1
|
Bastos RG, Capelli-Peixoto J, Laughery JM, Suarez CE, Ueti MW. Vaccination with an in vitro culture attenuated Babesia bovis strain safely protects highly susceptible adult cattle against acute bovine babesiosis. Front Immunol 2023; 14:1219913. [PMID: 37583702 PMCID: PMC10424928 DOI: 10.3389/fimmu.2023.1219913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/07/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction Live in vivo attenuated Babesia bovis vaccines produced by sequential passages in splenectomized calves have historically been used to control acute bovine babesiosis in endemic areas worldwide. However, several constraints prevent the widespread use of these vaccines, including the need for several splenectomized calves to produce vaccine batches, and potential inconsistent parasite attenuation, which contraindicates their use for highly Babesia-susceptible adult cattle. Thus, the use of vaccines based on well-defined in vitro culture attenuated B. bovis strains emerges as a more sustainable and efficient alternative. Previous work demonstrated that the culture attenuated strain Att-S74-T3Bo is non-tick transmissible and able to safely protect calves against needle challenge with a B. bovis virulent strain. Methods and results Herein we evaluated safety and efficacy of Att-S74-T3Bo in preventing acute babesiosis in adult (>1.5 year of age) cattle. Results demonstrated that Att-S74-T3Bo vaccination of adult animals (n=5) induced self-limiting signs of acute infection and protected the vaccinated animals against challenge with the homologous virulent B. bovis strain Vir-S74-T3Bo. Att-S74-T3Bo-vaccinated adult cattle developed significant (P<0.05) monocytosis, with concomitant neutropenia and CD4+ leukopenia, in peripheral blood early after vaccination. Also, vaccinated animals developed a specific signature of pro- and anti-inflammatory cytokine expression in peripheral blood and significant levels of IgM, total IgG, IgG1, and IgG2 against the B. bovis immunodominant antigen RAP-1 CT. Strikingly, none of the vaccinated animals showed any signs of acute babesiosis after challenge with Vir-S74-T3Bo. In contrast, control adult cattle (n=5) showed pathognomonic symptoms of acute babesiosis, and significant decrease (P<0.05) in lymphocytes, monocytes, and neutrophils, starting on day 7 post-challenge. All control animals developed severe acute disease and were euthanized on days 10 through 12 days post-challenge. Discussion and conclusion Evidence from this study indicates that Att-S74-T3Bo safely protects highly susceptible adult cattle against challenge with a homologous virulent strain of B. bovis. In conclusion, Att-S74-T3Bo may be considered as a potential efficient and sustainable attenuated candidate vaccine strain to control acute bovine babesiosis in highly susceptible adult cattle. Future studies should focus on increasing the number of animals vaccinated, duration of immunity, and efficacy of this attenuated strain against heterologous virulent parasite strains.
Collapse
Affiliation(s)
- Reginaldo G. Bastos
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Janaina Capelli-Peixoto
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Jacob M. Laughery
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Carlos E. Suarez
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Massaro W. Ueti
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
2
|
Advances in Babesia Vaccine Development: An Overview. Pathogens 2023; 12:pathogens12020300. [PMID: 36839572 PMCID: PMC9962624 DOI: 10.3390/pathogens12020300] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Babesiosis is a tick-borne zoonotic disease, which is caused by various species of intracellular Babesia parasite. It is a problem not only for the livestock industry but also for global health. Significant global economic losses, in particular in cattle production, have been observed. Since the current preventive measures against babesiosis are insufficient, there is increasing pressure to develop a vaccine. In this review, we survey the achievements and recent advances in the creation of antibabesiosis vaccine. The scope of this review includes the development of a vaccine against B. microti, B. bovis, B. bigemina, B. orientalis and B. divergens. Here, we present different strategies in their progress and evaluation. Scientists worldwide are still trying to find new targets for a vaccine that would not only reduce symptoms among animals but also prevent the further spread of the disease. Molecular candidates for the production of a vaccine against various Babesia spp. are presented. Our study also describes the current prospects of vaccine evolution for successful Babesia parasites elimination.
Collapse
|
3
|
Kumar A, Kabra A, Igarashi I, Krause PJ. Animal models of the immunology and pathogenesis of human babesiosis. Trends Parasitol 2023; 39:38-52. [PMID: 36470781 DOI: 10.1016/j.pt.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022]
Abstract
Animal models of human babesiosis have provided a basic understanding of the immunological mechanisms that clear, or occasionally exacerbate, Babesia infection and those pathological processes that cause disease complications. Human Babesia infection can cause asymptomatic infection, mild to moderate disease, or severe disease resulting in organ dysfunction and death. More than 100 Babesia species infect a wide array of wild and domestic animals, and many of the immunologic and pathologic responses to Babesia infection are similar in animals and humans. In this review, we summarize the knowledge gained from animal studies, their limitations, and how animal models or alternative approaches can be further leveraged to improve our understanding of human babesiosis.
Collapse
Affiliation(s)
- Abhinav Kumar
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Aditya Kabra
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Peter J Krause
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA; Department of Infectious Diseases, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
4
|
Bastos RG, Laughery JM, Ozubek S, Alzan HF, Taus NS, Ueti MW, Suarez CE. Identification of novel immune correlates of protection against acute bovine babesiosis by superinfecting cattle with in vitro culture attenuated and virulent Babesia bovis strains. Front Immunol 2022; 13:1045608. [PMID: 36466866 PMCID: PMC9716085 DOI: 10.3389/fimmu.2022.1045608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/02/2022] [Indexed: 08/12/2023] Open
Abstract
The apicomplexan tickborne parasites Babesia bovis and B. bigemina are the major causative agents of bovine babesiosis, a disease that negatively affects the cattle industry and food safety around the world. The absence of correlates of protection represents one major impediment for the development of effective and sustainable vaccines against bovine babesiosis. Herein we superinfected cattle with attenuated and virulent strains of B. bovis to investigate immune correlates of protection against acute bovine babesiosis. Three 6-month-old Holstein calves were infected intravenously (IV) with the in vitro culture attenuated Att-S74-T3Bo B. bovis strain (106 infected bovine red blood cells (iRBC)/calf) while three age-matched Holstein calves were inoculated IV with normal RBC as controls (106 RBC/calf). All Att-S74-T3Bo-infected calves showed a significant increase in temperature early after inoculation but recovered without treatment. Att-S74-T3Bo-infected calves also developed: (a) monocytosis, neutropenia, and CD4+ lymphopenia in peripheral blood on days 3 to 7 post-inoculation; (b) significant levels of TNFα, CXCL10, IFNγ, IL-4, and IL-10 in sera at day 6 after infection; and (c) IgM and IgG against B. bovis antigens, starting at days 10 and 30 post-inoculation, respectively. At 46 days post-Att-S74-T3Bo inoculation, all experimental calves were infected IV with the homologous virulent B. bovis strain Vir-S74-T3Bo (107 iRBC/calf). All Att-S74-T3Bo-infected calves survived superinfection with Vir-S74-T3Bo without displaying signs of acute babesiosis. In contrast, control animals showed signs of acute disease, starting at day 10 post-Vir-S74-T3Bo infection, and two of them were humanely euthanized at days 13 and 14 after inoculation due to the severity of their symptoms. Also, control calves showed higher (P<0.05) parasite load in peripheral blood compared to animals previously exposed to Att-S74-T3Bo. No significant alterations in the profile of leukocytes and cytokines were observed in Att-S74-T3Bo-inoculated after Vir-S74-T3Bo infection. In conclusion, data demonstrate novel changes in the profile of blood immune cells and cytokine expression in peripheral blood that are associated with protection against acute bovine babesiosis. These identified immune correlates of protection may be useful for designing effective and sustainable vaccines against babesiosis in cattle.
Collapse
Affiliation(s)
- Reginaldo G. Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Jacob M. Laughery
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Sezayi Ozubek
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig, Turkey
| | - Heba F. Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Center, Dokki, Giza, Egypt
| | - Naomi S. Taus
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research, Pullman, WA, United States
| | - Massaro W. Ueti
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research, Pullman, WA, United States
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research, Pullman, WA, United States
| |
Collapse
|
5
|
Rezvani Y, Keroack CD, Elsworth B, Arriojas A, Gubbels MJ, Duraisingh MT, Zarringhalam K. Comparative single-cell transcriptional atlases of Babesia species reveal conserved and species-specific expression profiles. PLoS Biol 2022; 20:e3001816. [PMID: 36137068 PMCID: PMC9531838 DOI: 10.1371/journal.pbio.3001816] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/04/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Babesia is a genus of apicomplexan parasites that infect red blood cells in vertebrate hosts. Pathology occurs during rapid replication cycles in the asexual blood stage of infection. Current knowledge of Babesia replication cycle progression and regulation is limited and relies mostly on comparative studies with related parasites. Due to limitations in synchronizing Babesia parasites, fine-scale time-course transcriptomic resources are not readily available. Single-cell transcriptomics provides a powerful unbiased alternative for profiling asynchronous cell populations. Here, we applied single-cell RNA sequencing to 3 Babesia species (B. divergens, B. bovis, and B. bigemina). We used analytical approaches and algorithms to map the replication cycle and construct pseudo-synchronized time-course gene expression profiles. We identify clusters of co-expressed genes showing "just-in-time" expression profiles, with gradually cascading peaks throughout asexual development. Moreover, clustering analysis of reconstructed gene curves reveals coordinated timing of peak expression in epigenetic markers and transcription factors. Using a regularized Gaussian graphical model, we reconstructed co-expression networks and identified conserved and species-specific nodes. Motif analysis of a co-expression interactome of AP2 transcription factors identified specific motifs previously reported to play a role in DNA replication in Plasmodium species. Finally, we present an interactive web application to visualize and interactively explore the datasets.
Collapse
Affiliation(s)
- Yasaman Rezvani
- Department of Mathematics, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Caroline D. Keroack
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Argenis Arriojas
- Department of Mathematics, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Al-Nazal H, Low L, Kumar S, Good MF, Stanisic DI. A vaccine for human babesiosis: prospects and feasibility. Trends Parasitol 2022; 38:904-918. [PMID: 35933301 DOI: 10.1016/j.pt.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
Babesiosis is a tick-borne disease caused by intraerythrocytic Babesia parasites. It is a well-known illness in companion animals and livestock, resulting in substantial economic losses in the cattle industry. Babesiosis is also recognized as an emerging zoonosis of humans in many countries worldwide. There is no vaccine against human babesiosis. Currently, preventive measures are focused on vector avoidance. Although not always effective, treatment includes antimicrobial therapy and exchange transfusion. In this review, we discuss the host's immune response to the parasite, vaccines being used to prevent babesiosis in animals, and lessons from malaria vaccine development efforts to inform the development of a human babesiosis vaccine. An effective human vaccine would be a significant advance towards curtailing this rapidly emerging disease.
Collapse
Affiliation(s)
- Hanan Al-Nazal
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, Australia
| | - Leanne Low
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, USA
| | - Sanjai Kumar
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Centre for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, Australia
| | - Danielle I Stanisic
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, Australia.
| |
Collapse
|
7
|
Silva Pereira S, De Niz M, Serre K, Ouarné M, Coelho JE, Franco CA, Figueiredo L. Immunopathology and Trypanosoma congolense parasite sequestration cause acute cerebral trypanosomiasis. eLife 2022; 11:77440. [PMID: 35787830 PMCID: PMC9307270 DOI: 10.7554/elife.77440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
Trypanosoma congolense causes a syndrome of variable severity in animals in Africa. Cerebral trypanosomiasis is a severe form, but the mechanism underlying this severity remains unknown. We developed a mouse model of acute cerebral trypanosomiasis and characterized the cellular, behavioral, and physiological consequences of this infection. We show large parasite sequestration in the brain vasculature for long periods of time (up to 8 hr) and extensive neuropathology that associate with ICAM1-mediated recruitment and accumulation of T cells in the brain parenchyma. Antibody-mediated ICAM1 blocking and lymphocyte absence reduce parasite sequestration in the brain and prevent the onset of cerebral trypanosomiasis. Here, we establish a mouse model of acute cerebral trypanosomiasis and we propose a mechanism whereby parasite sequestration, host ICAM1, and CD4+ T cells play a pivotal role.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Karine Serre
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Marie Ouarné
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Joana E Coelho
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudio A Franco
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Luisa Figueiredo
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
8
|
Bastos RG, Alzan HF, Rathinasamy VA, Cooke BM, Dellagostin OA, Barletta RG, Suarez CE. Harnessing Mycobacterium bovis BCG Trained Immunity to Control Human and Bovine Babesiosis. Vaccines (Basel) 2022; 10:123. [PMID: 35062784 PMCID: PMC8781211 DOI: 10.3390/vaccines10010123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 01/02/2023] Open
Abstract
Babesiosis is a disease caused by tickborne hemoprotozoan apicomplexan parasites of the genus Babesia that negatively impacts public health and food security worldwide. Development of effective and sustainable vaccines against babesiosis is currently hindered in part by the absence of definitive host correlates of protection. Despite that, studies in Babesia microti and Babesia bovis, major causative agents of human and bovine babesiosis, respectively, suggest that early activation of innate immune responses is crucial for vertebrates to survive acute infection. Trained immunity (TI) is defined as the development of memory in vertebrate innate immune cells, allowing more efficient responses to subsequent specific and non-specific challenges. Considering that Mycobacterium bovis bacillus Calmette-Guerin (BCG), a widely used anti-tuberculosis attenuated vaccine, induces strong TI pro-inflammatory responses, we hypothesize that BCG TI may protect vertebrates against acute babesiosis. This premise is supported by early investigations demonstrating that BCG inoculation protects mice against experimental B. microti infection and recent observations that BCG vaccination decreases the severity of malaria in children infected with Plasmodium falciparum, a Babesia-related parasite. We also discuss the potential use of TI in conjunction with recombinant BCG vaccines expressing Babesia immunogens. In conclusion, by concentrating on human and bovine babesiosis, herein we intend to raise awareness of BCG TI as a strategy to efficiently control Babesia infection.
Collapse
Affiliation(s)
- Reginaldo G. Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA;
| | - Heba F. Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA;
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Center, Giza 12622, Egypt
| | - Vignesh A. Rathinasamy
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4870, Australia; (V.A.R.); (B.M.C.)
| | - Brian M. Cooke
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4870, Australia; (V.A.R.); (B.M.C.)
| | - Odir A. Dellagostin
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Rio Grande Do Sul, Brazil;
| | - Raúl G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0905, USA;
| | - Carlos E. Suarez
- Animal Disease Research Unit, United States Department of Agriculture-Agricultural Research Service, Pullman, WA 99164-7040, USA
| |
Collapse
|
9
|
Rojas-Pirela M, Medina L, Rojas MV, Liempi AI, Castillo C, Pérez-Pérez E, Guerrero-Muñoz J, Araneda S, Kemmerling U. Congenital Transmission of Apicomplexan Parasites: A Review. Front Microbiol 2021; 12:751648. [PMID: 34659187 PMCID: PMC8519608 DOI: 10.3389/fmicb.2021.751648] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Apicomplexans are a group of pathogenic protists that cause various diseases in humans and animals that cause economic losses worldwide. These unicellular eukaryotes are characterized by having a complex life cycle and the ability to evade the immune system of their host organism. Infections caused by some of these parasites affect millions of pregnant women worldwide, leading to various adverse maternal and fetal/placental effects. Unfortunately, the exact pathogenesis of congenital apicomplexan diseases is far from being understood, including the mechanisms of how they cross the placental barrier. In this review, we highlight important aspects of the diseases caused by species of Plasmodium, Babesia, Toxoplasma, and Neospora, their infection during pregnancy, emphasizing the possible role played by the placenta in the host-pathogen interaction.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Lisvaneth Medina
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Maria Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ana Isabel Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | | | - Jesús Guerrero-Muñoz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastian Araneda
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Facultad de Salud y Odontología, Universidad Diego Portales, Santiago, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Smith RL, Goddard A, Boddapati A, Brooks S, Schoeman JP, Lack J, Leisewitz A, Ackerman H. Experimental Babesia rossi infection induces hemolytic, metabolic, and viral response pathways in the canine host. BMC Genomics 2021; 22:619. [PMID: 34399690 PMCID: PMC8369750 DOI: 10.1186/s12864-021-07889-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/13/2021] [Indexed: 12/02/2022] Open
Abstract
Background Babesia rossi is a leading cause of morbidity and mortality among the canine population of sub-Saharan Africa, but pathogenesis remains poorly understood. Previous studies of B. rossi infection were derived from clinical cases, in which neither the onset of infection nor the infectious inoculum was known. Here, we performed controlled B. rossi inoculations in canines and evaluated disease progression through clinical tests and whole blood transcriptomic profiling. Results Two subjects were administered a low inoculum (104 parasites) while three received a high (108 parasites). Subjects were monitored for 8 consecutive days; anti-parasite treatment with diminazene aceturate was administered on day 4. Blood was drawn prior to inoculation as well as every experimental day for assessment of clinical parameters and transcriptomic profiles. The model recapitulated natural disease manifestations including anemia, acidosis, inflammation and behavioral changes. Rate of disease onset and clinical severity were proportional to the inoculum. To analyze the temporal dynamics of the transcriptomic host response, we sequenced mRNA extracted from whole blood drawn on days 0, 1, 3, 4, 6, and 8. Differential gene expression, hierarchical clustering, and pathway enrichment analyses identified genes and pathways involved in response to hemolysis, metabolic changes, and several arms of the immune response including innate immunity, adaptive immunity, and response to viral infection. Conclusions This work comprehensively characterizes the clinical and transcriptomic progression of B. rossi infection in canines, thus establishing a large mammalian model of severe hemoprotozoal disease to facilitate the study of host-parasite biology and in which to test novel anti-disease therapeutics. The knowledge gained from the study of B. rossi in canines will not only improve our understanding of this emerging infectious disease threat in domestic dogs, but also provide insight into the pathobiology of human diseases caused by Babesia and Plasmodium species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07889-4.
Collapse
Affiliation(s)
- Rachel L Smith
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, 20852, USA
| | - Amelia Goddard
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - Arun Boddapati
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20894, USA.,Advanced Biomedical Computational Science (ABCS), Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Steven Brooks
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, 20852, USA
| | - Johan P Schoeman
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20894, USA.,Advanced Biomedical Computational Science (ABCS), Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Andrew Leisewitz
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa.
| | - Hans Ackerman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, 20852, USA.
| |
Collapse
|
11
|
Interplay between Attenuation- and Virulence-Factors of Babesia bovis and Their Contribution to the Establishment of Persistent Infections in Cattle. Pathogens 2019; 8:pathogens8030097. [PMID: 31277392 PMCID: PMC6789890 DOI: 10.3390/pathogens8030097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/21/2022] Open
Abstract
Bovine babesiosis is an acute and persistent tick-borne global disease caused mainly by the intraerythrocytic apicomplexan parasites Babesia bovis and B. bigemina. B. bovis infected erythrocytes sequester in blood capillaries of the host (cytoadhesion), causing malaria-like neurological signs. Cytoadhesion and antigenic variation in B. bovis are linked to the expression of members of the Variant Erythrocyte Surface Antigen (VESA) gene family. Animals that survive acute B. bovis infection and those vaccinated with attenuated strains remain persistently infected, suggesting that B. bovis parasites use immune escape mechanisms. However, attenuated B. bovis parasites do not cause neurological signs in vaccinated animals, indicating that virulence or attenuation factors play roles in modulating parasite virulence phenotypes. Artificial overexpression of the SBP2t11 protein, a defined attenuation factor, was associated with reduced cytoadhesion, suggesting a role for this protein as a key modulator of virulence in the parasite. Hereby, we propose a model that might be functional in the modulation of B. bovis virulence and persistence that relies on the interplay among SBP2t, VESA proteins, cytoadhesion, and the immune responses of the host. Elucidation of mechanisms used by the parasite to establish persistent infection will likely contribute to the design of new methods for the control of bovine babesiosis.
Collapse
|
12
|
Allred DR. Variable and Variant Protein Multigene Families in Babesia bovis Persistence. Pathogens 2019; 8:pathogens8020076. [PMID: 31212587 PMCID: PMC6630957 DOI: 10.3390/pathogens8020076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 11/16/2022] Open
Abstract
Cattle infected with Babesia bovis face a bifurcated fate: Either die of the severe acute infection, or survive and carry for many years a highly persistent but generally asymptomatic infection. In this review, the author describes known and potential contributions of three variable or highly variant multigene-encoded families of proteins to persistence in the bovine host, and the mechanisms by which variability arises among these families. Ramifications arising from this variability are discussed.
Collapse
Affiliation(s)
- David R Allred
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32611, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA.
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
13
|
Maiorano AM, Giglioti R, Oliveira MCS, Oliveira HN, Cyrillo JNSG, Mercadante MEZ, Silva JAIIV. Resistance to the tick Rhipicephalus microplus and Babesia bovis infection levels in beef heifers raised in an endemic area of Sao Paulo state, Brazil. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an17157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Repeatability coefficients (r) for tick resistance and Babesia bovis infection levels and the correlation (ρ) between these traits were estimated in beef heifers, using artificial infestations and short intervals between measurements. Forty heifers, including 20 Bos taurus taurus (Caracu) and 20 Bos taurus indicus (Nelore) animals, were submitted to three artificial infestations with Rhipicephalus microplus larvae at intervals of 14 days. The number of standard female was counted from the 19th through the 23rd day after each infestation, considering only the left side of each animal. Blood samples were collected on Days 0, 6, 20, 34 and 48 after the first infestation. The number of copies of B. bovis DNA (CN) was estimated from blood samples through the quantitative PCR technique to evaluate the level of infection in the animals. Total tick count (TTC), the percentage of return (PRij) and CN were analysed using the MIXED procedure of the SAS program. The r of the variables were estimated by intraclass correlation between measures of the same animal, with the variance component of the animal being divided by the phenotypic variance (residual + animal), using models with a CS structure matrix. Additionally, ρ among variables were estimated using the CORR procedure. The following results were obtained for Caracu and Nelore animals, respectively: 1.83 ± 0.37 and 0.63 ± 0.40 for TTC, 1.10 ± 0.23 and 0.47 ± 0.23 for PRij, and 2.29 ± 0.64 and 2.32 ± 0.58 for CN. The r was moderate for TTC (0.62) and PRij (0.53) and low for CN (0.10). The ρ between TTC and CN obtained in the same measurement day was not significant in either breed (P > 0.05; –0.07 for Caracu and 0.19 for Nelore). Results showed both breeds were able to develop resistance against B. bovis; however, Nelore exhibited higher tick resistance. The r obtained for CN and the weak association with tick resistance indicate that it is not possible to recommend the use of CN as a trait to predict tick resistance in these two breeds.
Collapse
|
14
|
Gallego-Lopez GM, Lau AOT, O'Connor RM, Ueti MW, Cooke BM, Laughery JM, Graça T, Madsen-Bouterse SA, Oldiges DP, Allred DR, Suarez CE. Up-regulated expression of spherical body protein 2 truncated copy 11 in Babesia bovis is associated with reduced cytoadhesion to vascular endothelial cells. Int J Parasitol 2018; 49:127-137. [PMID: 30367864 DOI: 10.1016/j.ijpara.2018.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 11/27/2022]
Abstract
The factors involved in gain or loss of virulence in Babesia bovis are unknown. Spherical body protein 2 truncated copy 11 (sbp2t11) transcripts in B. bovis were recently reported to be a marker of attenuation for B. bovis strains. Increased cytoadhesion of B. bovis-infected red blood cells (iRBC) to vascular endothelial cells is associated with severe disease outcomes and an indicator of parasite virulence. Here, we created a stable B. bovis transfected line over-expressing sbp2t11 to determine whether up-regulation of sbp2t11 is associated with changes in cytoadhesion. This line was designated sbp2t11up and five B. bovis clonal lines were derived from the sbp2t11up line by limiting dilution for characterisation. We compared the ability of iRBCs from the sbp2t11up line and its five derivative clonal lines to adhere to bovine brain endothelial cells, using an in vitro cytoadhesion assay. The same lines were selected for in vitro cytoadhesion and the levels of sbp2t11 transcripts in each selected line were quantified. Our results demonstrate that up-regulation of sbp2t11 is accompanied by a statistically significant reduction in cytoadhesion. Confirmed up-regulation of sbp2t11 in B. bovis concomitant with the reduction of iRBC in vitro cytoadhesion to bovine brain endothelial cell is consistent with our previous finding that up-regulation of sbp2t11 is an attenuation marker in B. bovis and suggests the involvement of sbp2t11 transcription in B. bovis virulence.
Collapse
Affiliation(s)
- Gina M Gallego-Lopez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
| | - Audrey O T Lau
- The National Institutes of Health, National Institute of Allergy and Infectious Diseases, DEA, Rockville, MD 20852, USA
| | - Roberta M O'Connor
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
| | - Massaro W Ueti
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA; Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA 99164-6630, USA
| | - Brian M Cooke
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Jacob M Laughery
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
| | - Telmo Graça
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
| | - Sally A Madsen-Bouterse
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
| | - Daiane P Oldiges
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - David R Allred
- Department of Infectious Diseases and Immunology, Emerging Pathogens Institute University of Florida, Gainesville, FL 32611-0880, USA
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA; Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA 99164-6630, USA.
| |
Collapse
|
15
|
Yamagishi J, Asada M, Hakimi H, Tanaka TQ, Sugimoto C, Kawazu SI. Whole-genome assembly of Babesia ovata and comparative genomics between closely related pathogens. BMC Genomics 2017; 18:832. [PMID: 29078748 PMCID: PMC5660447 DOI: 10.1186/s12864-017-4230-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/20/2017] [Indexed: 01/13/2023] Open
Abstract
Background Babesia ovata, belonging to the phylum Apicomplexa, is an infectious parasite of bovids. It is not associated with the manifestation of severe symptoms, in contrast to other types of bovine babesiosis caused by B. bovis and B. bigemina; however, upon co-infection with Theileria orientalis, it occasionally induces exacerbated symptoms. Asymptomatic chronic infection in bovines is usually observed only for B. ovata. Comparative genomic analysis could potentially reveal factors involved in these distinguishing characteristics; however, the genomic and molecular basis of these phenotypes remains elusive, especially in B. ovata. From a technical perspective, the current development of a very long read sequencer, MinION, will facilitate the obtainment of highly integrated genome sequences. Therefore, we applied next-generation sequencing to acquire a high-quality genome of the parasite, which provides fundamental information for understanding apicomplexans. Results The genome was assembled into 14,453,397 bp in size with 5031 protein-coding sequences (91 contigs and N50 = 2,090,503 bp). Gene family analysis revealed that ves1 alpha and beta, which belong to multigene families in B. bovis, were absent from B. ovata, the same as in B. bigemina. Instead, ves1a and ves1b, which were originally specified in B. bigemina, were present. The B. ovata and B. bigemina ves1a configure one cluster together even though they divided into two sub-clusters according to the spp. In contrast, the ves1b cluster was more dispersed and the overlap among B. ovata and B. bigemina was limited. The observed redundancy and rapid evolution in sequence might reflect the adaptive history of these parasites. Moreover, same candidate genes which potentially involved in the distinct phenotypes were specified by functional analysis. An anamorsin homolog is one of them. The human anamorsin is involved in hematopoiesis and the homolog was present in B. ovata but absent in B. bigemina which causes severe anemia. Conclusions Taking these findings together, the differences demonstrated by comparative genomics potentially explain the evolutionary history of these parasites and the differences in their phenotypes. Besides, the draft genome provides fundamental information for further characterization and understanding of these parasites. Electronic supplementary material The online version of this article (10.1186/s12864-017-4230-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan. .,Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Masahito Asada
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Hassan Hakimi
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | | | - Chihiro Sugimoto
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shin-Ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
16
|
Puri B, Hakkarainen-Smith J, Monro J. The effect of artesunate on short-term memory in Lyme borreliosis. Med Hypotheses 2017; 105:4-5. [DOI: 10.1016/j.mehy.2017.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/19/2017] [Accepted: 06/23/2017] [Indexed: 10/19/2022]
|
17
|
Oldiges DP, Laughery JM, Tagliari NJ, Leite Filho RV, Davis WC, da Silva Vaz I, Termignoni C, Knowles DP, Suarez CE. Transfected Babesia bovis Expressing a Tick GST as a Live Vector Vaccine. PLoS Negl Trop Dis 2016; 10:e0005152. [PMID: 27911903 PMCID: PMC5135042 DOI: 10.1371/journal.pntd.0005152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/01/2016] [Indexed: 11/18/2022] Open
Abstract
The Rhipicephalus microplus tick is a notorious blood-feeding ectoparasite of livestock, especially cattle, responsible for massive losses in animal production. It is the main vector for transmission of pathogenic bacteria and parasites, including Babesia bovis, an intraerythrocytic apicomplexan protozoan parasite responsible for bovine Babesiosis. This study describes the development and testing of a live B. bovis vaccine expressing the protective tick antigen glutathione-S-transferase from Haemaphysalis longicornis (HlGST). The B. bovis S74-T3B parasites were electroporated with a plasmid containing the bidirectional Ef-1α (elongation factor 1 alpha) promoter of B. bovis controlling expression of two independent genes, the selectable marker GFP-BSD (green fluorescent protein–blasticidin deaminase), and HlGST fused to the MSA-1 (merozoite surface antigen 1) signal peptide from B. bovis. Electroporation followed by blasticidin selection resulted in the emergence of a mixed B. bovis transfected line (termed HlGST) in in vitro cultures, containing parasites with distinct patterns of insertion of both exogenous genes, either in or outside the Ef-1α locus. A B. bovis clonal line termed HlGST-Cln expressing intracellular GFP and HlGST in the surface of merozoites was then derived from the mixed parasite line HlGST using a fluorescent activated cell sorter. Two independent calf immunization trials were performed via intravenous inoculation of the HlGST-Cln and a previously described control consisting of an irrelevant transfected clonal line of B. bovis designated GFP-Cln. The control GFP-Cln line contains a copy of the GFP-BSD gene inserted into the Ef-1α locus of B. bovis in an identical fashion as the HIGST-Cln parasites. All animals inoculated with the HlGST-Cln and GFP-Cln transfected parasites developed mild babesiosis. Tick egg fertility and fully engorged female tick weight was reduced significantly in R. microplus feeding on HlGST-Cln-immunized calves. Collectively, these data show the efficacy of a transfected HlGST-Cln B. bovis parasite to induce detectable anti-glutathione-S-transferase antibodies and a reduction in tick size and fecundity of R. microplus feeding in experimentally inoculated animals. The cattle tick Rhipicephalus microplus is a hematophagous ectoparasite, responsible for the transmission of lethal parasites such as Babesia sp, limiting cattle production in tropical and subtropical regions of the world. There is an urgent emerging need for improved methods of control for these currently neglected tick and tick borne diseases. It is hypothesized that a dual attenuated-live vector vaccine containing a stably transfected tick antigen elicits protective immune responses against the parasite and the tick vector in vaccinated cattle. Live Babesia vaccines based on attenuated parasites are the only effective method available for preventing acute babesiosis. On the other hand, glutathione-S-transferase from Haemaphysalis longicornis (HlGST) is a known effective antigen against Rhipicephalus microplus, the most common vector for B. bovis. This study describes the development and testing of a transfected, B. bovis vaccine expressing HlGST against the tick R. microplus. A B. bovis clonal line designated HlGST-Cln expressing HlGST and GFP/BSD, and separately a control transfected B. bovis clonal line expressing only GFP/BSD was used to vaccinate calves in two independent experiments. All immunized calves developed mild babesiosis, and only calves immunized with the HlGST-Cln parasite line generated anti-HlGST antibodies. Tick egg fertility and fully engorged female tick weight were reduced significantly in R. microplus feeding on HlGST-Cln-vaccinated calves. Taken together, these data demonstrates the ability of transfected B. bovis to elicit antibodies against a heterologous tick antigen in cattle and to induce partial protection in the vaccinated animals against the cattle tick for the first time, representing a step toward the goal to produce a live vector anti-tick vaccine.
Collapse
Affiliation(s)
- Daiane P. Oldiges
- Centro de Biotecnologia Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jacob M. Laughery
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Nelson Junior Tagliari
- Faculdade de Veterinária Universidade Federal do Rio Grande do Sul; Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ronaldo Viana Leite Filho
- Faculdade de Veterinária Universidade Federal do Rio Grande do Sul; Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - William C. Davis
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Faculdade de Veterinária Universidade Federal do Rio Grande do Sul; Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Termignoni
- Centro de Biotecnologia Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Bioquímica Universidade Federal do Rio Grande do Sul; Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Donald P. Knowles
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, Washington, United States of America
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, Washington, United States of America
- * E-mail: ,
| |
Collapse
|
18
|
Transplacental transmission of bovine tick-borne pathogens: Frequency, co-infections and fatal neonatal anaplasmosis in a region of enzootic stability in the northeast of Brazil. Ticks Tick Borne Dis 2015; 7:270-5. [PMID: 26613663 DOI: 10.1016/j.ttbdis.2015.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 11/24/2022]
Abstract
Bovine tick-borne disease (TBD) constitutes a worldwide group of diseases that result in great losses for dairy and beef cattle. With regard to the epidemiological profile of the diseases, the importance of transplacental transmission is still not very well understood. The aim of this study was to determine the transplacental transmission of TBD agents (Anaplasma marginale, Babesia bovis and B. bigemina) in a herd of dairy cattle that had been naturally infected in an area of enzootic stability in northeastern Brazil. Blood for serology of the three agents was collected from cows within 120 days of gestation and serology, haemogram and nPCR assays were performed after birth. Blood was collected from the calves within 3h of birth, and haemogram and nPCR assays were performed in all animals. Pre-colostrum serology was achieved in 34 animals. The Student's t-test was used to compare the haemogram results between animals that were positive and negative for the haemoparasites. The cows were seropositive for all agents in at least one of the examinations. We detected 15 cases of vertical transmission of A. marginale, 4 of B. bovis and 2 of B. bigemina in the 60 cows. In infected animals, co-infection was detected for A. marginale and B. bovis in 1 of 60 calves, and a triple infection was detected in one other calf. Fatal neonatal anaplasmosis was observed in 1 of 15 calves, in which death occurred within 24h of birth. From the results, we concluded that transplacental transmission of TBD agents occurs, including in cases of co- and triple-infection. Such transplacental transmission can cause neonatal death, increasing the importance of this form of epidemiological transmission and suggesting its role as a cause of undiagnosed neonatal death.
Collapse
|
19
|
Large, rapidly evolving gene families are at the forefront of host-parasite interactions in Apicomplexa. Parasitology 2014; 142 Suppl 1:S57-70. [PMID: 25257746 PMCID: PMC4413850 DOI: 10.1017/s0031182014001528] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Apicomplexa is a phylum of parasitic protozoa, which includes the malaria parasite Plasmodium, amongst other species that can devastate human and animal health. The past decade has seen the release of genome sequences for many of the most important apicomplexan species, providing an excellent basis for improving our understanding of their biology. One of the key features of each genome is a unique set of large, variant gene families. Although closely related species share the same families, even different types of malaria parasite have distinct families. In some species they tend to be found at the ends of chromosomes, which may facilitate aspects of gene expression regulation and generation of sequence diversity. In others they are scattered apparently randomly across chromosomes. For some families there is evidence they are involved in antigenic variation, immune regulation and immune evasion. For others there are no known functions. Even where function is unknown these families are most often predicted to be exposed to the host, contain much sequence diversity and evolve rapidly. Based on these properties it is clear that they are at the forefront of host–parasite interactions. In this review I compare and contrast the genomic context, gene structure, gene expression, protein localization and function of these families across different species.
Collapse
|
20
|
Abstract
Serial blood passage of virulent Babesia bovis in splenectomized cattle results in attenuated derivatives that do not cause neurologic disease. Tick transmissibility can be lost with attenuation, but when retained, attenuated B. bovis can revert to virulence following tick passage. This study provides data showing that tick passage of the partially attenuated B. bovis T2Bo derivative strain further decreased virulence compared with intravenous inoculation of the same strain in infected animals. Ticks that acquired virulent or attenuated parasites by feeding on infected cattle were transmission fed on naive, splenectomized animals. While there was no significant difference between groups in the number of parasites in the midgut, hemolymph, or eggs of replete female ticks after acquisition feeding, animals infected with the attenuated parasites after tick transmission showed no clinical signs of babesiosis, unlike those receiving intravenous challenge with the same attenuated strain prior to tick passage. Additionally, there were significantly fewer parasites in blood and tissues of animals infected with tick-passaged attenuated parasites. Sequencing analysis of select B. bovis genes before and after tick passage showed significant differences in parasite genotypes in both peripheral blood and cerebral samples. These results provide evidence that not only is tick transmissibility retained by the attenuated T2Bo strain, but also it results in enhanced attenuation and is accompanied by expansion of parasite subpopulations during tick passage that may be associated with the change in disease phenotype.
Collapse
|
21
|
Florin-Christensen M, Suarez CE, Rodriguez AE, Flores DA, Schnittger L. Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology 2014; 141:1-30. [PMID: 25068315 DOI: 10.1017/s0031182014000961] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SUMMARY Bovine babesiosis caused by the tick-transmitted haemoprotozoans Babesia bovis, Babesia bigemina and Babesia divergens commonly results in substantial cattle morbidity and mortality in vast world areas. Although existing live vaccines confer protection, they have considerable disadvantages. Therefore, particularly in countries where large numbers of cattle are at risk, important research is directed towards improved vaccination strategies. Here a comprehensive overview of currently used live vaccines and of the status quo of experimental vaccine trials is presented. In addition, pertinent research fields potentially contributing to the development of novel non-live and/or live vaccines are discussed, including parasite antigens involved in host cell invasion and in pathogen-tick interactions, as well as the protective immunity against infection. The mining of available parasite genomes is continuously enlarging the array of potential vaccine candidates and, additionally, the recent development of a transfection tool for Babesia can significantly contribute to vaccine design. However, the complication and high cost of vaccination trials hinder Babesia vaccine research, and have so far seriously limited the systematic examination of antigen candidates and prevented an in-depth testing of formulations using different immunomodulators and antigen delivery systems.
Collapse
Affiliation(s)
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology,Washington State University,Pullman, WA 99164-7040,USA
| | - Anabel E Rodriguez
- Instituto de Patobiologia,CICVyA, INTA-Castelar, 1686 Hurlingham,Argentina
| | - Daniela A Flores
- Instituto de Patobiologia,CICVyA, INTA-Castelar, 1686 Hurlingham,Argentina
| | | |
Collapse
|
22
|
Pedroni MJ, Sondgeroth KS, Gallego-Lopez GM, Echaide I, Lau AOT. Comparative transcriptome analysis of geographically distinct virulent and attenuated Babesia bovis strains reveals similar gene expression changes through attenuation. BMC Genomics 2013; 14:763. [PMID: 24195453 PMCID: PMC3826834 DOI: 10.1186/1471-2164-14-763] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/30/2013] [Indexed: 11/23/2022] Open
Abstract
Background Loss of virulence is a phenotypic adaptation commonly seen in prokaryotic and eukaryotic pathogens. This mechanism is not well studied, especially in organisms with multiple host and life cycle stages such as Babesia, a tick-transmitted hemoparasite of humans and animals. B. bovis, which infects cattle, has naturally occurring virulent strains that can be reliably attenuated in vivo. Previous studies suggest the virulence loss mechanism may involve post-genomic modification. We investigated the transcriptome profiles of two geographically distinct B. bovis virulent and attenuated strain pairs to better understand virulence loss and to gain insight into pathogen adaptation strategies. Results Expression microarray and RNA-sequencing approaches were employed to compare transcriptome profiles of two B. bovis strain pairs, with each pair consisting of a virulent parental and its attenuated derivative strain. Differentially regulated transcripts were identified within each strain pair. These included genes encoding for VESA1, SmORFs, undefined membrane and hypothetical proteins. The majority of individual specific gene transcripts differentially regulated within a strain were not shared between the two strains. There was a disproportionately greater number of ves genes upregulated in the virulent parental strains. When compared with their attenuated derivatives, divergently oriented ves genes were included among the upregulated ves genes in the virulent strains, while none of the upregulated ves genes in the attenuated derivatives were oriented head to head. One gene family whose specific members were consistently and significantly upregulated in expression in both attenuated strains was spherical body protein (SBP) 2 encoding gene where SBP2 truncated copies 7, 9 and 11 transcripts were all upregulated. Conclusions We conclude that ves heterodimer pair upregulation and overall higher frequency of ves gene expressions in the virulent strains is consistent with the involvement of this gene family in virulence. This is logical given the role of VESA1 proteins in cytoadherence of infected cells to endothelial cells. However, upregulation of some ves genes in the attenuated derivatives suggests that the consequence of upregulation is gene-specific. Furthermore, upregulation of the spherical body protein 2 gene family may play a role in the attenuated phenotype. Exactly how these two gene families may contribute to the loss or gain of virulence is discussed.
Collapse
Affiliation(s)
| | | | | | | | - Audrey O T Lau
- Program of Genomics, Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, ADBF 4043, Pullman, WA, , 99164, USA.
| |
Collapse
|