1
|
Musoke D, Atusingwize E, Namata C, Ndejjo R, Wanyenze RK, Kamya MR. Integrated malaria prevention in low- and middle-income countries: a systematic review. Malar J 2023; 22:79. [PMID: 36879237 PMCID: PMC9987134 DOI: 10.1186/s12936-023-04500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND As many countries aim to eliminate malaria, use of comprehensive approaches targeting the mosquito vector and environment are needed. Integrated malaria prevention advocates the use of several malaria prevention measures holistically at households and in the community. The aim of this systematic review was to collate and summarize the impact of integrated malaria prevention in low- and middle-income countries on malaria burden. METHODS Literature on integrated malaria prevention, defined as the use of two or more malaria prevention methods holistically, was searched from 1st January 2001 to 31st July 2021. The primary outcome variables were malaria incidence and prevalence, while the secondary outcome measures were human biting and entomological inoculation rates, and mosquito mortality. RESULTS A total of 10,931 studies were identified by the search strategy. After screening, 57 articles were included in the review. Studies included cluster randomized controlled trials, longitudinal studies, programme evaluations, experimental hut/houses, and field trials. Various interventions were used, mainly combinations of two or three malaria prevention methods including insecticide-treated nets (ITNs), indoor residual spraying (IRS), topical repellents, insecticide sprays, microbial larvicides, and house improvements including screening, insecticide-treated wall hangings, and screening of eaves. The most common methods used in integrated malaria prevention were ITNs and IRS, followed by ITNs and topical repellents. There was reduced incidence and prevalence of malaria when multiple malaria prevention methods were used compared to single methods. Mosquito human biting and entomological inoculation rates were significantly reduced, and mosquito mortality increased in use of multiple methods compared to single interventions. However, a few studies showed mixed results or no benefits of using multiple methods to prevent malaria. CONCLUSION Use of multiple malaria prevention methods was effective in reducing malaria infection and mosquito density in comparison with single methods. Results from this systematic review can be used to inform future research, practice, policy and programming for malaria control in endemic countries.
Collapse
Affiliation(s)
- David Musoke
- Department of Disease Control and Environmental Health, School of Public Health, Makerere University College of Health Sciences, Kampala, Uganda.
| | - Edwinah Atusingwize
- Department of Disease Control and Environmental Health, School of Public Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Carol Namata
- Department of Disease Control and Environmental Health, School of Public Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Rawlance Ndejjo
- Department of Disease Control and Environmental Health, School of Public Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Rhoda K Wanyenze
- Department of Disease Control and Environmental Health, School of Public Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Moses R Kamya
- Department of Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
2
|
Ondeto BM, Wang X, Atieli H, Orondo PW, Ochwedo KO, Omondi CJ, Otambo WO, Zhong D, Zhou G, Lee MC, Muriu SM, Odongo DO, Ochanda H, Kazura J, Githeko AK, Yan G. Malaria vector bionomics and transmission in irrigated and non-irrigated sites in western Kenya. Parasitol Res 2022; 121:3529-3545. [PMID: 36203064 DOI: 10.1007/s00436-022-07678-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/20/2022] [Indexed: 10/10/2022]
Abstract
Irrigation not only helps to improve food security but also creates numerous water bodies for mosquito production. This study assessed the effect of irrigation on malaria vector bionomics and transmission in a semi-arid site with ongoing malaria vector control program. The effectiveness of CDC light traps in the surveillance of malaria vectors was also evaluated relative to the human landing catches (HLCs) method. Adult mosquitoes were sampled in two study sites representing irrigated and non-irrigated agroecosystems in western Kenya using a variety of trapping methods. The mosquito samples were identified to species and assayed for host blood meal source and Plasmodium spp. sporozoite infection using polymerase chain reaction. Anopheles arabiensis was the dominant malaria vector in the two study sites and occurred in significantly higher densities in irrigated study site compared to the non-irrigated study site. The difference in indoor resting density of An. arabiensis during the dry and wet seasons was not significant. Other species, including An. funestus, An. coustani, and An. pharoensis, were collected. The An. funestus indoor resting density was 0.23 in irrigated study site while almost none of this species was collected in the non-irrigated study site. The human blood index (HBI) for An. arabiensis in the irrigated study site was 3.44% and significantly higher than 0.00% for the non-irrigated study site. In the irrigated study site, the HBI of An. arabiensis was 3.90% and 5.20% indoor and outdoor, respectively. The HBI of An. funestus was 49.43% and significantly higher compared to 3.44% for An. arabiensis in the irrigated study site. The annual entomologic inoculation rate for An. arabiensis in the irrigated study site was 0.41 and 0.30 infective bites/person/year indoor and outdoor, respectively, whereas no transmission was observed in the non-irrigated study site. The CDC light trap performed consistently with HLC in terms of vector density. These findings demonstrate that irrigated agriculture may increase the risk of malaria transmission in irrigated areas compared to the non-irrigated areas and highlight the need to complement the existing malaria vector interventions with novel tools targeting the larvae and both indoor and outdoor biting vector populations.
Collapse
Affiliation(s)
- Benyl M Ondeto
- Department of Biology, University of Nairobi, Nairobi, 00100, Kenya. .,Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300, Kenya.
| | - Xiaoming Wang
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| | - Harrysone Atieli
- Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300, Kenya
| | - Pauline Winnie Orondo
- Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300, Kenya.,Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 00200, Kenya
| | - Kevin O Ochwedo
- Department of Biology, University of Nairobi, Nairobi, 00100, Kenya.,Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300, Kenya
| | - Collince J Omondi
- Department of Biology, University of Nairobi, Nairobi, 00100, Kenya.,Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300, Kenya
| | - Wilfred O Otambo
- Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300, Kenya.,Department of Zoology, Maseno University, Maseno, Kenya
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| | - Simon M Muriu
- Department of Biological Sciences, Pwani University, Kilifi, 80108, Kenya
| | - David O Odongo
- Department of Biology, University of Nairobi, Nairobi, 00100, Kenya
| | - Horace Ochanda
- Department of Biology, University of Nairobi, Nairobi, 00100, Kenya
| | - James Kazura
- Center for Global Health and Disease, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Andrew K Githeko
- Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300, Kenya.,Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, 40100, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
3
|
Fernandez Montoya L, Alafo C, Martí-Soler H, Máquina M, Comiche K, Cuamba I, Munguambe K, Cator L, Aide P, Galatas B, Cuamba N, Marrenjo D, Saúte F, Paaijmans KP. Overlaying human and mosquito behavioral data to estimate residual exposure to host-seeking mosquitoes and the protection of bednets in a malaria elimination setting where indoor residual spraying and nets were deployed together. PLoS One 2022; 17:e0270882. [PMID: 36107865 PMCID: PMC9477321 DOI: 10.1371/journal.pone.0270882] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Characterizing persistent malaria transmission that occurs after the combined deployment of indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) is critical to guide malaria control and elimination efforts. This requires a detailed understanding of both human and vector behaviors at the same temporal and spatial scale. Cross-sectional human behavior evaluations and mosquito collections were performed in parallel in Magude district, Mozambique. Net use and the exact time when participant moved into each of five environments (outdoor, indoor before bed, indoor in bed, indoor after getting up, and outdoor after getting up) were recorded for individuals from three different age groups and both sexes during a dry and a rainy season. Malaria mosquitoes were collected with CDC light traps in combination with collection bottle rotators. The percentage of residual exposure to host-seeking vectors that occurred in each environment was calculated for five local malaria vectors with different biting behaviors, and the actual (at observed levels of LLIN use) and potential (i.e. if all residents had used an LLIN) personal protection conferred by LLINs was estimated. Anopheles arabiensis was responsible for more than 74% of residents' residual exposure to host-seeking vectors during the Magude project. The other four vector species (An. funestus s.s., An. parensis, An. squamosus and An. merus) were responsible for less than 10% each. The personal protection conferred by LLINs prevented only 39.2% of the exposure to host-seeking vectors that survived the implementation of both IRS and LLINs, and it differed significantly across seasons, vector species and age groups. At the observed levels of bednet use, 12.5% of all residual exposure to host-seeking vectors occurred outdoor during the evening, 21.9% indoor before going to bed, almost two thirds (64%) while people were in bed, 1.4% indoors after getting up and 0.2% outdoor after leaving the house. Almost a third of the residual exposure to host-seeking vectors (32.4%) occurred during the low transmission season. The residual bites of An. funestus s.s. and An. parensis outdoors and indoor before bedtime, of An. arabiensis indoors when people are in bed, and of An. squamosus both indoors and outdoors, are likely to have sustained malaria transmission throughout the Magude project. By increasing LLIN use, an additional 24.1% of exposure to the remaining hosts-seeking vectors could have been prevented. Since An. arabiensis, the most abundant vector, feeds primarily while people are in bed, increasing net use and net feeding inhibition (through e.g. community awareness activities and the selection of more effective LLINs) could significantly reduce the exposure to remaining host-seeking mosquitoes. Nonetheless, supplementary interventions aiming to reduce human-vector contact outdoors and/or indoors before people go to bed (e.g. through larval source management, window and eave screening, eave tubes, and spatial repellents) will be needed to reduce residual exposure to the outdoor and early biting An. funestus s.s. and An. parensis.
Collapse
Affiliation(s)
- Lucia Fernandez Montoya
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
| | - Celso Alafo
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
- Goodbye Malaria, Tchau Tchau Malaria Foundation, Chibungo, Mozambique
| | | | - Mara Máquina
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
| | - Kiba Comiche
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
| | - Inocencia Cuamba
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
| | - Khatia Munguambe
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
| | | | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
- Instituto Nacional da Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Beatriz Galatas
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
| | - Nelson Cuamba
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
- PMI VectorLink Project, Abt Associates Inc., Maputo, Mozambique
| | - Dulcisaria Marrenjo
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
| | - Krijn P. Paaijmans
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, United States of America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
4
|
Comparison of entomological impacts of two methods of intervention designed to control Anopheles gambiae s.l. via swarm killing in Western Burkina Faso. Sci Rep 2022; 12:12397. [PMID: 35858978 PMCID: PMC9297277 DOI: 10.1038/s41598-022-16649-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022] Open
Abstract
Outdoor biting constitutes a major limitation of current vector control based primarily on long-lasting insecticidal nets and indoor residual spraying, both of which are indoor interventions. Consequently, malaria elimination will not be achieved unless additional tools are found to deal with the residual malaria transmission and the associated vector dynamics. In this study we tested a new vector control approach for rapidly crashing mosquito populations and disrupting malaria transmission in Africa. This method targets the previously neglected swarming and outdoor nocturnal behaviors of both male and female Anopheles mosquitoes. It involved accurate identification and targeted spraying of mosquito swarms to suppress adult malaria vector populations and their vectorial capacities. The impact of targeted spraying was compared to broadcast spraying and evaluated simultaneously. The effects of the two interventions were very similar, no significant differences between targeted spraying and broadcast spraying were found for effects on density, insemination or parity rate. However, targeted spraying was found to be significantly more effective than broadcast spraying at reducing the number of bites per person. As expected, each intervention had a highly significant impact upon all parameters measured, but the targeted swarm spraying required less insecticide.
Collapse
|
5
|
Okumu F, Finda M. Key Characteristics of Residual Malaria Transmission in Two Districts in South-Eastern Tanzania-Implications for Improved Control. J Infect Dis 2021; 223:S143-S154. [PMID: 33906218 PMCID: PMC8079133 DOI: 10.1093/infdis/jiaa653] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
After 2 decades of using insecticide-treated nets (ITNs) and improved case management, malaria burden in the historically-holoendemic Kilombero valley in Tanzania has significantly declined. We review key characteristics of the residual transmission and recommend options for improvement. Transmission has declined by >10-fold since 2000 but remains heterogeneous over small distances. Following the crash of Anopheles gambiae, which coincided with ITN scale-up around 2005-2012, Anopheles funestus now dominates malaria transmission. While most infections still occur indoors, substantial biting happens outdoors and before bed-time. There is widespread resistance to pyrethroids and carbamates; An. funestus being particularly strongly-resistant. In short and medium-term, these challenges could be addressed using high-quality indoor residual spraying with nonpyrethroids, or ITNs incorporating synergists. Supplementary tools, eg, spatial-repellents may expand protection outdoors. However, sustainable control requires resilience-building approaches, particularly improved housing and larval-source management to suppress mosquitoes, stronger health systems guaranteeing case-detection and treatment, greater community-engagement and expanded health education.
Collapse
Affiliation(s)
- Fredros Okumu
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
- School of Public Health, University of the Witwatersrand, Johannesburg, Republic of South Africa
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Marceline Finda
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
- School of Public Health, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
6
|
Chaccour C, Zulliger R, Wagman J, Casellas A, Nacima A, Elobolobo E, Savaio B, Saifodine A, Fornadel C, Richardson J, Candrinho B, Robertson M, Saute F. Incremental impact on malaria incidence following indoor residual spraying in a highly endemic area with high standard ITN access in Mozambique: results from a cluster-randomized study. Malar J 2021; 20:84. [PMID: 33568137 PMCID: PMC7877039 DOI: 10.1186/s12936-021-03611-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
Background Attaining the goal of reducing the global malaria burden is threatened by recent setbacks in maintaining the effectiveness of vector control interventions partly due to the emergence of pyrethroid resistant vectors. One potential strategy to address these setbacks could be combining indoor residual spraying (IRS) with non-pyrethroids and standard insecticide-treated nets (ITNs). This study aimed to provide evidence on the incremental epidemiological benefit of using third-generation IRS product in a highly endemic area with high ITN ownership. Methods A cluster-randomized, open-label, parallel-arms, superiority trial was conducted in the Mopeia district in Zambezia, Mozambique from 2016 to 2018. The district had received mass distribution of alphacypermethrin ITNs two years before the trial and again mid-way. 86 clusters were defined, stratified and randomized to receive or not receive IRS with pirimiphos-methyl (Actellic®300 CS). Efficacy of adding IRS was assessed through malaria incidence in a cohort of children under five followed prospectively for two years, enhanced passive surveillance at health facilities and by community health workers, and yearly cross-sectional surveys at the peak of the transmission season. Findings A total of 1536 children were enrolled in the cohort. Children in the IRS arm experienced 4,801 cases (incidence rate of 3,532 per 10,000 children-month at risk) versus 5,758 cases in the no-IRS arm (incidence rate of 4,297 per 10,000 children-month at risk), resulting in a crude risk reduction of 18% and an incidence risk ratio of 0.82 (95% CI 0.79–0.86, p-value < 0.001). Facility and community passive surveillance showed a malaria incidence of 278 per 10,000 person-month in the IRS group (43,974 cases over 22 months) versus 358 (95% CI 355–360) per 10,000 person-month at risk in the no-IRS group (58,030 cases over 22 months), resulting in an incidence rate ratio of 0.65 (95% CI 0.60–0.71, p < 0.001). In the 2018 survey, prevalence in children under five in the IRS arm was significantly lower than in the no-IRS arm (OR 0.54, 95% CI, 0.31–0.92, p = 0.0241). Conclusion In a highly endemic area with high ITN access and emerging pyrethroid resistance, adding IRS with pirimiphos-methyl resulted in significant additional protection for children under five years of age. Trial registration: ClinicalTrials.gov identifier NCT02910934, registered 22 September 2016, https://clinicaltrials.gov/ct2/show/NCT02910934?term=NCT02910934&draw=2&rank=1.
Collapse
Affiliation(s)
- Carlos Chaccour
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain. .,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.
| | - Rose Zulliger
- President's Malaria Initiative, US Centers for Disease Control and Prevention, Maputo, Mozambique
| | | | - Aina Casellas
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Amilcar Nacima
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Eldo Elobolobo
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | | | - Abuchahama Saifodine
- President's Malaria Initiative, United States Agency for International Development, Maputo, Mozambique
| | | | | | | | | | - Francisco Saute
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| |
Collapse
|
7
|
Bamou R, Kopya E, Nkahe LD, Menze BD, Awono-Ambene P, Tchuinkam T, Njiokou F, Wondji CS, Antonio-Nkondjio C. Increased prevalence of insecticide resistance in Anopheles coluzzii populations in the city of Yaoundé, Cameroon and influence on pyrethroid-only treated bed net efficacy. ACTA ACUST UNITED AC 2021; 28:8. [PMID: 33528357 PMCID: PMC7852377 DOI: 10.1051/parasite/2021003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/08/2021] [Indexed: 11/15/2022]
Abstract
In Cameroon, pyrethroid-only long-lasting insecticidal nets (LLINs) are still largely used for malaria control. The present study assessed the efficacy of such LLINs against a multiple-resistant population of the major malaria vector, Anopheles coluzzii, in the city of Yaoundé via a cone bioassay and release-recapture experimental hut trial. Susceptibility of field mosquitoes in Yaoundé to pyrethroids, DDT, carbamates and organophosphate insecticides was investigated using World Health Organization (WHO) bioassay tube tests. Mechanisms of insecticide resistance were characterised molecularly. Efficacy of unwashed PermaNet® 2.0 was evaluated against untreated control nets using a resistant colonised strain of An. coluzzii. Mortality, exophily and blood feeding inhibition were estimated. Field collected An. coluzzii displayed high resistance with mortality rates of 3.5% for propoxur (0.1%), 4.16% for DDT (4%), 26.9% for permethrin (0.75%), 50.8% for deltamethrin (0.05%), and 80% for bendiocarb (0.1%). High frequency of the 1014F west-Africa kdr allele was recorded in addition to the overexpression of several detoxification genes, such as Cyp6P3, Cyp6M2, Cyp9K1, Cyp6P4 Cyp6Z1 and GSTe2. A low mortality rate (23.2%) and high blood feeding inhibition rate (65%) were observed when resistant An. coluzzii were exposed to unwashed PermaNet® 2.0 net compared to control untreated net (p < 0.001). Furthermore, low personal protection (52.4%) was observed with the resistant strain, indicating reduction of efficacy. The study highlights the loss of efficacy of pyrethroid-only nets against mosquitoes exhibiting high insecticide resistance and suggests a switch to new generation bed nets to improve control of malaria vector populations in Yaoundé.
Collapse
Affiliation(s)
- Roland Bamou
- Vector-Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, P.O. Box 067, Dschang, Cameroon - Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288 Yaoundé, Cameroon
| | - Edmond Kopya
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288 Yaoundé, Cameroon - Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Leslie Diane Nkahe
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288 Yaoundé, Cameroon - Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Benjamin D Menze
- Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom - Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288 Yaoundé, Cameroon
| | - Timoléon Tchuinkam
- Vector-Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Flobert Njiokou
- Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Charles S Wondji
- Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom - Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Christophe Antonio-Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288 Yaoundé, Cameroon - Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| |
Collapse
|
8
|
Nlinwe NO, Singong YC, Florentine TMR. Evaluation of malaria preventive measures among adult patients attending the Bamendjou and Foumbot district hospitals of the West Region of Cameroon. Malar J 2021; 20:60. [PMID: 33482826 PMCID: PMC7821540 DOI: 10.1186/s12936-021-03592-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/15/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Although a significant decrease in entomological and epidemiological indicators was reported in Cameroon since the introduction of insecticide-treated bed nets, malaria prevalence remains high also in some parts of the West Region of Cameroon. This study was designed to evaluate malaria preventive measures among patients attending the Bamendjou and Foumbot District hospitals of the West Region of Cameroon. METHODS This was a cross-sectional study carried out within a period of 3 months, from January to March 2020. Data was obtained using a structured questionnaire and laboratory analysis. The CareStart™ Pf Malaria HRP2 qualitative rapid diagnostic test was used for malaria diagnosis. The questionnaire was designed to collect information on respondent's socio-demographic characteristics, and the use of malaria preventive measures. Data were analysed using descriptive statistics, regression analysis, and Chi-square (and Fisher's exact) test. RESULTS A total of 170 study participants were recruited in Foumbot and 197 in Bamendjou. Malaria was significantly (P < 0.0001) more prevalent in Foumbot (47.06%) than in Bamendjou (19.8%). In Foumbot, non-use of insect repellent spray (P = 0.0214), insect repellent body cream (P = 0.0009), mosquito spray (P = 0.0001) and not draining stagnant water (P = 0.0004) predisposed to higher risk of malaria. In Bamendjou, non-use of insect repellent spray (P = 0.0012), long-lasting insecticidal bed nets (P = 0.0001), window and door nets (P = 0.0286), predisposed to a higher risk of malaria. CONCLUSIONS Malaria prevalence was high among the study participants especially in Foumbot. An adequate follow-up to ensure effective execution of the recently launched third phase of LLINs distribution campaign in Cameroon is recommended. Additionally, integrated vector management is required to ensure effective control of malaria transmission in Foumbot and Bamendjou.
Collapse
Affiliation(s)
- Nfor Omarine Nlinwe
- Department of Medical Laboratory Science, The University of Bamenda, Faculty of Health Sciences, Bambili, P.O Box 39, Bamenda, North West Region, Cameroon.
| | - Yengong Clinton Singong
- Department of Medical Laboratory Science, The University of Bamenda, Faculty of Health Sciences, Bambili, P.O Box 39, Bamenda, North West Region, Cameroon
| | - Tenkam Makamdoum Ruth Florentine
- Department of Medical Laboratory Science, The University of Bamenda, Faculty of Health Sciences, Bambili, P.O Box 39, Bamenda, North West Region, Cameroon
| |
Collapse
|
9
|
Emergence of behavioural avoidance strategies of malaria vectors in areas of high LLIN coverage in Tanzania. Sci Rep 2020; 10:14527. [PMID: 32883976 PMCID: PMC7471940 DOI: 10.1038/s41598-020-71187-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/10/2020] [Indexed: 01/20/2023] Open
Abstract
Despite significant reductions in malaria transmission across Africa since 2000, progress is stalling. This has been attributed to the development of insecticide resistance and behavioural adaptations in malaria vectors. Whilst insecticide resistance has been widely investigated, there is poorer understanding of the emergence, dynamics and impact of mosquito behavioural adaptations. We conducted a longitudinal investigation of malaria vector host choice over 3 years and resting behaviour over 4 years following a mass long-lasting insecticidal nets (LLINs) distribution in Tanzania. By pairing observations of mosquito ecology with environmental monitoring, we quantified longitudinal shifts in host-choice and resting behaviour that are consistent with adaptation to evade LLINs. The density of An. funestuss.l., declined significantly through time. In tandem, An. arabiensis and An. funestuss.l. exhibited an increased rate of outdoor relative to indoor resting; with An. arabiensis reducing the proportion of blood meals taken from humans in favour of cattle. By accounting for environmental variation, this study detected clear evidence of intra-specific shifts in mosquito behaviour that could be obscured in shorter-term or temporally-coarse surveys. This highlights the importance of mosquito behavioural adaptations to vector control, and the value of longer-term behavioural studies.
Collapse
|
10
|
Vector control for malaria elimination in Botswana: progress, gaps and opportunities. Malar J 2020; 19:301. [PMID: 32843037 PMCID: PMC7449088 DOI: 10.1186/s12936-020-03375-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/13/2020] [Indexed: 12/29/2022] Open
Abstract
Botswana has in the recent past 10 years made tremendous progress in the control of malaria and this informed re-orientation from malaria control to malaria elimination by the year 2020. This progress is attributed to improved case management, and scale-up of key vector control interventions; indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). However, insecticide resistance, outdoor biting and resting, and predisposing human behaviour, such as staying outdoors or sleeping outdoors without the use of protective measures, pose a challenge to the realization of the full impact of LLINs and IRS. This, together with the paucity of entomological data, inadequate resources and weak community participation for vector control programme implementation delayed attainment of Botswana’s goal of malaria elimination. Also, the Botswana National Malaria Programme (NMP) experiences the lack of intersectoral collaborations and operational research for evidence-based decision making. This case study focuses on the vector control aspect of malaria elimination by identifying challenges and explores opportunities that could be taken advantage of to benefit the NMP to optimize and augment the current vector control interventions to achieve malaria elimination by the year 2030 as per the Global Technical Strategy for Malaria 2016–2030 targets. The authors emphasize the need for timely and quality entomological surveillance, operational research and integrated vector management.
Collapse
|
11
|
Mbohou Nchetnkou C, Nyabeyeu Nyabeyeu H, Kojom Foko LP, Lehman LG. Comparison of the fluorescence microscopy Cyscope® with light microscopy for malaria diagnosis in a small and active surveillance in Cameroon. Trop Med Health 2020; 48:61. [PMID: 32742185 PMCID: PMC7385968 DOI: 10.1186/s41182-020-00234-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/28/2020] [Indexed: 12/27/2022] Open
Abstract
Background Malaria has a negative impact on the activities of companies in endemic countries especially in Cameroon. In this regard, an increasingly growing number of companies have started to include management of malarious patients in their health policies. In the present study, we will evaluate the diagnostic performances of a fluorescence microscopy (FM), Cyscope® microscope, in the detection of malaria parasites. Methods A cross-sectional study was conducted among employees of two companies of the town of Douala on 21 and 22 March 2017. Sociodemographic information of employees was collected using a questionnaire form. Blood samples of ~ 10 μL were collected by venipuncture for the diagnosis of malaria using FM and light microscopy (LM). Performances of FM with respect to sensitivity (Se), specificity (Sp), positive and negative predictive values (PPV and NPV), positive and negative likelihood rates (PLR and NLR), accuracy, reliability, and Kappa index were calculated using LM as gold standard. Results In total, 442 employees, aged 37.8 ± 9.7 years old on average, were included in the study. Prevalence of malaria using FM and LM was 39.2% and 17%, respectively (p < 0.01). Plasmodium falciparum and P. vivax were the two species involved in malaria infection cases. In terms of developmental stages, 68%, 45.3%, and 1.3% of employees carried gametocytes, trophozoites, and schizonts, respectively. Findings on diagnostic performances of FM were as follows: Se = 84%, Sp = 69.95%, PPV = 63.58%, NPV = 95.5%, accuracy = 89.36%, and reliability = 53.95%. Sensitivity of Cyscope® microscope increased as a function of parasitemia with values ranging from 76.92% at parasitemia between 1 and 500 parasites/μL to 91.11% at parasitemia between 501 and 5000 parasites/μL. The geometric mean parasite density was1850 parasites per μL of blood (range 1600-40,000), and most of employees (60.8%) had moderate parasitemia. The performances of FM were similar between febrile and afebrile patients. Conclusions This study showed good performances of Cyscope® microscope and outlines that this diagnostic tool could be used in management of malaria at workplace.
Collapse
Affiliation(s)
- Christian Mbohou Nchetnkou
- Department of Animal Organisms, Faculty of Science, The University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Hervé Nyabeyeu Nyabeyeu
- Department of Animal Organisms, Faculty of Science, The University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Loick P Kojom Foko
- Department of Animal Organisms, Faculty of Science, The University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Leopold G Lehman
- Department of Animal Organisms, Faculty of Science, The University of Douala, P.O. Box 24157, Douala, Cameroon.,Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, P.O. Box 24157, Douala, Cameroon
| |
Collapse
|
12
|
Okumu F. The fabric of life: what if mosquito nets were durable and widely available but insecticide-free? Malar J 2020; 19:260. [PMID: 32690016 PMCID: PMC7370456 DOI: 10.1186/s12936-020-03321-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/04/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Bed nets are the commonest malaria prevention tool and arguably the most cost-effective. Their efficacy is because they prevent mosquito bites (a function of physical durability and integrity), and kill mosquitoes (a function of chemical content and mosquito susceptibility). This essay follows the story of bed nets, insecticides and malaria control, and asks whether the nets must always have insecticides. METHODS Key attributes of untreated or pyrethroid-treated nets are examined alongside observations of their entomological and epidemiological impacts. Arguments for and against adding insecticides to nets are analysed in contexts of pyrethroid resistance, personal-versus-communal protection, outdoor-biting, need for local production and global health policies. FINDINGS Widespread resistance in African malaria vectors has greatly weakened the historical mass mosquitocidal effects of insecticide-treated nets (ITNs), which previously contributed communal benefits to users and non-users. Yet ITNs still achieve substantial epidemiological impact, suggesting that physical integrity, consistent use and population-level coverage are increasingly more important than mosquitocidal properties. Pyrethroid-treatment remains desirable where vectors are sufficiently susceptible, but is no longer universally necessary and should be re-examined alongside other attributes, e.g. durability, coverage, acceptability and access. New ITNs with multiple actives or synergists could provide temporary relief in some settings, but their performance, higher costs, and drawn-out innovation timelines do not justify singular emphasis on insecticides. Similarly, sub-lethal insecticides may remain marginally-impactful by reducing survival of older mosquitoes and disrupting parasite development inside the mosquitoes, but such effects vanish under strong resistance. CONCLUSIONS The public health value of nets is increasingly driven by bite prevention, and decreasingly by lethality to mosquitoes. For context-appropriate solutions, it is necessary to acknowledge and evaluate the potential and cost-effectiveness of durable untreated nets across different settings. Though ~ 90% of malaria burden occurs in Africa, most World Health Organization-prequalified nets are manufactured outside Africa, since many local manufacturers lack capacity to produce the recommended insecticidal nets at competitive scale and pricing. By relaxing conditions for insecticides on nets, it is conceivable that non-insecticidal but durable, and possibly bio-degradable nets, could be readily manufactured locally. This essay aims not to discredit ITNs, but to illustrate how singular focus on insecticides can hinder innovation and sustainability.
Collapse
Affiliation(s)
- Fredros Okumu
- Environmental Health & Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.
- School of Public Health, University of the Witwatersrand, Johannesburg, Republic of South Africa.
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK.
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania.
| |
Collapse
|
13
|
Anigboro AA, Avwioroko OJ, Cholu CO. Phytochemical Constituents, Antimalarial Efficacy, and Protective Effect of Eucalyptus camaldulensis Aqueous Leaf Extract in Plasmodium berghei-Infected Mice. Prev Nutr Food Sci 2020; 25:58-64. [PMID: 32292756 PMCID: PMC7143017 DOI: 10.3746/pnf.2020.25.1.58] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/02/2019] [Indexed: 11/09/2022] Open
Abstract
This study examined the bioactive components of Eucalyptus camaldulensis aqueous leaf extracts and their protective effects on liver and renal function in a Plasmodium berghei-induced albino mouse model of malarial infection. The results showed that E. camaldulensis extracts are rich in phytochemicals, including flavonoids, phenols, saponin, terpenes, and tannin. Four days after infection with malaria, elevated parasitemia levels in untreated control mice dropped by 4.57%. Administration of E. camaldulensis extracts at doses of 100, 200, and 300 mg/kg significantly decreased parasitemia levels by 17.39, 61.88, and 60.53%, respectively (all P<0.05), relative to untreated control mice; however, standard antimalarial drugs were more efficacious and reduced parasitemia by 86.73%. Treatment with both E. camaldulensis extracts (100∼300 mg/kg) and standard antimalarial drugs significantly decreased malarial-induced physiological imbalances in liver and renal biomarkers, and serum electrolytes in malaria-infected mice compared with controls (P<0.05). The therapeutic effect of E. camaldulensis was greatest at a dose of 200 and 300 mg/kg. These findings indicate that E. camaldulensis aqueous leaf extracts could protect against malarial-induced aberrations in liver and renal function whilst exhibiting anti-malarial effects, and could explain its use as an antimalarial remedy in traditional medicine.
Collapse
Affiliation(s)
| | - Oghenetega Jonathan Avwioroko
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State 232102, Nigeria
| | - Cletus Ozege Cholu
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Delta State 330106, Nigeria
| |
Collapse
|
14
|
Chinula D, Hamainza B, Chizema E, Kavishe DR, Sikaala CH, Killeen GF. Proportional decline of Anopheles quadriannulatus and increased contribution of An. arabiensis to the An. gambiae complex following introduction of indoor residual spraying with pirimiphos-methyl: an observational, retrospective secondary analysis of pre-existing data from south-east Zambia. Parasit Vectors 2018; 11:544. [PMID: 30305147 PMCID: PMC6180389 DOI: 10.1186/s13071-018-3121-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022] Open
Abstract
Background Across most of sub-Saharan Africa, malaria is transmitted by mosquitoes from the Anopheles gambiae complex, comprising seven morphologically indistinguishable but behaviourally-diverse sibling species with ecologically-distinct environmental niches. Anopheles gambiae and An. arabiensis are the mostly widely distributed major malaria vectors within the complex, while An. quadriannulatus is sparsely distributed. Methods Indoor residual spraying (IRS) with the organophosphate pirimiphos-methyl (PM) was conducted four times between 2011 and 2017 in the Luangwa Valley, south-east Zambia. Anopheles mosquitoes were repeatedly collected indoors by several experiments with various objectives conducted in this study area from 2010 onwards. Indoor mosquito collection methods included human landing catches, Centres for Disease Control and Prevention miniature light traps and back pack aspirators. Anopheles gambiae complex mosquitoes were morphologically identified to species level using taxonomic keys, and to molecular level by polymerase chain reaction. These multi-study data were collated so that time trends in the species composition of this complex could be assessed. Results The proportion of indoor An. gambiae complex accounted for by An. quadriannulatus declined from 95.1% to 69.7% following two application PM-IRS rounds with an emulsifiable concentrate formulation from 2011 to 2013, while insecticidal net utilisation remained consistently high throughout that period. This trend continued after two further rounds of PM-IRS with a longer-lasting capsule suspension formulation in 2015 and 2016/2017, following which An. quadriannulatus accounted for only 4.5% of the complex. During the same time interval there was a correspondingly steady rise in the proportional contribution of An. arabiensis to the complex, from 3.9 to 95.1%, while the contribution of nominate An. gambiae remained stable at ≤ 0.9%. Conclusion It seems likely that An. arabiensis is not only more behaviourally resilient against IRS than An. gambiae, but also than An. quadriannulatus populations exhibiting indoor-feeding, human-feeding and nocturnal behaviours that are unusual for this species. Routine, programmatic entomological monitoring of dynamic vector population guilds will be critical to guide effective selection and deployment of vector control interventions, including supplementary measures to tackle persisting vectors of residual malaria transmission like An. arabiensis.
Collapse
Affiliation(s)
- Dingani Chinula
- National Malaria Elimination Centre, Chainama Hills Hospital Grounds, PO Box 32509, Lusaka, Zambia. .,Liverpool School of Tropical Medicine, Vector Biology Department, Pembroke Place, Liverpool, L35QA, United Kingdom.
| | - Busiku Hamainza
- National Malaria Elimination Centre, Chainama Hills Hospital Grounds, PO Box 32509, Lusaka, Zambia
| | - Elizabeth Chizema
- National Malaria Elimination Centre, Chainama Hills Hospital Grounds, PO Box 32509, Lusaka, Zambia
| | - Deogratius R Kavishe
- Ifakara Health Institute, Kiko Avenue, Environmental Health and Ecological Sciences Department, PO Box 53, Ifakara, United Republic of Tanzania
| | - Chadwick H Sikaala
- National Malaria Elimination Centre, Chainama Hills Hospital Grounds, PO Box 32509, Lusaka, Zambia
| | - Gerry F Killeen
- Liverpool School of Tropical Medicine, Vector Biology Department, Pembroke Place, Liverpool, L35QA, United Kingdom.,Ifakara Health Institute, Kiko Avenue, Environmental Health and Ecological Sciences Department, PO Box 53, Ifakara, United Republic of Tanzania
| |
Collapse
|
15
|
Bamou R, Mbakop LR, Kopya E, Ndo C, Awono-Ambene P, Tchuinkam T, Rono MK, Mwangangi J, Antonio-Nkondjio C. Changes in malaria vector bionomics and transmission patterns in the equatorial forest region of Cameroon between 2000 and 2017. Parasit Vectors 2018; 11:464. [PMID: 30103825 PMCID: PMC6090627 DOI: 10.1186/s13071-018-3049-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/02/2018] [Indexed: 11/22/2022] Open
Abstract
Background Increased use of long-lasting insecticidal nets (LLINs) over the last decade has considerably improved the control of malaria in sub-Saharan Africa. However, there is still a paucity of data on the influence of LLIN use and other factors on mosquito bionomics in different epidemiological foci. The objective of this study was to provide updated data on the evolution of vector bionomics and malaria transmission patterns in the equatorial forest region of Cameroon over the period 2000–2017, during which LLIN coverage has increased substantially. Methods The study was conducted in Olama and Nyabessan, two villages situated in the equatorial forest region. Mosquito collections from 2016–2017 were compared to those of 2000–2001. Mosquitoes were sampled using both human landing catches and indoor sprays, and were identified using morphological taxonomic keys. Specimens belonging to the An. gambiae complex were further identified using molecular tools. Insecticide resistance bioassays were undertaken on An. gambiae to assess the susceptibility levels to both permethrin and deltamethrin. Mosquitoes were screened for Plasmodium falciparum infection and blood-feeding preference using the ELISA technique. Parasitological surveys in the population were conducted to determine the prevalence of Plasmodium infection using rapid diagnostic tests. Results A change in the species composition of sampled mosquitoes was recorded between the 2000–2001 collections and those of 2016–2017. A drop in the density of the local primary vectors An. nili and An. moucheti in the forest region was recorded, whereas there was an increase in the density of An. gambiae (s.l.), An. marshallii, An. ziemannii and An. paludis. A change in the biting behaviour from indoor to outdoor was recorded in Olama. Very few indoor resting mosquitoes were collected. A change in the night biting cycle was recorded with mosquitoes displaying a shift from night biting to late evening/early in the night. Several mosquitoes were found positive for Plasmodium infection, thus sustaining continuous transmission of malaria in both sites. Reduction of malaria transmission in Nyabessan was lower than that seen in Olama and associated with deforestation and the construction of a dam that may have enabled a more efficient vector, An. gambiae (s.l.), to invade the area. A high level of resistance to pyrethroids (permethrin and deltamethrin) was detected for An. gambiae in both sites. High parasite prevalence was recorded in both sites, with children of 0–16 years being the most affected. In both Olama and Nyabessan, bed net usage appeared to correlate to protection against malaria infection. Conclusions The study shows important changes in the bionomics of vector populations and malaria transmission patterns in the equatorial forest region. The changes call for more concerted efforts to address challenges such as insecticide resistance, environmental modifications or behavioural changes affecting the performance of current control measures.
Collapse
Affiliation(s)
- Roland Bamou
- Vector Borne Infectious Disease Unit of the Laboratory of Applied Biology and Ecology (VBID-LABEA), Department of Animal Biology, Faculty of Science of the University of Dschang, P. O. Box 067, Dschang, Cameroon.,Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288, Yaoundé, Cameroon
| | - Lili Ranaise Mbakop
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288, Yaoundé, Cameroon.,Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Edmond Kopya
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288, Yaoundé, Cameroon.,Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Cyrille Ndo
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288, Yaoundé, Cameroon.,Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon.,Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288, Yaoundé, Cameroon
| | - Timoleon Tchuinkam
- Vector Borne Infectious Disease Unit of the Laboratory of Applied Biology and Ecology (VBID-LABEA), Department of Animal Biology, Faculty of Science of the University of Dschang, P. O. Box 067, Dschang, Cameroon
| | - Martin Kibet Rono
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research Coast, Kilifi, Kenya.,KEMRI-Centre for Geographic Medicine Research Kilifi, Kilifi, Kenya
| | - Joseph Mwangangi
- KEMRI-Centre for Geographic Medicine Research Kilifi, Kilifi, Kenya.,Pwani University Health and Research Institute, Pwani University, Kilifi, Kenya
| | - Christophe Antonio-Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288, Yaoundé, Cameroon. .,Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
16
|
Wanjala CL, Kweka EJ. Malaria Vectors Insecticides Resistance in Different Agroecosystems in Western Kenya. Front Public Health 2018; 6:55. [PMID: 29546039 PMCID: PMC5838019 DOI: 10.3389/fpubh.2018.00055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/13/2018] [Indexed: 12/04/2022] Open
Abstract
Background Malaria vector control efforts have taken malaria related cases down to appreciable number per annum after large scale of intervention tools. Insecticides-based tools remain the major control option for malaria vectors in Kenya and, therefore, the potential of such programs to be compromised by the reported insecticide resistance is of major concern. The objective of this study was to evaluate the status of insecticide resistance in malaria vectors in different agro ecosystems from western Kenya. Methods The study was carried out in the lowlands and highlands of western Kenya namely; Ahero, Kisian, Chulaimbo, Emutete, Emakakha, Iguhu, and Kabula. World Health Organization tube bioassays was conducted using standard diagnostic dosages of Lambdacyhalothrin, Deltamethrin, Permethrin, DDT, Bendiocarb, and Malathion tested on Anopheles mosquitoes collected from seven sites; Ahero, Kisian, Chulaimbo, Emutete, Emakakha, Iguhu, and Kabula. Biochemical assays, where the enzymatic activity of three enzymes (monooxygenases, esterases, and glutathione S-transferases) were performed on susceptible and resistant mosquito populations. Wild mosquito populations were identified to species level using polymerase chain reaction (PCR). The species of the wild mosquito populations were identified to species level using PCR. Real-time PCR was performed on the susceptible and resistant mosquitoes after the WHO tube bioassays to determine the presence of knockdown resistance (kdr) allele. Results WHO susceptibility tests indicated that Anopheles gambiae showed resistance to Pyrethroids and DDT in all the study sites, to Bendiocarb in Iguhu and Kabula and susceptible to Malathion (100% mortality) in all the study sites. There was an elevation of monooxygenases and esterases enzymatic activities in resistant An. gambiae mosquito populations exposed to Lambdacyhalothrin, Permethrin, Deltamethrin and DDT but no elevation in glutathione S-transferases. A high frequency of L1014S allele was detected in An. gambiae s.s. population, but there was no kdr allele found in Anopheles arabiensis mosquitoes. Conclusion An. gambiae mosquitoes from western Kenya have developed phenotypic resistance to pyrethroids and DDT. Therefore, there is a need for further research covering different climatic zones with different agroeconomic activities for detailed report on current status of insecticide resistance in malaria vectors.
Collapse
Affiliation(s)
- Christine Ludwin Wanjala
- Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya.,Department of Zoological Sciences, Kenyatta University, Nairobi, Kenya
| | - Eliningaya J Kweka
- School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania.,Tropical Pesticides Research Institute, Arusha, Tanzania
| |
Collapse
|
17
|
Chaccour CJ, Alonso S, Zulliger R, Wagman J, Saifodine A, Candrinho B, Macete E, Brew J, Fornadel C, Kassim H, Loch L, Sacoor C, Varela K, Carty CL, Robertson M, Saute F. Combination of indoor residual spraying with long-lasting insecticide-treated nets for malaria control in Zambezia, Mozambique: a cluster randomised trial and cost-effectiveness study protocol. BMJ Glob Health 2018; 3:e000610. [PMID: 29564161 PMCID: PMC5859815 DOI: 10.1136/bmjgh-2017-000610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/14/2017] [Accepted: 01/10/2018] [Indexed: 11/03/2022] Open
Abstract
Background Most of the reduction in malaria prevalence seen in Africa since 2000 has been attributed to vector control interventions. Yet increases in the distribution and intensity of insecticide resistance and higher costs of newer insecticides pose a challenge to sustaining these gains. Thus, endemic countries face challenging decisions regarding the choice of vector control interventions. Methods A cluster randomised trial is being carried out in Mopeia District in the Zambezia Province of Mozambique, where malaria prevalence in children under 5 is high (68% in 2015), despite continuous and campaign distribution of long-lasting insecticide-treated nets (LLINs). Study arm 1 will continue to use the standard, LLIN-based National Malaria Control Programme vector control strategy (LLINs only), while study arm 2 will receive indoor residual spraying (IRS) once a year for 2 years with a microencapsulated formulation of pirimiphos-methyl (Actellic 300 CS), in addition to the standard LLIN strategy (LLINs+IRS). Prior to the 2016 IRS implementation (the first of two IRS campaigns in this study), 146 clusters were defined and stratified per number of households. Clusters were then randomised 1:1 into the two study arms. The public health impact and cost-effectiveness of IRS intervention will be evaluated over 2 years using multiple methods: (1) monthly active malaria case detection in a cohort of 1548 total children aged 6-59 months; (2) enhanced passive surveillance at health facilities and with community health workers; (3) annual cross-sectional surveys; and (4) entomological surveillance. Prospective microcosting of the intervention and provider and societal costs will be conducted. Insecticide resistance status pattern and changes in local Anopheline populations will be included as important supportive outcomes. Discussion By evaluating the public health impact and cost-effectiveness of IRS with a non-pyrethroid insecticide in a high-transmission setting with high LLIN ownership, it is expected that this study will provide programmatic and policy-relevant data to guide national and global vector control strategies. Trial registration number NCT02910934.
Collapse
Affiliation(s)
- Carlos J Chaccour
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Sergi Alonso
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Rose Zulliger
- President's Malaria Initiative and Malaria Branch, US Centers for Disease Control and Prevention, Maputo, Mozambique
| | | | - Abuchahama Saifodine
- President's Malaria Initiative, US Agency for International Development, Maputo, Mozambique
| | | | - Eusébio Macete
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Joe Brew
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Christen Fornadel
- President's Malaria Initiative, US Agency for International Development, Washington DC, USA
| | - Hidayat Kassim
- Direcção Provincial de Saúde Zambézia, Quelimane, Mozambique
| | - Lourdes Loch
- Abt Associates, PMI-AIRS Mozambique, Maputo, Mozambique
| | | | | | | | - Molly Robertson
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,PATH, Washington DC, USA
| | - Francisco Saute
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| |
Collapse
|
18
|
Shcherbacheva A, Haario H, Killeen GF. Modeling host-seeking behavior of African malaria vector mosquitoes in the presence of long-lasting insecticidal nets. Math Biosci 2017; 295:36-47. [PMID: 29031707 DOI: 10.1016/j.mbs.2017.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 05/14/2017] [Accepted: 10/08/2017] [Indexed: 11/24/2022]
Abstract
The efficiency of spatial repellents and long-lasting insecticide-treated nets (LLINs) is a key research topic in malaria control. Insecticidal nets reduce the mosquito-human contact rate and simultaneously decrease mosquito populations. However, LLINs demonstrate dissimilar efficiency against different species of malaria mosquitoes. Various factors have been proposed as an explanation, including differences in insecticide-induced mortality, flight characteristics, or persistence of attack. Here we present a discrete agent-based approach that enables the efficiency of LLINs, baited traps and Insecticide Residual Sprays (IRS) to be examined. The model is calibrated with hut-level experimental data to compare the efficiency of protection against two mosquito species: Anopheles gambiae and Anopheles arabiensis. We show that while such data does not allow an unambiguous identification of the details of how LLINs alter the vector behavior, the model calibrations quantify the overall impact of LLINs for the two different mosquito species. The simulations are generalized to community-scale scenarios that systematically demonstrate the lower efficiency of the LLINs in control of An. arabiensis compared to An. gambiae.
Collapse
Affiliation(s)
- Anna Shcherbacheva
- LUT School of Engineering Science, Lappeenranta University of Technology, Lappeenranta, Finland.
| | - Heikki Haario
- LUT School of Engineering Science, Lappeenranta University of Technology, Lappeenranta, Finland.
| | - Gerry F Killeen
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifakara, Morogoro, United Republic of Tanzania; Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| |
Collapse
|
19
|
Oumbouke WA, Fongnikin A, Soukou KB, Moore SJ, N'Guessan R. Relative performance of indoor vector control interventions in the Ifakara and the West African experimental huts. Parasit Vectors 2017; 10:432. [PMID: 28927465 PMCID: PMC5606011 DOI: 10.1186/s13071-017-2365-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 09/07/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND West African and Ifakara experimental huts are used to evaluate indoor mosquito control interventions, including spatial repellents and insecticides. The two hut types differ in size and design, so a side-by-side comparison was performed to investigate the performance of indoor interventions in the two hut designs using standard entomological outcomes: relative indoor mosquito density (deterrence), exophily (induced exit), blood-feeding and mortality of mosquitoes. METHODS Metofluthrin mosquito coils (0.00625% and 0.0097%) and Olyset® Net vs control nets (untreated, deliberately holed net) were evaluated against pyrethroid-resistant Culex quinquefasciatus in Benin. Four experimental huts were used: two West African hut designs and two Ifakara hut designs. Treatments were rotated among the huts every four nights until each treatment was tested in each hut 52 times. Volunteers rotated between huts nightly. RESULTS The Ifakara huts caught a median of 37 Culex quinquefasciatus/ night, while the West African huts captured a median of 8/ night (rate ratio 3.37, 95% CI: 2.30-4.94, P < 0.0001) and this difference in mosquito entry was similar for Olyset® Net and more pronounced for spatial repellents. Exophily was greater in the Ifakara huts with > 4-fold higher mosquito exit relative to the West African huts (odds ratio 4.18, 95% CI: 3.18-5.51, P < 0.0001), regardless of treatment. While blood-feeding rates were significantly higher in the West African huts, mortality appeared significantly lower for all treatments. CONCLUSIONS The Ifakara hut captured more Cx. quinquefasciatus that could more easily exit into windows and eave traps after failing to blood-feed, compared to the West African hut. The higher mortality rates recorded in the Ifakara huts could be attributable to the greater proportions of Culex mosquitoes exiting and probably dying from starvation, relative to the situation in the West African huts.
Collapse
Affiliation(s)
| | | | - Koffi B Soukou
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
| | - Sarah J Moore
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania.,Swiss Tropical and Public Health Institute, Socinstr., 574051, Basel, Switzerland.,University of Basel, Petersplatz 1, 4003, Basel, Switzerland
| | - Raphael N'Guessan
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin.,London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| |
Collapse
|
20
|
Mbepera S, Nkwengulila G, Peter R, Mausa EA, Mahande AM, Coetzee M, Kweka EJ. The influence of age on insecticide susceptibility of Anopheles arabiensis during dry and rainy seasons in rice irrigation schemes of Northern Tanzania. Malar J 2017; 16:364. [PMID: 28893240 PMCID: PMC5594483 DOI: 10.1186/s12936-017-2022-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/07/2017] [Indexed: 11/23/2022] Open
Abstract
Background Insecticide resistance is the major emerging challenge facing the malaria vector control programmes in Tanzania. Proper monitoring and detection is of paramount importance guiding the vector control programmes. This paper presents the effect of mosquito aging on insecticide resistance status in Anopheles arabiensis populations in dry and rainy seasons in northern Tanzania. Methods Anopheles gambiae s.l. larvae were sampled from rice fields in both dry and rainy seasons and reared in the insectary to adults. The emerged females in batches of 2, 3, 5, and 10 days old were exposed to six insecticides (deltamethrin, permethrin, lambda-cyhalothrin, DDT, bendiocarb and pirimiphos-methyl) to see the effects of age on insecticide resistance. Mosquitoes were exposed to insecticides using WHO standard susceptibility test kits. Knockdown was recorded during the 1-h exposure, while mortality and resistance ratio were recorded 24 h later. Mosquito specimens were identified to species level using the polymerase chain reaction (PCR) method. Results Among the 326 specimens processed by PCR, 323 (99.1%) were identified as Anopheles arabiensis. There was reduced mortality (ranging from 61 to 97.7%) when adults reared from larvae were exposed to all pyrethroids and bendiocarb in both dry and rainy seasons, while they were fully susceptible to DDT and pirimiphos-methyl. There was a significant increase in mortality rate with increase in mosquito’s age in both dry and rainy seasons following exposure to pyrethroids (DF = 1, P < 0.05). Mosquitoes showed significantly higher mortality rates in the rainy season than in the dry season after being exposed to pyrethroids (DF = 1, P < 0.05). Higher mortality rates (94.0–99.8%) were observed in all ages and seasons when mosquitoes were exposed to bendiocarb compared with pyrethroids. Pirimiphos-methyl was only tested in the rainy season so no comparison with dry season mosquitoes could be made. Conclusions Results showed that An. arabiensis were resistant to pyrethroids in both seasons and that the young age groups exhibited higher levels of resistance compared with the older age groups. Mosquitoes were full susceptible to DDT and pirimiphos-methyl irrespective of the season and age.
Collapse
Affiliation(s)
- Saada Mbepera
- Department of Zoology and Wildlife Conservation, College of Natural and Applied Sciences, University of Dar-es-salaam, P.O.Box 35165, Dar-es-salaam, Tanzania
| | - Gamba Nkwengulila
- Department of Zoology and Wildlife Conservation, College of Natural and Applied Sciences, University of Dar-es-salaam, P.O.Box 35165, Dar-es-salaam, Tanzania
| | - Rose Peter
- Public Health Strategic Partnerships Associate, Arysta Life Science, 12 Denys Road, River Club, 2191, South Africa
| | - Emmanuel A Mausa
- National Plant Genetic Resource Centre, Tropical Pesticides Research Institute, P.O. Box 3024, Arusha, Tanzania
| | - Aneth M Mahande
- Division of Livestock and Human Diseases Vector Control, Tropical Pesticides Research Institute, Mabogini Field Station, Moshi, Tanzania
| | - Maureen Coetzee
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Eliningaya J Kweka
- Division of Livestock and Human Diseases Vector Control, Tropical Pesticides Research Institute, P.O.Box 3024, Arusha, Tanzania. .,Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania.
| |
Collapse
|
21
|
Parker JEA, Angarita Jaimes NC, Gleave K, Mashauri F, Abe M, Martine J, Towers CE, Towers D, McCall PJ. Host-seeking activity of a Tanzanian population of Anopheles arabiensis at an insecticide treated bed net. Malar J 2017; 16:270. [PMID: 28676092 PMCID: PMC5496219 DOI: 10.1186/s12936-017-1909-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/26/2017] [Indexed: 01/02/2023] Open
Abstract
Background Understanding how mosquitoes respond to long lasting insecticide treated nets (LLINs) is fundamental to sustaining the effectiveness of this essential control tool. We report on studies with a tracking system to investigate behaviour of wild anophelines at an LLIN, in an experimental hut at a rural site in Mwanza, Tanzania. Methods Groups of adult female mosquitoes (n = 10 per replicate) reared from larvae of a local population, identified as predominantly (95%) Anopheles arabiensis, were released in the hut. An infrared video tracking system recorded flight and net contact activity over 1 h as the mosquitoes attempted to reach a supine human volunteer within a bed net (either a deltamethrin-treated LLIN or an untreated control net). A range of activities, including flight path, position in relation to the bed net and duration of net contact, were quantified and compared between treatments. Results The total time that female An. arabiensis spent in flight around LLINs was significantly lower than at untreated nets [F(1,10) = 9.26, p = 0.012], primarily due to a substantial reduction in the time mosquitoes spent in persistent ‘bouncing’ flight [F(1,10) = 18.48, p = 0.002]. Most activity occurred at the net roof but significantly less so with LLINs (56.8% of total) than untreated nets [85.0%; Χ2 (15) = 234.69, p < 0.001]. Activity levels at the bed net directly above the host torso were significantly higher with untreated nets (74.2%) than LLINs [38.4%; Χ2 (15) = 33.54, p = 0.004]. ‘Visiting’ and ‘bouncing’ rates were highest above the volunteer’s chest in untreated nets (39.9 and 50.4%, respectively) and LLINs [29.9 and 42.4%; Χ2 (13) = 89.91, p < 0.001; Χ2 (9) = 45.73, p < 0.001]. Highest resting rates were above the torso in untreated nets [77%; Χ2 (9) = 63.12, p < 0.001], but in LLINs only 33.2% of resting occurred here [Χ2 (9) = 27.59, p = 0.001], with resting times spread between the short vertical side of the net adjacent to the volunteer’s head (21.8%) and feet (16.2%). Duration of net contact by a single mosquito was estimated at 204–290 s on untreated nets and 46–82 s on LLINs. While latency to net contact was similar in both treatments, the reduction in activity over 60 min was significantly more rapid for LLINs [F(1,10) = 6.81, p = 0.026], reiterating an ‘attract and kill’ rather than a repellent mode of action. Conclusions The study has demonstrated the potential for detailed investigations of behaviour of wild mosquito populations under field conditions. The results validate the findings of earlier laboratory studies on mosquito activity at LLINs, and reinforce the key role of multiple brief contacts at the net roof as the critical LLIN mode of action. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1909-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Josephine E A Parker
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | - Katherine Gleave
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Fabian Mashauri
- National Institute for Medical Research, Mwanza Medical Research Centre, PO Box 1462, Mwanza, Tanzania
| | - Mayumi Abe
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jackline Martine
- National Institute for Medical Research, Mwanza Medical Research Centre, PO Box 1462, Mwanza, Tanzania
| | - Catherine E Towers
- Optical Engineering Group, School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - David Towers
- Optical Engineering Group, School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
22
|
Killeen GF, Masalu JP, Chinula D, Fotakis EA, Kavishe DR, Malone D, Okumu F. Control of Malaria Vector Mosquitoes by Insecticide-Treated Combinations of Window Screens and Eave Baffles. Emerg Infect Dis 2017; 23:782-789. [PMID: 28418299 PMCID: PMC5403053 DOI: 10.3201/eid2305.160662] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We assessed window screens and eave baffles (WSEBs), which enable mosquitoes to enter but not exit houses, as an alternative to indoor residual spraying (IRS) for malaria vector control. WSEBs treated with water, the pyrethroid lambda-cyhalothrin, or the organophosphate pirimiphos-methyl, with and without a binding agent for increasing insecticide persistence on netting, were compared with IRS in experimental huts. Compared with IRS containing the same insecticide, WSEBs killed similar proportions of Anopheles funestus mosquitoes that were resistant to pyrethroids, carbamates and organochlorines and greater proportions of pyrethroid-resistant, early exiting An. arabiensis mosquitoes. WSEBs with pirimiphos-methyl killed greater proportions of both vectors than lambda-cyhalothrin or lambda-cyhalothrin plus pirimiphos-methyl and were equally efficacious when combined with binding agent. WSEBs required far less insecticide than IRS, and binding agents might enhance durability. WSEBs might enable affordable deployment of insecticide combinations to mitigate against physiologic insecticide resistance and improve control of behaviorally resistant, early exiting vectors.
Collapse
|
23
|
Killeen GF, Marshall JM, Kiware SS, South AB, Tusting LS, Chaki PP, Govella NJ. Measuring, manipulating and exploiting behaviours of adult mosquitoes to optimise malaria vector control impact. BMJ Glob Health 2017; 2:e000212. [PMID: 28589023 PMCID: PMC5444085 DOI: 10.1136/bmjgh-2016-000212] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 11/04/2022] Open
Abstract
Residual malaria transmission can persist despite high coverage with effective long-lasting insecticidal nets (LLINs) and/or indoor residual spraying (IRS), because many vector mosquitoes evade them by feeding on animals, feeding outdoors, resting outdoors or rapidly exiting from houses after entering them. However, many of these behaviours that render vectors resilient to control with IRS and LLINs also make them vulnerable to some emerging new alternative interventions. Furthermore, vector control measures targeting preferred behaviours of mosquitoes often force them to express previously rare alternative behaviours, which can then be targeted with these complementary new interventions. For example, deployment of LLINs against vectors that historically fed predominantly indoors on humans typically results in persisting transmission by residual populations that survive by feeding outdoors on humans and animals, where they may then be targeted with vapour-phase insecticides and veterinary insecticides, respectively. So while the ability of mosquitoes to express alternative behaviours limits the impact of LLINs and IRS, it also creates measurable and unprecedented opportunities for deploying complementary additional approaches that would otherwise be ineffective. Now that more diverse vector control methods are finally becoming available, well-established entomological field techniques for surveying adult mosquito behaviours should be fully exploited by national malaria control programmes, to rationally and adaptively map out new opportunities for their effective deployment.
Collapse
Affiliation(s)
- Gerry F Killeen
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara and Dar es Salaam, United Republic of Tanzania.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - John M Marshall
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, California, USA
| | - Samson S Kiware
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara and Dar es Salaam, United Republic of Tanzania
| | | | - Lucy S Tusting
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Prosper P Chaki
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara and Dar es Salaam, United Republic of Tanzania
| | - Nicodem J Govella
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara and Dar es Salaam, United Republic of Tanzania
| |
Collapse
|
24
|
Killeen GF, Kiware SS, Okumu FO, Sinka ME, Moyes CL, Massey NC, Gething PW, Marshall JM, Chaccour CJ, Tusting LS. Going beyond personal protection against mosquito bites to eliminate malaria transmission: population suppression of malaria vectors that exploit both human and animal blood. BMJ Glob Health 2017; 2:e000198. [PMID: 28589015 PMCID: PMC5444054 DOI: 10.1136/bmjgh-2016-000198] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/09/2016] [Accepted: 11/13/2016] [Indexed: 11/03/2022] Open
Abstract
Protecting individuals and households against mosquito bites with long-lasting insecticidal nets (LLINs) or indoor residual spraying (IRS) can suppress entire populations of unusually efficient malaria vector species that predominantly feed indoors on humans. Mosquitoes which usually feed on animals are less reliant on human blood, so they are far less vulnerable to population suppression effects of such human-targeted insecticidal measures. Fortunately, the dozens of mosquito species which primarily feed on animals are also relatively inefficient vectors of malaria, so personal protection against mosquito bites may be sufficient to eliminate transmission. However, a handful of mosquito species are particularly problematic vectors of residual malaria transmission, because they feed readily on both humans and animals. These unusual vectors feed often enough on humans to be potent malaria vectors, but also often enough on animals to evade population control with LLINs, IRS or any other insecticidal personal protection measure targeted only to humans. Anopheles arabiensis and A. coluzzii in Africa, A. darlingi in South America and A. farauti in Oceania, as well as A. culicifacies species E, A. fluviatilis species S, A. lesteri and A. minimus in Asia, all feed readily on either humans or animals and collectively mediate residual malaria transmission across most of the tropics. Eliminating malaria transmission by vectors exhibiting such dual host preferences will require aggressive mosquito population abatement, rather than just personal protection of humans. Population suppression of even these particularly troublesome vectors is achievable with a variety of existing vector control technologies that remain underdeveloped or underexploited.
Collapse
Affiliation(s)
- Gerry F Killeen
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Samson S Kiware
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
- School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Catherine L Moyes
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | | | - Peter W Gething
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - John M Marshall
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, California, USA
| | - Carlos J Chaccour
- Instituto de Salud Global, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Instituto de Salud Tropical, Universidad de Navarra, Pamplona, Spain
| | - Lucy S Tusting
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Moiroux N, Chandre F, Hougard JM, Corbel V, Pennetier C. Remote Effect of Insecticide-Treated Nets and the Personal Protection against Malaria Mosquito Bites. PLoS One 2017; 12:e0170732. [PMID: 28129371 PMCID: PMC5271322 DOI: 10.1371/journal.pone.0170732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/10/2017] [Indexed: 11/23/2022] Open
Abstract
Experimental huts are part of the WHO process for testing and evaluation of Insecticide Treated Nets (ITN) in semi-field conditions. Experimental Hut Trials (EHTs) mostly focus on two main indicators (i.e., mortality and blood feeding reduction) that serve as efficacy criteria to obtain WHO interim recommendation. However, several other outputs that rely on counts of vectors collected in the huts are neglected although they can give useful information about vectors’ behavior and personal protection provided by ITNs. In particular, EHTs allow to measure the deterrent effect and personal protection of ITNs. To provide a better assessment of ITNs efficacy, we performed a retrospective analysis of the deterrence and the personal protection against malaria transmission for 12 unwashed and 13 washed ITNs evaluated through EHTs conducted in West Africa. A significant deterrent effect was shown for six of the 12 unwashed ITNs tested. When washed 20 times, only three ITNs had significant deterrent effect (Rate Ratios (RR)<1; p<0.05) and three showed an apparent “attractiveness” (RR>1; p<0.01). When compared to the untreated net, all unwashed ITNs showed lower number of blood-fed Anopheles indicating a significant personal protection (RR<1, p<0.05). However, when washed 20 times, three ITNs that were found to be attractive did not significantly reduce human-vector contact (p>0.05). Current WHO efficacy criteria do not sufficiently take into account the deterrence effect of ITNs. Moreover, the deterrence variability is rarely discussed in EHT’s reports. Our findings highlighted the long-range effect (deterrent or attractive) of ITNs that may have significant consequences for personal/community protection against malaria transmission. Indicators measuring the deterrence should be further considered for the evaluation of ITNs.
Collapse
Affiliation(s)
- Nicolas Moiroux
- MIVEGEC (IRD 224 - CNRS 5290 - Université de Montpellier), Institut de Recherche pour le Développement (IRD), Montpellier, France
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
- * E-mail:
| | - Fabrice Chandre
- MIVEGEC (IRD 224 - CNRS 5290 - Université de Montpellier), Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Jean-Marc Hougard
- MIVEGEC (IRD 224 - CNRS 5290 - Université de Montpellier), Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Vincent Corbel
- MIVEGEC (IRD 224 - CNRS 5290 - Université de Montpellier), Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Cédric Pennetier
- MIVEGEC (IRD 224 - CNRS 5290 - Université de Montpellier), Institut de Recherche pour le Développement (IRD), Montpellier, France
- Institut Pierre Richet (IPR), Bouaké, Côte d’Ivoire
| |
Collapse
|
26
|
Kweka EJ, Lyaruu LJ, Mahande AM. Efficacy of PermaNet® 3.0 and PermaNet® 2.0 nets against laboratory-reared and wild Anopheles gambiae sensu lato populations in northern Tanzania. Infect Dis Poverty 2017; 6:11. [PMID: 28095897 PMCID: PMC5242039 DOI: 10.1186/s40249-016-0220-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mosquitoes have developed resistance against pyrethroids, the only class of insecticides approved for use on long-lasting insecticidal nets (LLINs). The present study sought to evaluate the efficacy of the pyrethroid synergist PermaNet® 3.0 LLIN versus the pyrethroid-only PermaNet® 2.0 LLIN, in an East African hut design in Lower Moshi, northern Tanzania. In this setting, resistance to pyrethroid insecticides has been identified in Anopheles gambiae mosquitoes. METHODS Standard World Health Organization bioefficacy evaluations were conducted in both laboratory and experimental huts. Experimental hut evaluations were conducted in an area where there was presence of a population of highly pyrethroid-resistant An. arabiensis mosquitoes. All nets used were subjected to cone bioassays and then to experimental hut trials. Mosquito mortality, blood-feeding inhibition and personal protection rate were compared between untreated nets, unwashed LLINs and LLINs that were washed 20 times. RESULTS Both washed and unwashed PermaNet® 2.0 and PermaNet® 3.0 LLINs had knockdown and mortality rates of 100% against a susceptible strain of An. gambiae sensu stricto. The adjusted mortality rate of the wild mosquito population after use of the unwashed PermaNet® 3.0 and PermaNet® 2.0 nets was found to be higher than after use of the washed PermaNet® 2.0 and PermaNet® 3.0 nets. CONCLUSIONS Given the increasing incidence of pyrethroid resistance in An. gambiae mosquitoes in Tanzania, we recommend that consideration is given to its distribution in areas with pyrethroid-resistant malaria vectors within the framework of a national insecticide-resistance management plan.
Collapse
Affiliation(s)
- Eliningaya J Kweka
- Tropical Pesticides Research Institute, Division of Livestock and Human Diseases Vector Control, Mosquito Section, P.O. Box 3024, Arusha, Tanzania. .,Department of Medical Parasitology and Entomology, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania.
| | - Lucile J Lyaruu
- Tropical Pesticides Research Institute, Division of Livestock and Human Diseases Vector Control, Mosquito Section, P.O. Box 3024, Arusha, Tanzania
| | - Aneth M Mahande
- Tropical Pesticides Research Institute, Division of Livestock and Human Diseases Vector Control, Mabogini field station, Moshi, Tanzania
| |
Collapse
|
27
|
Churcher TS, Lissenden N, Griffin JT, Worrall E, Ranson H. The impact of pyrethroid resistance on the efficacy and effectiveness of bednets for malaria control in Africa. eLife 2016; 5. [PMID: 27547988 PMCID: PMC5025277 DOI: 10.7554/elife.16090] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/18/2016] [Indexed: 11/29/2022] Open
Abstract
Long lasting pyrethroid treated bednets are the most important tool for preventing malaria. Pyrethroid resistant Anopheline mosquitoes are now ubiquitous in Africa, though the public health impact remains unclear, impeding the deployment of more expensive nets. Meta-analyses of bioassay studies and experimental hut trials are used to characterise how pyrethroid resistance changes the efficacy of standard bednets, and those containing the synergist piperonyl butoxide (PBO), and assess its impact on malaria control. New bednets provide substantial personal protection until high levels of resistance, though protection may wane faster against more resistant mosquito populations as nets age. Transmission dynamics models indicate that even low levels of resistance would increase the incidence of malaria due to reduced mosquito mortality and lower overall community protection over the life-time of the net. Switching to PBO bednets could avert up to 0.5 clinical cases per person per year in some resistance scenarios. DOI:http://dx.doi.org/10.7554/eLife.16090.001 In recent years, widespread use of insecticide-treated bednets has prevented hundreds of thousands cases of malaria in Africa. Insecticide-treated bednets protect people in two ways: they provide a physical barrier that prevents the insects from biting and the insecticide kills mosquitos that come into contact with the net while trying to bite. Unfortunately, some mosquitoes in Africa are evolving so that they can survive contact with the insecticide currently used on bednets. How this emerging insecticide resistance is changing the number of malaria infections in Africa is not yet clear and it is difficult for scientists to study. To help mitigate the effects of insecticide resistance, scientists are testing new strategies to boost the effects of bednets, such as adding a second chemical that makes the insecticide on bednets more deadly to mosquitoes. In some places, adding this second chemical makes the nets more effective, but in others it does not. Moreover, these doubly treated, or “combination”, nets are more expensive and so it can be hard for health officials to decide whether and where to use them. Now, Churcher et al. have used computer modeling to help predict how insecticide resistance might change malaria infection rates and help determine when it makes sense to switch to the combination net. Insecticide-treated bednets provide good protection for individuals sleeping under them until relatively high levels of resistance are achieved, as measured using a simple test. As more resistant mosquitos survive encounters with the nets, the likelihood of being bitten before bed or while sleeping unprotected by a net increases. This is expected to increase malaria infections. As bednets age and are washed multiple times, they lose some of their insecticide and this problem becomes worse. Churcher et al. also show that the combination bednets may provide some additional protection against resistant mosquitos and reduce the number of malaria infections in some cases. The experiments show a simple test could help health officials determine which type of net would be most beneficial. The experiments and the model Churcher et al. created also may help scientists studying how to prevent increased spread of malaria in communities where mosquitos are becoming resistant to insecticide-treated nets. DOI:http://dx.doi.org/10.7554/eLife.16090.002
Collapse
Affiliation(s)
- Thomas S Churcher
- MRC Centre for Outbreak Analysis and Modelling, Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | | | - Jamie T Griffin
- MRC Centre for Outbreak Analysis and Modelling, Infectious Disease Epidemiology, Imperial College London, London, United Kingdom.,Queen Mary's University, London, United Kingdom
| | - Eve Worrall
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Hilary Ranson
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
28
|
Killeen GF, Govella NJ, Lwetoijera DW, Okumu FO. Most outdoor malaria transmission by behaviourally-resistant Anopheles arabiensis is mediated by mosquitoes that have previously been inside houses. Malar J 2016; 15:225. [PMID: 27093890 PMCID: PMC4837512 DOI: 10.1186/s12936-016-1280-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 04/12/2016] [Indexed: 11/10/2022] Open
Abstract
Background Anopheles arabiensis is stereotypical of diverse vectors that mediate residual malaria transmission globally, because it can feed outdoors upon humans or cattle, or enter but then rapidly exit houses without fatal exposure to insecticidal nets or sprays. Methods Life histories of a well-characterized An. arabiensis population were simulated with a simple but process-explicit deterministic model and relevance to other vectors examined through sensitivity analysis. Results Where most humans use bed nets, two thirds of An. arabiensis blood feeds and half of malaria transmission events were estimated to occur outdoors. However, it was also estimated that most successful feeds and almost all (>98 %) transmission events are preceded by unsuccessful attempts to attack humans indoors. The estimated proportion of vector blood meals ultimately obtained from humans indoors is dramatically attenuated by availability of alternative hosts, or partial ability to attack humans outdoors. However, the estimated proportion of mosquitoes old enough to transmit malaria, and which have previously entered a house at least once, is far less sensitive to both variables. For vectors with similarly modest preference for cattle over humans and similar ability to evade fatal indoor insecticide exposure once indoors, >80 % of predicted feeding events by mosquitoes old enough to transmit malaria are preceded by at least one house entry event, so long as ≥40 % of attempts to attack humans occur indoors and humans outnumber cattle ≥4-fold. Conclusions While the exact numerical results predicted by such a simple deterministic model should be considered only approximate and illustrative, the derived conclusions are remarkably insensitive to substantive deviations from the input parameter values measured for this particular An. arabiensis population. This life-history analysis, therefore, identifies a clear, broadly-important opportunity for more effective suppression of residual malaria transmission by An. arabiensis in Africa and other important vectors of residual transmission across the tropics. Improved control of predominantly outdoor residual transmission by An. arabiensis, and other modestly zoophagic vectors like Anopheles darlingi, which frequently enter but then rapidly exit from houses, may be readily achieved by improving existing technology for killing mosquitoes indoors.
Collapse
Affiliation(s)
- Gerry F Killeen
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifakara, Kilombero, Morogoro, United Republic of Tanzania. .,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Nicodem J Govella
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifakara, Kilombero, Morogoro, United Republic of Tanzania
| | - Dickson W Lwetoijera
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifakara, Kilombero, Morogoro, United Republic of Tanzania
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifakara, Kilombero, Morogoro, United Republic of Tanzania.,School of Public Health, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
29
|
Chabi J, Baidoo PK, Datsomor AK, Okyere D, Ablorde A, Iddrisu A, Wilson MD, Dadzie SK, Jamet HP, Diclaro JW. Insecticide susceptibility of natural populations of Anopheles coluzzii and Anopheles gambiae (sensu stricto) from Okyereko irrigation site, Ghana, West Africa. Parasit Vectors 2016; 9:182. [PMID: 27030033 PMCID: PMC4815066 DOI: 10.1186/s13071-016-1462-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The increasing spread of insecticide resistance in malaria vectors has been well documented across sub-Saharan Africa countries. The influence of irrigation on increasing vector resistance is poorly understood, and is critical to successful and ethical implementation of food security policies. This study investigated the insecticide resistance status of An. gambiae (s.l.) mosquitoes collected from the irrigated rice area of Okyereko, a village containing about 42 hectares of irrigated field within an irrigation project plan in the Central Region of Ghana. Large amounts of insecticides, herbicides and fertilizers are commonly used in the area to boost the annual production of the rice. METHODS Mosquito larvae were collected and adults were assayed from the F1 progeny. The resistance status, allele and genotype were characterized using WHO susceptibility testing and PCR methods respectively. RESULTS The An. gambiae (s.l.) populations from Okyereko are highly resistant to DDT and pyrethroid insecticides, with possible involvement of metabolic mechanisms including the elevation of P450 and GST enzyme as well as P-gp activity. The population was mostly composed of An. coluzzii specimens (more than 96 %) with kdr and ace-1 frequencies of 0.9 and 0.2 %, respectively. CONCLUSION This study brings additional information on insecticide resistance and the characterization of An. gambiae (s.l.) mosquitoes from Okyereko, which can be helpful in decision making for vector control programmes in the region.
Collapse
Affiliation(s)
- Joseph Chabi
- Vestergaard-NMIMR Vector Labs (VNVL), Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana. .,Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.
| | - Philip K Baidoo
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alex K Datsomor
- Vestergaard-NMIMR Vector Labs (VNVL), Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.,Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Dora Okyere
- Vestergaard-NMIMR Vector Labs (VNVL), Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.,Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Aikins Ablorde
- Vestergaard-NMIMR Vector Labs (VNVL), Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.,Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Alidu Iddrisu
- Vestergaard-NMIMR Vector Labs (VNVL), Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.,Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Michael D Wilson
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Samuel K Dadzie
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | | | - Joseph W Diclaro
- Vector Biology Research Program, U.S. Naval Medical Research Unit No 3, Cairo, Egypt
| |
Collapse
|
30
|
Kiware SS, Russell TL, Mtema ZJ, Malishee AD, Chaki P, Lwetoijera D, Chanda J, Chinula D, Majambere S, Gimnig JE, Smith TA, Killeen GF. A generic schema and data collection forms applicable to diverse entomological studies of mosquitoes. SOURCE CODE FOR BIOLOGY AND MEDICINE 2016; 11:4. [PMID: 27022408 PMCID: PMC4809029 DOI: 10.1186/s13029-016-0050-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/17/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Standardized schemas, databases, and public data repositories are needed for the studies of malaria vectors that encompass a remarkably diverse array of designs and rapidly generate large data volumes, often in resource-limited tropical settings lacking specialized software or informatics support. RESULTS Data from the majority of mosquito studies conformed to a generic schema, with data collection forms recording the experimental design, sorting of collections, details of sample pooling or subdivision, and additional observations. Generically applicable forms with standardized attribute definitions enabled rigorous, consistent data and sample management with generic software and minimal expertise. Forms use now includes 20 experiments, 8 projects, and 15 users at 3 research and control institutes in 3 African countries, resulting in 11 peer-reviewed publications. CONCLUSION We have designed generic data schema that can be used to develop paper or electronic based data collection forms depending on the availability of resources. We have developed paper-based data collection forms that can be used to collect data from majority of entomological studies across multiple study areas using standardized data formats. Data recorded on these forms with standardized formats can be entered and linked with any relational database software. These informatics tools are recommended because they ensure that medical entomologists save time, improve data quality, and data collected and shared across multiple studies is in standardized formats hence increasing research outputs.
Collapse
Affiliation(s)
- Samson S. Kiware
- />Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- />Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI 53201-1881 USA
| | - Tanya L. Russell
- />Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- />Pacific Malaria Initiative Support Centre, School of Population Health, University of Queensland, Brisbane, 4006 Australia
| | - Zacharia J. Mtema
- />Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Alpha D. Malishee
- />Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Prosper Chaki
- />Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Dickson Lwetoijera
- />Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- />Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Javan Chanda
- />National Malaria Control Centre, Lusaka, Zambia
| | | | - Silas Majambere
- />Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- />Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - John E. Gimnig
- />Division of Parasitic Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Thomas A. Smith
- />Department of Public Health and Epidemiology, Swiss Tropical Institute, Socinstrasse 57, Basel, CH 4002 Switzerland
| | - Gerry F. Killeen
- />Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- />Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| |
Collapse
|
31
|
Massue DJ, Kisinza WN, Malongo BB, Mgaya CS, Bradley J, Moore JD, Tenu FF, Moore SJ. Comparative performance of three experimental hut designs for measuring malaria vector responses to insecticides in Tanzania. Malar J 2016; 15:165. [PMID: 26979404 PMCID: PMC4793500 DOI: 10.1186/s12936-016-1221-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/09/2016] [Indexed: 12/02/2022] Open
Abstract
Background Experimental huts are simplified, standardized representations of human habitations that provide model systems to evaluate insecticides used in indoor residual spray (IRS) and long-lasting insecticidal nets (LLINs) to kill disease vectors. Hut volume, construction materials and size of entry points impact mosquito entry and exposure to insecticides. The performance of three standard experimental hut designs was compared to evaluate insecticide used in LLINs. Methods Field studies were conducted at the World Health Organization Pesticide Evaluation Scheme (WHOPES) testing site in Muheza, Tanzania. Three East African huts, three West African huts, and three Ifakara huts were compared using Olyset® and Permanet 2.0® versus untreated nets as a control. Outcomes measured were mortality, induced exophily (exit rate), blood feeding inhibition and deterrence (entry rate). Data were analysed using linear mixed effect regression and Bland–Altman comparison of paired differences. Results A total of 613 mosquitoes were collected in 36 nights, of which 13.5 % were Anopheles gambiae sensu lato, 21 % Anopheles funestus sensu stricto, 38 % Mansonia species and 28 % Culex species. Ifakara huts caught three times more mosquitoes than the East African and West African huts, while the West African huts caught significantly fewer mosquitoes than the other hut types. Mosquito densities were low, very little mosquito exit was measured in any of the huts with no measurable exophily caused by the use of either Olyset or Permanet. When the huts were directly compared, the West African huts measured greater exophily than other huts. As unholed nets were used in the experiments and few mosquitoes were captured, it was not possible to measure difference in feeding success either between treatments or hut types. In each of the hut types there was increased mortality when Permanet or Olyset were present inside the huts compared to the control, however this did not vary between the hut types. Conclusions Both East African and Ifakara huts performed in a similar way although Ifakara huts allowed more mosquitoes to enter, increasing data power. The work convincingly demonstrates that the East African huts and Ifakara huts collect substantially more mosquitoes than the West African huts.
Collapse
Affiliation(s)
- Dennis J Massue
- Epidemiology and Public Health Department, Swiss Institute of Tropical and Public Health, Soccinstrase 57, 4002, Basel, Switzerland. .,University of Basel, Petersplatz 1, 4003, Basel, Switzerland. .,Amani Research Centre, National Institute for Medical Research, P. O. Box 81, Muheza, Tanga, Tanzania.
| | - William N Kisinza
- Amani Research Centre, National Institute for Medical Research, P. O. Box 81, Muheza, Tanga, Tanzania
| | - Bernard B Malongo
- Amani Research Centre, National Institute for Medical Research, P. O. Box 81, Muheza, Tanga, Tanzania
| | - Charles S Mgaya
- Amani Research Centre, National Institute for Medical Research, P. O. Box 81, Muheza, Tanga, Tanzania
| | - John Bradley
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Jason D Moore
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.,Bagamoyo Research and Training Centre, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Pwani, Tanzania
| | - Filemoni F Tenu
- Amani Research Centre, National Institute for Medical Research, P. O. Box 81, Muheza, Tanga, Tanzania
| | - Sarah J Moore
- Epidemiology and Public Health Department, Swiss Institute of Tropical and Public Health, Soccinstrase 57, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, 4003, Basel, Switzerland.,Bagamoyo Research and Training Centre, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Pwani, Tanzania
| |
Collapse
|
32
|
Maliti DV, Marsden CD, Main BJ, Govella NJ, Yamasaki Y, Collier TC, Kreppel K, Chiu JC, Lanzaro GC, Ferguson HM, Lee Y. Investigating associations between biting time in the malaria vector Anopheles arabiensis Patton and single nucleotide polymorphisms in circadian clock genes: support for sub-structure among An. arabiensis in the Kilombero valley of Tanzania. Parasit Vectors 2016; 9:109. [PMID: 26920563 PMCID: PMC4769569 DOI: 10.1186/s13071-016-1394-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/18/2016] [Indexed: 12/31/2022] Open
Abstract
Background There is growing evidence that the widespread use of Long-Lasting Insecticidal Nets (LLINs) is prompting malaria vectors to shift their biting towards times and places where people are not protected, such as earlier in the evening and/or outdoors. It is uncertain whether these behavioural shifts are due to phenotypic plasticity and/or ecological changes within vector communities that favour more exophilic species, or involve genetic factors within vector species to limit their contact with LLINs. Possibly variation in the time and location of mosquito biting has a genetic basis, but as yet this phenomenon has received little investigation. Here we used a candidate gene approach to investigate whether polymorphisms in selected circadian clock genes could explain variation in the time and location of feeding (indoors versus outside) within a natural population of the major African malaria vector Anopheles arabiensis. Methods Host-seeking An. arabiensis were collected from two villages (Lupiro and Sagamaganga) in Tanzania by Human Landing Catch (HLC) technique. Mosquitoes were classified into phenotypes of “early” (7 pm–10 pm) or “late” biting (4 am –7 am), and host-seeking indoors or outdoors. In these samples we genotyped 34 coding SNPs in 8 clock genes (PER, TIM, CLK, CYC, PDP1, VRI, CRY1, and CRY2), and tested for associations between these SNPs and biting phenotypes. SNPs in 8 mitochondrial genes (ATP6, ATP8, COX1, COX2, COX3, ND3, ND5 and CYTB) were also genotyped to test population subdivision within An. arabiensis. Results The candidate clock genes exhibited polymorphism within An. arabiensis, but it was unrelated to variation in the timing and location of their biting activity. However, there was evidence of strong genetic structure within An. arabiensis populations in association with the TIM, which was unrelated to geographic distance. Substructure within An. arabiensis was also detected using mitochondrial markers. Conclusions The variable timing and location of biting in An. arabiensis could not be linked to candidate clock genes that are known to influence behaviour in other Diptera. This finding does not rule out the possibility of a genetic basis to biting behaviour in this malaria vector, but suggests these are complex phenotypes that require more intensive ecological, neuronal and genomic analyses to understand. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1394-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deodatus Vincent Maliti
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifakara, Morogoro, Tanzania. .,Nelson Mandela African Institute of Science and Technology Tanzania, School of Life Sciences, Arusha, Tanzania. .,Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Lancashire, UK.
| | - C D Marsden
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - B J Main
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - N J Govella
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifakara, Morogoro, Tanzania.
| | - Y Yamasaki
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - T C Collier
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - K Kreppel
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Lancashire, UK.
| | - J C Chiu
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA.
| | - G C Lanzaro
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - H M Ferguson
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA.
| | - Y Lee
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| |
Collapse
|
33
|
Hamainza B, Sikaala CH, Moonga HB, Chanda J, Chinula D, Mwenda M, Kamuliwo M, Bennett A, Seyoum A, Killeen GF. Incremental impact upon malaria transmission of supplementing pyrethroid-impregnated long-lasting insecticidal nets with indoor residual spraying using pyrethroids or the organophosphate, pirimiphos methyl. Malar J 2016; 15:100. [PMID: 26893012 PMCID: PMC4758014 DOI: 10.1186/s12936-016-1143-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 02/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long-lasting, insecticidal nets (LLINs) and indoor residual spraying (IRS) are the most widely accepted and applied malaria vector control methods. However, evidence that incremental impact is achieved when they are combined remains limited and inconsistent. METHODS Fourteen population clusters of approximately 1000 residents each in Zambia's Luangwa and Nyimba districts, which had high pre-existing usage rates (81.7 %) of pyrethroid-impregnated LLINs were quasi-randomly assigned to receive IRS with either of two pyrethroids, namely deltamethrin [Wetable granules (WG)] and lambdacyhalothrin [capsule suspension (CS)], with an emulsifiable concentrate (EC) or CS formulation of the organophosphate pirimiphos methyl (PM), or with no supplementary vector control measure. Diagnostic positivity of patients tested for malaria by community health workers in these clusters was surveyed longitudinally over pre- and post-treatment periods spanning 29 months, over which the treatments were allocated and re-allocated in advance of three sequential rainy seasons. RESULTS Supplementation of LLINs with PM CS offered the greatest initial level of protection against malaria in the first 3 months of application (incremental protective efficacy (IPE) [95 % confidence interval (CI)] = 0.63 [CI 0.57, 0.69], P < 0.001), followed by lambdacyhalothrin (IPE [95 % CI] = 0.31 [0.10, 0.47], P = 0.006) and PM EC (IPE, 0.23 [CI 0.15, 0.31], P < 0.001) and then by deltamethrin (IPE [95 % CI] = 0.19 [-0.01, 0.35], P = 0.064). Neither pyrethroid formulation provided protection beyond 3 months after spraying, but the protection provided by both PM formulations persisted undiminished for longer periods: 6 months for CS and 12 months for EC. The CS formulation of PM provided greater protection than the combined pyrethroid IRS formulations throughout its effective life IPE [95 % CI] = 0.79 [0.75, 0.83] over 6 months. The EC formulation of PM provided incremental protection for the first 3 months (IPE [95 % CI] = 0.23 [0.15, 0.31]) that was approximately equivalent to the two pyrethroid formulations (lambdacyhalothrin, IPE [95 % CI] = 0.31 [0.10, 0.47] and deltamethrin, IPE [95 % CI] = 0.19 [-0.01, 0.35]) but the additional protection provided by the former, apparently lasted an entire year. CONCLUSION Where universal coverage targets for LLIN utilization has been achieved, supplementing LLINs with IRS using pyrethroids may reduce malaria transmission below levels achieved by LLIN use alone, even in settings where pyrethroid resistance occurs in the vector population. However, far greater reduction of transmission can be achieved under such conditions by supplementing LLINs with IRS using non-pyrethroid insecticide classes, such as organophosphates, so this is a viable approach to mitigating and managing pyrethroid resistance.
Collapse
Affiliation(s)
- Busiku Hamainza
- National Malaria Control Centre, Ministry of Health, Chainama Hospital, College Grounds, off Great East road, PO Box 32509, Lusaka, Zambia.
- Malaria Elimination Initiative, Global Health Group, University of California, 550 16th St., San Francisco, CA, 94158, USA.
| | - Chadwick H Sikaala
- National Malaria Control Centre, Ministry of Health, Chainama Hospital, College Grounds, off Great East road, PO Box 32509, Lusaka, Zambia.
- Malaria Elimination Initiative, Global Health Group, University of California, 550 16th St., San Francisco, CA, 94158, USA.
| | - Hawela B Moonga
- National Malaria Control Centre, Ministry of Health, Chainama Hospital, College Grounds, off Great East road, PO Box 32509, Lusaka, Zambia.
| | - Javan Chanda
- National Malaria Control Centre, Ministry of Health, Chainama Hospital, College Grounds, off Great East road, PO Box 32509, Lusaka, Zambia.
| | - Dingani Chinula
- National Malaria Control Centre, Ministry of Health, Chainama Hospital, College Grounds, off Great East road, PO Box 32509, Lusaka, Zambia.
| | - Mulenga Mwenda
- National Malaria Control Centre, Ministry of Health, Chainama Hospital, College Grounds, off Great East road, PO Box 32509, Lusaka, Zambia.
| | - Mulakwa Kamuliwo
- National Malaria Control Centre, Ministry of Health, Chainama Hospital, College Grounds, off Great East road, PO Box 32509, Lusaka, Zambia.
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California, 550 16th St., San Francisco, CA, 94158, USA.
| | - Aklilu Seyoum
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Gerry F Killeen
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, PO Box 53, Ifakara, Morogoro, United Republic of Tanzania.
| |
Collapse
|
34
|
Matowo NS, Koekemoer LL, Moore SJ, Mmbando AS, Mapua SA, Coetzee M, Okumu FO. Combining Synthetic Human Odours and Low-Cost Electrocuting Grids to Attract and Kill Outdoor-Biting Mosquitoes: Field and Semi-Field Evaluation of an Improved Mosquito Landing Box. PLoS One 2016; 11:e0145653. [PMID: 26789733 PMCID: PMC4720432 DOI: 10.1371/journal.pone.0145653] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/07/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND On-going malaria transmission is increasingly mediated by outdoor-biting vectors, especially where indoor insecticidal interventions such as long-lasting insecticide treated nets (LLINs) are widespread. Often, the vectors are also physiologically resistant to insecticides, presenting major obstacles for elimination. We tested a combination of electrocuting grids with synthetic odours as an alternative killing mechanism against outdoor-biting mosquitoes. METHODS An odour-baited device, the Mosquito Landing Box (MLB), was improved by fitting it with low-cost electrocuting grids to instantly kill mosquitoes attracted to the odour lure, and automated photo switch to activate attractant-dispensing and mosquito-killing systems between dusk and dawn. MLBs fitted with one, two or three electrocuting grids were compared outdoors in a malaria endemic village in Tanzania, where vectors had lost susceptibility to pyrethroids. MLBs with three grids were also tested in a large semi-field cage (9.6 × 9.6 × 4.5m), to assess effects on biting-densities of laboratory-reared Anopheles arabiensis on volunteers sitting near MLBs. RESULTS Significantly more mosquitoes were killed when MLBs had two or three grids, than one grid in wet and dry seasons (P<0.05). The MLBs were highly efficient against Mansonia species and malaria vector, An. arabiensis. Of all mosquitoes, 99% were non-blood fed, suggesting host-seeking status. In the semi-field, the MLBs reduced mean number of malaria mosquitoes attempting to bite humans fourfold. CONCLUSION The improved odour-baited MLBs effectively kill outdoor-biting malaria vector mosquitoes that are behaviourally and physiologically resistant to insecticidal interventions e.g. LLINs. The MLBs reduce human-biting vector densities even when used close to humans, and are insecticide-free, hence potentially antiresistance. The devices could either be used as surveillance tools or complementary mosquito control interventions to accelerate malaria elimination where outdoor transmission is significant.
Collapse
Affiliation(s)
- Nancy S. Matowo
- Environmental and Ecological Sciences Thematic Group, Ifakara Health Institute, Dar es Salaam, Tanzania
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lizette L. Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Sarah J. Moore
- Environmental and Ecological Sciences Thematic Group, Ifakara Health Institute, Dar es Salaam, Tanzania
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Arnold S. Mmbando
- Environmental and Ecological Sciences Thematic Group, Ifakara Health Institute, Dar es Salaam, Tanzania
| | - Salum A. Mapua
- Environmental and Ecological Sciences Thematic Group, Ifakara Health Institute, Dar es Salaam, Tanzania
| | - Maureen Coetzee
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Fredros O. Okumu
- Environmental and Ecological Sciences Thematic Group, Ifakara Health Institute, Dar es Salaam, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
35
|
Gimnig JE, Otieno P, Were V, Marwanga D, Abong’o D, Wiegand R, Williamson J, Wolkon A, Zhou Y, Bayoh MN, Lobo NF, Laserson K, Kariuki S, Hamel MJ. The Effect of Indoor Residual Spraying on the Prevalence of Malaria Parasite Infection, Clinical Malaria and Anemia in an Area of Perennial Transmission and Moderate Coverage of Insecticide Treated Nets in Western Kenya. PLoS One 2016; 11:e0145282. [PMID: 26731524 PMCID: PMC4701193 DOI: 10.1371/journal.pone.0145282] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/02/2015] [Indexed: 11/19/2022] Open
Abstract
Background Insecticide treated nets (ITNs) and indoor residual spraying (IRS) have been scaled up for malaria prevention in sub-Saharan Africa. However, there are few studies on the benefit of implementing IRS in areas with moderate to high coverage of ITNs. We evaluated the impact of an IRS program on malaria related outcomes in western Kenya, an area of intense perennial malaria transmission and moderate ITN coverage (55–65% use of any net the previous night). Methods The Kenya Division of Malaria Control, with support from the US President’s Malaria Initiative, conducted IRS in one lowland endemic district with moderate coverage of ITNs. Surveys were conducted in the IRS district and a neighboring district before IRS, after one round of IRS in July-Sept 2008 and after a second round of IRS in April-May 2009. IRS was conducted with pyrethroid insecticides. At each survey, 30 clusters were selected for sampling and within each cluster, 12 compounds were randomly selected. The primary outcomes measured in all residents of selected compounds included malaria parasitemia, clinical malaria (P. falciparum infection plus history of fever) and anemia (Hb<8) of all residents in randomly selected compounds. At each survey round, individuals from the IRS district were matched to those from the non-IRS district using propensity scores and multivariate logistic regression models were constructed based on the matched dataset. Results At baseline and after one round of IRS, there were no differences between the two districts in the prevalence of malaria parasitemia, clinical malaria or anemia. After two rounds of IRS, the prevalence of malaria parasitemia was 6.4% in the IRS district compared to 16.7% in the comparison district (OR = 0.36, 95% CI = 0.22–0.59, p<0.001). The prevalence of clinical malaria was also lower in the IRS district (1.8% vs. 4.9%, OR = 0.37, 95% CI = 0.20–0.68, p = 0.001). The prevalence of anemia was lower in the IRS district but only in children under 5 years of age (2.8% vs. 9.3%, OR = 0.30, 95% CI = 0.13–0.71, p = 0.006). Multivariate models incorporating both IRS and ITNs indicated that both had an impact on malaria parasitemia and clinical malaria but the independent effect of ITNs was reduced in the district that had received two rounds of IRS. There was no statistically significant independent effect of ITNs on the prevalence of anemia in any age group. Conclusions Both IRS and ITNs are effective tools for reducing malaria burden and when implemented in an area of moderate to high transmission with moderate ITN coverage, there may be an added benefit of IRS. The value of adding ITNs to IRS is less clear as their benefits may be masked by IRS. Additional monitoring of malaria control programs that implement ITNs and IRS concurrently is encouraged to better understand how to maximize the benefits of both interventions, particularly in the context of increasing pyrethroid resistance.
Collapse
Affiliation(s)
- John E. Gimnig
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| | - Peter Otieno
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Vincent Were
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Doris Marwanga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Daisy Abong’o
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Ryan Wiegand
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - John Williamson
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Adam Wolkon
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ying Zhou
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - M. Nabie Bayoh
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Neil F. Lobo
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Kayla Laserson
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Simon Kariuki
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Mary J. Hamel
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
36
|
Mathanga DP, Mwandama DA, Bauleni A, Chisaka J, Shah MP, Landman KZ, Lindblade KA, Steinhardt LC. The effectiveness of long-lasting, insecticide-treated nets in a setting of pyrethroid resistance: a case-control study among febrile children 6 to 59 months of age in Machinga District, Malawi. Malar J 2015; 14:457. [PMID: 26577571 PMCID: PMC4650309 DOI: 10.1186/s12936-015-0961-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/22/2015] [Indexed: 09/03/2023] Open
Abstract
Background The escalating level of mosquito resistance to pyrethroid insecticides threatens the effectiveness of insecticide-treated nets (ITNs) for malaria control in Malawi. An evaluation of the effectiveness of ITNs for preventing malaria in children aged 6–59 months old, after 1 year of mass distribution of LLINs was conducted in Machinga District, Malawi, an area of moderate pyrethroid resistance. Methods A facility-based, case–control study among children 6–59 months was conducted in an area of pyrethroid resistance between March and September 2013 in Machinga District. Cases and controls were children with fever who sought care from the same hospital and tested positive and negative, respectively, for malaria parasites by microscopy. Results A high proportion of both cases (354 of 404 or 87.6 %) and controls (660 of 778 or 84.8 %) slept under an ITN the night before the survey. In univariable logistic regression, older age (24–59 months versus 6–23 months, p < 0.001), sleeping on the floor versus a mattress (p < 0.001), and open versus closed house eaves (p = 0.001) were associated with increased odds of malaria, whilst secondary education of the caretaker, having windows on multiple walls, and being in the least poor wealth quintile (p < 0.001 for each) reduced the odds of malaria; ITN use was not associated with malaria (p = 0.181). In multivariable analysis, older age (p < 0.001) and secondary education of the caregiver (p = 0.011) were the only factors significantly associated with malaria. Conclusion This study did not find a significant personal protective effect of ITNs. However, high use of ITNs in the community and recent findings of lower malaria incidence in ITN users compared to bed net non-users from a cohort study in the same area suggest that ITNs provide community protection to both users and non-users alike in this area.
Collapse
Affiliation(s)
- Don P Mathanga
- Malaria Alert Centre, University of Malawi College of Medicine, Private Bag 360, Chichiri, Blantyre, Malawi.
| | - Dyson A Mwandama
- Malaria Alert Centre, University of Malawi College of Medicine, Private Bag 360, Chichiri, Blantyre, Malawi.
| | - Andy Bauleni
- Malaria Alert Centre, University of Malawi College of Medicine, Private Bag 360, Chichiri, Blantyre, Malawi.
| | - Joseph Chisaka
- Malaria Alert Centre, University of Malawi College of Medicine, Private Bag 360, Chichiri, Blantyre, Malawi.
| | - Monica P Shah
- Malaria Branch, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Mail Stop A-06, Atlanta, GA, 30333, USA.
| | - Keren Z Landman
- Malaria Branch, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Mail Stop A-06, Atlanta, GA, 30333, USA.
| | - Kim A Lindblade
- Malaria Branch, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Mail Stop A-06, Atlanta, GA, 30333, USA.
| | - Laura C Steinhardt
- Malaria Branch, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Mail Stop A-06, Atlanta, GA, 30333, USA.
| |
Collapse
|
37
|
Protopopoff N, Wright A, West PA, Tigererwa R, Mosha FW, Kisinza W, Kleinschmidt I, Rowland M. Combination of Insecticide Treated Nets and Indoor Residual Spraying in Northern Tanzania Provides Additional Reduction in Vector Population Density and Malaria Transmission Rates Compared to Insecticide Treated Nets Alone: A Randomised Control Trial. PLoS One 2015; 10:e0142671. [PMID: 26569492 PMCID: PMC4646432 DOI: 10.1371/journal.pone.0142671] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/26/2015] [Indexed: 11/23/2022] Open
Abstract
Indoor residual spraying (IRS) combined with insecticide treated nets (ITN) has been implemented together in several sub-Saharan countries with inconclusive evidence that the combined intervention provides added benefit. The impact on malaria transmission was evaluated in a cluster randomised trial comparing two rounds of IRS with bendiocarb plus universal coverage ITNs, with ITNs alone in northern Tanzania. From April 2011 to December 2012, eight houses in 20 clusters per study arm were sampled monthly for one night with CDC light trap collections. Anopheles gambiae s.l. were identified to species using real time PCR Taq Man and tested for the presence of Plasmodium falciparum circumsporozoite protein. ITN and IRS coverage was estimated from household surveys. IRS coverage was more than 85% in two rounds of spraying in January and April 2012. Household coverage with at least one ITN per house was 94.7% after the universal coverage net campaign in the baseline year and the proportion of household with all sleeping places covered by LLIN was 50.1% decreasing to 39.1% by the end of the intervention year. An.gambiae s.s. comprised 80% and An.arabiensis 18.3% of the anopheline collection in the baseline year. Mean An.gambiae s.l. density in the ITN+IRS arm was reduced by 84% (95%CI: 56%-94%, p = 0.001) relative to the ITN arm. In the stratum of clusters categorised as high anopheline density at baseline EIR was lower in the ITN+IRS arm compared to the ITN arm (0.5 versus 5.4 per house per month, Incidence Rate Ratio: 0.10, 95%CI: 0.01–0.66, p-value for interaction <0.001). This trial provides conclusive evidence that combining carbamate IRS and ITNs produces major reduction in Anopheles density and entomological inoculation rate compared to ITN alone in an area of moderate coverage of LLIN and high pyrethroid resistance in An.gambiae s.s.
Collapse
Affiliation(s)
- Natacha Protopopoff
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| | - Alexandra Wright
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Philippa A West
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Franklin W Mosha
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - William Kisinza
- National Institute for Medical Research, Amani Medical Research Centre, Muheza, Tanzania
| | - Immo Kleinschmidt
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Mark Rowland
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
38
|
Wamae P, Githeko A, Otieno G, Kabiru E, Duombia S. Early biting of the Anopheles gambiae s.s. and its challenges to vector control using insecticide treated nets in western Kenya highlands. Acta Trop 2015. [PMID: 26209103 DOI: 10.1016/j.actatropica.2015.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Long term use of insecticides in malaria vector control has been shown to alter the behavior of vectors. Such behavioral shifts have the potential of undermining the effectiveness of insecticide-based control interventions. The effects of insecticide treated nets (ITNs) use on the composition, biting/feeding and sporozoite rates of Anopheles gambiae s.l. mosquitoes in Musilongo village, Vihiga County of western Kenya highlands were investigated. Adult mosquitoes were collected in selected sleeping spaces inside six randomly selected houses using miniature Centre for Disease Control and Prevention (CDC) light traps. Mosquito sampling in each house was conducted twice every week for 16 consecutive months (May 2010-August 2012). At each sampling a single trap was set in the selected space inside each house such that it collected mosquitoes alternatively from 18:00 to 21:00h and 21:00 to 06:00h every week. All collected mosquitoes were morphologically identified. Female Anopheles mosquitoes were classified according to their physiological status as unfed, fed, partially gravid and gravid, sorted and counted. Members of the A. gambiae complex were identified using a Polymerase chain reaction (PCR) method. Enzyme-linked-immunosorbent assay (ELISA) was used to determine blood meal sources and Plasmodium infection rates in A. gambiae s.l. mosquitoes. Blood meal tests were conducted on DNA extracted from gut contents of blood fed A. gambiae s.l. The head and thorax section of dried samples of A. gambiae s.l. were used in testing for the presence of Plasmodium falciparum (Pf) sporozoites. Overall, 735 adult female Anopheles comprising 708 [96.3%] A. gambiae s.l. and 27 [3.7%] Anopheles funestus mosquitoes were collected. A. gambiae s.l. population collected comprised, 615 [86.9%] unfed and 38 [5.4%] fed adult mosquitoes. The rest were either partially or fully gravid. The proportion of A. gambiae s.l. biting indoors within 18:00-21:00h was 15.8% (103/653) at a rate of 3.2bites per person per hour compared to 84.2% biting from 21:00-06:00h at a rate of 3.8 bites/per/h. An estimated 97.7% A. gambiae ss and 2.3% A. arabiensis constituted the indoor biting A. gambiae s.l. The population of An. gambiae s.l. biting from 18:00 to 21:00h had a Plasmodium faciparum (pf) sporozoite rate of 3.8% compared to 3.5% observed in populations biting within 21:00-06:00h. Human blood constituted 89% of An. gambiae s.l. blood meal sources. The risk of malaria transmission from 21:00 to 06:00h was approximately 5 fold the risk within 18:00-21:00h. Majority of the infective female A. gambiae s.l. adults were biting deep into the night than in the early hours of the night. Humans remain the preferred source of blood meal for A. gambiae s.s. the dominant malaria vector in the highlands. ITNs remain a fundamental control intervention against malaria transmission since female blood seekers were more during bed time than pre-bed time. Advocacy on enhanced net availability, integrity and usage in Kenyan highlands can reduce Pf transmission. Additional complementary interventions are required to control the biting and parasite transmission encountered before bed-time.
Collapse
|
39
|
Malaria in the Andaman and Nicobar Islands: Challenges and opportunities for elimination. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2015. [DOI: 10.1016/s2222-1808(15)60942-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Gore-Langton GR, Mungai J, Alenwi N, Abagira A, Bicknell OM, Harrison RE, Hassan FA, Munga S, Eves K, Juma E, Allan R. Investigating a Non-Mesh Mosquito Net Among Outdoor Sleeping Nomadic Communities in Kenya. Am J Trop Med Hyg 2015; 93:1002-1009. [PMID: 26416107 PMCID: PMC4703291 DOI: 10.4269/ajtmh.14-0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 06/15/2015] [Indexed: 11/17/2022] Open
Abstract
Rising reports of exophagic malaria vectors make even more pressing the need for alternatives to traditional, mesh, long-lasting insecticidal nets (LLINs) designed for indoor sleeping and often inadequate in the protection of outdoor-sleeping populations. This study tests and evaluates the retention, utilization, and durability of novel, non-mesh nets designed for outdoor use. Longitudinal, cross-sectional surveys were conducted, the physical condition of nets was assessed, and bio-efficacy and insecticide content were tested. At 22 months, retention was 98.0%; 97.1% of nets fell within the World Health Organization (WHO) category of being in “good” condition; none were in the “torn” category. At 18 months post-distribution, 100% of nets had at least WHO Pesticide Evaluation Scheme (WHOPES)-acceptable levels of insecticide, this proportion was 66.7% at 22 months. This novel mosquito net has the potential to provide a durable and context-specific tool to prevent malaria among traditionally hard-to-protect and highly vulnerable populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Richard Allan
- *Address correspondence to Richard Allan, The MENTOR Initiative, The Pinnacle Central Court Station Way, Crawley RH 10I JH, United Kingdom. E-mail:
| |
Collapse
|
41
|
Glunt KD, Abílio AP, Bassat Q, Bulo H, Gilbert AE, Huijben S, Manaca MN, Macete E, Alonso P, Paaijmans KP. Long-lasting insecticidal nets no longer effectively kill the highly resistant Anopheles funestus of southern Mozambique. Malar J 2015; 14:298. [PMID: 26242977 PMCID: PMC4524426 DOI: 10.1186/s12936-015-0807-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/10/2015] [Indexed: 11/17/2022] Open
Abstract
Background Chemical insecticides are crucial to malaria control and elimination programmes. The frontline vector control interventions depend mainly on pyrethroids; all long-lasting insecticidal nets (LLINs) and more than 80% of indoor residual spraying (IRS) campaigns use chemicals from this class. This extensive use of pyrethroids imposes a strong selection pressure for resistance in mosquito populations, and so continuous resistance monitoring and evaluation are important. As pyrethroids have also been used for many years in the Manhiça District, an area in southern Mozambique with perennial malaria transmission, an assessment of their efficacy against the local malaria vectors was conducted. Methods Female offspring of wild-caught Anopheles funestus s.s. females were exposed to deltamethrin, lambda-cyhalothrin and permethrin using the World Health Organization (WHO) insecticide-resistance monitoring protocols. The 3-min WHO cone bioassay was used to evaluate the effectiveness of the bed nets distributed or available for purchase in the area (Olyset, permethrin LLIN; PermaNet 2.0, deltamethrin LLIN) against An. funestus. Mosquitoes were also exposed to PermaNet 2.0 for up to 8 h in time-exposure assays. Results Resistance to pyrethroids in An. funestus s.s. was extremely high, much higher than reported in 2002 and 2009. No exposure killed more than 25.8% of the mosquitoes tested (average mortality, deltamethrin: 6.4%; lambda-cyhalothrin: 5.1%; permethrin: 19.1%). There was no significant difference in the mortality generated by 3-min exposure to any net (Olyset: 9.3% mortality, PermaNet 2.0: 6.0%, untreated: 2.0%; p = 0.2). Six hours of exposure were required to kill 50% of the An. funestuss.s. on PermaNet 2.0. Conclusions Anopheles funestus s.s. in Manhiça is extremely resistant to pyrethroids, and this area is clearly a pyrethroid-resistance hotspot. This could severely undermine vector control in this district if no appropriate countermeasures are undertaken. The National Malaria Control Programme (NMCP) of Mozambique is currently improving its resistance monitoring programme, to design and scale up new management strategies. These actions are urgently needed, as the goal of the NMCP and its partners is to reach elimination in southern Mozambique by 2020. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0807-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katey D Glunt
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
| | - Ana Paula Abílio
- National Institute of Health (INS), Ministry of Health, Maputo, Mozambique.
| | - Quique Bassat
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain. .,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique.
| | - Helder Bulo
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique.
| | - Allison E Gilbert
- Vector Control Reference Laboratory, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.
| | - Silvie Huijben
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
| | | | - Eusebio Macete
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique. .,National Directorate of Public Health, Ministry of Health, Maputo, Mozambique.
| | - Pedro Alonso
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain. .,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique.
| | - Krijn P Paaijmans
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain. .,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique.
| |
Collapse
|
42
|
Mosqueira B, Soma DD, Namountougou M, Poda S, Diabaté A, Ali O, Fournet F, Baldet T, Carnevale P, Dabiré RK, Mas-Coma S. Pilot study on the combination of an organophosphate-based insecticide paint and pyrethroid-treated long lasting nets against pyrethroid resistant malaria vectors in Burkina Faso. Acta Trop 2015; 148:162-9. [PMID: 25959771 DOI: 10.1016/j.actatropica.2015.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/18/2015] [Accepted: 04/11/2015] [Indexed: 11/20/2022]
Abstract
A pilot study to test the efficacy of combining an organophosphate-based insecticide paint and pyrethroid-treated Long Lasting Insecticide Treated Nets (LLINs) against pyrethroid-resistant malaria vector mosquitoes was performed in a real village setting in Burkina Faso. Paint Inesfly 5A IGR™, comprised of two organophosphates (OPs) and an Insect Growth Regulator (IGR), was tested in combination with pyrethroid-treated LLINs. Efficacy was assessed in terms of mortality for 12 months using Early Morning Collections of malaria vectors and 30-minute WHO bioassays. Resistance to pyrethroids and OPs was assessed by detecting the frequency of L1014F and L1014S kdr mutations and Ace-1(R)G119S mutation, respectively. Blood meal origin was identified using a direct enzyme-linked immunosorbent assay (ELISA). The combination of Inesfly 5A IGR™ and LLINs was effective in killing 99.9-100% of malaria vector populations for 6 months regardless of the dose and volume treated. After 12 months, mortality rates decreased to 69.5-82.2%. The highest mortality rates observed in houses treated with 2 layers of insecticide paint and a larger volume. WHO bioassays supported these results: mortalities were 98.8-100% for 6 months and decreased after 12 months to 81.7-97.0%. Mortality rates in control houses with LLINs were low. Collected malaria vectors consisted exclusively of Anopheles coluzzii and were resistant to pyrethroids, with a L1014 kdr mutation frequency ranging from 60 to 98% through the study. About 58% of An. coluzzii collected inside houses had bloodfed on non-human animals. Combining Inesfly 5A IGR™ and LLINs yielded a one year killing efficacy against An. coluzzii highly resistant to pyrethroids but susceptible to OPs that exhibited an anthropo-zoophilic behaviour in the study area. The results obtained in a real setting supported previous work performed in experimental huts and underscore the need to study the impact that this novel strategy may have on clinical malaria and malaria exposure in children in a similar area of high pyrethroid resistance in South-Western Burkina Faso.
Collapse
Affiliation(s)
- Beatriz Mosqueira
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Av Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain.
| | - Dieudonné D Soma
- Institut de Recherche en Sciences de la Santé (IRSS)/Centre Muraz, Bobo-Dioulasso 01 BP 545, Burkina Faso.
| | - Moussa Namountougou
- Institut de Recherche en Sciences de la Santé (IRSS)/Centre Muraz, Bobo-Dioulasso 01 BP 545, Burkina Faso.
| | - Serge Poda
- Institut de Recherche en Sciences de la Santé (IRSS)/Centre Muraz, Bobo-Dioulasso 01 BP 545, Burkina Faso.
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé (IRSS)/Centre Muraz, Bobo-Dioulasso 01 BP 545, Burkina Faso.
| | - Ouari Ali
- Institut de Recherche en Sciences de la Santé (IRSS)/Centre Muraz, Bobo-Dioulasso 01 BP 545, Burkina Faso.
| | - Florence Fournet
- Institut de Recherche pour le Développement (IRD), BP 64501, 34394 Montpellier Cedex 5, France.
| | - Thierry Baldet
- Cirad, UMR15 CMAEE; INRA, UMR1309 CMAEE, Montpellier, France.
| | - Pierre Carnevale
- Immeuble Le Majoral, Avenue de la Tramontane, 34420 Portiragnes Plage, France.
| | - Roch K Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS)/Centre Muraz, Bobo-Dioulasso 01 BP 545, Burkina Faso.
| | - Santiago Mas-Coma
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Av Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain.
| |
Collapse
|
43
|
Kiware SS, Corliss G, Merrill S, Lwetoijera DW, Devine G, Majambere S, Killeen GF. Predicting Scenarios for Successful Autodissemination of Pyriproxyfen by Malaria Vectors from Their Resting Sites to Aquatic Habitats; Description and Simulation Analysis of a Field-Parameterizable Model. PLoS One 2015; 10:e0131835. [PMID: 26186730 PMCID: PMC4505906 DOI: 10.1371/journal.pone.0131835] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 06/07/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Large-cage experiments indicate pyriproxifen (PPF) can be transferred from resting sites to aquatic habitats by Anopheles arabiensis--malaria vector mosquitoes to inhibit emergence of their own offspring. PPF coverage is amplified twice: (1) partial coverage of resting sites with PPF contamination results in far higher contamination coverage of adult mosquitoes because they are mobile and use numerous resting sites per gonotrophic cycle, and (2) even greater contamination coverage of aquatic habitats results from accumulation of PPF from multiple oviposition events. METHODS AND FINDINGS Deterministic mathematical models are described that use only field-measurable input parameters and capture the biological processes that mediate PPF autodissemination. Recent successes in large cages can be rationalized, and the plausibility of success under full field conditions can be evaluated a priori. The model also defines measurable properties of PPF delivery prototypes that may be optimized under controlled experimental conditions to maximize chances of success in full field trials. The most obvious flaw in this model is the endogenous relationship that inevitably occurs between the larval habitat coverage and the measured rate of oviposition into those habitats if the target mosquito species is used to mediate PPF transfer. However, this inconsistency also illustrates the potential advantages of using a different, non-target mosquito species for contamination at selected resting sites that shares the same aquatic habitats as the primary target. For autodissemination interventions to eliminate malaria transmission or vector populations during the dry season window of opportunity will require comprehensive contamination of the most challenging subset of aquatic habitats [Formula: see text] that persist or retain PPF activity (Ux) for only one week [Formula: see text], where Ux = 7 days). To achieve >99% contamination coverage of these habitats will necessitate values for the product of the proportional coverage of the ovipositing mosquito population with PPF contamination (CM) by the ovitrap-detectable rates of oviposition by wild mosquitoes into this subset of habitats [Formula: see text], divided by the titre of contaminated mosquitoes required to render them unproductive [Formula: see text], that approximately approach unity [Formula: see text]. CONCLUSIONS The simple multiplicative relationship between CM and [Formula: see text], and the simple exponential decay effect they have upon uncontaminated aquatic habitats, allows application of this model by theoreticians and field biologists alike.
Collapse
Affiliation(s)
- Samson S. Kiware
- Environmental Health and Ecological Sciences Thematic Group, Ifakara |Health Institute, P.O. Box 53, Ifakara, Tanzania
- Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI, 53201–1881, United States of America
| | - George Corliss
- Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI, 53201–1881, United States of America
| | - Stephen Merrill
- Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI, 53201–1881, United States of America
| | - Dickson W. Lwetoijera
- Environmental Health and Ecological Sciences Thematic Group, Ifakara |Health Institute, P.O. Box 53, Ifakara, Tanzania
- Liverpool School of Tropical Medicine, Vector Biology Department, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Gregor Devine
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Silas Majambere
- Environmental Health and Ecological Sciences Thematic Group, Ifakara |Health Institute, P.O. Box 53, Ifakara, Tanzania
- Liverpool School of Tropical Medicine, Vector Biology Department, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Gerry F. Killeen
- Environmental Health and Ecological Sciences Thematic Group, Ifakara |Health Institute, P.O. Box 53, Ifakara, Tanzania
- Liverpool School of Tropical Medicine, Vector Biology Department, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| |
Collapse
|
44
|
Govella NJ, Ogoma SB, Paliga J, Chaki PP, Killeen G. Impregnating hessian strips with the volatile pyrethroid transfluthrin prevents outdoor exposure to vectors of malaria and lymphatic filariasis in urban Dar es Salaam, Tanzania. Parasit Vectors 2015; 8:322. [PMID: 26063216 PMCID: PMC4465323 DOI: 10.1186/s13071-015-0937-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/03/2015] [Indexed: 11/30/2022] Open
Abstract
Background Semi-field trials using laboratory-reared Anopheles arabiensis have shown that, delivering the volatile pyrethroid transfluthrin by absorption into hessian strips, consistently provided > 99 % human protective efficacy against bites for 6 months without retreating. Here the impact of this approach upon human exposure to wild populations of vectors for both malaria and filariasis under full field conditions is assessed for the first time. Methods Transfluthrin-treated and untreated strips were placed around human volunteers conducting human landing catch in an outdoor environment in urban Dar es Salaam, where much human exposure to malaria and filariasis transmission occurs outdoors. The experiment was replicated 9 times at 16 outdoor catching stations in 4 distinct locations over 72 working nights between May and August 2012. Results Overall, the treated hessian strips conferred 99 % protection against An. gambiae (1 bite versus 159) and 92 % protection against Culex spp. (1478 bites versus 18,602). No decline in efficacy over the course of the study could be detected for the very sparse populations of An. gambiae (P = 0.32) and only a slow efficacy decline was observed for Culex spp. (P < 0.001), with protection remaining satisfactory over 3 months after strip treatment. Diversion of mosquitoes to unprotected humans in nearby houses was neither detected for An. gambiae (P = 0.152) nor for Culex spp. (Relative rate, [95 % CI] = 1.03, [0.95, 1.11], P = 0.499). Conclusion While this study raises more questions than it answers, the presented evidence of high protection over long periods suggest this technology may have potential for preventing outdoor transmission of malaria, lymphatic filariasis and other vector-borne pathogens.
Collapse
Affiliation(s)
- Nicodem J Govella
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Coordination Office, P.O Box 78373, Kiko Avenue, Mikocheni, Dar es Salaam, United Republic of Tanzania.
| | - Sheila B Ogoma
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Coordination Office, P.O Box 78373, Kiko Avenue, Mikocheni, Dar es Salaam, United Republic of Tanzania. .,US Army Medical Research Unit Kenya-Walter Reed Project, P.O. Box 54, Kisumu, Kenya.
| | - John Paliga
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Coordination Office, P.O Box 78373, Kiko Avenue, Mikocheni, Dar es Salaam, United Republic of Tanzania.
| | - Prosper P Chaki
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Coordination Office, P.O Box 78373, Kiko Avenue, Mikocheni, Dar es Salaam, United Republic of Tanzania.
| | - Gerry Killeen
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Coordination Office, P.O Box 78373, Kiko Avenue, Mikocheni, Dar es Salaam, United Republic of Tanzania. .,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom.
| |
Collapse
|
45
|
Olanga EA, Okombo L, Irungu LW, Mukabana WR. Parasites and vectors of malaria on Rusinga Island, Western Kenya. Parasit Vectors 2015; 8:250. [PMID: 25928743 PMCID: PMC4422414 DOI: 10.1186/s13071-015-0860-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/14/2015] [Indexed: 11/29/2022] Open
Abstract
Background There is a dearth of information on malaria endemicity in the islands of Lake Victoria in western Kenya. In this study malaria prevalence and Plasmodium sporozoite rates on Rusinga Island were investigated. The contribution of different Anopheles species to indoor and outdoor transmission of malaria was also determined. Methods Active case detection through microscopy was used to diagnose malaria in a 10% random sample of the human population on Rusinga Island and a longitudinal entomological survey conducted in Gunda village in 2012. Nocturnally active host-seeking mosquitoes were captured indoors and outdoors using odour-baited traps. Anopheles species were tested for the presence of Plasmodium parasites using an enzyme linked immunosorbent assay. All data were analyzed using generalized linear models. Results Single infections of Plasmodium falciparum (88.1%), P. malariae (3.96%) and P. ovale (0.79%) as well as multiple infections (7.14%) of these parasites were found on Rusinga Island. The overall malaria prevalence was 10.9%. The risk of contracting malaria was higher among dwellers of Rusinga West than Rusinga East locations (Odds Ratio [OR] = 1.5, 95% Confidence Interval [CI] 1.14 – 1.97, P = 0.003). Parasite positivity was significantly associated with individuals who did not use malaria protective measures (OR = 2.65, 95% CI 1.76 – 3.91, p < 0.001). A total of 1,684 mosquitoes, including 74 anophelines, were captured. Unlike Culex species, more of which were collected indoors than outdoors (P < 0.001), the females of An. gambiae s.l. (P = 0.477), An. funestus s.l. (P = 0.153) and Mansonia species captured indoors versus outdoors were not different. The 46 An. gambiae s.l. collected were mainly An. arabiensis (92.3%). Of the 62 malaria mosquitoes tested, 4, including 2 indoor and 2 outdoor-collected individuals had Plasmodium. Conclusion The rather significant and unexpected contribution of P. malariae and P. ovale to the overall malaria prevalence on Rusinga Island underscores the epidemiological importance of these species in the big push towards eliminating malaria. Although current entomological interventions mainly target indoor environments, additional strategies should be considered to prevent outdoor transmission of malaria.
Collapse
Affiliation(s)
- Evelyn A Olanga
- International Centre of Insect Physiology and Ecology, P.O. Box 30772 GPO, Nairobi, Kenya. .,School of Biological Sciences, University of Nairobi, P.O. Box 30197 GPO, Nairobi, Kenya.
| | - Lawrence Okombo
- International Centre of Insect Physiology and Ecology, P.O. Box 30772 GPO, Nairobi, Kenya.
| | - Lucy W Irungu
- School of Biological Sciences, University of Nairobi, P.O. Box 30197 GPO, Nairobi, Kenya.
| | - Wolfgang R Mukabana
- International Centre of Insect Physiology and Ecology, P.O. Box 30772 GPO, Nairobi, Kenya. .,School of Biological Sciences, University of Nairobi, P.O. Box 30197 GPO, Nairobi, Kenya.
| |
Collapse
|
46
|
Pinder M, Jawara M, Jarju LBS, Salami K, Jeffries D, Adiamoh M, Bojang K, Correa S, Kandeh B, Kaur H, Conway DJ, D'Alessandro U, Lindsay SW. Efficacy of indoor residual spraying with dichlorodiphenyltrichloroethane against malaria in Gambian communities with high usage of long-lasting insecticidal mosquito nets: a cluster-randomised controlled trial. Lancet 2015; 385:1436-46. [PMID: 25498847 DOI: 10.1016/s0140-6736(14)61007-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Although many malaria control programmes in sub-Saharan Africa use indoor residual spraying with long-lasting insecticidal nets (LLINs), the two studies assessing the benefit of the combination of these two interventions gave conflicting results. We aimed to assess whether the addition of indoor residual spraying to LLINs provided a significantly different level of protection against clinical malaria in children or against house entry by vector mosquitoes. METHODS In this two-arm cluster, randomised, controlled efficacy trial we randomly allocated clusters of Gambian villages using a computerised algorithm to LLINs alone (n=35) or indoor residual spraying with dichlorodiphenyltrichloroethane plus LLINs (n=35). In each cluster, 65-213 children, aged 6 months to 14 years, were surveyed at the start of the 2010 transmission season and followed in 2010 and 2011 by passive case detection for clinical malaria. Exposure to parasite transmission was assessed by collection of vector mosquitoes with both light and exit traps indoors. Primary endpoints were the incidence of clinical malaria assessed by passive case detection and number of Anopheles gambiae sensu lato mosquitoes collected per light trap per night. Intervention teams had no role in data collection and the data collection teams were not informed of the spray status of villages. The trial is registered at the ISRCTN registry, number ISRCTN01738840. FINDINGS LLIN coverage in 2011 was 3510 (93%) of 3777 children in the indoor residual spraying plus LLIN group and 3622 (95.5%) of 3791 in the LLIN group. In 2010, 7845 children were enrolled, 7829 completed passive case detection, and 7697 (98%) had complete clinical and covariate data. In 2011, 7009 children remained in the study, 648 more were enrolled, 7657 completed passive case detection, and 7545 (98.5%) had complete data. Indoor residual spraying coverage per cluster was more than 80% for both years in the indoor residual spraying plus LLIN group. Incidence of clinical malaria was 0.047 per child-month at risk in the LLIN group and 0.044 per child-month at risk in the indoor residual spraying plus LLIN group in 2010, and 0.032 per child-month at risk in the LLIN group and 0.034 per child-month at risk in the indoor residual spraying plus LLIN group in 2011. The incident rate ratio was 1.08 (95% CI 0.80-1.46) controlling for confounders and cluster by mixed-effect negative binomial regression on all malaria attacks for both years. No significant difference was recorded in the density of vector mosquitoes caught in light traps in houses over the two transmission seasons; the mean number of A gambiae sensu lato mosquitoes per trap per night was 6.7 (4.0-10.1) in the LLIN group and 4.5 (2.4-7.4) in the indoor residual spraying plus LLIN group (p=0.281 in the random-effects linear regression model). INTERPRETATION We identified no significant difference in clinical malaria or vector density between study groups. In this area with high LLIN coverage, moderate seasonal transmission, and susceptible vectors, indoor residual spraying did not provide additional benefit. FUNDING UK Medical Research Council.
Collapse
Affiliation(s)
- Margaret Pinder
- Medical Research Council Unit, Banjul, The Gambia; London School of Hygiene and Tropical Medicine, London, UK; Durham University, Durham, UK
| | - Musa Jawara
- Medical Research Council Unit, Banjul, The Gambia
| | | | | | | | | | | | - Simon Correa
- Medical Research Council Unit, Banjul, The Gambia
| | - Balla Kandeh
- National Malaria Control Programme, Banjul, The Gambia
| | | | - David J Conway
- Medical Research Council Unit, Banjul, The Gambia; London School of Hygiene and Tropical Medicine, London, UK
| | - Umberto D'Alessandro
- Medical Research Council Unit, Banjul, The Gambia; Institute of Tropical Medicine, Antwerp, Belgium
| | - Steve W Lindsay
- London School of Hygiene and Tropical Medicine, London, UK; Durham University, Durham, UK.
| |
Collapse
|
47
|
Gore-Langton GR, Mungai J, Alenwi N, Abagira A, Bicknell OM, Harrison R, Hassan FA, Munga S, Njoroge F, Juma E, Allan R. Investigating the acceptability of non-mesh, long-lasting insecticidal nets amongst nomadic communities in Garissa County, Kenya using a prospective, longitudinal study design and cross-sectional household surveys. Malar J 2015; 14:52. [PMID: 25652420 PMCID: PMC4327792 DOI: 10.1186/s12936-015-0546-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/06/2015] [Indexed: 11/10/2022] Open
Abstract
Background North East Kenya is an area of semi-arid terrain, prone to malaria epidemics. The distribution of long-lasting insecticidal nets (LLINs) has long been a key malaria intervention, however, for nomadic populations who live and sleep outside, in harsh climates and areas with increasing reports of exophagic behaviour of mosquitoes, traditional LLINs are often inadequate. This study investigates the acceptability of non-mesh LLINs, specifically designed to suit nomadic, outdoor sleeping communities. Methods In September 2011, 13,922 non-mesh LLINs were distributed to 8,511 nomadic households in Garissa County, North East Province, Kenya. A prospective, longitudinal study design was used to assess the acceptability of this novel type of LLIN. Cross-sectional household surveys, focus group discussions (FGDs), and key informant interviews (KIs) were used to collect data on attitudes and practices regarding the Dumuria nets. Results A very high level of acceptability was reported with 95.3% of respondents stating they liked the nets. Of the factors reportedly determining net use the most frequently mentioned was “vulnerability”. Of those with concerns about the nets, the colour (white) was the most frequently reported. Conclusion The tailoring of LLINs to specific communities and contexts leads to increased levels of acceptability. Large-scale, blanket net distribution campaigns, which are currently the standard practice, do not cater for the specific and nuanced needs of the differing communities they often serve. This non-mesh LLIN offers a highly effective and desirable malaria prevention option to a typically hard to reach and underserved nomadic population at increased risk of malaria infection.
Collapse
|
48
|
Koenker H, Kilian A, Hunter G, Acosta A, Scandurra L, Fagbemi B, Onyefunafoa EO, Fotheringham M, Lynch M. Impact of a behaviour change intervention on long-lasting insecticidal net care and repair behaviour and net condition in Nasarawa State, Nigeria. Malar J 2015; 14:18. [PMID: 25604427 PMCID: PMC4308907 DOI: 10.1186/s12936-014-0538-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While some data on net durability have been accumulating in recent years, including formative qualitative research on attitudes towards net care and repair, no data are available on how the durability of a net is influenced by behaviour of net maintenance, care and repair, and whether behavioural change interventions (BCC) could substantially impact on the average useful life of the net. METHODS The study used an intervention-control design with before-after assessment through repeated cross-sectional household surveys with two-stage cluster sampling following Nasarawa State's December 2010 mass campaign. All campaign nets were 100-denier polyester, long-lasting insecticidal nets (LLIN). Baseline, midline, and endline surveys occurred at one-year intervals, in March 2012, March 2013, and April 2014, respectively. Outcome measures were the proportion of confirmed campaign nets with observed repairs, and the proportion in serviceable condition, measured with proportionate hole index (pHI) and according to WHO guidelines. RESULTS For all respondents, exposure to BCC messages was strongly correlated with increased positive attitude towards care and repair, and increases in attitude were positively correlated with observed net repairs, and with the proportion of nets in serviceable condition. In a multivariate regression model, positive care and repair attitude (OR 6.17 p = 0.001) and level of exposure (1 source: OR 4.00 p = 0.000; 3 sources: OR 9.34 p = 0.000) remained the most significant predictors of net condition, controlling for background and environmental factors. Nets that were tied up had 2.70 higher odds of being in serviceable condition (p = 0.001), while repairs made to nets were not sufficient to improve their pHI category. Estimated median net lifespan was approximately one full year longer for nets in households with a positive compared to a negative attitude. CONCLUSION Exposure to multiple channels of a comprehensive BCC intervention was associated with improved attitude scores, and with improved net condition at endline. It is possible for BCC interventions to change both attitudes and behaviours, and to have an important effect on overall median net lifespan. Care and repair messages are easily incorporated into existing malaria BCC platforms, and will help contribute to improved net condition, providing, in principle, more protection from malaria.
Collapse
Affiliation(s)
- Hannah Koenker
- Johns Hopkins Bloomberg School of Public Health Center for Communication Programs, Baltimore, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Maliti D, Ranson H, Magesa S, Kisinza W, Mcha J, Haji K, Killeen G, Weetman D. Islands and stepping-stones: comparative population structure of Anopheles gambiae sensu stricto and Anopheles arabiensis in Tanzania and implications for the spread of insecticide resistance. PLoS One 2014; 9:e110910. [PMID: 25353688 PMCID: PMC4212992 DOI: 10.1371/journal.pone.0110910] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/08/2014] [Indexed: 11/21/2022] Open
Abstract
Population genetic structures of the two major malaria vectors Anopheles gambiae s.s. and An. arabiensis, differ markedly across Sub-Saharan Africa, which could reflect differences in historical demographies or in contemporary gene flow. Elucidation of the degree and cause of population structure is important for predicting the spread of genetic traits such as insecticide resistance genes or artificially engineered genes. Here the population genetics of An. gambiae s.s. and An. arabiensis in the central, eastern and island regions of Tanzania were compared. Microsatellite markers were screened in 33 collections of female An. gambiae s.l., originating from 22 geographical locations, four of which were sampled in two or three years between 2008 and 2010. An. gambiae were sampled from six sites, An. arabiensis from 14 sites, and both species from two sites, with an additional colonised insectary sample of each species. Frequencies of the knock-down resistance (kdr) alleles 1014S and 1014F were also determined. An. gambiae exhibited relatively high genetic differentiation (average pairwise FST = 0.131), significant even between nearby samples, but without clear geographical patterning. In contrast, An. arabiensis exhibited limited differentiation (average FST = 0.015), but strong isolation-by-distance (Mantel test r = 0.46, p = 0.0008). Most time-series samples of An. arabiensis were homogeneous, suggesting general temporal stability of the genetic structure. An. gambiae populations from Dar es Salaam and Bagamoyo were found to have high frequencies of kdr 1014S (around 70%), with almost 50% homozygote but was at much lower frequency on Unguja Island, with no. An. gambiae population genetic differentiation was consistent with an island model of genetic structuring with highly restricted gene flow, contrary to An. arabiensis which was consistent with a stepping-stone model of extensive, but geographically-restricted gene flow.
Collapse
Affiliation(s)
- Deodatus Maliti
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Ifakara, Morogoro, United Republic of Tanzania
- University of Glasgow, Institute of Biodiversity Animal Health and Comparative Medicine, Glasgow, Lancashire, United Kingdom
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, United Kingdom
| | - Stephen Magesa
- RTI International, Global Health Division, Dar es Salaam, United Republic of Tanzania
| | - William Kisinza
- National Institute for Medical Research, Amani Research Center, Muheza, Tanga, United Republic of Tanzania
| | - Juma Mcha
- Zanzibar Malaria Elimination Programme, Unguja, Zanzibar, United Republic of Tanzania
| | - Khamis Haji
- Zanzibar Malaria Elimination Programme, Unguja, Zanzibar, United Republic of Tanzania
| | - Gerald Killeen
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Ifakara, Morogoro, United Republic of Tanzania
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, United Kingdom
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, United Kingdom
| |
Collapse
|
50
|
Killeen GF. Characterizing, controlling and eliminating residual malaria transmission. Malar J 2014; 13:330. [PMID: 25149656 PMCID: PMC4159526 DOI: 10.1186/1475-2875-13-330] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/16/2014] [Indexed: 12/02/2022] Open
Abstract
Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) interventions can reduce malaria transmission by targeting mosquitoes when they feed upon sleeping humans and/or rest inside houses, livestock shelters or other man-made structures. However, many malaria vector species can maintain robust transmission, despite high coverage of LLINs/IRS containing insecticides to which they are physiologically fully susceptible, because they exhibit one or more behaviours that define the biological limits of achievable impact with these interventions: (1) Natural or insecticide-induced avoidance of contact with treated surfaces within houses and early exit from them, thus minimizing exposure hazard of vectors which feed indoors upon humans; (2) Feeding upon humans when they are active and unprotected outdoors, thereby attenuating personal protection and any consequent community-wide suppression of transmission; (3) Feeding upon animals, thus minimizing contact with insecticides targeted at humans or houses; (4) Resting outdoors, away from insecticide-treated surfaces of nets, walls and roofs. Residual malaria transmission is, therefore, defined as all forms of transmission that can persist after achieving full universal coverage with effective LLINs and/or IRS containing active ingredients to which local vector populations are fully susceptible. Residual transmission is sufficiently intense across most of the tropics to render malaria elimination infeasible without new or improved vector control methods. Many novel or improved vector control strategies to address residual transmission are emerging that either: (1) Enhance control of adult vectors that enter houses to feed and/or rest by killing, repelling or excluding them; (2) Kill or repel adult mosquitoes when they attack people outdoors; (3) Kill adult mosquitoes when they attack livestock; (4) Kill adult mosquitoes when they feed upon sugar or; (5) Kill immature mosquitoes in aquatic habitats. To date, none of these options has sufficient supporting evidence to justify full-scale programmatic implementation. Concerted investment in their rigorous selection, development and evaluation is required over the coming decade to enable control and, ultimately, elimination of residual malaria transmission. In the meantime, national programmes may assess options for addressing residual transmission under programmatic conditions through pilot studies with strong monitoring, evaluation and operational research components, similar to the Onchocerciasis Control Programme.
Collapse
Affiliation(s)
- Gerry F Killeen
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Ifakara, Morogoro, United Republic of Tanzania.
| |
Collapse
|