1
|
Qiu Y, Liu W, Wu M, Bao H, Sun X, Dou Q, Jia H, Liu W, Shen Y. Construction of an alternative NADPH regeneration pathway improves ethanol production in Saccharomyces cerevisiae with xylose metabolic pathway. Synth Syst Biotechnol 2024; 9:269-276. [PMID: 38469586 PMCID: PMC10926300 DOI: 10.1016/j.synbio.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Full conversion of glucose and xylose from lignocellulosic hydrolysates is required for obtaining a high ethanol yield. However, glucose and xylose share flux in the pentose phosphate pathway (PPP) and glycolysis pathway (EMP), with glucose having a competitive advantage in the shared metabolic pathways. In this work, we knocked down ZWF1 to preclude glucose from entering the PPP. This reduced the [NADPH] level and disturbed growth on both glucose or xylose, confirming that the oxidative PPP, which begins with Zwf1p and ultimately leads to CO2 production, is the primary source of NADPH in both glucose and xylose. Upon glucose depletion, gluconeogenesis is necessary to generate glucose-6-phosphate, the substrate of Zwf1p. We re-established the NADPH regeneration pathway by replacing the endogenous NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene TDH3 with heterogenous NADP + -GAPDH genes GDH, gapB, and GDP1. Among the resulting strains, the strain BZP1 (zwf1Δ, tdh3::GDP1) exhibited a similar xylose consumption rate before glucose depletion, but a 1.6-fold increased xylose consumption rate following glucose depletion compared to the original strain BSGX001, and the ethanol yield for total consumed sugars of BZP1 was 13.5% higher than BSGX001. This suggested that using the EMP instead of PPP to generate NADPH reduces the wasteful metabolic cycle and excess CO2 release from oxidative PPP. Furthermore, we used a copper-repressing promoter to modulate the expression of ZWF1 and optimize the timing of turning off the ZWF1, therefore, to determine the competitive equilibrium between glucose-xylose co-metabolism. This strategy allowed fast growth in the early stage of fermentation and low waste in the following stages of fermentation.
Collapse
Affiliation(s)
- Yali Qiu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Wei Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Meiling Wu
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China
| | - Haodong Bao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xinhua Sun
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qin Dou
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Hongying Jia
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
2
|
Minden S, Aniolek M, Noorman H, Takors R. Mimicked Mixing-Induced Heterogeneities of Industrial Bioreactors Stimulate Long-Lasting Adaption Programs in Ethanol-Producing Yeasts. Genes (Basel) 2023; 14:genes14050997. [PMID: 37239357 DOI: 10.3390/genes14050997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Commercial-scale bioreactors create an unnatural environment for microbes from an evolutionary point of view. Mixing insufficiencies expose individual cells to fluctuating nutrient concentrations on a second-to-minute scale while transcriptional and translational capacities limit the microbial adaptation time from minutes to hours. This mismatch carries the risk of inadequate adaptation effects, especially considering that nutrients are available at optimal concentrations on average. Consequently, industrial bioprocesses that strive to maintain microbes in a phenotypic sweet spot, during lab-scale development, might suffer performance losses when said adaptive misconfigurations arise during scale-up. Here, we investigated the influence of fluctuating glucose availability on the gene-expression profile in the industrial yeast Ethanol Red™. The stimulus-response experiment introduced 2 min glucose depletion phases to cells growing under glucose limitation in a chemostat. Even though Ethanol Red™ displayed robust growth and productivity, a single 2 min depletion of glucose transiently triggered the environmental stress response. Furthermore, a new growth phenotype with an increased ribosome portfolio emerged after complete adaptation to recurring glucose shortages. The results of this study serve a twofold purpose. First, it highlights the necessity to consider the large-scale environment already at the experimental development stage, even when process-related stressors are moderate. Second, it allowed the deduction of strain engineering guidelines to optimize the genetic background of large-scale production hosts.
Collapse
Affiliation(s)
- Steven Minden
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Maria Aniolek
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Henk Noorman
- Royal DSM, 2613 AX Delft, The Netherlands
- Department of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
3
|
Borgström C, Persson VC, Rogova O, Osiro KO, Lundberg E, Spégel P, Gorwa-Grauslund M. Using phosphoglucose isomerase-deficient (pgi1Δ) Saccharomyces cerevisiae to map the impact of sugar phosphate levels on D-glucose and D-xylose sensing. Microb Cell Fact 2022; 21:253. [PMID: 36456947 PMCID: PMC9713995 DOI: 10.1186/s12934-022-01978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Despite decades of engineering efforts, recombinant Saccharomyces cerevisiae are still less efficient at converting D-xylose sugar to ethanol compared to the preferred sugar D-glucose. Using GFP-based biosensors reporting for the three main sugar sensing routes, we recently demonstrated that the sensing response to high concentrations of D-xylose is similar to the response seen on low concentrations of D-glucose. The formation of glycolytic intermediates was hypothesized to be a potential cause of this sensing response. In order to investigate this, glycolysis was disrupted via the deletion of the phosphoglucose isomerase gene (PGI1) while intracellular sugar phosphate levels were monitored using a targeted metabolomic approach. Furthermore, the sugar sensing of the PGI1 deletants was compared to the PGI1-wildtype strains in the presence of various types and combinations of sugars. RESULTS Metabolomic analysis revealed systemic changes in intracellular sugar phosphate levels after deletion of PGI1, with the expected accumulation of intermediates upstream of the Pgi1p reaction on D-glucose and downstream intermediates on D-xylose. Moreover, the analysis revealed a preferential formation of D-fructose-6-phosphate from D-xylose, as opposed to the accumulation of D-fructose-1,6-bisphosphate that is normally observed when PGI1 deletants are incubated on D-fructose. This may indicate a role of PFK27 in D-xylose sensing and utilization. Overall, the sensing response was different for the PGI1 deletants, and responses to sugars that enter the glycolysis upstream of Pgi1p (D-glucose and D-galactose) were more affected than the response to those entering downstream of the reaction (D-fructose and D-xylose). Furthermore, the simultaneous exposure to sugars that entered upstream and downstream of Pgi1p (D-glucose with D-fructose, or D-glucose with D-xylose) resulted in apparent synergetic activation and deactivation of the Snf3p/Rgt2p and cAMP/PKA pathways, respectively. CONCLUSIONS Overall, the sensing assays indicated that the previously observed D-xylose response stems from the formation of downstream metabolic intermediates. Furthermore, our results indicate that the metabolic node around Pgi1p and the level of D-fructose-6-phosphate could represent attractive engineering targets for improved D-xylose utilization.
Collapse
Affiliation(s)
- Celina Borgström
- grid.4514.40000 0001 0930 2361Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden ,grid.17063.330000 0001 2157 2938Present Address: BioZone Centre for Applied Bioscience and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Viktor C. Persson
- grid.4514.40000 0001 0930 2361Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Oksana Rogova
- grid.4514.40000 0001 0930 2361Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - Karen O. Osiro
- grid.4514.40000 0001 0930 2361Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden ,Present Address: Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasília, DF 70770-901 Brazil
| | - Ester Lundberg
- grid.4514.40000 0001 0930 2361Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Peter Spégel
- grid.4514.40000 0001 0930 2361Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - Marie Gorwa-Grauslund
- grid.4514.40000 0001 0930 2361Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Songdech P, Intasit R, Yingchutrakul Y, Butkinaree C, Ratanakhanokchai K, Soontorngun N. Activation of cryptic xylose metabolism by a transcriptional activator Znf1 boosts up xylitol production in the engineered Saccharomyces cerevisiae lacking xylose suppressor BUD21 gene. Microb Cell Fact 2022; 21:32. [PMID: 35248023 PMCID: PMC8897867 DOI: 10.1186/s12934-022-01757-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Xylitol is a valuable pentose sugar alcohol, used in the food and pharmaceutical industries. Biotechnological xylitol production is currently attractive due to possible conversion from abundant and low-cost industrial wastes or agricultural lignocellulosic biomass. In this study, the transcription factor Znf1 was characterised as being responsible for the activation of cryptic xylose metabolism in a poor xylose-assimilating S. cerevisiae for xylitol production.
Results
The results suggest that the expression of several xylose-utilising enzyme genes, encoding xylose reductases for the reduction of xylose to xylitol was derepressed by xylose. Their expression and those of a pentose phosphate shunt and related pathways required for xylose utilisation were strongly activated by the transcription factor Znf1. Using an engineered S. cerevisiae strain overexpressing ZNF1 in the absence of the xylose suppressor bud21Δ, xylitol production was maximally by approximately 1200% to 12.14 g/L of xylitol, corresponding to 0.23 g/g xylose consumed, during 10% (w/v) xylose fermentation. Proteomic analysis supported the role of Znf1 and Bud21 in modulating levels of proteins associated with carbon metabolism, xylose utilisation, ribosomal protein synthesis, and others. Increased tolerance to lignocellulosic inhibitors and improved cell dry weight were also observed in this engineered bud21∆ + pLJ529-ZNF1 strain. A similar xylitol yield was achieved using fungus-pretreated rice straw hydrolysate as an eco-friendly and low-cost substrate.
Conclusions
Thus, we identified the key modulators of pentose sugar metabolism, namely the transcription factor Znf1 and the suppressor Bud21, for enhanced xylose utilisation, providing a potential application of a generally recognised as safe yeast in supporting the sugar industry and the sustainable lignocellulose-based bioeconomy.
Graphical Abstract
Collapse
|
5
|
Narisetty V, Cox R, Bommareddy R, Agrawal D, Ahmad E, Pant KK, Chandel AK, Bhatia SK, Kumar D, Binod P, Gupta VK, Kumar V. Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries. SUSTAINABLE ENERGY & FUELS 2021; 6:29-65. [PMID: 35028420 PMCID: PMC8691124 DOI: 10.1039/d1se00927c] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/25/2021] [Indexed: 05/30/2023]
Abstract
Biologists and engineers are making tremendous efforts in contributing to a sustainable and green society. To that end, there is growing interest in waste management and valorisation. Lignocellulosic biomass (LCB) is the most abundant material on the earth and an inevitable waste predominantly originating from agricultural residues, forest biomass and municipal solid waste streams. LCB serves as the renewable feedstock for clean and sustainable processes and products with low carbon emission. Cellulose and hemicellulose constitute the polymeric structure of LCB, which on depolymerisation liberates oligomeric or monomeric glucose and xylose, respectively. The preferential utilization of glucose and/or absence of the xylose metabolic pathway in microbial systems cause xylose valorization to be alienated and abandoned, a major bottleneck in the commercial viability of LCB-based biorefineries. Xylose is the second most abundant sugar in LCB, but a non-conventional industrial substrate unlike glucose. The current review seeks to summarize the recent developments in the biological conversion of xylose into a myriad of sustainable products and associated challenges. The review discusses the microbiology, genetics, and biochemistry of xylose metabolism with hurdles requiring debottlenecking for efficient xylose assimilation. It further describes the product formation by microbial cell factories which can assimilate xylose naturally and rewiring of metabolic networks to ameliorate xylose-based bioproduction in native as well as non-native strains. The review also includes a case study that provides an argument on a suitable pathway for optimal cell growth and succinic acid (SA) production from xylose through elementary flux mode analysis. Finally, a product portfolio from xylose bioconversion has been evaluated along with significant developments made through enzyme, metabolic and process engineering approaches, to maximize the product titers and yield, eventually empowering LCB-based biorefineries. Towards the end, the review is wrapped up with current challenges, concluding remarks, and prospects with an argument for intense future research into xylose-based biorefineries.
Collapse
Affiliation(s)
- Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
| | - Rylan Cox
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
- School of Aerospace, Transport and Manufacturing, Cranfield University Cranfield MK43 0AL UK
| | - Rajesh Bommareddy
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne NE1 8ST UK
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum Mohkampur Dehradun 248005 India
| | - Ejaz Ahmad
- Department of Chemical Engineering, Indian Institute of Technology (ISM) Dhanbad 826004 India
| | - Kamal Kumar Pant
- Department of Chemical Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
| | - Anuj Kumar Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo Lorena 12.602.810 Brazil
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University Seoul 05029 Republic of Korea
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences Solan 173229 Himachal Pradesh India
| | - Parmeswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 Kerala India
| | | | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
- Department of Chemical Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
| |
Collapse
|
6
|
Brink DP, Borgström C, Persson VC, Ofuji Osiro K, Gorwa-Grauslund MF. D-Xylose Sensing in Saccharomyces cerevisiae: Insights from D-Glucose Signaling and Native D-Xylose Utilizers. Int J Mol Sci 2021; 22:12410. [PMID: 34830296 PMCID: PMC8625115 DOI: 10.3390/ijms222212410] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Extension of the substrate range is among one of the metabolic engineering goals for microorganisms used in biotechnological processes because it enables the use of a wide range of raw materials as substrates. One of the most prominent examples is the engineering of baker's yeast Saccharomyces cerevisiae for the utilization of d-xylose, a five-carbon sugar found in high abundance in lignocellulosic biomass and a key substrate to achieve good process economy in chemical production from renewable and non-edible plant feedstocks. Despite many excellent engineering strategies that have allowed recombinant S. cerevisiae to ferment d-xylose to ethanol at high yields, the consumption rate of d-xylose is still significantly lower than that of its preferred sugar d-glucose. In mixed d-glucose/d-xylose cultivations, d-xylose is only utilized after d-glucose depletion, which leads to prolonged process times and added costs. Due to this limitation, the response on d-xylose in the native sugar signaling pathways has emerged as a promising next-level engineering target. Here we review the current status of the knowledge of the response of S. cerevisiae signaling pathways to d-xylose. To do this, we first summarize the response of the native sensing and signaling pathways in S. cerevisiae to d-glucose (the preferred sugar of the yeast). Using the d-glucose case as a point of reference, we then proceed to discuss the known signaling response to d-xylose in S. cerevisiae and current attempts of improving the response by signaling engineering using native targets and synthetic (non-native) regulatory circuits.
Collapse
Affiliation(s)
- Daniel P. Brink
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| | - Celina Borgström
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
- BioZone Centre for Applied Bioscience and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada
| | - Viktor C. Persson
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| | - Karen Ofuji Osiro
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasília 70770-901, DF, Brazil
| | - Marie F. Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| |
Collapse
|
7
|
Brandenburg J, Blomqvist J, Shapaval V, Kohler A, Sampels S, Sandgren M, Passoth V. Oleaginous yeasts respond differently to carbon sources present in lignocellulose hydrolysate. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:124. [PMID: 34051838 PMCID: PMC8164748 DOI: 10.1186/s13068-021-01974-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/17/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Microbial oils, generated from lignocellulosic material, have great potential as renewable and sustainable alternatives to fossil-based fuels and chemicals. By unravelling the diversity of lipid accumulation physiology in different oleaginous yeasts grown on the various carbon sources present in lignocellulose hydrolysate (LH), new targets for optimisation of lipid accumulation can be identified. Monitoring lipid formation over time is essential for understanding lipid accumulation physiology. This study investigated lipid accumulation in a variety of oleaginous ascomycetous and basidiomycetous strains grown in glucose and xylose and followed lipid formation kinetics of selected strains in wheat straw hydrolysate (WSH). RESULTS Twenty-nine oleaginous yeast strains were tested for their ability to utilise glucose and xylose, the main sugars present in WSH. Evaluation of sugar consumption and lipid accumulation revealed marked differences in xylose utilisation capacity between the yeast strains, even between those belonging to the same species. Five different promising strains, belonging to the species Lipomyces starkeyi, Rhodotorula glutinis, Rhodotorula babjevae and Rhodotorula toruloides, were grown on undiluted wheat straw hydrolysate and lipid accumulation was followed over time, using Fourier transform-infrared (FTIR) spectroscopy. All five strains were able to grow on undiluted WSH and to accumulate lipids, but to different extents and with different productivities. R. babjevae DVBPG 8058 was the best-performing strain, accumulating 64.8% of cell dry weight (CDW) as lipids. It reached a culture density of 28 g/L CDW in batch cultivation, resulting in a lipid content of 18.1 g/L and yield of 0.24 g lipids per g carbon source. This strain formed lipids from the major carbon sources in hydrolysate, glucose, acetate and xylose. R. glutinis CBS 2367 also consumed these carbon sources, but when assimilating xylose it consumed intracellular lipids simultaneously. Rhodotorula strains contained a higher proportion of polyunsaturated fatty acids than the two tested Lipomyces starkeyi strains. CONCLUSIONS There is considerable metabolic diversity among oleaginous yeasts, even between closely related species and strains, especially when converting xylose to biomass and lipids. Monitoring the kinetics of lipid accumulation and identifying the molecular basis of this diversity are keys to selecting suitable strains for high lipid production from lignocellulose.
Collapse
Affiliation(s)
- Jule Brandenburg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7015, 75007, Uppsala, Sweden
| | - Johanna Blomqvist
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7015, 75007, Uppsala, Sweden
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Sabine Sampels
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7015, 75007, Uppsala, Sweden
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7015, 75007, Uppsala, Sweden
| | - Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7015, 75007, Uppsala, Sweden.
| |
Collapse
|
8
|
Mesquita TJB, Campani G, Giordano RC, Zangirolami TC, Horta ACL. Machine learning applied for metabolic flux-based control of micro-aerated fermentations in bioreactors. Biotechnol Bioeng 2021; 118:2076-2091. [PMID: 33615444 DOI: 10.1002/bit.27721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/11/2021] [Accepted: 02/18/2021] [Indexed: 12/22/2022]
Abstract
Various bio-based processes depend on controlled micro-aerobic conditions to achieve a satisfactory product yield. However, the limiting oxygen concentration varies according to the micro-organism employed, while for industrial applications, there is no cost-effective way of measuring it at low levels. This study proposes a machine learning procedure within a metabolic flux-based control strategy (SUPERSYS_MCU) to address this issue. The control strategy used simulations of a genome-scale metabolic model to generate a surrogate model in the form of an artificial neural network, to be used in a micro-aerobic fermentation strategy (MF-ANN). The meta-model provided setpoints to the controller, allowing adjustment of the inlet air flow to control the oxygen uptake rate. The strategy was evaluated in micro-aerobic batch cultures employing industrial Saccharomyces cerevisiae yeast, with defined medium and glucose as the carbon source, as a case study. The performance of the proposed control scheme was compared with a conventional fermentation and with three previously reported micro-aeration strategies, including respiratory quotient-based control and constant air flow rate. Due to maintenance of the oxidative balance at the anaerobiosis threshold, the MF-ANN provided volumetric ethanol productivity of 4.16 g·L-1 ·h-1 and a yield of 0.48 gethanol .gsubstrate -1 , which were higher than the values achieved for the other conditions studied (maximum of 3.4 g·L-1 ·h-1 and 0.35-0.40 gethanol ·gsubstrate -1 , respectively). Due to its modular character, the MF-ANN strategy could be adapted to other micro-aerated bioprocesses.
Collapse
Affiliation(s)
- Thiago J B Mesquita
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), São Carlos, São Paulo, Brazil
| | - Gilson Campani
- Department of Engineering, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Roberto C Giordano
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), São Carlos, São Paulo, Brazil
| | - Teresa C Zangirolami
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), São Carlos, São Paulo, Brazil
| | - Antonio C L Horta
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), São Carlos, São Paulo, Brazil
| |
Collapse
|
9
|
Buchweitz LF, Yurkovich JT, Blessing C, Kohler V, Schwarzkopf F, King ZA, Yang L, Jóhannsson F, Sigurjónsson ÓE, Rolfsson Ó, Heinrich J, Dräger A. Visualizing metabolic network dynamics through time-series metabolomic data. BMC Bioinformatics 2020; 21:130. [PMID: 32245365 PMCID: PMC7119163 DOI: 10.1186/s12859-020-3415-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 02/12/2020] [Indexed: 11/23/2022] Open
Abstract
Background New technologies have given rise to an abundance of -omics data, particularly metabolomic data. The scale of these data introduces new challenges for the interpretation and extraction of knowledge, requiring the development of innovative computational visualization methodologies. Here, we present GEM-Vis, an original method for the visualization of time-course metabolomic data within the context of metabolic network maps. We demonstrate the utility of the GEM-Vis method by examining previously published data for two cellular systems—the human platelet and erythrocyte under cold storage for use in transfusion medicine. Results The results comprise two animated videos that allow for new insights into the metabolic state of both cell types. In the case study of the platelet metabolome during storage, the new visualization technique elucidates a nicotinamide accumulation that mirrors that of hypoxanthine and might, therefore, reflect similar pathway usage. This visual analysis provides a possible explanation for why the salvage reactions in purine metabolism exhibit lower activity during the first few days of the storage period. The second case study displays drastic changes in specific erythrocyte metabolite pools at different times during storage at different temperatures. Conclusions The new visualization technique GEM-Vis introduced in this article constitutes a well-suitable approach for large-scale network exploration and advances hypothesis generation. This method can be applied to any system with data and a metabolic map to promote visualization and understand physiology at the network level. More broadly, we hope that our approach will provide the blueprints for new visualizations of other longitudinal -omics data types. The supplement includes a comprehensive user’s guide and links to a series of tutorial videos that explain how to prepare model and data files, and how to use the software SBMLsimulator in combination with further tools to create similar animations as highlighted in the case studies.
Collapse
Affiliation(s)
- Lea F Buchweitz
- Computational Systems Biology of Infection and Antimicrobial-Resistant Pathogens, Institute for Biomedical Informatics (IBMI), Sand 14, Tübingen, 72076, Germany
| | - James T Yurkovich
- Institute for Systems Biology, 401 Terry Ave. N., Seattle, 98109, WA, United States
| | - Christoph Blessing
- Computational Systems Biology of Infection and Antimicrobial-Resistant Pathogens, Institute for Biomedical Informatics (IBMI), Sand 14, Tübingen, 72076, Germany.,Department of Computer Science, University of Tübingen, Sand 14, Tübingen, 72076, Germany
| | - Veronika Kohler
- Computational Systems Biology of Infection and Antimicrobial-Resistant Pathogens, Institute for Biomedical Informatics (IBMI), Sand 14, Tübingen, 72076, Germany.,Department of Computer Science, University of Tübingen, Sand 14, Tübingen, 72076, Germany
| | | | - Zachary A King
- Systems Biology Research Group, Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, Kgs.Lyngby, 2800, Denmark
| | - Laurence Yang
- Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Freyr Jóhannsson
- Center for Systems Biology, University of Iceland, Sturlugata 8, Reykjavík, 101, Iceland
| | - Ólafur E Sigurjónsson
- The Blood Bank, Landspítali-University Hospital, Reykjavík, 101, Iceland.,School of Science and Engineering, Reykjavík University, Menntavegi 1, Reykjavík, 101, Iceland
| | - Óttar Rolfsson
- Center for Systems Biology, University of Iceland, Sturlugata 8, Reykjavík, 101, Iceland
| | - Julian Heinrich
- Department of Computer Science, University of Tübingen, Sand 14, Tübingen, 72076, Germany
| | - Andreas Dräger
- Computational Systems Biology of Infection and Antimicrobial-Resistant Pathogens, Institute for Biomedical Informatics (IBMI), Sand 14, Tübingen, 72076, Germany. .,Department of Computer Science, University of Tübingen, Sand 14, Tübingen, 72076, Germany. .,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, 72076, Germany.
| |
Collapse
|
10
|
Mesquita TJB, Sargo CR, Fuzer JR, Paredes SAH, Giordano RDC, Horta ACL, Zangirolami TC. Metabolic fluxes-oriented control of bioreactors: a novel approach to tune micro-aeration and substrate feeding in fermentations. Microb Cell Fact 2019; 18:150. [PMID: 31484570 PMCID: PMC6724378 DOI: 10.1186/s12934-019-1198-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 08/25/2019] [Indexed: 01/24/2023] Open
Abstract
Background Fine-tuning the aeration for cultivations when oxygen-limited conditions are demanded (such as the production of vaccines, isobutanol, 2–3 butanediol, acetone, and bioethanol) is still a challenge in the area of bioreactor automation and advanced control. In this work, an innovative control strategy based on metabolic fluxes was implemented and evaluated in a case study: micro-aerated ethanol fermentation. Results The experiments were carried out in fed-batch mode, using commercial Saccharomyces cerevisiae, defined medium, and glucose as carbon source. Simulations of a genome-scale metabolic model for Saccharomyces cerevisiae were used to identify the range of oxygen and substrate fluxes that would maximize ethanol fluxes. Oxygen supply and feed flow rate were manipulated to control oxygen and substrate fluxes, as well as the respiratory quotient (RQ). The performance of the controlled cultivation was compared to two other fermentation strategies: a conventional “Brazilian fuel-ethanol plant” fermentation and a strictly anaerobic fermentation (with ultra-pure nitrogen used as the inlet gas). The cultivation carried out under the proposed control strategy showed the best average volumetric ethanol productivity (7.0 g L−1 h−1), with a final ethanol concentration of 87 g L−1 and yield of 0.46 gethanol gsubstrate−1. The other fermentation strategies showed lower yields (close to 0.40 gethanol gsubstrate−1) and ethanol productivity around 4.0 g L−1 h−1. Conclusion The control system based on fluxes was successfully implemented. The proposed approach could also be adapted to control several bioprocesses that require restrict aeration.
Collapse
Affiliation(s)
- Thiago José Barbosa Mesquita
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Cíntia Regina Sargo
- Graduate Program of Chemical Engineering-Institute of Chemistry, Federal University of Goiás (PPGEQ/IQ-UFG), Avenida Esperança, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
| | - José Roberto Fuzer
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Sheyla Alexandra Hidalgo Paredes
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Roberto de Campos Giordano
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Antonio Carlos Luperni Horta
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Teresa Cristina Zangirolami
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
11
|
Veras HCT, Campos CG, Nascimento IF, Abdelnur PV, Almeida JRM, Parachin NS. Metabolic flux analysis for metabolome data validation of naturally xylose-fermenting yeasts. BMC Biotechnol 2019; 19:58. [PMID: 31382948 PMCID: PMC6683545 DOI: 10.1186/s12896-019-0548-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/19/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Efficient xylose fermentation still demands knowledge regarding xylose catabolism. In this study, metabolic flux analysis (MFA) and metabolomics were used to improve our understanding of xylose metabolism. Thus, a stoichiometric model was constructed to simulate the intracellular carbon flux and used to validate the metabolome data collected within xylose catabolic pathways of non-Saccharomyces xylose utilizing yeasts. RESULTS A metabolic flux model was constructed using xylose fermentation data from yeasts Scheffersomyces stipitis, Spathaspora arborariae, and Spathaspora passalidarum. In total, 39 intracellular metabolic reactions rates were utilized validating the measurements of 11 intracellular metabolites, acquired by mass spectrometry. Among them, 80% of total metabolites were confirmed with a correlation above 90% when compared to the stoichiometric model. Among the intracellular metabolites, fructose-6-phosphate, glucose-6-phosphate, ribulose-5-phosphate, and malate are validated in the three studied yeasts. However, the metabolites phosphoenolpyruvate and pyruvate could not be confirmed in any yeast. Finally, the three yeasts had the metabolic fluxes from xylose to ethanol compared. Xylose catabolism occurs at twice-higher flux rates in S. stipitis than S. passalidarum and S. arborariae. Besides, S. passalidarum present 1.5 times high flux rate in the xylose reductase reaction NADH-dependent than other two yeasts. CONCLUSIONS This study demonstrated a novel strategy for metabolome data validation and brought insights about naturally xylose-fermenting yeasts. S. stipitis and S. passalidarum showed respectively three and twice higher flux rates of XR with NADH cofactor, reducing the xylitol production when compared to S. arborariae. Besides then, the higher flux rates directed to pentose phosphate pathway (PPP) and glycolysis pathways resulted in better ethanol production in S. stipitis and S. passalidarum when compared to S. arborariae.
Collapse
Affiliation(s)
- Henrique C. T. Veras
- Grupo Engenharia de Biocatalisadores, Universidade de Brasília - UnB , Campus Darcy Ribeiro, Instituto de Ciências Biológicas, Bloco K, 1° andar, Asa Norte, Brasilia, 70.790-900 Brazil
- Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA Agroenergia, Brasília-DF, Brazil
| | - Christiane G. Campos
- Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA Agroenergia, Brasília-DF, Brazil
- Instituto de Química, Universidade Federal de Goiás - UFG, Goiânia, Brazil
| | - Igor F. Nascimento
- Programa de Pós-Graduação em Administração, Universidade de Brasília - UnB, Brasília, Brazil
| | - Patrícia V. Abdelnur
- Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA Agroenergia, Brasília-DF, Brazil
- Instituto de Química, Universidade Federal de Goiás - UFG, Goiânia, Brazil
| | - João R. M. Almeida
- Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA Agroenergia, Brasília-DF, Brazil
- Programa de Pós-Graduação em Biologia Microbiana, Instituto de Biologia, Universidade de Brasília - UnB, Brasilia, Brazil
| | - Nádia S. Parachin
- Grupo Engenharia de Biocatalisadores, Universidade de Brasília - UnB , Campus Darcy Ribeiro, Instituto de Ciências Biológicas, Bloco K, 1° andar, Asa Norte, Brasilia, 70.790-900 Brazil
- Programa de Pós-Graduação em Biologia Microbiana, Instituto de Biologia, Universidade de Brasília - UnB, Brasilia, Brazil
| |
Collapse
|
12
|
Bracher JM, Martinez-Rodriguez OA, Dekker WJC, Verhoeven MD, van Maris AJA, Pronk JT. Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains. FEMS Yeast Res 2019; 19:5106349. [PMID: 30252062 PMCID: PMC6240133 DOI: 10.1093/femsyr/foy104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/21/2018] [Indexed: 01/03/2023] Open
Abstract
Expression of a heterologous xylose isomerase, deletion of the GRE3 aldose-reductase gene and overexpression of genes encoding xylulokinase (XKS1) and non-oxidative pentose-phosphate-pathway enzymes (RKI1, RPE1, TAL1, TKL1) enables aerobic growth of Saccharomyces cerevisiae on d-xylose. However, literature reports differ on whether anaerobic growth on d-xylose requires additional mutations. Here, CRISPR-Cas9-assisted reconstruction and physiological analysis confirmed an early report that this basic set of genetic modifications suffices to enable anaerobic growth on d-xylose in the CEN.PK genetic background. Strains that additionally carried overexpression cassettes for the transaldolase and transketolase paralogs NQM1 and TKL2 only exhibited anaerobic growth on d-xylose after a 7–10 day lag phase. This extended lag phase was eliminated by increasing inoculum concentrations from 0.02 to 0.2 g biomass L−1. Alternatively, a long lag phase could be prevented by sparging low-inoculum-density bioreactor cultures with a CO2/N2-mixture, thus mimicking initial CO2 concentrations in high-inoculum-density, nitrogen-sparged cultures, or by using l-aspartate instead of ammonium as nitrogen source. This study resolves apparent contradictions in the literature on the genetic interventions required for anaerobic growth of CEN.PK-derived strains on d-xylose. Additionally, it indicates the potential relevance of CO2 availability and anaplerotic carboxylation reactions for anaerobic growth of engineered S. cerevisiae strains on d-xylose.
Collapse
Affiliation(s)
- Jasmine M Bracher
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | | | - Wijb J C Dekker
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Maarten D Verhoeven
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Antonius J A van Maris
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE 106 91, Stockholm, Sweden
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
13
|
Li YC, Xie CY, Yang BX, Tang YQ, Wu B, Sun ZY, Gou M, Xia ZY. Comparative Transcriptome Analysis of Recombinant Industrial Saccharomyces cerevisiae Strains with Different Xylose Utilization Pathways. Appl Biochem Biotechnol 2019; 189:1007-1019. [DOI: 10.1007/s12010-019-03060-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/22/2019] [Indexed: 01/03/2023]
|
14
|
Osiro KO, Borgström C, Brink DP, Fjölnisdóttir BL, Gorwa-Grauslund MF. Exploring the xylose paradox in Saccharomyces cerevisiae through in vivo sugar signalomics of targeted deletants. Microb Cell Fact 2019; 18:88. [PMID: 31122246 PMCID: PMC6532234 DOI: 10.1186/s12934-019-1141-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 05/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There have been many successful strategies to implement xylose metabolism in Saccharomyces cerevisiae, but no effort has so far enabled xylose utilization at rates comparable to that of glucose (the preferred sugar of this yeast). Many studies have pointed towards the engineered yeast not sensing that xylose is a fermentable carbon source despite growing and fermenting on it, which is paradoxical. We have previously used fluorescent biosensor strains to in vivo monitor the sugar signalome in yeast engineered with xylose reductase and xylitol dehydrogenase (XR/XDH) and have established that S. cerevisiae senses high concentrations of xylose with the same signal as low concentration of glucose, which may explain the poor utilization. RESULTS In the present study, we evaluated the effects of three deletions (ira2∆, isu1∆ and hog1∆) that have recently been shown to display epistatic effects on a xylose isomerase (XI) strain. Through aerobic and anaerobic characterization, we showed that the proposed effects in XI strains were for the most part also applicable in the XR/XDH background. The ira2∆isu1∆ double deletion led to strains with the highest specific xylose consumption- and ethanol production rates but also the lowest biomass titre. The signalling response revealed that ira2∆isu1∆ changed the low glucose-signal in the background strain to a simultaneous signalling of high and low glucose, suggesting that engineering of the signalome can improve xylose utilization. CONCLUSIONS The study was able to correlate the previously proposed beneficial effects of ira2∆, isu1∆ and hog1∆ on S. cerevisiae xylose uptake, with a change in the sugar signalome. This is in line with our previous hypothesis that the key to resolve the xylose paradox lies in the sugar sensing and signalling networks. These results indicate that the future engineering targets for improved xylose utilization should probably be sought not in the metabolic networks, but in the signalling ones.
Collapse
Affiliation(s)
- Karen O Osiro
- Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Celina Borgström
- Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Daniel P Brink
- Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | | | | |
Collapse
|
15
|
Determination of the Global Pattern of Gene Expression in Yeast Cells by Intracellular Levels of Guanine Nucleotides. mBio 2019; 10:mBio.02500-18. [PMID: 30670615 PMCID: PMC6343037 DOI: 10.1128/mbio.02500-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This paper investigates whether, independently of the supply of any specific nutrient, gene transcription responds to the energy status of the cell by monitoring ATP and GTP levels. Short pathways for the inducible and futile consumption of ATP or GTP were engineered into the yeast Saccharomyces cerevisiae, and the effect of an increased demand for these purine nucleotides on gene transcription was analyzed. The resulting changes in transcription were most consistently associated with changes in GTP and GEC levels, although the reprogramming in gene expression during glucose repression is sensitive to adenine nucleotide levels. The results show that GTP levels play a central role in determining how genes act to respond to changes in energy supply and that any comprehensive understanding of the control of eukaryotic gene expression requires the elucidation of how changes in guanine nucleotide abundance are sensed and transduced to alter the global pattern of transcription. Correlations between gene transcription and the abundance of high-energy purine nucleotides in Saccharomyces cerevisiae have often been noted. However, there has been no systematic investigation of this phenomenon in the absence of confounding factors such as nutrient status and growth rate, and there is little hard evidence for a causal relationship. Whether transcription is fundamentally responsive to prevailing cellular energetic conditions via sensing of intracellular purine nucleotides, independently of specific nutrition, remains an important question. The controlled nutritional environment of chemostat culture revealed a strong correlation between ATP and GTP abundance and the transcription of genes required for growth. Short pathways for the inducible and futile consumption of ATP or GTP were engineered into S. cerevisiae, permitting analysis of the transcriptional effect of an increased demand for these nucleotides. During steady-state growth using the fermentable carbon source glucose, the futile consumption of ATP led to a decrease in intracellular ATP concentration but an increase in GTP and the guanylate energy charge (GEC). Expression of transcripts encoding proteins involved in ribosome biogenesis, and those controlled by promoters subject to SWI/SNF-dependent chromatin remodelling, was correlated with these nucleotide pool changes. Similar nucleotide abundance changes were observed using a nonfermentable carbon source, but an effect on the growth-associated transcriptional programme was absent. Induction of the GTP-cycling pathway had only marginal effects on nucleotide abundance and gene transcription. The transcriptional response of respiring cells to glucose was dampened in chemostats induced for ATP cycling, but not GTP cycling, and this was primarily associated with altered adenine nucleotide levels.
Collapse
|
16
|
Production of biofuels and chemicals from xylose using native and engineered yeast strains. Biotechnol Adv 2018; 37:271-283. [PMID: 30553928 DOI: 10.1016/j.biotechadv.2018.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/13/2018] [Accepted: 12/12/2018] [Indexed: 11/20/2022]
Abstract
Numerous metabolic engineering strategies have allowed yeasts to efficiently assimilate xylose, the second most abundant sugar component of lignocellulosic biomass. During the investigation of xylose utilization by yeasts, a global rewiring of metabolic networks upon xylose cultivation has been captured, as opposed to a pattern of glucose repression. A clear understanding of the xylose-induced metabolic reprogramming in yeast would shed light on the optimization of yeast-based bioprocesses to produce biofuels and chemicals using xylose. In this review, we delved into the characteristics of yeast xylose metabolism, and potential benefits of using xylose as a carbon source to produce various biochemicals with examples. Transcriptomic and metabolomic patterns of xylose-grown yeast cells were distinct from those on glucose-a conventional sugar of industrial biotechnology-and the gap might lead to opportunities to produce biochemicals efficiently. Indeed, limited glycolytic metabolic fluxes during xylose utilization could result in enhanced production of metabolites whose biosynthetic pathways compete for precursors with ethanol fermentation. Also, alleviation of glucose repression on cytosolic acetyl coenzyme A (acetyl-CoA) synthesis, and respiratory energy metabolism during xylose utilization enhanced production of acetyl-CoA derivatives. Consideration of singular properties of xylose metabolism, such as redox cofactor imbalance between xylose reductase and xylitol dehydrogenase, is necessary to maximize these positive xylose effects. This review argues the importance and benefits of xylose utilization as not only a way of expanding a substrate range, but also an effective environmental perturbation for the efficient production of advanced biofuels and chemicals in yeasts.
Collapse
|
17
|
Yurkovich JT, Palsson BO. Quantitative -omic data empowers bottom-up systems biology. Curr Opin Biotechnol 2018; 51:130-136. [DOI: 10.1016/j.copbio.2018.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/24/2022]
|
18
|
Wei S, Liu Y, Wu M, Ma T, Bai X, Hou J, Shen Y, Bao X. Disruption of the transcription factors Thi2p and Nrm1p alleviates the post-glucose effect on xylose utilization in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:112. [PMID: 29686730 PMCID: PMC5901872 DOI: 10.1186/s13068-018-1112-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/06/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND The recombinant Saccharomyces cerevisiae strains that acquired the ability to utilize xylose through metabolic and evolutionary engineering exhibit good performance when xylose is the sole carbon source in the medium (designated the X stage in the present work). However, the xylose consumption rate of strains is generally low after glucose depletion during glucose-xylose co-fermentation, despite the presence of xylose in the medium (designated the GX stage in the present work). Glucose fermentation appears to reduce the capacity of these strains to "recognize" xylose during the GX stage, a phenomenon termed the post-glucose effect on xylose metabolism. RESULTS Two independent xylose-fermenting S. cerevisiae strains derived from a haploid laboratory strain and a diploid industrial strain were used in the present study. Their common characteristics were investigated to reveal the mechanism underlying the post-glucose effect and to develop methods to alleviate this effect. Both strains showed lower growth and specific xylose consumption rates during the GX stage than during the X stage. Glycolysis, the pentose phosphate pathway, and translation-related gene expression were reduced; meanwhile, genes in the tricarboxylic acid cycle and glyoxylic acid cycle demonstrated higher expression during the GX stage than during the X stage. The effects of 11 transcription factors (TFs) whose expression levels significantly differed between the GX and X stages in both strains were investigated. Knockout of THI2 promoted ribosome synthesis, and the growth rate, specific xylose utilization rate, and specific ethanol production rate of the strain increased by 17.4, 26.8, and 32.4%, respectively, in the GX stage. Overexpression of the ribosome-related genes RPL9A, RPL7B, and RPL7A also enhanced xylose utilization in a corresponding manner. Furthermore, the overexpression of NRM1, which is related to the cell cycle, increased the growth rate by 8.7%, the xylose utilization rate by 30.0%, and the ethanol production rate by 76.6%. CONCLUSIONS The TFs Thi2p and Nrm1p exerted unexpected effects on the post-glucose effect, enhancing ribosome synthesis and altering the cell cycle, respectively. The results of this study will aid in maintaining highly efficient xylose metabolism during glucose-xylose co-fermentation, which is utilized for lignocellulosic bioethanol production.
Collapse
Affiliation(s)
- Shan Wei
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
- School of Life Science, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
| | - Yanan Liu
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
- School of Life Science, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
| | - Meiling Wu
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
- School of Life Science, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
| | - Tiantai Ma
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
- School of Life Science, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
| | - Xiangzheng Bai
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
- School of Life Science, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
- School of Life Science, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
- School of Life Science, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
- School of Life Science, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
- Shandong Provincial Key Laboratory of Microbial Engineering, Qi Lu University of Technology, Daxue Rd 3501, Jinan, 250353 China
| |
Collapse
|
19
|
Osiro KO, Brink DP, Borgström C, Wasserstrom L, Carlquist M, Gorwa-Grauslund MF. Assessing the effect of d-xylose on the sugar signaling pathways of Saccharomyces cerevisiae in strains engineered for xylose transport and assimilation. FEMS Yeast Res 2018; 18:4791530. [DOI: 10.1093/femsyr/fox096] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/27/2017] [Indexed: 01/18/2023] Open
Affiliation(s)
- Karen O Osiro
- Applied Microbiology, Department of Chemistry, Lund University, Kemicentrum, Naturvetarvägen 14, Lund 223 62, Sweden
| | - Daniel P Brink
- Applied Microbiology, Department of Chemistry, Lund University, Kemicentrum, Naturvetarvägen 14, Lund 223 62, Sweden
| | - Celina Borgström
- Applied Microbiology, Department of Chemistry, Lund University, Kemicentrum, Naturvetarvägen 14, Lund 223 62, Sweden
| | - Lisa Wasserstrom
- Applied Microbiology, Department of Chemistry, Lund University, Kemicentrum, Naturvetarvägen 14, Lund 223 62, Sweden
| | - Magnus Carlquist
- Applied Microbiology, Department of Chemistry, Lund University, Kemicentrum, Naturvetarvägen 14, Lund 223 62, Sweden
| | | |
Collapse
|
20
|
Campos CG, Veras HCT, de Aquino Ribeiro JA, Costa PPKG, Araújo KP, Rodrigues CM, de Almeida JRM, Abdelnur PV. New Protocol Based on UHPLC-MS/MS for Quantitation of Metabolites in Xylose-Fermenting Yeasts. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2646-2657. [PMID: 28879550 DOI: 10.1007/s13361-017-1786-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Xylose fermentation is a bottleneck in second-generation ethanol production. As such, a comprehensive understanding of xylose metabolism in naturally xylose-fermenting yeasts is essential for prospection and construction of recombinant yeast strains. The objective of the current study was to establish a reliable metabolomics protocol for quantification of key metabolites of xylose catabolism pathways in yeast, and to apply this protocol to Spathaspora arborariae. Ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) was used to quantify metabolites, and afterwards, sample preparation was optimized to examine yeast intracellular metabolites. S. arborariae was cultivated using xylose as a carbon source under aerobic and oxygen-limited conditions. Ion pair chromatography (IPC) and hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) were shown to efficiently quantify 14 and 5 metabolites, respectively, in a more rapid chromatographic protocol than previously described. Thirteen and eleven metabolites were quantified in S. arborariae under aerobic and oxygen-limited conditions, respectively. This targeted metabolomics protocol is shown here to quantify a total of 19 metabolites, including sugars, phosphates, coenzymes, monosaccharides, and alcohols, from xylose catabolism pathways (glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle) in yeast. Furthermore, to our knowledge, this is the first time that intracellular metabolites have been quantified in S. arborariae after xylose consumption. The results indicated that fine control of oxygen levels during fermentation is necessary to optimize ethanol production by S. arborariae. The protocol presented here may be applied to other yeast species and could support yeast genetic engineering to improve second generation ethanol production. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Christiane Gonçalves Campos
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, W3 Norte, PqEB, Brasília, DF, 70770-901, Brazil
- Chemistry Institute, Federal University of Goiás, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Henrique César Teixeira Veras
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, W3 Norte, PqEB, Brasília, DF, 70770-901, Brazil
- Postgraduate Program in Molecular Biology, Department of Cellular Biology, University of Brasília, Campus Darcy Ribeiro, Brasília, DF, Brazil
| | | | | | - Katiúscia Pereira Araújo
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, W3 Norte, PqEB, Brasília, DF, 70770-901, Brazil
| | - Clenilson Martins Rodrigues
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, W3 Norte, PqEB, Brasília, DF, 70770-901, Brazil
| | - João Ricardo Moreira de Almeida
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, W3 Norte, PqEB, Brasília, DF, 70770-901, Brazil
- Postgraduate Program in Chemical and Biological Technologies, Institute of Chemistry, University of Brasília, Campus Darcy Ribeiro, Brasília, DF, Brazil
| | - Patrícia Verardi Abdelnur
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, W3 Norte, PqEB, Brasília, DF, 70770-901, Brazil.
- Chemistry Institute, Federal University of Goiás, Campus Samambaia, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
21
|
Mert MJ, Rose SH, la Grange DC, Bamba T, Hasunuma T, Kondo A, van Zyl WH. Quantitative metabolomics of a xylose-utilizing Saccharomyces cerevisiae strain expressing the Bacteroides thetaiotaomicron xylose isomerase on glucose and xylose. J Ind Microbiol Biotechnol 2017; 44:1459-1470. [PMID: 28744577 DOI: 10.1007/s10295-017-1969-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/18/2017] [Indexed: 11/26/2022]
Abstract
The yeast Saccharomyces cerevisiae cannot utilize xylose, but the introduction of a xylose isomerase that functions well in yeast will help overcome the limitations of the fungal oxido-reductive pathway. In this study, a diploid S. cerevisiae S288c[2n YMX12] strain was constructed expressing the Bacteroides thetaiotaomicron xylA (XI) and the Scheffersomyces stipitis xyl3 (XK) and the changes in the metabolite pools monitored over time. Cultivation on xylose generally resulted in gradual changes in metabolite pool size over time, whereas more dramatic fluctuations were observed with cultivation on glucose due to the diauxic growth pattern. The low G6P and F1,6P levels observed with cultivation on xylose resulted in the incomplete activation of the Crabtree effect, whereas the high PEP levels is indicative of carbon starvation. The high UDP-D-glucose levels with cultivation on xylose indicated that the carbon was channeled toward biomass production. The adenylate and guanylate energy charges were tightly regulated by the cultures, while the catabolic and anabolic reduction charges fluctuated between metabolic states. This study helped elucidate the metabolite distribution that takes place under Crabtree-positive and Crabtree-negative conditions when cultivating S. cerevisiae on glucose and xylose, respectively.
Collapse
Affiliation(s)
- M J Mert
- Unit for Environmental Sciences and Management: Microbiology, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - S H Rose
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - D C la Grange
- Unit for Environmental Sciences and Management: Microbiology, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - T Bamba
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan
| | - T Hasunuma
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan
| | - A Kondo
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan
| | - W H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
22
|
van Niel EWJ, Bergdahl B, Hahn-Hägerdal B. Close to the Edge: Growth Restrained by the NAD(P)H/ATP Formation Flux Ratio. Front Microbiol 2017; 8:1149. [PMID: 28690597 PMCID: PMC5479917 DOI: 10.3389/fmicb.2017.01149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/07/2017] [Indexed: 11/13/2022] Open
Abstract
Most fermentative microorganisms grow well-under anaerobic conditions managing a balanced redox and appropriate energy metabolism, but a few species do exist in which cells have to cope with inadequate energy recovery or capture and/or redox balancing. Two cases of these species, i.e., the metabolically engineered Saccharomyces cerevisiae enabling it to ferment xylose and Lactobacillus reuteri fermenting glucose via the phosphoketolase pathway, are here used to introduce a quantification parameter to capture what limits the growth rate of these microorganisms under anaerobic conditions. This dimensionless parameter, the cofactor formation flux ratio (RJ), is the ratio between the redox formation flux (JNADH+NADPH), and the energy carrier formation flux (JATP), which are mainly connected to the central carbon pathways. Data from metabolic flux analyses performed in previous and present studies were used to estimate the RJ-values. Even though both microorganisms possess different central pathways, a similar relationship between RJ and the specific growth rate (μ) was found. Furthermore, for both microorganisms external electron acceptors moderately reduced the RJ-value, thereby raising the μ accordingly. Based on the emerging profile of this relationship an interpretation is presented suggesting that this quantitative analysis can be applied beyond the two microbial species experimentally investigated in the current study to provide data for future targeted strain development strategies.
Collapse
Affiliation(s)
- Ed W J van Niel
- Division of Applied Microbiology, Lund UniversityLund, Sweden
| | - Basti Bergdahl
- Division of Applied Microbiology, Lund UniversityLund, Sweden
| | | |
Collapse
|
23
|
Hou J, Qiu C, Shen Y, Li H, Bao X. Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose. FEMS Yeast Res 2017; 17:3861258. [DOI: 10.1093/femsyr/fox034] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/02/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jin Hou
- State Key Laboratory of Microbial Technology, The School of Life Science, Shandong University, Jinan, 250100, China
| | - Chenxi Qiu
- State Key Laboratory of Microbial Technology, The School of Life Science, Shandong University, Jinan, 250100, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, The School of Life Science, Shandong University, Jinan, 250100, China
| | - Hongxing Li
- State Key Laboratory of Microbial Technology, The School of Life Science, Shandong University, Jinan, 250100, China
- Shandong Provincial Key Laboratory of Microbial Engineering, Qi Lu University of Technology, Jinan, 250353, China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, The School of Life Science, Shandong University, Jinan, 250100, China
- Shandong Provincial Key Laboratory of Microbial Engineering, Qi Lu University of Technology, Jinan, 250353, China
| |
Collapse
|
24
|
Bordbar A, Yurkovich JT, Paglia G, Rolfsson O, Sigurjónsson ÓE, Palsson BO. Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics. Sci Rep 2017; 7:46249. [PMID: 28387366 PMCID: PMC5384226 DOI: 10.1038/srep46249] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
The increasing availability of metabolomics data necessitates novel methods for deeper data analysis and interpretation. We present a flux balance analysis method that allows for the computation of dynamic intracellular metabolic changes at the cellular scale through integration of time-course absolute quantitative metabolomics. This approach, termed "unsteady-state flux balance analysis" (uFBA), is applied to four cellular systems: three dynamic and one steady-state as a negative control. uFBA and FBA predictions are contrasted, and uFBA is found to be more accurate in predicting dynamic metabolic flux states for red blood cells, platelets, and Saccharomyces cerevisiae. Notably, only uFBA predicts that stored red blood cells metabolize TCA intermediates to regenerate important cofactors, such as ATP, NADH, and NADPH. These pathway usage predictions were subsequently validated through 13C isotopic labeling and metabolic flux analysis in stored red blood cells. Utilizing time-course metabolomics data, uFBA provides an accurate method to predict metabolic physiology at the cellular scale for dynamic systems.
Collapse
Affiliation(s)
| | - James T Yurkovich
- Bioengineering Department, University of California, San Diego, La Jolla, CA, USA.,Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Giuseppe Paglia
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| | - Ottar Rolfsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| | - Ólafur E Sigurjónsson
- Blood Bank, Landspitali-University Hospital, Reykjavik, Iceland.,School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | - Bernhard O Palsson
- Bioengineering Department, University of California, San Diego, La Jolla, CA, USA.,Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA.,Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.,Novo Nordisk Foundation Center for Biosustainability, The Technical University of Denmark, Hørsholm, Denmark
| |
Collapse
|
25
|
Brink DP, Borgström C, Tueros FG, Gorwa-Grauslund MF. Real-time monitoring of the sugar sensing in Saccharomyces cerevisiae indicates endogenous mechanisms for xylose signaling. Microb Cell Fact 2016; 15:183. [PMID: 27776527 PMCID: PMC5078928 DOI: 10.1186/s12934-016-0580-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 10/14/2016] [Indexed: 12/03/2022] Open
Abstract
Background The sugar sensing and carbon catabolite repression in Baker’s yeast Saccharomyces cerevisiae is governed by three major signaling pathways that connect carbon source recognition with transcriptional regulation. Here we present a screening method based on a non-invasive in vivo reporter system for real-time, single-cell screening of the sugar signaling state in S. cerevisiae in response to changing carbon conditions, with a main focus on the response to glucose and xylose. Results The artificial reporter system was constructed by coupling a green fluorescent protein gene (yEGFP3) downstream of endogenous yeast promoters from the Snf3p/Rgt2p, SNF1/Mig1p and cAMP/PKA signaling pathways: HXT1p/2p/4p; SUC2p, CAT8p; TPS1p/2p and TEF4p respectively. A panel of eight biosensors strains was generated by single copy chromosomal integration of the different constructs in a W303-derived strain. The signaling biosensors were validated for their functionality with flow cytometry by comparing the fluorescence intensity (FI) response in the presence of high or nearly depleted glucose to the known induction/repression conditions of the eight different promoters. The FI signal correlated with the known patterns of the selected promoters while maintaining a non-invasive property on the cellular phenotype, as was demonstrated in terms of growth, metabolites and enzyme activity. Conclusions Once verified, the sensors were used to evaluate the signaling response to varying conditions of extracellular glucose, glycerol and xylose by screening in 96-well microtiter plates. We show that these yeast strains, which do not harbor any recombinant pathways for xylose utilization, are lacking a signaling response for extracellular xylose. However, for the HXT2p/4p sensors, a shift in the flow cytometry population dynamics indicated that internalized xylose does affect the signaling. These results suggest that the previously observed effects of this pentose on the S. cerevisiae physiology and gene regulation can be attributed to xylose and not only to a lack of glucose. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0580-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel P Brink
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden.
| | - Celina Borgström
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Felipe G Tueros
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Marie F Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| |
Collapse
|
26
|
Moysés DN, Reis VCB, de Almeida JRM, de Moraes LMP, Torres FAG. Xylose Fermentation by Saccharomyces cerevisiae: Challenges and Prospects. Int J Mol Sci 2016; 17:207. [PMID: 26927067 PMCID: PMC4813126 DOI: 10.3390/ijms17030207] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/23/2016] [Accepted: 01/27/2016] [Indexed: 12/17/2022] Open
Abstract
Many years have passed since the first genetically modified Saccharomyces cerevisiae strains capable of fermenting xylose were obtained with the promise of an environmentally sustainable solution for the conversion of the abundant lignocellulosic biomass to ethanol. Several challenges emerged from these first experiences, most of them related to solving redox imbalances, discovering new pathways for xylose utilization, modulation of the expression of genes of the non-oxidative pentose phosphate pathway, and reduction of xylitol formation. Strategies on evolutionary engineering were used to improve fermentation kinetics, but the resulting strains were still far from industrial application. Lignocellulosic hydrolysates proved to have different inhibitors derived from lignin and sugar degradation, along with significant amounts of acetic acid, intrinsically related with biomass deconstruction. This, associated with pH, temperature, high ethanol, and other stress fluctuations presented on large scale fermentations led the search for yeasts with more robust backgrounds, like industrial strains, as engineering targets. Some promising yeasts were obtained both from studies of stress tolerance genes and adaptation on hydrolysates. Since fermentation times on mixed-substrate hydrolysates were still not cost-effective, the more selective search for new or engineered sugar transporters for xylose are still the focus of many recent studies. These challenges, as well as under-appreciated process strategies, will be discussed in this review.
Collapse
Affiliation(s)
- Danuza Nogueira Moysés
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
- Petrobras Research and Development Center, Biotechnology Management, Rio de Janeiro, RJ 21941-915, Brazil.
| | | | - João Ricardo Moreira de Almeida
- Embrapa Agroenergia, Laboratório de Genética e Biotecnologia, Parque Estação Biológica s/n, Av. W3 Norte, Brasília, DF 70770-901, Brazil.
| | | | | |
Collapse
|
27
|
Wasylenko TM, Stephanopoulos G. Metabolomic and (13)C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase. Biotechnol Bioeng 2014; 112:470-83. [PMID: 25311863 DOI: 10.1002/bit.25447] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/11/2014] [Accepted: 08/27/2014] [Indexed: 11/09/2022]
Abstract
Over the past two decades, significant progress has been made in the engineering of xylose-consuming Saccharomyces cerevisiae strains for production of lignocellulosic biofuels. However, the ethanol productivities achieved on xylose are still significantly lower than those observed on glucose for reasons that are not well understood. We have undertaken an analysis of central carbon metabolite pool sizes and metabolic fluxes on glucose and on xylose under aerobic and anaerobic conditions in a strain capable of rapid xylose assimilation via xylose isomerase in order to investigate factors that may limit the rate of xylose fermentation. We find that during xylose utilization the flux through the non-oxidative Pentose Phosphate Pathway (PPP) is high but the flux through the oxidative PPP is low, highlighting an advantage of the strain employed in this study. Furthermore, xylose fails to elicit the full carbon catabolite repression response that is characteristic of glucose fermentation in S. cerevisiae. We present indirect evidence that the incomplete activation of the fermentation program on xylose results in a bottleneck in lower glycolysis, leading to inefficient re-oxidation of NADH produced in glycolysis.
Collapse
Affiliation(s)
- Thomas M Wasylenko
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, Massachussetts
| | | |
Collapse
|
28
|
Pinu FR, Edwards PJ, Gardner RC, Villas-Boas SG. Nitrogen and carbon assimilation bySaccharomyces cerevisiaeduring Sauvignon blanc juice fermentation. FEMS Yeast Res 2014; 14:1206-22. [DOI: 10.1111/1567-1364.12222] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/25/2014] [Accepted: 10/07/2014] [Indexed: 02/03/2023] Open
Affiliation(s)
- Farhana R. Pinu
- Centre for Microbial Innovation; School of Biological Sciences; University of Auckland; Auckland New Zealand
| | - Patrick J.B. Edwards
- Institute of Fundamental Sciences; Massey University; Palmerston North New Zealand
| | - Richard C. Gardner
- Centre for Microbial Innovation; School of Biological Sciences; University of Auckland; Auckland New Zealand
- Wine Science Programme; School of Chemical Sciences; University of Auckland; Auckland New Zealand
| | - Silas G. Villas-Boas
- Centre for Microbial Innovation; School of Biological Sciences; University of Auckland; Auckland New Zealand
| |
Collapse
|
29
|
Wallace-Salinas V, Signori L, Li YY, Ask M, Bettiga M, Porro D, Thevelein JM, Branduardi P, Foulquié-Moreno MR, Gorwa-Grauslund M. Re-assessment of YAP1 and MCR1 contributions to inhibitor tolerance in robust engineered Saccharomyces cerevisiae fermenting undetoxified lignocellulosic hydrolysate. AMB Express 2014; 4:56. [PMID: 25147754 PMCID: PMC4105880 DOI: 10.1186/s13568-014-0056-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/19/2014] [Indexed: 11/10/2022] Open
Abstract
Development of robust yeast strains that can efficiently ferment lignocellulose-based feedstocks is one of the requirements for achieving economically feasible bioethanol production processes. With this goal, several genes have been identified as promising candidates to confer improved tolerance to S. cerevisiae. In most of the cases, however, the evaluation of the genetic modification was performed only in laboratory strains, that is, in strains that are known to be quite sensitive to various types of stresses. In the present study, we evaluated the effects of overexpressing genes encoding the transcription factor (YAP1) and the mitochondrial NADH-cytochrome b5 reductase (MCR1), either alone or in combination, in an already robust and xylose-consuming industrial strain of S. cerevisiae and evaluated the effect during the fermentation of undiluted and undetoxified spruce hydrolysate. Overexpression of either gene resulted in faster hexose catabolism, but no cumulative effect was observed with the simultaneous overexpression. The improved phenotype of MCR1 overexpression appeared to be related, at least in part, to a faster furaldehyde reduction capacity, indicating that this reductase may have a wider substrate range than previously reported. Unexpectedly a decreased xylose fermentation rate was also observed in YAP1 overexpressing strains and possible reasons behind this phenotype are discussed.
Collapse
|
30
|
Metabolomic and Transcriptomic Analysis for Rate-Limiting Metabolic Steps in Xylose Utilization by RecombinantCandida utilis. Biosci Biotechnol Biochem 2014; 77:1441-8. [DOI: 10.1271/bbb.130093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Bergdahl B, Gorwa-Grauslund MF, van Niel EWJ. Physiological effects of over-expressing compartment-specific components of the protein folding machinery in xylose-fermenting Saccharomyces cerevisiae. BMC Biotechnol 2014; 14:28. [PMID: 24758421 PMCID: PMC4021093 DOI: 10.1186/1472-6750-14-28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Efficient utilization of both glucose and xylose is necessary for a competitive ethanol production from lignocellulosic materials. Although many advances have been made in the development of xylose-fermenting strains of Saccharomyces cerevisiae, the productivity remains much lower compared to glucose. Previous transcriptional analyses of recombinant xylose-fermenting strains have mainly focused on central carbon metabolism. Very little attention has been given to other fundamental cellular processes such as the folding of proteins. Analysis of previously measured transcript levels in a recombinant XR/XDH-strain showed a wide down-regulation of genes targeted by the unfolded protein response during xylose fermentation. Under anaerobic conditions the folding of proteins is directly connected with fumarate metabolism and requires two essential enzymes: FADH2-dependent fumarate reductase (FR) and Ero1p. In this study we tested whether these enzymes impair the protein folding process causing the very slow growth of recombinant yeast strains on xylose under anaerobic conditions. RESULTS Four strains over-expressing the cytosolic (FRD1) or mitochondrial (OSM1) FR genes and ERO1 in different combinations were constructed. The growth and fermentation performance was evaluated in defined medium as well as in a complex medium containing glucose and xylose. Over-expression of FRD1, alone or in combination with ERO1, did not have any significant effect on xylose fermentation in any medium used. Over-expression of OSM1, on the other hand, led to a diversion of carbon from glycerol to acetate and a decrease in growth rate by 39% in defined medium and by 25% in complex medium. Combined over-expression of OSM1 and ERO1 led to the same diversion of carbon from glycerol to acetate and had a stronger detrimental effect on the growth in complex medium. CONCLUSIONS Increasing the activities of the FR enzymes and Ero1p is not sufficient to increase the anaerobic growth on xylose. So additional components of the protein folding mechanism that were identified in transcription analysis of UPR related genes may also be limiting. This includes i) the transcription factor encoded by HAC1 ii) the activity of Pdi1p and iii) the requirement of free FAD during anaerobic growth.
Collapse
Affiliation(s)
- Basti Bergdahl
- Division of Applied Microbiology, Department of Chemistry, Lund University, P,O, Box 124, Lund SE-22100, Sweden.
| | | | | |
Collapse
|
32
|
Matsushika A, Goshima T, Hoshino T. Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Microb Cell Fact 2014; 13:16. [PMID: 24467867 PMCID: PMC3917370 DOI: 10.1186/1475-2859-13-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/24/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND There has been much research on the bioconversion of xylose found in lignocellulosic biomass to ethanol by genetically engineered Saccharomyces cerevisiae. However, the rate of ethanol production from xylose in these xylose-utilizing yeast strains is quite low compared to their glucose fermentation. In this study, two diploid xylose-utilizing S. cerevisiae strains, the industrial strain MA-R4 and the laboratory strain MA-B4, were employed to investigate the differences between anaerobic fermentation of xylose and glucose, and general differences between recombinant yeast strains, through genome-wide transcription analysis. RESULTS In MA-R4, many genes related to ergosterol biosynthesis were expressed more highly with glucose than with xylose. Additionally, these ergosterol-related genes had higher transcript levels in MA-R4 than in MA-B4 during glucose fermentation. During xylose fermentation, several genes related to central metabolic pathways that typically increase during growth on non-fermentable carbon sources were expressed at higher levels in both strains. Xylose did not fully repress the genes encoding enzymes of the tricarboxylic acid and respiratory pathways, even under anaerobic conditions. In addition, several genes involved in spore wall metabolism and the uptake of ammonium, which are closely related to the starvation response, and many stress-responsive genes mediated by Msn2/4p, as well as trehalose synthase genes, increased in expression when fermenting with xylose, irrespective of the yeast strain. We further observed that transcript levels of genes involved in xylose metabolism, membrane transport functions, and ATP synthesis were higher in MA-R4 than in MA-B4 when strains were fermented with glucose or xylose. CONCLUSIONS Our transcriptomic approach revealed the molecular events underlying the response to xylose or glucose and differences between MA-R4 and MA-B4. Xylose-utilizing S. cerevisiae strains may recognize xylose as a non-fermentable carbon source, which induces a starvation response and adaptation to oxidative stress, resulting in the increased expression of stress-response genes.
Collapse
Affiliation(s)
- Akinori Matsushika
- Biomass Refinery Research Center (BRRC), National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan.
| | | | | |
Collapse
|
33
|
Bae YH, Kang KH, Jin YS, Seo JH. Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae. J Biotechnol 2014; 169:34-41. [DOI: 10.1016/j.jbiotec.2013.10.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/21/2013] [Accepted: 10/25/2013] [Indexed: 11/28/2022]
|
34
|
Lin Y, Chomvong K, Acosta-Sampson L, Estrela R, Galazka JM, Kim SR, Jin YS, Cate JHD. Leveraging transcription factors to speed cellobiose fermentation by Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:126. [PMID: 25435910 PMCID: PMC4243952 DOI: 10.1186/s13068-014-0126-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/06/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Saccharomyces cerevisiae, a key organism used for the manufacture of renewable fuels and chemicals, has been engineered to utilize non-native sugars derived from plant cell walls, such as cellobiose and xylose. However, the rates and efficiencies of these non-native sugar fermentations pale in comparison with those of glucose. Systems biology methods, used to understand biological networks, hold promise for rational microbial strain development in metabolic engineering. Here, we present a systematic strategy for optimizing non-native sugar fermentation by recombinant S. cerevisiae, using cellobiose as a model. RESULTS Differences in gene expression between cellobiose and glucose metabolism revealed by RNA deep sequencing indicated that cellobiose metabolism induces mitochondrial activation and reduces amino acid biosynthesis under fermentation conditions. Furthermore, glucose-sensing and signaling pathways and their target genes, including the cAMP-dependent protein kinase A pathway controlling the majority of glucose-induced changes, the Snf3-Rgt2-Rgt1 pathway regulating hexose transport, and the Snf1-Mig1 glucose repression pathway, were at most only partially activated under cellobiose conditions. To separate correlations from causative effects, the expression levels of 19 transcription factors perturbed under cellobiose conditions were modulated, and the three strongest promoters under cellobiose conditions were applied to fine-tune expression of the heterologous cellobiose-utilizing pathway. Of the changes in these 19 transcription factors, only overexpression of SUT1 or deletion of HAP4 consistently improved cellobiose fermentation. SUT1 overexpression and HAP4 deletion were not synergistic, suggesting that SUT1 and HAP4 may regulate overlapping genes important for improved cellobiose fermentation. Transcription factor modulation coupled with rational tuning of the cellobiose consumption pathway significantly improved cellobiose fermentation. CONCLUSIONS We used systems-level input to reveal the regulatory mechanisms underlying suboptimal metabolism of the non-glucose sugar cellobiose. By identifying key transcription factors that cause suboptimal cellobiose fermentation in engineered S. cerevisiae, and by fine-tuning the expression of a heterologous cellobiose consumption pathway, we were able to greatly improve cellobiose fermentation by engineered S. cerevisiae. Our results demonstrate a powerful strategy for applying systems biology methods to rapidly identify metabolic engineering targets and overcome bottlenecks in performance of engineered strains.
Collapse
Affiliation(s)
- Yuping Lin
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Kulika Chomvong
- />Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Ligia Acosta-Sampson
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Raíssa Estrela
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Jonathan M Galazka
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Soo Rin Kim
- />Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
- />Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Yong-Su Jin
- />Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
- />Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Jamie HD Cate
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
- />Chemistry, University of California, Berkeley, CA 94720 USA
- />Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
35
|
Feng X, Zhao H. Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis. Microb Cell Fact 2013; 12:114. [PMID: 24245823 PMCID: PMC3842631 DOI: 10.1186/1475-2859-12-114] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/14/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND To engineer Saccharomyces cerevisiae for efficient xylose utilization, a fungal pathway consisting of xylose reductase, xylitol dehydrogenase, and xylulose kinase is often introduced to the host strain. Despite extensive in vitro studies on the xylose pathway, the intracellular metabolism rewiring in response to the heterologous xylose pathway remains largely unknown. In this study, we applied 13C metabolic flux analysis and stoichiometric modeling to systemically investigate the flux distributions in a series of xylose utilizing S. cerevisiae strains. RESULTS As revealed by 13C metabolic flux analysis, the oxidative pentose phosphate pathway was actively used for producing NADPH required by the fungal xylose pathway during xylose utilization of recombinant S. cerevisiae strains. The TCA cycle activity was found to be tightly correlated with the requirements of maintenance energy and biomass yield. Based on in silico simulations of metabolic fluxes, reducing the cell maintenance energy was found crucial to achieve the optimal xylose-based ethanol production. The stoichiometric modeling also suggested that both the cofactor-imbalanced and cofactor-balanced pathways could lead to optimal ethanol production, by flexibly adjusting the metabolic fluxes in futile cycle. However, compared to the cofactor-imbalanced pathway, the cofactor-balanced xylose pathway can lead to optimal ethanol production in a wider range of fermentation conditions. CONCLUSIONS By applying 13C-MFA and in silico flux balance analysis to a series of recombinant xylose-utilizing S. cerevisiae strains, this work brings new knowledge about xylose utilization in two aspects. First, the interplays between the fungal xylose pathway and the native host metabolism were uncovered. Specifically, we found that the high cell maintenance energy was one of the key factors involved in xylose utilization. Potential strategies to reduce the cell maintenance energy, such as adding exogenous nutrients and evolutionary adaptation, were suggested based on the in vivo and in silico flux analysis in this study. In addition, the impacts of cofactor balance issues on xylose utilization were systemically investigated. The futile pathways were identified as the key factor to adapt to different degrees of cofactor imbalances and suggested as the targets for further engineering to tackle cofactor-balance issues.
Collapse
Affiliation(s)
- Xueyang Feng
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, Urbana, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, Urbana, USA
- Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
36
|
Salusjärvi L, Kaunisto S, Holmström S, Vehkomäki ML, Koivuranta K, Pitkänen JP, Ruohonen L. Overexpression of NADH-dependent fumarate reductase improves D-xylose fermentation in recombinant Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2013; 40:1383-92. [PMID: 24113892 DOI: 10.1007/s10295-013-1344-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/09/2013] [Indexed: 01/31/2023]
Abstract
Deviation from optimal levels and ratios of redox cofactors NAD(H) and NADP(H) is common when microbes are metabolically engineered. The resulting redox imbalance often reduces the rate of substrate utilization as well as biomass and product formation. An example is the metabolism of D-xylose by recombinant Saccharomyces cerevisiae strains expressing xylose reductase and xylitol dehydrogenase encoding genes from Scheffersomyces stipitis. This pathway requires both NADPH and NAD(+). The effect of overexpressing the glycosomal NADH-dependent fumarate reductase (FRD) of Trypanosoma brucei in D-xylose-utilizing S. cerevisiae alone and together with an endogenous, cytosol directed NADH-kinase (POS5Δ17) was studied as one possible solution to overcome this imbalance. Expression of FRD and FRD + POS5Δ17 resulted in 60 and 23 % increase in ethanol yield, respectively, on D-xylose under anaerobic conditions. At the same time, xylitol yield decreased in the FRD strain suggesting an improvement in redox balance. We show that fumarate reductase of T. brucei can provide an important source of NAD(+) in yeast under anaerobic conditions, and can be useful for metabolic engineering strategies where the redox cofactors need to be balanced. The effects of FRD and NADH-kinase on aerobic and anaerobic D-xylose and D-glucose metabolism are discussed.
Collapse
Affiliation(s)
- Laura Salusjärvi
- VTT, Technical Research Centre of Finland, PO Box 1000, 02044, VTT, Finland,
| | | | | | | | | | | | | |
Collapse
|
37
|
Bergdahl B, Sandström AG, Borgström C, Boonyawan T, van Niel EWJ, Gorwa-Grauslund MF. Engineering yeast hexokinase 2 for improved tolerance toward xylose-induced inactivation. PLoS One 2013; 8:e75055. [PMID: 24040384 PMCID: PMC3765440 DOI: 10.1371/journal.pone.0075055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/05/2013] [Indexed: 11/21/2022] Open
Abstract
Hexokinase 2 (Hxk2p) from Saccharomyces cerevisiae is a bi-functional enzyme being both a catalyst and an important regulator in the glucose repression signal. In the presence of xylose Hxk2p is irreversibly inactivated through an autophosphorylation mechanism, affecting all functions. Consequently, the regulation of genes involved in sugar transport and fermentative metabolism is impaired. The aim of the study was to obtain new Hxk2p-variants, immune to the autophosphorylation, which potentially can restore the repressive capability closer to its nominal level. In this study we constructed the first condensed, rationally designed combinatorial library targeting the active-site in Hxk2p. We combined protein engineering and genetic engineering for efficient screening and identified a variant with Phe159 changed to tyrosine. This variant had 64% higher catalytic activity in the presence of xylose compared to the wild-type and is expected to be a key component for increasing the productivity of recombinant xylose-fermenting strains for bioethanol production from lignocellulosic feedstocks.
Collapse
Affiliation(s)
- Basti Bergdahl
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
- * E-mail:
| | - Anders G. Sandström
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Celina Borgström
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Tarinee Boonyawan
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Ed W. J. van Niel
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | | |
Collapse
|
38
|
Wang X, Jin M, Balan V, Jones AD, Li X, Li BZ, Dale BE, Yuan YJ. Comparative metabolic profiling revealed limitations in xylose-fermenting yeast during co-fermentation of glucose and xylose in the presence of inhibitors. Biotechnol Bioeng 2013; 111:152-64. [DOI: 10.1002/bit.24992] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xin Wang
- Key Laboratory of Systems Bioengineering; Ministry of Education; Department of Pharmaceutical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 P.R. China
| | - Mingjie Jin
- Biomass Conversion Research Laboratory (BCRL); Department of Chemical Engineering and Materials Science; Michigan State University; 3900 Collins Road MBI International Building Lansing Michigan 48910
| | - Venkatesh Balan
- Biomass Conversion Research Laboratory (BCRL); Department of Chemical Engineering and Materials Science; Michigan State University; 3900 Collins Road MBI International Building Lansing Michigan 48910
| | - A. Daniel Jones
- Department of Biochemistry and Molecular Biology; Michigan State University; East Lansing Michigan
- Department of Chemistry; Michigan State University; East Lansing Michigan
| | - Xia Li
- Key Laboratory of Systems Bioengineering; Ministry of Education; Department of Pharmaceutical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 P.R. China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering; Ministry of Education; Department of Pharmaceutical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 P.R. China
| | - Bruce E. Dale
- Biomass Conversion Research Laboratory (BCRL); Department of Chemical Engineering and Materials Science; Michigan State University; 3900 Collins Road MBI International Building Lansing Michigan 48910
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering; Ministry of Education; Department of Pharmaceutical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 P.R. China
| |
Collapse
|
39
|
Matsushika A, Nagashima A, Goshima T, Hoshino T. Fermentation of xylose causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic flux in recombinant industrial Saccharomyces cerevisiae. PLoS One 2013; 8:e69005. [PMID: 23874849 PMCID: PMC3706439 DOI: 10.1371/journal.pone.0069005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/04/2013] [Indexed: 11/18/2022] Open
Abstract
In the present study, comprehensive, quantitative metabolome analysis was carried out on the recombinant glucose/xylose-cofermenting S. cerevisiae strain MA-R4 during fermentation with different carbon sources, including glucose, xylose, or glucose/xylose mixtures. Capillary electrophoresis time-of-flight mass spectrometry was used to determine the intracellular pools of metabolites from the central carbon pathways, energy metabolism pathways, and the levels of twenty amino acids. When xylose instead of glucose was metabolized by MA-R4, glycolytic metabolites including 3- phosphoglycerate, 2- phosphoglycerate, phosphoenolpyruvate, and pyruvate were dramatically reduced, while conversely, most pentose phosphate pathway metabolites such as sedoheptulose 7- phosphate and ribulose 5-phosphate were greatly increased. These results suggest that the low metabolic activity of glycolysis and the pool of pentose phosphate pathway intermediates are potential limiting factors in xylose utilization. It was further demonstrated that during xylose fermentation, about half of the twenty amino acids declined, and the adenylate/guanylate energy charge was impacted due to markedly decreased adenosine triphosphate/adenosine monophosphate and guanosine triphosphate/guanosine monophosphate ratios, implying that the fermentation of xylose leads to an inefficient metabolic state where the biosynthetic capabilities and energy balance are severely impaired. In addition, fermentation with xylose alone drastically increased the level of citrate in the tricarboxylic acid cycle and increased the aromatic amino acids tryptophan and tyrosine, strongly supporting the view that carbon starvation was induced. Interestingly, fermentation with xylose alone also increased the synthesis of the polyamine spermidine and its precursor S-adenosylmethionine. Thus, differences in carbon substrates, including glucose and xylose in the fermentation medium, strongly influenced the dynamic metabolism of MA-R4. These results provide a metabolic explanation for the low ethanol productivity on xylose compared to glucose.
Collapse
Affiliation(s)
- Akinori Matsushika
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology, Hiroshima, Japan.
| | | | | | | |
Collapse
|
40
|
Kim SR, Skerker JM, Kang W, Lesmana A, Wei N, Arkin AP, Jin YS. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS One 2013; 8:e57048. [PMID: 23468911 PMCID: PMC3582614 DOI: 10.1371/journal.pone.0057048] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/16/2013] [Indexed: 12/30/2022] Open
Abstract
Economic bioconversion of plant cell wall hydrolysates into fuels and chemicals has been hampered mainly due to the inability of microorganisms to efficiently co-ferment pentose and hexose sugars, especially glucose and xylose, which are the most abundant sugars in cellulosic hydrolysates. Saccharomyces cerevisiae cannot metabolize xylose due to a lack of xylose-metabolizing enzymes. We developed a rapid and efficient xylose-fermenting S. cerevisiae through rational and inverse metabolic engineering strategies, comprising the optimization of a heterologous xylose-assimilating pathway and evolutionary engineering. Strong and balanced expression levels of the XYL1, XYL2, and XYL3 genes constituting the xylose-assimilating pathway increased ethanol yields and the xylose consumption rates from a mixture of glucose and xylose with little xylitol accumulation. The engineered strain, however, still exhibited a long lag time when metabolizing xylose above 10 g/l as a sole carbon source, defined here as xylose toxicity. Through serial-subcultures on xylose, we isolated evolved strains which exhibited a shorter lag time and improved xylose-fermenting capabilities than the parental strain. Genome sequencing of the evolved strains revealed that mutations in PHO13 causing loss of the Pho13p function are associated with the improved phenotypes of the evolved strains. Crude extracts of a PHO13-overexpressing strain showed a higher phosphatase activity on xylulose-5-phosphate (X-5-P), suggesting that the dephosphorylation of X-5-P by Pho13p might generate a futile cycle with xylulokinase overexpression. While xylose consumption rates by the evolved strains improved substantially as compared to the parental strain, xylose metabolism was interrupted by accumulated acetate. Deletion of ALD6 coding for acetaldehyde dehydrogenase not only prevented acetate accumulation, but also enabled complete and efficient fermentation of xylose as well as a mixture of glucose and xylose by the evolved strain. These findings provide direct guidance for developing industrial strains to produce cellulosic fuels and chemicals.
Collapse
Affiliation(s)
- Soo Rin Kim
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jeffrey M. Skerker
- Department of Bioengineering, University of California, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Wei Kang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Anastashia Lesmana
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Na Wei
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Adam P. Arkin
- Department of Bioengineering, University of California, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
41
|
Norris V, Amar P, Legent G, Ripoll C, Thellier M, Ovádi J. Sensor potency of the moonlighting enzyme-decorated cytoskeleton: the cytoskeleton as a metabolic sensor. BMC BIOCHEMISTRY 2013; 14:3. [PMID: 23398642 PMCID: PMC3577492 DOI: 10.1186/1471-2091-14-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 01/22/2013] [Indexed: 11/10/2022]
Abstract
Background There is extensive evidence for the interaction of metabolic enzymes with the eukaryotic cytoskeleton. The significance of these interactions is far from clear. Presentation of the hypothesis In the cytoskeletal integrative sensor hypothesis presented here, the cytoskeleton senses and integrates the general metabolic activity of the cell. This activity depends on the binding to the cytoskeleton of enzymes and, depending on the nature of the enzyme, this binding may occur if the enzyme is either active or inactive but not both. This enzyme-binding is further proposed to stabilize microtubules and microfilaments and to alter rates of GTP and ATP hydrolysis and their levels. Testing the hypothesis Evidence consistent with the cytoskeletal integrative sensor hypothesis is presented in the case of glycolysis. Several testable predictions are made. There should be a relationship between post-translational modifications of tubulin and of actin and their interaction with metabolic enzymes. Different conditions of cytoskeletal dynamics and enzyme-cytoskeleton binding should reveal significant differences in local and perhaps global levels and ratios of ATP and GTP. The different functions of moonlighting enzymes should depend on cytoskeletal binding. Implications of the hypothesis The physical and chemical effects arising from metabolic sensing by the cytoskeleton would have major consequences on cell shape, dynamics and cell cycle progression. The hypothesis provides a framework that helps the significance of the enzyme-decorated cytoskeleton be determined.
Collapse
Affiliation(s)
- Vic Norris
- EA 3829, Faculté des Sciences de l'Université de Rouen, 76821, Mont Saint Aignan Cedex, France.
| | | | | | | | | | | |
Collapse
|