in neurodegenerative diseases, including Parkinson's disease, Lewy body dementia, and multiple system atrophy. These fibrils may induce further αsyn misfolding and propagation of pathologic fibrils in a prion-like process. It is unclear why αsyn initially misfolds, but a growing body of literature suggests a critical role of partial proteolytic processing resulting in various truncations of the highly charged and flexible carboxyl-terminal region. This review aims to 1) summarize recent evidence that disease-specific proteolytic truncations of αsyn occur in Parkinson's disease, Lewy body dementia, and multiple system atrophy and animal disease models; 2) provide mechanistic insights on how truncation of the amino and carboxyl regions of αsyn may modulate the propensity of αsyn to pathologically misfold; 3) compare experiments evaluating the prion-like properties of truncated forms of αsyn in various models with implications for disease progression; 4) assess uniquely toxic properties imparted to αsyn upon truncation; and 5) discuss pathways through which truncated αsyn forms and therapies targeted to interrupt them. Cumulatively, it is evident that truncation of αsyn, particularly carboxyl truncation that can be augmented by dysfunctional proteostasis, dramatically potentiates the propensity of αsyn to pathologically misfold into uniquely toxic fibrils with modulated prion-like seeding activity. Therapeutic strategies and experimental paradigms should operate under the assumption that truncation of αsyn is likely occurring in both initial and progressive disease stages, and preventing truncation may be an effective preventative strategy against pathologic inclusion formation.
Collapse
Affiliation(s)
- Zachary A Sorrentino
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA .,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
20
|
Chakroun T, Evsyukov V, Nykänen NP, Höllerhage M, Schmidt A, Kamp F, Ruf VC, Wurst W, Rösler TW, Höglinger GU. Alpha-synuclein fragments trigger distinct aggregation pathways. Cell Death Dis 2020; 11:84. [PMID: 32015326 PMCID: PMC6997403 DOI: 10.1038/s41419-020-2285-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 01/19/2023]
Abstract
Aggregation of alpha-synuclein (αSyn) is a crucial event underlying the pathophysiology of synucleinopathies. The existence of various intracellular and extracellular αSyn species, including cleaved αSyn, complicates the quest for an appropriate therapeutic target. Hence, to develop efficient disease-modifying strategies, it is fundamental to achieve a deeper understanding of the relevant spreading and toxic αSyn species. Here, we describe comparative and proof-of-principle approaches to determine the involvement of αSyn fragments in intercellular spreading. We demonstrate that two different αSyn fragments (1–95 and 61–140) fulfill the criteria of spreading species. They efficiently instigate formation of proteinase-K-resistant aggregates from cell-endogenous full-length αSyn, and drive it into different aggregation pathways. The resulting aggregates induce cellular toxicity. Strikingly, these aggregates are only detectable by specific antibodies. Our results suggest that αSyn fragments might be relevant not only for spreading, but also for aggregation-fate determination and differential strain formation.
Collapse
Affiliation(s)
- Tasnim Chakroun
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), University of Munich, 81377, Munich, Germany
| | - Valentin Evsyukov
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany.,Department of Neurology, School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Niko-Petteri Nykänen
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
| | - Matthias Höllerhage
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany.,Department of Neurology, School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Andreas Schmidt
- Protein Analysis Unit (ZfP), Biomedical Center (BMC), University of Munich, 82152, Planegg, Germany
| | - Frits Kamp
- Metabolic Biochemistry, Biomedical Center (BMC), University of Munich, 81733, Munich, Germany
| | - Viktoria C Ruf
- Center for Neuropathology and Prion Research, University of Munich, 81733, Munich, Germany
| | - Wolfgang Wurst
- Department of Neurology, School of Medicine, Technical University of Munich, 81675, Munich, Germany.,Institute of Developmental Genetics, Helmholtz Center Munich, 85764, Munich, Germany
| | - Thomas W Rösler
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), University of Munich, 81377, Munich, Germany.,Department of Neurology, School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Günter U Höglinger
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), University of Munich, 81377, Munich, Germany. .,Department of Neurology, School of Medicine, Technical University of Munich, 81675, Munich, Germany. .,Department of Neurology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
21
|
Wegrzynowicz M, Bar-On D, Calo' L, Anichtchik O, Iovino M, Xia J, Ryazanov S, Leonov A, Giese A, Dalley JW, Griesinger C, Ashery U, Spillantini MG. Depopulation of dense α-synuclein aggregates is associated with rescue of dopamine neuron dysfunction and death in a new Parkinson's disease model. Acta Neuropathol 2019; 138:575-595. [PMID: 31165254 PMCID: PMC6778064 DOI: 10.1007/s00401-019-02023-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
Parkinson’s disease (PD) is characterized by the presence of α-synuclein aggregates known as Lewy bodies and Lewy neurites, whose formation is linked to disease development. The causal relation between α-synuclein aggregates and PD is not well understood. We generated a new transgenic mouse line (MI2) expressing human, aggregation-prone truncated 1–120 α-synuclein under the control of the tyrosine hydroxylase promoter. MI2 mice exhibit progressive aggregation of α-synuclein in dopaminergic neurons of the substantia nigra pars compacta and their striatal terminals. This is associated with a progressive reduction of striatal dopamine release, reduced striatal innervation and significant nigral dopaminergic nerve cell death starting from 6 and 12 months of age, respectively. In the MI2 mice, alterations in gait impairment can be detected by the DigiGait test from 9 months of age, while gross motor deficit was detected by rotarod test at 20 months of age when 50% of dopaminergic neurons in the substantia nigra pars compacta are lost. These changes were associated with an increase in the number and density of 20–500 nm α-synuclein species as shown by dSTORM. Treatment with the oligomer modulator anle138b, from 9 to 12 months of age, restored striatal dopamine release, prevented dopaminergic cell death and gait impairment. These effects were associated with a reduction of the inner density of large α-synuclein aggregates and an increase in dispersed small α-synuclein species as revealed by dSTORM. The MI2 mouse model recapitulates the progressive dopaminergic deficit observed in PD, showing that early synaptic dysfunction is associated to fine behavioral motor alterations, precedes dopaminergic axonal loss and neuronal death that become associated with a more consistent motor deficit upon reaching a certain threshold. Our data also provide new mechanistic insight for the effect of anle138b’s function in vivo supporting that targeting α-synuclein aggregation is a promising therapeutic approach for PD.
Collapse
Affiliation(s)
- Michal Wegrzynowicz
- Department of Clinical Neurosciences, University of Cambridge, The Clifford Allbutt Building, Cambridge, CB2 0AH, UK
| | - Dana Bar-On
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Laura Calo'
- Department of Clinical Neurosciences, University of Cambridge, The Clifford Allbutt Building, Cambridge, CB2 0AH, UK
| | - Oleg Anichtchik
- Department of Clinical Neurosciences, University of Cambridge, The Clifford Allbutt Building, Cambridge, CB2 0AH, UK
| | - Mariangela Iovino
- Department of Clinical Neurosciences, University of Cambridge, The Clifford Allbutt Building, Cambridge, CB2 0AH, UK
| | - Jing Xia
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Sergey Ryazanov
- Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
- DFG Research Centre Nanoscale Microscopy and Molecular Physiology of the Brain, 37070, Göttingen, Germany
| | - Andrei Leonov
- Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
- DFG Research Centre Nanoscale Microscopy and Molecular Physiology of the Brain, 37070, Göttingen, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig Maximilians University Munich, 81377, Munich, Germany
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 2SZ, UK
| | - Christian Griesinger
- Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
- DFG Research Centre Nanoscale Microscopy and Molecular Physiology of the Brain, 37070, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Uri Ashery
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, University of Cambridge, The Clifford Allbutt Building, Cambridge, CB2 0AH, UK.
| |
Collapse
|
22
|
Cheng J, Lu Q, Song L, Ho MS. α-Synuclein Trafficking in Parkinson's Disease: Insights From Fly and Mouse Models. ASN Neuro 2019; 10:1759091418812587. [PMID: 30482039 PMCID: PMC6259071 DOI: 10.1177/1759091418812587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein aggregation and accumulation are common pathological hallmarks in neurodegenerative diseases. To efficiently clear and eliminate such aggregation becomes an important cellular strategy for cell survival. Lewy bodies inclusion and aggregation of α-Synuclein (α-Syn) during the pathogenesis of Parkinson's disease (PD) serve as a good example and are potentially linked to other pathological PD features such as progressive dopaminergic neuron cell death, behavioral defects, and nonmotor symptoms like anosmia, cognitive impairment, and depression. Years of research have revealed a variety of mechanisms underlying α-Syn aggregation, clearance, and spread. Particularly, vesicular routes associated with the trafficking of α-Syn, leading to its aggregation and accumulation, have been shown to play vital roles in PD pathogenesis. How α-Syn proteins propagate among cells in a prion-like manner, either from or to neurons and glia, via means of uptake or secretion, are questions under active investigation and have been of central interest in the field of PD study. This review covers components and pathways of possible vesicular routes involved in α-Syn trafficking. Events including but not limited to exocytosis and endocytosis will be discussed within the context of an overall cellular trafficking theme. Recent advances on α-Syn trafficking mechanisms and their significance in mediating PD pathogenesis will be thoroughly reviewed, ending with a discussion on the advantages and limitations of different animal PD models.
Collapse
Affiliation(s)
- Jingjing Cheng
- 1 School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,*These authors contributed equally to this work
| | - Qingqing Lu
- 2 Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China.,*These authors contributed equally to this work
| | - Li Song
- 2 Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Margaret S Ho
- 1 School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
23
|
Tarrant JC, Savickas P, Omodho L, Spinazzi M, Radaelli E. Spontaneous Incidental Brain Lesions in C57BL/6J Mice. Vet Pathol 2019; 57:172-182. [PMID: 31272300 DOI: 10.1177/0300985819859878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genetically engineered mouse lines on a C57BL/6J background are widely employed as preclinical models to study neurodegenerative human disorders and brain tumors. However, because of the lack of comprehensive data on the spontaneous background neuropathology of the C57BL/6J strain, discriminating between naturally occurring changes and lesions caused by experimental mutations can be challenging. In this context, this study aims at defining the spectrum and frequency of spontaneous brain changes in a large cohort of C57BL/6J mice and their association with specific biological variables, including age and sex. Brains from 203 experimentally naive and clinically unremarkable C57BL/6J mice were collected and analyzed by means of histopathology and immunohistochemistry. Mice ranged in age from 3 to 110 weeks with 89 females, 111 males, and 3 unknowns. Sixteen different spontaneous lesion categories were described in this cohort. Age-related neurodegenerative and/or neuroinflammatory findings represented the most common pathologic changes and included (1) Hirano-like inclusions in the thalamic neurons, (2) neuroaxonal dystrophy in the medulla oblongata, (3) periodic acid-Schiff-positive granular deposits in the neuropil of the hippocampus, and (4) progressive neuroinflammation characterized by microgliosis and astrogliosis. Neoplastic conditions, developmental abnormalities, and circulatory disorders were rarely observed incidental findings. In conclusion, this study describes spontaneous age-related brain lesions of the C57BL/6J mouse and provides a reference for evaluating and interpreting the neuropathological phenotype in genetically engineered mouse models developed and maintained on this congenic background.
Collapse
Affiliation(s)
- James C Tarrant
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Patrick Savickas
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Lorna Omodho
- VIB Center for the Biology of Disease and KU Leuven Center for Human Genetics, Leuven, Belgium
| | - Marco Spinazzi
- Centre de Référence des Maladies Neuromusculaires, Service de Neurologie, Centre Hospitalier Universitaire d' Angers, Angers, France
| | - Enrico Radaelli
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.,VIB Center for the Biology of Disease and KU Leuven Center for Human Genetics, Leuven, Belgium
| |
Collapse
|
24
|
König M, Berlin B, Schwab K, Frahm S, Theuring F, Wischik CM, Harrington CR, Riedel G, Klein J. Increased Cholinergic Response in α-Synuclein Transgenic Mice (h-α-synL62). ACS Chem Neurosci 2019; 10:1915-1922. [PMID: 30253092 DOI: 10.1021/acschemneuro.8b00274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pathological accumulation of misfolded α-synuclein (α-syn) in the brain plays a key role in the pathogenesis of Parkinson's disease, leading to neuronal dysfunction and motor disorders. The underlying mechanisms linking α-syn aggregations with neurotransmitter disturbance in Parkinson's brains are not well characterized. In the present study, we investigated transgenic mice expressing an aggregation-prone form of full-length human α-syn (h-α-synL62) linked to a signal sequence. These mice display dopamine depletion and progressive motor deficits. We detected accumulation of α-syn in cholinergic interneurons where they are colocalized with choline acetyltransferase. Using microdialysis, we measured acetylcholine levels in the striatum at baseline and during stimulation in the open field and with scopolamine. While no difference between wild-type and transgenic mice was detected in 3 month old mice, striatal acetylcholine levels at 9 months of age were significantly higher in transgenic mice. Concomitantly, high-affinity choline uptake was also increased while choline acetyltransferase and acetylcholine esterase activities were unchanged. The results suggest a disinhibition of acetylcholine release in α-syn transgenic mice.
Collapse
Affiliation(s)
- Magdalena König
- Department of Pharmacology, Goethe University Frankfurt, Biocenter N260, Max-von-Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Beata Berlin
- Department of Pharmacology, Goethe University Frankfurt, Biocenter N260, Max-von-Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Karima Schwab
- Charite - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität
zu Berlin, and Berlin Institute of Health, Center for Cardiovascular
Research, Institute of Pharmacology, Berlin, Germany
| | - Silke Frahm
- Charite - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität
zu Berlin, and Berlin Institute of Health, Center for Cardiovascular
Research, Institute of Pharmacology, Berlin, Germany
| | - Franz Theuring
- Charite - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität
zu Berlin, and Berlin Institute of Health, Center for Cardiovascular
Research, Institute of Pharmacology, Berlin, Germany
| | - Claude M. Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB24 3FX, United Kingdom
- TauRx Therapeutics Ltd., Singapore 068805, Singapore
| | - Charles R. Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB24 3FX, United Kingdom
- TauRx Therapeutics Ltd., Singapore 068805, Singapore
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB24 3FX, United Kingdom
| | - Jochen Klein
- Department of Pharmacology, Goethe University Frankfurt, Biocenter N260, Max-von-Laue Str. 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
25
|
Breger LS, Fuzzati Armentero MT. Genetically engineered animal models of Parkinson's disease: From worm to rodent. Eur J Neurosci 2018; 49:533-560. [PMID: 30552719 DOI: 10.1111/ejn.14300] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is a progressive neurological disorder characterised by aberrant accumulation of insoluble proteins, including alpha-synuclein, and a loss of dopaminergic neurons in the substantia nigra. The extended neurodegeneration leads to a drop of striatal dopamine levels responsible for disabling motor and non-motor impairments. Although the causes of the disease remain unclear, it is well accepted among the scientific community that the disorder may also have a genetic component. For that reason, the number of genetically engineered animal models has greatly increased over the past two decades, ranging from invertebrates to more complex organisms such as mice and rats. This trend is growing as new genetic variants associated with the disease are discovered. The EU Joint Programme - Neurodegenerative Disease Research (JPND) has promoted the creation of an online database aiming at summarising the different features of experimental models of Parkinson's disease. This review discusses available genetic models of PD and the extent to which they adequately mirror the human pathology and reflects on future development and uses of genetically engineered experimental models for the study of PD.
Collapse
Affiliation(s)
- Ludivine S Breger
- Institut des Maladies Neurodégénératives, CNRS UMR 5293, Centre Broca Nouvelle Aquitaine, Université de Bordeaux, Bordeaux cedex, France
| | | |
Collapse
|
26
|
Sorrentino ZA, Vijayaraghavan N, Gorion KM, Riffe CJ, Strang KH, Caldwell J, Giasson BI. Physiological C-terminal truncation of α-synuclein potentiates the prion-like formation of pathological inclusions. J Biol Chem 2018; 293:18914-18932. [PMID: 30327435 DOI: 10.1074/jbc.ra118.005603] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/11/2018] [Indexed: 12/19/2022] Open
Abstract
α-Synuclein (αsyn) aggregates into toxic fibrils in multiple neurodegenerative diseases where these fibrils form characteristic pathological inclusions such as Lewy bodies (LBs). The mechanisms initiating αsyn aggregation into fibrils are unclear, but ubiquitous post-translational modifications of αsyn present in LBs may play a role. Specific C-terminally (C)-truncated forms of αsyn are present within human pathological inclusions and form under physiological conditions likely in lysosome-associated pathways, but the roles for these C-truncated forms of αsyn in inclusion formation and disease are not well understood. Herein, we characterized the in vitro aggregation properties, amyloid fibril structures, and ability to induce full-length (FL) αsyn aggregation through prion-like mechanisms for eight of the most common physiological C-truncated forms of αsyn (1-115, 1-119, 1-122, 1-124, 1-125, 1-129, 1-133, and 1-135). In vitro, C-truncated αsyn aggregated more readily than FL αsyn and formed fibrils with unique morphologies. The presence of C-truncated αsyn potentiated aggregation of FL αsyn in vitro through co-polymerization. Specific C-truncated forms of αsyn in cells also exacerbated seeded aggregation of αsyn. Furthermore, in primary neuronal cultures, co-polymers of C-truncated and FL αsyn were potent prion-like seeds, but polymers composed solely of the C-truncated protein were not. These experiments indicated that specific physiological C-truncated forms of αsyn have distinct aggregation properties, including the ability to modulate the prion-like aggregation and seeding activity of FL αsyn. Proteolytic formation of these C-truncated species may have an important role in both the initiation of αsyn pathological inclusions and further progression of disease with strain-like properties.
Collapse
Affiliation(s)
- Zachary A Sorrentino
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Niran Vijayaraghavan
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Kimberly-Marie Gorion
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Cara J Riffe
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Kevin H Strang
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Jason Caldwell
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Benoit I Giasson
- From the Department of Neuroscience, .,the Center for Translational Research in Neurodegenerative Disease, and.,the McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
27
|
Yan X, Uronen RL, Huttunen HJ. The interaction of α-synuclein and Tau: A molecular conspiracy in neurodegeneration? Semin Cell Dev Biol 2018; 99:55-64. [PMID: 29738880 DOI: 10.1016/j.semcdb.2018.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/06/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022]
Abstract
α-synuclein and Tau are proteins prone to pathological misfolding and aggregation that are normally found in the presynaptic and axonal compartments of neurons. Misfolding initiates a homo-oligomerization and aggregation cascade culminating in cerebral accumulation of aggregated α-synuclein and Tau in insoluble protein inclusions in multiple neurodegenerative diseases. Traditionally, α-synuclein-containing Lewy bodies have been associated with Parkinson's disease and Tau-containing neurofibrillary tangles with Alzheimer's disease and various frontotemporal dementia syndromes. However, there is significant overlap and co-occurrence of α-synuclein and Tau pathologies in a spectrum of neurodegenerative diseases. Importantly, α-synuclein and Tau can interact in cells, and their pathological conformations are capable of templating further misfolding and aggregation of each other. They also share a number of protein interactors indicating that network perturbations may contribute to chronic proteotoxic stress and neuronal dysfunction in synucleinopathies and tauopathies, some of which share similarities in both neuropathological and clinical manifestations. In this review, we focus on the protein interactions of these two pathologically important proteins and consider a network biology perspective towards neurodegenerative diseases.
Collapse
Affiliation(s)
- Xu Yan
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Riikka-Liisa Uronen
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Henri J Huttunen
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
28
|
Jiang P, Dickson DW. Parkinson's disease: experimental models and reality. Acta Neuropathol 2018; 135:13-32. [PMID: 29151169 PMCID: PMC5828522 DOI: 10.1007/s00401-017-1788-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a chronic, progressive movement disorder of adults and the second most common neurodegenerative disease after Alzheimer's disease. Neuropathologic diagnosis of PD requires moderate-to-marked neuronal loss in the ventrolateral substantia nigra pars compacta and α-synuclein (αS) Lewy body pathology. Nigrostriatal dopaminergic neurodegeneration correlates with the Parkinsonian motor features, but involvement of other peripheral and central nervous system regions leads to a wide range of non-motor features. Nigrostriatal dopaminergic neurodegeneration is shared with other parkinsonian disorders, including some genetic forms of parkinsonism, but many of these disorders do not have Lewy bodies. An ideal animal model for PD, therefore, should exhibit age-dependent and progressive dopaminergic neurodegeneration, motor dysfunction, and abnormal αS pathology. Rodent models of PD using genetic or toxin based strategies have been widely used in the past several decades to investigate the pathogenesis and therapeutics of PD, but few recapitulate all the major clinical and pathologic features of PD. It is likely that new strategies or better understanding of fundamental disease processes may facilitate development of better animal models. In this review, we highlight progress in generating rodent models of PD based on impairments of four major cellular functions: mitochondrial oxidative phosphorylation, autophagy-lysosomal metabolism, ubiquitin-proteasome protein degradation, and endoplasmic reticulum stress/unfolded protein response. We attempt to evaluate how impairment of these major cellular systems contribute to PD and how they can be exploited in rodent models. In addition, we review recent cell biological studies suggesting a link between αS aggregation and impairment of nuclear membrane integrity, as observed during cellular models of apoptosis. We also briefly discuss the role of incompetent phagocytic clearance and how this may be a factor to consider in developing new rodent models of PD.
Collapse
Affiliation(s)
- Peizhou Jiang
- Neuropathology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Neuropathology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
29
|
In vivo models of alpha-synuclein transmission and propagation. Cell Tissue Res 2017; 373:183-193. [DOI: 10.1007/s00441-017-2730-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
|
30
|
Animal models of α-synucleinopathy for Parkinson disease drug development. Nat Rev Neurosci 2017; 18:515-529. [DOI: 10.1038/nrn.2017.75] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Abstract
Although serotonin neurotransmission has been implicated in several neurodevelopmental and psychological disorders, the factors that drive dysfunction of the serotonin system are poorly understood. Current research regarding the serotonin system revolves around its dysfunction in neuropsychiatric disorders, but there is no database collating genetic mutations that result in serotonin abnormalities. To bridge this gap, we developed a list of genes in mice that, when perturbed, result in altered levels of serotonin either in brain or blood. Due to the intrinsic limitations of search, the current list should be considered a preliminary subset of all relevant cases. Nevertheless, it offered an opportunity to gain insight into what types of genes have the potential to impact serotonin by using gene ontology (GO). This analysis found that genes associated with monoamine metabolism were more often associated with increases in brain serotonin than decreases. Speculatively, this could be because several pathways (and therefore many genes) are responsible for the clearance and metabolism of serotonin whereas only one pathway (and therefore fewer genes) is directly involved in the synthesis of serotonin. Another contributor could be cross talk between monoamine systems such as dopamine. In contrast, genes that were associated with decreases in brain serotonin were more likely linked to a developmental process. Sensitivity of serotonin neurons to developmental perturbations could be due to their complicated neuroanatomy or possibly they may be negatively regulated by dysfunction of their innervation targets. Thus, these observations suggest hypotheses regarding the mechanisms underlying the vulnerability of brain serotonin neurotransmission.
Collapse
Affiliation(s)
- Richard C. Tenpenny
- Department of Anesthesiology, Perioperative, and Pain
Medicine, Boston Children’s Hospital and Department of Anesthesia,
Harvard Medical School, 300 Longwood
Avenue, Boston, Massachusetts 02115, United States
| | - Kathryn G. Commons
- Department of Anesthesiology, Perioperative, and Pain
Medicine, Boston Children’s Hospital and Department of Anesthesia,
Harvard Medical School, 300 Longwood
Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
32
|
Functional alterations of the dopaminergic and glutamatergic systems in spontaneous α-synuclein overexpressing rats. Exp Neurol 2016; 287:21-33. [PMID: 27771352 DOI: 10.1016/j.expneurol.2016.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022]
Abstract
The presence of α-synuclein (α-syn) in Lewy bodies and Lewy neurites is an important characteristic of the neurodegenerative processes of substantia nigra pars compacta (SNpc) dopaminergic (DAergic) neurons in Parkinson's disease (PD) and other synucleinopathies. Here we report that Berlin-Druckrey rats carrying a spontaneous mutation in the 3' untranslated region of α-syn mRNA (m/m rats) display a marked accumulation of α-syn in the mesencephalic area, striatum and frontal cortex, accompanied to severe dysfunctions in the dorsolateral striatum. Despite a small reduction in the number of SNpc and ventral tegmental area DAergic cells, the surviving dopaminergic neurons of the m/m rats do not show clear-cut alterations of the spontaneous and evoked firing activity, DA responses and somatic amphetamine-induced firing inhibition. Interestingly, mutant DAergic neurons display diminished whole-cell Ih conductance and a reduced frequency of spontaneous excitatory synaptic currents. By contrast, m/m rats show a severe impairment of DA and glutamate release in the dorsolateral striatum, as revealed by amperometric measure of DA currents and by electrophysiological recordings of glutamatergic synaptic events in striatal medium spiny neurons. These functional impairments are paralleled by a decreased expression of the DA transporter and VGluT1 proteins in the same area. Thus, together with α-syn overload in the mesencephalic region, striatum and frontal cortex, the main functional alterations occur in the DAergic and glutamatergic terminals in the dorsal striatum of the m/m rats.
Collapse
|
33
|
Reducing C-terminal truncation mitigates synucleinopathy and neurodegeneration in a transgenic model of multiple system atrophy. Proc Natl Acad Sci U S A 2016; 113:9593-8. [PMID: 27482103 DOI: 10.1073/pnas.1609291113] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Multiple system atrophy (MSA) is a sporadic orphan neurodegenerative disorder. No treatment is currently available to slow down the aggressive neurodegenerative process, and patients die within a few years after disease onset. The cytopathological hallmark of MSA is the accumulation of alpha-synuclein (α-syn) aggregates in affected oligodendrocytes. Several studies point to α-syn oligomerization and aggregation as a mediator of neurotoxicity in synucleinopathies including MSA. C-terminal truncation by the inflammatory protease caspase-1 has recently been implicated in the mechanisms that promote aggregation of α-syn in vitro and in neuronal cell models of α-syn toxicity. We present here an in vivo proof of concept of the ability of the caspase-1 inhibitor prodrug VX-765 to mitigate α-syn pathology and to mediate neuroprotection in proteolipid protein α-syn (PLP-SYN) mice, a transgenic mouse model of MSA. PLP-SYN and age-matched wild-type mice were treated for a period of 11 wk with VX-765 or placebo. VX-765 prevented motor deficits in PLP-SYN mice compared with placebo controls. More importantly, VX-765 was able to limit the progressive toxicity of α-syn aggregation by reducing its load in the striatum of PLP-SYN mice. Not only did VX-765 reduce truncated α-syn, but it also decreased its monomeric and oligomeric forms. Finally, VX-765 showed neuroprotective effects by preserving tyrosine hydroxylase-positive neurons in the substantia nigra of PLP-SYN mice. In conclusion, our results suggest that VX-765, a drug that was well tolerated in a 6 wk-long phase II trial in patients with epilepsy, is a promising candidate to achieve disease modification in synucleinopathies by limiting α-syn accumulation.
Collapse
|
34
|
Zhang S, Johnson CM, Cui N, Xing H, Zhong W, Wu Y, Jiang C. An optogenetic mouse model of rett syndrome targeting on catecholaminergic neurons. J Neurosci Res 2016; 94:896-906. [PMID: 27317352 DOI: 10.1002/jnr.23760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 12/15/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder affecting multiple functions, including the norepinephrine (NE) system. In the CNS, NE is produced mostly by neurons in the locus coeruleus (LC), where defects in intrinsic neuronal properties, NE biosynthetic enzymes, neuronal CO2 sensitivity, and synaptic currents have been reported in mouse models of RTT. LC neurons in methyl-CpG-binding protein 2 gene (Mecp2) null mice show a high rate of spontaneous firing, although whether such hyperexcitability might increase or decrease the NE release from synapses is unknown. To activate the NEergic axonal terminals selectively, we generated an optogenetic mouse model of RTT in which NEergic neuronal excitability can be manipulated with light. Using commercially available mouse breeders, we produced a new strain of double-transgenic mice with Mecp2 knockout and channelrhodopsin (ChR) knockin in catecholaminergic neurons. Several RTT-like phenotypes were found in the tyrosine hydroxylase (TH)-ChR-Mecp2(-/Y) mice, including hypoactivity, low body weight, hindlimb clasping, and breathing disorders. In brain slices, optostimulation produced depolarization and an increase in the firing rate of LC neurons from TH-ChR control mice. In TH-ChR control mice, optostimulation of presynaptic NEergic neurons augmented the firing rate of hypoglossal neurons (HNs), which was blocked by the α-adrenoceptor antagonist phentolamine. Such optostimulation of NEergic terminals had almost no effect on HNs from two or three TH-ChR-Mecp2(-/Y) mice, indicating that excessive excitation of presynaptic neurons does not benefit NEergic modulation in mice with Mecp2 disruption. These results also demonstrate the feasibility of generating double-transgenic mice for studies of RTT with commercially available mice, which are inexpensive, labor/time efficient, and promising for cell-specific stimulation. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Biology, Georgia State University, 100 Piedmont Avenue, Atlanta, GA 30302
| | - Christopher M Johnson
- Department of Biology, Georgia State University, 100 Piedmont Avenue, Atlanta, GA 30302
| | - Ningren Cui
- Department of Biology, Georgia State University, 100 Piedmont Avenue, Atlanta, GA 30302
| | - Hao Xing
- Department of Biology, Georgia State University, 100 Piedmont Avenue, Atlanta, GA 30302
| | - Weiwei Zhong
- Department of Biology, Georgia State University, 100 Piedmont Avenue, Atlanta, GA 30302
| | - Yang Wu
- Department of Biology, Georgia State University, 100 Piedmont Avenue, Atlanta, GA 30302
| | - Chun Jiang
- Department of Biology, Georgia State University, 100 Piedmont Avenue, Atlanta, GA 30302
| |
Collapse
|
35
|
Jagmag SA, Tripathi N, Shukla SD, Maiti S, Khurana S. Evaluation of Models of Parkinson's Disease. Front Neurosci 2016; 9:503. [PMID: 26834536 PMCID: PMC4718050 DOI: 10.3389/fnins.2015.00503] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/21/2015] [Indexed: 12/01/2022] Open
Abstract
Parkinson's disease is one of the most common neurodegenerative diseases. Animal models have contributed a large part to our understanding and therapeutics developed for treatment of PD. There are several more exhaustive reviews of literature that provide the initiated insights into the specific models; however a novel synthesis of the basic advantages and disadvantages of different models is much needed. Here we compare both neurotoxin based and genetic models while suggesting some novel avenues in PD modeling. We also highlight the problems faced and promises of all the mammalian models with the hope of providing a framework for comparison of various systems.
Collapse
Affiliation(s)
- Shail A Jagmag
- Department of Biology, Indian Institute of Science Education and Research Kolkata, India
| | - Naveen Tripathi
- Department of Biology, Indian Institute of Science Education and Research Kolkata, India
| | - Sunil D Shukla
- Department of Zoology, Government Meera Girl's College Udaipur, India
| | - Sankar Maiti
- Department of Biology, Indian Institute of Science Education and Research Kolkata, India
| | - Sukant Khurana
- Department of Biology, Indian Institute of Science Education and Research Kolkata, India
| |
Collapse
|
36
|
Single injection of small-molecule amyloid accelerator results in cell death of nigral dopamine neurons in mice. NPJ PARKINSONS DISEASE 2015; 1:15024. [PMID: 28725689 PMCID: PMC5516562 DOI: 10.1038/npjparkd.2015.24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/14/2015] [Accepted: 11/13/2015] [Indexed: 12/21/2022]
Abstract
The assembly process of α-synuclein toward amyloid fibers is linked to neurodegeneration in Parkinson’s disease. In the present study, we capitalized on the in vitro discovery of a small-molecule accelerator of α-synuclein amyloid formation and assessed its effects when injected in brains of normal mice. An accelerator and an inhibitor of α-synuclein amyloid formation, as well as vehicle only, were injected into the striatum of normal mice and followed by behavioral evaluation, immunohistochemistry, and metabolomics up to six months later. The effects of molecules injected into the substantia nigra of normal and α-synuclein knock-out mice were also analyzed. When accelerator or inhibitor was injected into the brain of normal mice no acute compound toxicity was found. However, 6 months after single striatal injection of accelerator, mice sensorimotor functions were impaired, whereas mice injected with inhibitor had no dysfunctions. Injection of accelerator (but not inhibitor or vehicle) into the substantia nigra revealed significant loss of tyrosine hydroxylase (TH)-positive neurons after 3 months. No loss of TH-positive neurons was found in α-synuclein knock-out mice injected with accelerator into the substantia nigra. Metabolic serum profiles from accelerator-injected normal mice matched those of newly diagnosed Parkinson’s disease patients, whereas the profiles from inhibitor-injected normal mice matched controls. Single inoculation of a small-molecule amyloid accelerator may be a new approach for studies of early events during dopamine neurodegeneration in mice.
Collapse
|
37
|
Pieri L, Chafey P, Le Gall M, Clary G, Melki R, Redeker V. Cellular response of human neuroblastoma cells to α-synuclein fibrils, the main constituent of Lewy bodies. Biochim Biophys Acta Gen Subj 2015; 1860:8-19. [PMID: 26468903 DOI: 10.1016/j.bbagen.2015.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/14/2015] [Accepted: 10/08/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND α-Synuclein (α-Syn) fibrils are the main constituent of Lewy bodies and a neuropathological hallmark of Parkinson's disease (PD). The propagation of α-Syn assemblies from cell to cell suggests that they are involved in PD progression. We previously showed that α-Syn fibrils are toxic because of their ability to bind and permeabilize cell membranes. Here, we document the cellular response in terms of proteome changes of SH-SY5Y cells exposed to exogenous α-Syn fibrils. METHODS We compare the proteomes of cells of neuronal origin exposed or not either to oligomeric or fibrillar α-Syn using two dimensional differential in-gel electrophoresis (2D-DIGE) and mass spectrometry. RESULTS Only α-Syn fibrils induce significant changes in the proteome of SH-SY5Y cells. In addition to proteins associated to apoptosis and toxicity, or proteins previously linked to neurodegenerative diseases, we report an overexpression of proteins involved in intracellular vesicle trafficking. We also report a remarkable increase in fibrillar α-Syn heterogeneity, mainly due to C-terminal truncations. CONCLUSIONS Our results show that cells of neuronal origin adapt their proteome to exogenous α-Syn fibrils and actively modify those assemblies. GENERAL SIGNIFICANCE Cells of neuronal origin adapt their proteome to exogenous toxic α-Syn fibrils and actively modify those assemblies. Our results bring insights into the cellular response and clearance events the cells implement to face the propagation of α-Syn assemblies associated to pathology.
Collapse
Affiliation(s)
- Laura Pieri
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Avenue de la terrasse, 91190 Gif-sur-Yvette, France
| | - Philippe Chafey
- Plate-forme protéomique 3P5, Université Paris Descartes, Sorbonne Paris Cité, France; Inserm U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France
| | - Morgane Le Gall
- Plate-forme protéomique 3P5, Université Paris Descartes, Sorbonne Paris Cité, France; Inserm U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France
| | - Guilhem Clary
- Plate-forme protéomique 3P5, Université Paris Descartes, Sorbonne Paris Cité, France; Inserm U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France
| | - Ronald Melki
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Avenue de la terrasse, 91190 Gif-sur-Yvette, France
| | - Virginie Redeker
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Avenue de la terrasse, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
38
|
A53T human α-synuclein overexpression in transgenic mice induces pervasive mitochondria macroautophagy defects preceding dopamine neuron degeneration. J Neurosci 2015; 35:890-905. [PMID: 25609609 DOI: 10.1523/jneurosci.0089-14.2015] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In vitro evidence suggests that the inefficient removal of damaged mitochondria by macroautophagy contributes to Parkinson's disease (PD). Using a tissue-specific gene amplification strategy, we generated a transgenic mouse line with human α-synuclein A53T overexpression specifically in dopamine (DA) neurons. Transgenic mice showed profound early-onset mitochondria abnormalities, characterized by macroautophagy marker-positive cytoplasmic inclusions containing mainly mitochondrial remnants, which preceded the degeneration of DA neurons. Genetic deletion of either parkin or PINK1 in these transgenic mice significantly worsened mitochondrial pathologies, including drastically enlarged inclusions and loss of total mitochondria contents. These data suggest that mitochondria are the main targets of α-synuclein and their defective autophagic clearance plays a significant role during pathogenesis. Moreover, endogenous PINK1 or parkin is indispensable for the proper autophagic removal of damaged mitochondria. Our data for the first time establish an essential link between mitochondria macroautophagy impairments and DA neuron degeneration in an in vivo model based on known PD genetics. The model, its well-defined pathologies, and the demonstration of a main pathogenesis pathway in the present study have set the stage and direction of emphasis for future studies.
Collapse
|
39
|
Xiao J, Vemula S, Yue Z. Rodent Models of Autosomal Dominant Parkinson Disease. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
40
|
Allen Reish HE, Standaert DG. Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease. JOURNAL OF PARKINSON'S DISEASE 2015; 5:1-19. [PMID: 25588354 PMCID: PMC4405142 DOI: 10.3233/jpd-140491] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alpha-synuclein (α-syn) is central to the pathogenesis of Parkinson disease (PD). Gene duplications, triplications and point mutations in SNCA1, the gene encoding α-syn, cause autosomal dominant forms of PD. Aggregated and post-translationally modified forms of α-syn are present in Lewy bodies and Lewy neurites in both sporadic and familial PD, and recent work has emphasized the prion-like ability of aggregated α-syn to produce spreading pathology. Accumulation of abnormal forms of α-syn is a trigger for PD, but recent evidence suggests that much of the downstream neurodegeneration may result from inflammatory responses. Components of both the innate and adaptive immune systems are activated in PD, and influencing interactions between innate and adaptive immune components has been shown to modify the pathological process in animal models of PD. Understanding the relationship between α-syn and subsequent inflammation may reveal novel targets for neuroprotective interventions. In this review, we examine the role of α-syn and modified forms of this protein in the initiation of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Heather E Allen Reish
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Alabama, USA
| | - David G Standaert
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
41
|
Vesicles bearing Toxoplasma apicoplast membrane proteins persist following loss of the relict plastid or Golgi body disruption. PLoS One 2014; 9:e112096. [PMID: 25369183 PMCID: PMC4219833 DOI: 10.1371/journal.pone.0112096] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 10/13/2014] [Indexed: 12/16/2022] Open
Abstract
Toxoplasma gondii and malaria parasites contain a unique and essential relict plastid called the apicoplast. Most apicoplast proteins are encoded in the nucleus and are transported to the organelle via the endoplasmic reticulum (ER). Three trafficking routes have been proposed for apicoplast membrane proteins: (i) vesicular trafficking from the ER to the Golgi and then to the apicoplast, (ii) contiguity between the ER membrane and the apicoplast allowing direct flow of proteins, and (iii) vesicular transport directly from the ER to the apicoplast. Previously, we identified a set of membrane proteins of the T. gondii apicoplast which were also detected in large vesicles near the organelle. Data presented here show that the large vesicles bearing apicoplast membrane proteins are not the major carriers of luminal proteins. The vesicles continue to appear in parasites which have lost their plastid due to mis-segregation, indicating that the vesicles are not derived from the apicoplast. To test for a role of the Golgi body in vesicle formation, parasites were treated with brefeldin A or transiently transfected with a dominant-negative mutant of Sar1, a GTPase required for ER to Golgi trafficking. The immunofluorescence patterns showed little change. These findings were confirmed using stable transfectants, which expressed the toxic dominant-negative sar1 following Cre-loxP mediated promoter juxtaposition. Our data support the hypothesis that the large vesicles do not mediate the trafficking of luminal proteins to the apicoplast. The results further show that the large vesicles bearing apicoplast membrane proteins continue to be observed in the absence of Golgi and plastid function. These data raise the possibility that the apicoplast proteome is generated by two novel ER to plastid trafficking pathways, plus the small set of proteins encoded by the apicoplast genome.
Collapse
|
42
|
Tsika E, Kannan M, Foo CSY, Dikeman D, Glauser L, Gellhaar S, Galter D, Knott GW, Dawson TM, Dawson VL, Moore DJ. Conditional expression of Parkinson's disease-related R1441C LRRK2 in midbrain dopaminergic neurons of mice causes nuclear abnormalities without neurodegeneration. Neurobiol Dis 2014; 71:345-58. [PMID: 25174890 DOI: 10.1016/j.nbd.2014.08.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/08/2014] [Accepted: 08/21/2014] [Indexed: 01/20/2023] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset, autosomal dominant Parkinson's disease (PD). The clinical and neurochemical features of LRRK2-linked PD are similar to idiopathic disease although neuropathology is somewhat heterogeneous. Dominant mutations in LRRK2 precipitate neurodegeneration through a toxic gain-of-function mechanism which can be modeled in transgenic mice overexpressing human LRRK2 variants. A number of LRRK2 transgenic mouse models have been developed that display abnormalities in dopaminergic neurotransmission and alterations in tau metabolism yet without consistently inducing dopaminergic neurodegeneration. To directly explore the impact of mutant LRRK2 on the nigrostriatal dopaminergic pathway, we developed conditional transgenic mice that selectively express human R1441C LRRK2 in dopaminergic neurons from the endogenous murine ROSA26 promoter. The expression of R1441C LRRK2 does not induce the degeneration of substantia nigra dopaminergic neurons or striatal dopamine deficits in mice up to 2years of age, and fails to precipitate abnormal protein inclusions containing alpha-synuclein, tau, ubiquitin or autophagy markers (LC3 and p62). Furthermore, mice expressing R1441C LRRK2 exhibit normal motor activity and olfactory function with increasing age. Intriguingly, the expression of R1441C LRRK2 induces age-dependent abnormalities of the nuclear envelope in nigral dopaminergic neurons including reduced nuclear circularity and increased invaginations of the nuclear envelope. In addition, R1441C LRRK2 mice display increased neurite complexity of cultured midbrain dopaminergic neurons. Collectively, these novel R1441C LRRK2 conditional transgenic mice reveal altered dopaminergic neuronal morphology with advancing age, and provide a useful tool for exploring the pathogenic mechanisms underlying the R1441C LRRK2 mutation in PD.
Collapse
Affiliation(s)
- Elpida Tsika
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Meghna Kannan
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Caroline Shi-Yan Foo
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Dustin Dikeman
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Liliane Glauser
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sandra Gellhaar
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Dagmar Galter
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Graham W Knott
- Centre of Interdisciplinary Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Darren J Moore
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
43
|
Overk CR, Cartier A, Shaked G, Rockenstein E, Ubhi K, Spencer B, Price DL, Patrick C, Desplats P, Masliah E. Hippocampal neuronal cells that accumulate α-synuclein fragments are more vulnerable to Aβ oligomer toxicity via mGluR5--implications for dementia with Lewy bodies. Mol Neurodegener 2014; 9:18. [PMID: 24885390 PMCID: PMC4041038 DOI: 10.1186/1750-1326-9-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In dementia with Lewy bodies (DLB) abnormal interactions between α-synuclein (α-syn) and beta amyloid (Aβ) result in selective degeneration of neurons in the neocortex, limbic system and striatum. However, factors rendering these neurons selectively vulnerable have not been fully investigated. The metabotropic glutamate receptor 5 (mGluR5) has been shown to be up regulated in DLB and might play a role as a mediator of the neurotoxic effects of Aβ and α-syn in vulnerable neuronal populations. In this context, the main objective of the present study was to investigate the role of mGluR5 as a mediator of the neurotoxic effects of α-syn and Aβ in the hippocampus. RESULTS We generated double transgenic mice over-expressing amyloid precursor protein (APP) and α-syn under the mThy1 cassette and investigated the relationship between α-syn cleavage, Aβ, mGluR5 and neurodegeneration in the hippocampus. We found that compared to the single tg mice, the α-syn/APP tg mice displayed greater accumulation of α-syn and mGluR5 in the CA3 region of the hippocampus compared to the CA1 and other regions. This was accompanied by loss of CA3 (but not CA1) neurons in the single and α-syn/APP tg mice and greater loss of MAP 2 and synaptophysin in the CA3 in the α-syn/APP tg. mGluR5 gene transfer using a lentiviral vector into the hippocampus CA1 region resulted in greater α-syn accumulation and neurodegeneration in the single and α-syn/APP tg mice. In contrast, silencing mGluR5 with a lenti-shRNA protected neurons in the CA3 region of tg mice. In vitro, greater toxicity was observed in primary hippocampal neuronal cultures treated with Aβ oligomers and over-expressing α-syn; this effect was attenuated by down-regulating mGluR5 with an shRNA lentiviral vector. In α-syn-expressing neuronal cells lines, Aβ oligomers promoted increased intracellular calcium levels, calpain activation and α-syn cleavage resulting in caspase-3-dependent cell death. Treatment with pharmacological mGluR5 inhibitors such as 2-Methyl-6-(phenylethynyl)pyridine (MPEP) and 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP) attenuated the toxic effects of Aβ in α-syn-expressing neuronal cells. CONCLUSIONS Together, these results support the possibility that vulnerability of hippocampal neurons to α-syn and Aβ might be mediated via mGluR5. Moreover, therapeutical interventions targeting mGluR5 might have a role in DLB.
Collapse
Affiliation(s)
- Cassia R Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Anna Cartier
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Gideon Shaked
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Kiren Ubhi
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Brian Spencer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | | | - Christina Patrick
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Paula Desplats
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
44
|
Nuber S, Tadros D, Fields J, Overk CR, Ettle B, Kosberg K, Mante M, Rockenstein E, Trejo M, Masliah E. Environmental neurotoxic challenge of conditional alpha-synuclein transgenic mice predicts a dopaminergic olfactory-striatal interplay in early PD. Acta Neuropathol 2014; 127:477-94. [PMID: 24509835 DOI: 10.1007/s00401-014-1255-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 12/17/2022]
Abstract
The olfactory bulb (OB) is one of the first brain regions in Parkinson's disease (PD) to contain alpha-synuclein (α-syn) inclusions, possibly associated with nonmotor symptoms. Mechanisms underlying olfactory synucleinopathy, its contribution to progressive aggregation pathology and nigrostriatal dopaminergic loss observed at later stages, remain unclear. A second hit, such as environmental toxins, is suggestive for α-syn aggregation in olfactory neurons, potentially triggering disease progression. To address the possible pathogenic role of olfactory α-syn accumulation in early PD, we exposed mice with site-specific and inducible overexpression of familial PD-linked mutant α-syn in OB neurons to a low dose of the herbicide paraquat. Here, we found that olfactory α-syn per se elicited structural and behavioral abnormalities, characteristic of an early time point in models with widespread α-syn expression, including hyperactivity and increased striatal dopaminergic marker. Suppression of α-syn reversed the dopaminergic phenotype. In contrast, paraquat treatment synergistically induced degeneration of olfactory dopaminergic cells and opposed the higher reactive phenotype. Neither neurodegeneration nor behavioral abnormalities were detected in paraquat-treated mice with suppressed α-syn expression. By increasing calpain activity, paraquat induced a pathological cascade leading to inhibition of autophagy clearance and accumulation of calpain-cleaved truncated and insoluble α-syn, recapitulating biochemical and structural changes in human PD. Thus our results underscore the primary role of proteolytic failure in aggregation pathology. In addition, we provide novel evidence that olfactory dopaminergic neurons display an increased vulnerability toward neurotoxins in dependence to presence of human α-syn, possibly mediating an olfactory-striatal dopaminergic network dysfunction in mouse models and early PD.
Collapse
Affiliation(s)
- Silke Nuber
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., MTF 344, La Jolla, CA, 92093-0624, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Diepenbroek M, Casadei N, Esmer H, Saido TC, Takano J, Kahle PJ, Nixon RA, Rao MV, Melki R, Pieri L, Helling S, Marcus K, Krueger R, Masliah E, Riess O, Nuber S. Overexpression of the calpain-specific inhibitor calpastatin reduces human alpha-Synuclein processing, aggregation and synaptic impairment in [A30P]αSyn transgenic mice. Hum Mol Genet 2014; 23:3975-89. [PMID: 24619358 DOI: 10.1093/hmg/ddu112] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lewy bodies, a pathological hallmark of Parkinson's disease (PD), contain aggregated alpha-synuclein (αSyn), which is found in several modified forms and can be discovered phosphorylated, ubiquitinated and truncated. Aggregation-prone truncated species of αSyn caused by aberrant cleavage of this fibrillogenic protein are hypothesized to participate in its sequestration into inclusions subsequently leading to synaptic dysfunction and neuronal death. Here, we investigated the role of calpain cleavage of αSyn in vivo by generating two opposing mouse models. We crossed into human [A30P]αSyn transgenic (i) mice deficient for calpastatin, a calpain-specific inhibitor, thus enhancing calpain activity (SynCAST(-)) and (ii) mice overexpressing human calpastatin leading to reduced calpain activity (SynCAST(+)). As anticipated, a reduced calpain activity led to a decreased number of αSyn-positive aggregates, whereas loss of calpastatin led to increased truncation of αSyn in SynCAST(-). Furthermore, overexpression of calpastatin decreased astrogliosis and the calpain-dependent degradation of synaptic proteins, potentially ameliorating the observed neuropathology in [A30P]αSyn and SynCAST(+) mice. Overall, our data further support a crucial role of calpains, particularly of calpain 1, in the pathogenesis of PD and in disease-associated aggregation of αSyn, indicating a therapeutic potential of calpain inhibition in PD.
Collapse
Affiliation(s)
- Meike Diepenbroek
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany
| | - Hakan Esmer
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany
| | - Takaomi C Saido
- RIKEN Brain Science Institute, Laboratory for Proteolytic Neuroscience, Saitama 351-0198, Japan
| | - Jiro Takano
- RIKEN Brain Science Institute, Laboratory for Proteolytic Neuroscience, Saitama 351-0198, Japan
| | - Philipp J Kahle
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University Clinics Tübingen, 72076 Tuebingen, Germany
| | - Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Mala V Rao
- Center for Dementia Research, Nathan S. Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Ronald Melki
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France
| | - Laura Pieri
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France
| | - Stefan Helling
- Functional Proteomics, Medizinisches Proteom-Center, Ruhr-University Bochum, 44780 Bochum, Germany and
| | - Katrin Marcus
- Functional Proteomics, Medizinisches Proteom-Center, Ruhr-University Bochum, 44780 Bochum, Germany and
| | - Rejko Krueger
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University Clinics Tübingen, 72076 Tuebingen, Germany
| | - Eliezer Masliah
- Department of Pathology and Department of Neurosciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92003-0624, USA
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany,
| | - Silke Nuber
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany, Department of Neurosciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92003-0624, USA
| |
Collapse
|
46
|
Eschbach J, Danzer KM. α-Synuclein in Parkinson's disease: pathogenic function and translation into animal models. NEURODEGENER DIS 2013; 14:1-17. [PMID: 24080741 DOI: 10.1159/000354615] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 07/22/2013] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease is a common neurodegenerative disease characterised by the loss of dopaminergic neurons in the substantia nigra pars compacta and the formation of α-synuclein aggregates found in Lewy bodies throughout the brain. Several α-synuclein transgenic mouse models have been generated, as well as viral-mediated overexpression of wild-type and mutated α-synuclein to mimic the disease and to delineate the pathogenic pathway of α-synuclein-mediated toxicity and neurodegeneration. In this review, we will recapitulate what we have learned about the function of α-synuclein and α-synuclein-mediated toxicity through studies of transgenic animal models, inducible animal models and viral-based models.
Collapse
|
47
|
Baptista MAS, Dave KD, Sheth NP, De Silva SN, Carlson KM, Aziz YN, Fiske BK, Sherer TB, Frasier MA. A strategy for the generation, characterization and distribution of animal models by The Michael J. Fox Foundation for Parkinson's Research. Dis Model Mech 2013; 6:1316-24. [PMID: 24046356 PMCID: PMC3820256 DOI: 10.1242/dmm.011940] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Progress in Parkinson’s disease (PD) research and therapeutic development is hindered by many challenges, including a need for robust preclinical animal models. Limited availability of these tools is due to technical hurdles, patent issues, licensing restrictions and the high costs associated with generating and distributing these animal models. Furthermore, the lack of standardization of phenotypic characterization and use of varying methodologies has made it difficult to compare outcome measures across laboratories. In response, The Michael J. Fox Foundation for Parkinson’s Research (MJFF) is directly sponsoring the generation, characterization and distribution of preclinical rodent models, enabling increased access to these crucial tools in order to accelerate PD research. To date, MJFF has initiated and funded the generation of 30 different models, which include transgenic or knockout models of PD-relevant genes such as Park1 (also known as Park4 and SNCA), Park8 (LRRK2), Park7 (DJ-1), Park6 (PINK1), Park2 (Parkin), VPS35, EiF4G1 and GBA. The phenotypic characterization of these animals is performed in a uniform and streamlined manner at independent contract research organizations. Finally, MJFF created a central repository at The Jackson Laboratory (JAX) that houses both non-MJFF and MJFF-generated preclinical animal models. Funding from MJFF, which subsidizes the costs involved in transfer, rederivation and colony expansion, has directly resulted in over 2500 rodents being distributed to the PD community for research use.
Collapse
Affiliation(s)
- Marco A S Baptista
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY 10018-6798, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nuber S, Harmuth F, Kohl Z, Adame A, Trejo M, Schönig K, Zimmermann F, Bauer C, Casadei N, Giel C, Calaminus C, Pichler BJ, Jensen PH, Müller CP, Amato D, Kornhuber J, Teismann P, Yamakado H, Takahashi R, Winkler J, Masliah E, Riess O. A progressive dopaminergic phenotype associated with neurotoxic conversion of α-synuclein in BAC-transgenic rats. ACTA ACUST UNITED AC 2013; 136:412-32. [PMID: 23413261 DOI: 10.1093/brain/aws358] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conversion of soluble α-synuclein into insoluble and fibrillar inclusions is a hallmark of Parkinson's disease and other synucleinopathies. Accumulating evidence points towards a relationship between its generation at nerve terminals and structural synaptic pathology. Little is known about the pathogenic impact of α-synuclein conversion and deposition at nigrostriatal dopaminergic synapses in transgenic mice, mainly owing to expression limitations of the α-synuclein construct. Here, we explore whether both the rat as a model and expression of the bacterial artificial chromosome construct consisting of human full-length wild-type α-synuclein could exert dopaminergic neuropathological effects. We found that the human promoter induced a pan-neuronal expression, matching the rodent α-synuclein expression pattern, however, with prominent C-terminally truncated fragments. Ageing promoted conversion of both full-length and C-terminally truncated α-synuclein species into insolube and proteinase K-resistant fibres, with strongest accumulation in the striatum, resembling biochemical changes seen in human Parkinson's disease. Transgenic rats develop early changes in novelty-seeking, avoidance and smell before the progressive motor deficit. Importantly, the observed pathological changes were associated with severe loss of the dopaminergic integrity, thus resembling more closely the human pathology.
Collapse
Affiliation(s)
- Silke Nuber
- Department of Neurosciences, University of California, San Diego, Medical Teaching Facility, Room 346, 9500 Gilman Drive, MC 0624, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Taylor JM, Main BS, Crack PJ. Neuroinflammation and oxidative stress: Co-conspirators in the pathology of Parkinson’s disease. Neurochem Int 2013; 62:803-19. [DOI: 10.1016/j.neuint.2012.12.016] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/20/2012] [Accepted: 12/26/2012] [Indexed: 12/21/2022]
|
50
|
Jadhav S, Zilka N, Novak M. Protein truncation as a common denominator of human neurodegenerative foldopathies. Mol Neurobiol 2013; 48:516-32. [PMID: 23516100 DOI: 10.1007/s12035-013-8440-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/05/2013] [Indexed: 12/13/2022]
Abstract
Neurodegenerative foldopathies are characterized by aberrant folding of diseased modified proteins, which are major constituents of the intracellular and extracellular lesions. These lesions correlate with the cognitive and/or motor impairment seen in these diseases. The majority of the disease modified proteins in neurodegenerative foldopathies belongs to the group of proteins termed as intrinsically disordered proteins (IDPs). Several independent studies have showed that abnormal protein processing constitutes the key pathological feature of these disorders. The current review focuses on protein truncation as a common denominator of neurodegenerative foldopathies, which is considered to be the major driving force behind the pathological metamorphosis of brain IDPs. The aim of the review is to emphasize the key role of the protein truncation in the pathogenic pathways of neurodegenerative diseases. A deeper understanding of the complex downstream processing of the IDPs, resulting in the generation of pathologically modified proteins might be a prerequisite for the successful therapeutic strategies of several fatal neurodegenerative diseases.
Collapse
Affiliation(s)
- Santosh Jadhav
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska cesta 9, 845 10, Bratislava, Slovak Republic
| | | | | |
Collapse
|