1
|
Pedrazzi JFC, Hassib L, Ferreira FR, Hallak JC, Del-Bel E, Crippa JA. Therapeutic potential of CBD in Autism Spectrum Disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:149-203. [PMID: 39029984 DOI: 10.1016/bs.irn.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by persistent deficits in social communication and interaction, as well as restricted and repetitive patterns of behavior. Despite extensive research, effective pharmacological interventions for ASD remain limited. Cannabidiol (CBD), a non-psychotomimetic compound of the Cannabis sativa plant, has potential therapeutic effects on several neurological and psychiatric disorders. CBD interacts with the endocannabinoid system, a complex cell-signaling system that plays a crucial role in regulating various physiological processes, maintaining homeostasis, participating in social and behavioral processing, and neuronal development and maturation with great relevance to ASD. Furthermore, preliminary findings from clinical trials indicate that CBD may have a modulatory effect on specific ASD symptoms and comorbidities in humans. Interestingly, emerging evidence suggests that CBD may influence the gut microbiota, with implications for the bidirectional communication between the gut and the central nervous system. CBD is a safe drug with low induction of side effects. As it has a multi-target pharmacological profile, it becomes a candidate compound for treating the central symptoms and comorbidities of ASD.
Collapse
Affiliation(s)
- João F C Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Lucas Hassib
- Department of Mental Health, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Jaime C Hallak
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine Del-Bel
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; National Institute for Science and Technology, Translational Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Cannabinoid Research, Mental Health Building, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José A Crippa
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
2
|
Thanseem I, Banerjee M, Melempatt N, Prakash A, Iype M, Anitha A. Comprehensive Genetic Study of a Monozygotic Triplet Discordant for Autism Spectrum Disorder. Neurol India 2024; 72:384-387. [PMID: 38817175 DOI: 10.4103/ni.ni_349_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/08/2022] [Indexed: 06/01/2024]
Abstract
There are a few comprehensive genetic studies on autism spectrum disorders (ASD) in India. Children of multiple births are valuable for genomics studies of complex disorders such as ASD. We report whole-exome sequencing (WES) in a triplet family in which only one among the triplet has ASD. The objective of this study was to identify potential candidate genes for ASD. Exome DNA was enriched using a twist human customized core exome kit, and paired-end sequencing was performed. Proband-specific de novo variants included 150 single nucleotide polymorphisms (SNPs) and 74 indels. Thirteen SNPs were in exonic regions, 7 of them being missense variations. Seventeen variants were previously reported in ASD. Genes harboring variants have functions in the development and maintenance of the central nervous system and are enriched in biological processes involving cell adhesion. This is the first comprehensive genetic study of a monozygotic triplet in ASD.
Collapse
Affiliation(s)
- Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad, Kerala, India
| | - Moinak Banerjee
- Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Nisha Melempatt
- Department of Audiology and Speech Language Pathology (ASLP), ICCONS, Shoranur, Palakkad, Kerala, India
| | - Anil Prakash
- Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Mary Iype
- Department of Neurology, ICCONS, Thiruvananthapuram, Kerala, India
| | - Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad, Kerala, India
| |
Collapse
|
3
|
Guo B, Xi K, Mao H, Ren K, Xiao H, Hartley ND, Zhang Y, Kang J, Liu Y, Xie Y, Zhou Y, Zhu Y, Zhang X, Fu Z, Chen JF, Hu H, Wang W, Wu S. CB1R dysfunction of inhibitory synapses in the ACC drives chronic social isolation stress-induced social impairments in male mice. Neuron 2024; 112:441-457.e6. [PMID: 37992714 DOI: 10.1016/j.neuron.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Social isolation is a risk factor for multiple mood disorders. Specifically, social isolation can remodel the brain, causing behavioral abnormalities, including sociability impairments. Here, we investigated social behavior impairment in mice following chronic social isolation stress (CSIS) and conducted a screening of susceptible brain regions using functional readouts. CSIS enhanced synaptic inhibition in the anterior cingulate cortex (ACC), particularly at inhibitory synapses of cholecystokinin (CCK)-expressing interneurons. This enhanced synaptic inhibition in the ACC was characterized by CSIS-induced loss of presynaptic cannabinoid type-1 receptors (CB1Rs), resulting in excessive axonal calcium influx. Activation of CCK-expressing interneurons or conditional knockdown of CB1R expression in CCK-expressing interneurons specifically reproduced social impairment. In contrast, optogenetic activation of CB1R or administration of CB1R agonists restored sociability in CSIS mice. These results suggest that the CB1R may be an effective therapeutic target for preventing CSIS-induced social impairments by restoring synaptic inhibition in the ACC.
Collapse
Affiliation(s)
- Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Keke Ren
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Haoxiang Xiao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Nolan D Hartley
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research in the Department of Brain and Cognitive Sciences at MIT, Cambridge, MA 02139, USA
| | - Yangming Zhang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Junjun Kang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yingying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yongsheng Zhou
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yuanyuan Zhu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xia Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhanyan Fu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research in the Department of Brain and Cognitive Sciences at MIT, Cambridge, MA 02139, USA
| | - Jiang-Fan Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hailan Hu
- School of Brain Science and Brain Medicine, New Cornerstone Science Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
4
|
Sainz-Cort A, Jimenez-Garrido D, Muñoz-Marron E, Viejo-Sobera R, Heeroma J, Bouso JC. The Effects of Cannabidiol and δ-9-Tetrahydrocannabinol in Social Cognition: A Naturalistic Controlled Study. Cannabis Cannabinoid Res 2024; 9:230-240. [PMID: 35881851 DOI: 10.1089/can.2022.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Social cognition abilities such as empathy and the Theory of Mind (ToM) have been shown to be impaired in neuropsychiatric conditions such as psychotic, autistic, and bipolar disorders. The endocannabinoid system (ECS) seems to play a role in social behavior and emotional processing while it also seems to play a role in those neuropsychiatric conditions showing social cognition impairments. Main plant cannabinoids delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) modulate the ECS and, due to their opposite effects, have been proposed as both cause and treatment for neuropsychiatric-related disorders such as schizophrenia, anxiety, or post-traumatic stress disorder (PTSD). The aim of this study was to test the effects of THC and CBD on social cognition abilities in chronic cannabis users. Method: Eighteen members from a cannabis social club were tested for social cognition effects under the effects of different full spectrum cannabis extracts containing either THC, CBD, THC+CBD, or placebo in a naturalistic randomized double-blind crossover placebo-controlled study. Results: Results showed that participants under the effects of THC showed lower cognitive empathy when compared with the effects of CBD but not when those were compared with THC+CBD or placebo. Also, participants showed higher cognitive ToM under the effects of CBD when compared with the effects of placebo, but not when those were compared with THC or THC+CBD. However, we did not find differences on the emotional scales for empathy or ToM. Conclusions: This study provides evidence for the interaction between the effects of THC and CBD and social cognition abilities in a naturalistic environment, which can be of special interest for the clinical practice of medical cannabis on neuropsychiatric disorders. We show for the first time that CBD can improve ToM abilities in chronic cannabis users. Our results might help to understand the role of the ECS in social cognition, and their association with psychiatric and neurodevelopmental disorders such as schizophrenia or autism. Finally, we demonstrate how reliable methodologies can be implemented in naturalistic environments to collect valid ecological evidence outside classic laboratory settings.
Collapse
Affiliation(s)
- Alberto Sainz-Cort
- Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
- International Center of Ethnobotanic Education, Research and Service (ICEERS), Barcelona, Spain
- GH Medical, Amsterdam, The Netherlands
| | - Daniel Jimenez-Garrido
- International Center of Ethnobotanic Education, Research and Service (ICEERS), Barcelona, Spain
| | - Elena Muñoz-Marron
- Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Raquel Viejo-Sobera
- Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | | | - Jose Carlos Bouso
- International Center of Ethnobotanic Education, Research and Service (ICEERS), Barcelona, Spain
| |
Collapse
|
5
|
Mikhailova SV, Ivanoshchuk DE, Orlov PS, Bairqdar A, Anisimenko MS, Denisova DV. Assessment of the Genetic Characteristics of a Generation Born during a Long-Term Socioeconomic Crisis. Genes (Basel) 2023; 14:2064. [PMID: 38003007 PMCID: PMC10671057 DOI: 10.3390/genes14112064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND A socioeconomic crisis in Russia lasted from 1991 to 1998 and was accompanied by a sharp drop in the birth rate. The main factor that influenced the refusal to have children during this period is thought to be prolonged social stress. METHODS comparing frequencies of common gene variants associated with stress-induced diseases among generations born before, after, and during this crisis may show which genes may be preferred under the pressure of natural selection during periods of increased social stress in urban populations. RESULTS In the "crisis" group, a statistically significant difference from the other two groups was found in rs6557168 frequency (p = 0.001); rs4522666 was not in the Hardy-Weinberg equilibrium in this group, although its frequency did not show a significant difference from the other groups (p = 0.118). Frequencies of VNTRs in SLC6A3 and MAOA as well as common variants rs17689918 in CRHR1, rs1360780 in FKBP5, rs53576 in OXTR, rs12720071 and rs806377 in CNR1, rs4311 in ACE, rs1800497 in ANKK1, and rs7412 and rs429358 in APOE did not differ among the groups. CONCLUSIONS a generation born during a period of prolonged destructive events may differ from the rest of the gene pool of the population in some variants associated with personality traits or stress-related disorders.
Collapse
Affiliation(s)
- Svetlana V. Mikhailova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Prospekt Ak. Lavrentyeva, 630090 Novosibirsk, Russia; (D.E.I.); (P.S.O.); (A.B.); (M.S.A.)
| | - Dinara E. Ivanoshchuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Prospekt Ak. Lavrentyeva, 630090 Novosibirsk, Russia; (D.E.I.); (P.S.O.); (A.B.); (M.S.A.)
| | - Pavel S. Orlov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Prospekt Ak. Lavrentyeva, 630090 Novosibirsk, Russia; (D.E.I.); (P.S.O.); (A.B.); (M.S.A.)
| | - Ahmad Bairqdar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Prospekt Ak. Lavrentyeva, 630090 Novosibirsk, Russia; (D.E.I.); (P.S.O.); (A.B.); (M.S.A.)
| | - Maksim S. Anisimenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Prospekt Ak. Lavrentyeva, 630090 Novosibirsk, Russia; (D.E.I.); (P.S.O.); (A.B.); (M.S.A.)
| | - Diana V. Denisova
- Institute of Internal and Preventive Medicine—Branch of ICG SB RAS, 175/1 Borisa Bogatkova Str., 630089 Novosibirsk, Russia
| |
Collapse
|
6
|
Palumbo JM, Thomas BF, Budimirovic D, Siegel S, Tassone F, Hagerman R, Faulk C, O’Quinn S, Sebree T. Role of the endocannabinoid system in fragile X syndrome: potential mechanisms for benefit from cannabidiol treatment. J Neurodev Disord 2023; 15:1. [PMID: 36624400 PMCID: PMC9830713 DOI: 10.1186/s11689-023-09475-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Multiple lines of evidence suggest a central role for the endocannabinoid system (ECS) in the neuronal development and cognitive function and in the pathogenesis of fragile X syndrome (FXS). This review describes the ECS, its role in the central nervous system, how it is dysregulated in FXS, and the potential role of cannabidiol as a treatment for FXS. FXS is caused by deficiency or absence of the fragile X messenger ribonucleoprotein 1 (FMR1) protein, FMRP, typically due to the presence of >200 cytosine, guanine, guanine sequence repeats leading to methylation of the FMR1 gene promoter. The absence of FMRP, following FMR1 gene-silencing, disrupts ECS signaling, which has been implicated in FXS pathogenesis. The ECS facilitates synaptic homeostasis and plasticity through the cannabinoid receptor 1, CB1, on presynaptic terminals, resulting in feedback inhibition of neuronal signaling. ECS-mediated feedback inhibition and synaptic plasticity are thought to be disrupted in FXS, leading to overstimulation, desensitization, and internalization of presynaptic CB1 receptors. Cannabidiol may help restore synaptic homeostasis by acting as a negative allosteric modulator of CB1, thereby attenuating the receptor overstimulation, desensitization, and internalization. Moreover, cannabidiol affects DNA methylation, serotonin 5HT1A signal transduction, gamma-aminobutyric acid receptor signaling, and dopamine D2 and D3 receptor signaling, which may contribute to beneficial effects in patients with FXS. Consistent with these proposed mechanisms of action of cannabidiol in FXS, in the CONNECT-FX trial the transdermal cannabidiol gel, ZYN002, was associated with improvements in measures of social avoidance, irritability, and social interaction, particularly in patients who are most affected, showing ≥90% methylation of the FMR1 gene.
Collapse
Affiliation(s)
- Joseph M. Palumbo
- grid.422480.80000 0004 8307 0679Zynerba Pharmaceuticals Inc., Devon, PA USA
| | | | - Dejan Budimirovic
- grid.240023.70000 0004 0427 667XDepartments of Psychiatry and Neurogenetics, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Department of Psychiatry & Behavioral Sciences-Child Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Steven Siegel
- grid.42505.360000 0001 2156 6853Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Flora Tassone
- grid.413079.80000 0000 9752 8549Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California-Davis Medical Center, Sacramento, CA USA ,grid.413079.80000 0000 9752 8549Department of Biochemistry and Molecular Medicine, School of Medicine, University of California-Davis, Sacramento, CA USA
| | - Randi Hagerman
- grid.413079.80000 0000 9752 8549Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California-Davis Medical Center, Sacramento, CA USA ,grid.27860.3b0000 0004 1936 9684Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA USA
| | - Christopher Faulk
- grid.17635.360000000419368657Department of Animal Science, University of Minnesota, St. Paul, MN USA
| | - Stephen O’Quinn
- grid.422480.80000 0004 8307 0679Zynerba Pharmaceuticals Inc., Devon, PA USA
| | - Terri Sebree
- grid.422480.80000 0004 8307 0679Zynerba Pharmaceuticals Inc., Devon, PA USA
| |
Collapse
|
7
|
Pedrazzi JFC, Ferreira FR, Silva-Amaral D, Lima DA, Hallak JEC, Zuardi AW, Del-Bel EA, Guimarães FS, Costa KCM, Campos AC, Crippa ACS, Crippa JAS. Cannabidiol for the treatment of autism spectrum disorder: hope or hype? Psychopharmacology (Berl) 2022; 239:2713-2734. [PMID: 35904579 DOI: 10.1007/s00213-022-06196-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
RATIONALE Autism spectrum disorder (ASD) is defined as a group of neurodevelopmental disorders whose symptoms include impaired communication and social interaction, restricted and repetitive patterns of behavior, and varying levels of intellectual disability. ASD is observed in early childhood and is one of the most severe chronic childhood disorders in prevalence, morbidity, and impact on society. It is usually accompanied by attention deficit hyperactivity disorder, anxiety, depression, sleep disorders, and epilepsy. The treatment of ASD has low efficacy, possibly because it has a heterogeneous nature, and its neurobiological basis is not clearly understood. Drugs such as risperidone and aripiprazole are the only two drugs available that are recognized by the Food and Drug Administration, primarily for treating the behavioral symptoms of this disorder. These drugs have limited efficacy and a high potential for inducing undesirable effects, compromising treatment adherence. Therefore, there is great interest in exploring the endocannabinoid system, which modulates the activity of other neurotransmitters, has actions in social behavior and seems to be altered in patients with ASD. Thus, cannabidiol (CBD) emerges as a possible strategy for treating ASD symptoms since it has relevant pharmacological actions on the endocannabinoid system and shows promising results in studies related to disorders in the central nervous system. OBJECTIVES Review the preclinical and clinical data supporting CBD's potential as a treatment for the symptoms and comorbidities associated with ASD, as well as discuss and provide information with the purpose of not trivializing the use of this drug.
Collapse
Affiliation(s)
- João F C Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Frederico R Ferreira
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-900, Brazil
| | - Danyelle Silva-Amaral
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel A Lima
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jaime E C Hallak
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antônio W Zuardi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine A Del-Bel
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Morphology, Physiology, and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Karla C M Costa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alline C Campos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana C S Crippa
- Graduate Program in Child and Adolescent Health, Neuropediatric Center of the Hospital of Clinics (CENEP), Federal University of Paraná, Curitiba, Paraná, Brazil
| | - José A S Crippa
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
8
|
Wei D, Tsheringla S, McPartland JC, Allsop AZASA. Combinatorial approaches for treating neuropsychiatric social impairment. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210051. [PMID: 35858103 PMCID: PMC9274330 DOI: 10.1098/rstb.2021.0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/13/2022] [Indexed: 01/30/2023] Open
Abstract
Social behaviour is an essential component of human life and deficits in social function are seen across multiple psychiatric conditions with high morbidity. However, there are currently no FDA-approved treatments for social dysfunction. Since social cognition and behaviour rely on multiple signalling processes acting in concert across various neural networks, treatments aimed at social function may inherently require a combinatorial approach. Here, we describe the social neurobiology of the oxytocin and endocannabinoid signalling systems as well as translational evidence for their use in treating symptoms in the social domain. We leverage this systems neurobiology to propose a network-based framework that involves pharmacology, psychotherapy, non-invasive brain stimulation and social skills training to combinatorially target trans-diagnostic social impairment. Lastly, we discuss the combined use of oxytocin and endocannabinoids within our proposed framework as an illustrative strategy to treat specific aspects of social function. Using this framework provides a roadmap for actionable treatment strategies for neuropsychiatric social impairment. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Don Wei
- Department of Psychiatry, UCLA, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
9
|
Simone JJ, Green MR, McCormick CM. Endocannabinoid system contributions to sex-specific adolescent neurodevelopment. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110438. [PMID: 34534603 DOI: 10.1016/j.pnpbp.2021.110438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/13/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023]
Abstract
With an increasing number of countries and states adopting legislation permitting the use of cannabis for medical purposes, there is a growing interest among health and research professionals into the system through which cannabinoids principally act, the endocannabinoid system (ECS). Much of the seminal research into the ECS dates back only 30 years and, although there has been tremendous development within the field during this time, many questions remain. More recently, investigations have emerged examining the contributions of the ECS to normative development and the effect of altering this system during important critical periods. One such period is adolescence, a unique period during which brain and behaviours are maturing and reorganizing in preparation for adulthood, including shifts in endocannabinoid biology. The purpose of this review is to discuss findings to date regarding the maturation of the ECS during adolescence and the consequences of manipulations of the ECS during this period to normative neurodevelopmental processes, as well as highlight sex differences in ECS function, important technical considerations, and future directions. Because most of what we know is derived from preclinical studies on rodents, we provide relevant background of this model and some commentary on the translational relevance of the research in this area.
Collapse
Affiliation(s)
- Jonathan J Simone
- Department of Biological Sciences, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Huxley Health Inc., 8820 Jane St., Concord, ON, L4K 2M9, Canada; eCB Consulting Inc., PO Box 652, 3 Cameron St. W., Cannington, ON L0E 1E0, Canada; Medical Cannabis Canada, 601-3500 Lakeshore Rd. W., Oakville, ON L6L 0B4, Canada.
| | - Matthew R Green
- eCB Consulting Inc., PO Box 652, 3 Cameron St. W., Cannington, ON L0E 1E0, Canada; Medical Cannabis Canada, 601-3500 Lakeshore Rd. W., Oakville, ON L6L 0B4, Canada.
| | - Cheryl M McCormick
- Department of Biological Sciences, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Department of Psychology, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
10
|
Fyke W, Velinov M. FMR1 and Autism, an Intriguing Connection Revisited. Genes (Basel) 2021; 12:genes12081218. [PMID: 34440392 PMCID: PMC8394635 DOI: 10.3390/genes12081218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/27/2022] Open
Abstract
Autism Spectrum Disorder (ASD) represents a distinct phenotype of behavioral dysfunction that includes deficiencies in communication and stereotypic behaviors. ASD affects about 2% of the US population. It is a highly heritable spectrum of conditions with substantial genetic heterogeneity. To date, mutations in over 100 genes have been reported in association with ASD phenotypes. Fragile X syndrome (FXS) is the most common single-gene disorder associated with ASD. The gene associated with FXS, FMR1 is located on chromosome X. Accordingly, the condition has more severe manifestations in males. FXS results from the loss of function of FMR1 due to the expansion of an unstable CGG repeat located in the 5'' untranslated region of the gene. About 50% of the FXS males and 20% of the FXS females meet the Diagnostic Statistical Manual 5 (DSM-5) criteria for ASD. Among the individuals with ASD, about 3% test positive for FXS. FMRP, the protein product of FMR1, is a major gene regulator in the central nervous system. Multiple pathways regulated by FMRP are found to be dysfunctional in ASD patients who do not have FXS. Thus, FXS presents the opportunity to study cellular phenomena that may have wider applications in the management of ASD and to develop new strategies for ASD therapy.
Collapse
Affiliation(s)
- William Fyke
- SUNY Downstate Medical Center, SUNY Downstate College of Medicine, Brooklyn, NY 11203, USA;
- Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Milen Velinov
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
- Correspondence:
| |
Collapse
|
11
|
Nezgovorova V, Ferretti CJ, Taylor BP, Shanahan E, Uzunova G, Hong K, Devinsky O, Hollander E. Potential of cannabinoids as treatments for autism spectrum disorders. J Psychiatr Res 2021; 137:194-201. [PMID: 33689997 DOI: 10.1016/j.jpsychires.2021.02.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
Current treatments for autism spectrum disorders (ASD) are limited in efficacy and are often associated with substantial side effects. These medications typically ameliorate problem behaviors associated with ASD, but do not target core symptom domains. As a result, there is a significant amount of research underway for development of novel experimental therapeutics. Endocannabinoids are arachidonic acid-derived lipid neuromodulators, which, in combination with their receptors and associated metabolic enzymes, constitute the endocannabinoid (EC) system. Cannabinoid signaling may be involved in the social impairment and repetitive behaviors observed in those with ASD. In this review, we discuss a possible role of the EC system in excitatory-inhibitory (E-I) imbalance and immune dysregulation in ASD. Novel treatments for the core symptom domains of ASD are needed and phytocannabinoids could be useful experimental therapeutics for core symptoms and associated domains.
Collapse
Affiliation(s)
- V Nezgovorova
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - C J Ferretti
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - B P Taylor
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - E Shanahan
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - G Uzunova
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - K Hong
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - O Devinsky
- New York University Comprehensive Epilepsy Center, New York, NY, USA
| | - E Hollander
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
12
|
Zou M, Liu Y, Xie S, Wang L, Li D, Li L, Wang F, Zhang Y, Xia W, Sun C, Wu L. Alterations of the endocannabinoid system and its therapeutic potential in autism spectrum disorder. Open Biol 2021; 11:200306. [PMID: 33529552 PMCID: PMC8061688 DOI: 10.1098/rsob.200306] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of developmental disabilities, the aetiology of which remains elusive. The endocannabinoid (eCB) system modulates neurotransmission and neuronal plasticity. Evidence points to the involvement of this neuromodulatory system in the pathophysiology of ASD. We investigated whether there is a disruption to the eCB system in ASD and whether pharmacological modulation of the eCB system might offer therapeutic potential. We examined three major components of the eCB system—endogenous cannabinoids, their receptors and associated enzymes—in ASD children as well as in the valproic acid (VPA) induced animal model in autism. Furthermore, we specifically increased 2-arachidonoylglycerol (2-AG) levels by administering JZL184, a selective inhibitor of monoacylglycerol lipase which is the hydrolytic enzyme for 2-AG, to examine ASD-like behaviours in VPA-induced rats. Results showed that autistic children and VPA-induced rats exhibited reduced eCB content, increased degradation of enzymes and upregulation of CBRs. We found that repetitive and stereotypical behaviours, hyperactivity, sociability, social preference and cognitive functioning improved after acute and chronic JZL184 treatment. The major efficacy of JZL184 was observed after administration of a dosage regimen of 3 mg kg−1, which affected both the eCB system and ASD-like behaviours. In conclusion, a reduced eCB signalling was observed in autistic children and in the ASD animal model, and boosting 2-AG could ameliorate ASD-like phenotypes in animals. Collectively, the results suggested a novel approach to ASD treatment.
Collapse
Affiliation(s)
- Mingyang Zou
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Yu Liu
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Shu Xie
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Luxi Wang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Dexin Li
- Department of Children Psychology, Zhuhai Maternal and Child Health Care Hospital, Zhuhai 519001, People's Republic of China
| | - Ling Li
- Office of Leading Group for Control and Prevention of Major Diseases and Infectious diseases, Dezhou Center for Disease Control and Prevention, Dezhou 253011, People's Republic of China
| | - Feng Wang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Yujue Zhang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Wei Xia
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Caihong Sun
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, People's Republic of China
| |
Collapse
|
13
|
Haspula D, Clark MA. Cannabinoid Receptors: An Update on Cell Signaling, Pathophysiological Roles and Therapeutic Opportunities in Neurological, Cardiovascular, and Inflammatory Diseases. Int J Mol Sci 2020; 21:E7693. [PMID: 33080916 PMCID: PMC7590033 DOI: 10.3390/ijms21207693] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The identification of the human cannabinoid receptors and their roles in health and disease, has been one of the most significant biochemical and pharmacological advancements to have occurred in the past few decades. In spite of the major strides made in furthering endocannabinoid research, therapeutic exploitation of the endocannabinoid system has often been a challenging task. An impaired endocannabinoid tone often manifests as changes in expression and/or functions of type 1 and/or type 2 cannabinoid receptors. It becomes important to understand how alterations in cannabinoid receptor cellular signaling can lead to disruptions in major physiological and biological functions, as they are often associated with the pathogenesis of several neurological, cardiovascular, metabolic, and inflammatory diseases. This review focusses mostly on the pathophysiological roles of type 1 and type 2 cannabinoid receptors, and it attempts to integrate both cellular and physiological functions of the cannabinoid receptors. Apart from an updated review of pre-clinical and clinical studies, the adequacy/inadequacy of cannabinoid-based therapeutics in various pathological conditions is also highlighted. Finally, alternative strategies to modulate endocannabinoid tone, and future directions are also emphasized.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Michelle A. Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
14
|
Gellner AK, Voelter J, Schmidt U, Beins EC, Stein V, Philipsen A, Hurlemann R. Molecular and neurocircuitry mechanisms of social avoidance. Cell Mol Life Sci 2020; 78:1163-1189. [PMID: 32997200 PMCID: PMC7904739 DOI: 10.1007/s00018-020-03649-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Humans and animals live in social relationships shaped by actions of approach and avoidance. Both are crucial for normal physical and mental development, survival, and well-being. Active withdrawal from social interaction is often induced by the perception of threat or unpleasant social experience and relies on adaptive mechanisms within neuronal networks associated with social behavior. In case of confrontation with overly strong or persistent stressors and/or dispositions of the affected individual, maladaptive processes in the neuronal circuitries and its associated transmitters and modulators lead to pathological social avoidance. This review focuses on active, fear-driven social avoidance, affected circuits within the mesocorticolimbic system and associated regions and a selection of molecular modulators that promise translational potential. A comprehensive review of human research in this field is followed by a reflection on animal studies that offer a broader and often more detailed range of analytical methodologies. Finally, we take a critical look at challenges that could be addressed in future translational research on fear-driven social avoidance.
Collapse
Affiliation(s)
- Anne-Kathrin Gellner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jella Voelter
- Department of Psychiatry, School of Medicine and Health Sciences, University of Oldenburg, Hermann-Ehlers-Str. 7, 26160, Bad Zwischenahn, Germany
| | - Ulrike Schmidt
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Psychiatry Und Psychotherapy, University of Göttingen, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Eva Carolina Beins
- Institute of Human Genetics, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Valentin Stein
- Institute of Physiology II, University Hospital Bonn, 53115, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - René Hurlemann
- Division of Medical Psychology, Department of Psychiatry, University Hospital, Venusberg-Campus 1, 53127, Bonn, Germany. .,Department of Psychiatry, School of Medicine and Health Sciences, University of Oldenburg, Hermann-Ehlers-Str. 7, 26160, Bad Zwischenahn, Germany. .,Research Center Neurosensory Science, University of Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
15
|
Aran A, Eylon M, Harel M, Polianski L, Nemirovski A, Tepper S, Schnapp A, Cassuto H, Wattad N, Tam J. Lower circulating endocannabinoid levels in children with autism spectrum disorder. Mol Autism 2019; 10:2. [PMID: 30728928 PMCID: PMC6354384 DOI: 10.1186/s13229-019-0256-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/18/2019] [Indexed: 12/27/2022] Open
Abstract
Background The endocannabinoid system (ECS) is a major regulator of synaptic plasticity and neuromodulation. Alterations of the ECS have been demonstrated in several animal models of autism spectrum disorder (ASD). In some of these models, activating the ECS rescued the social deficits. Evidence for dysregulations of the ECS in human ASD are emerging, but comprehensive assessments and correlations with disease characteristics have not been reported yet. Methods Serum levels of the main endocannabinoids, N-arachidonoylethanolamine (AEA or anandamide) and 2-arachidonoylglycerol (2-AG), and their related endogenous compounds, arachidonic acid (AA), N-palmitoylethanolamine (PEA), and N-oleoylethanolamine (OEA), were analyzed by liquid chromatography/tandem mass spectrometry in 93 children with ASD (age = 13.1 ± 4.1, range 6–21; 79% boys) and 93 age- and gender-matched neurotypical children (age = 11.8 ± 4.3, range 5.5–21; 79% boys). Results were associated with gender and use of medications, and were correlated with age, BMI, and adaptive functioning of ASD participants as reflected by scores of Autism Diagnostic Observation Schedule (ADOS-2), Vineland Adaptive Behavior Scale-II (VABS-II), and Social Responsiveness Scale-II (SRS-2). Results Children with ASD had lower levels (pmol/mL, mean ± SEM) of AEA (0.722 ± 0.045 vs. 1.252 ± 0.072, P < 0.0001, effect size 0.91), OEA (17.3 ± 0.80 vs. 27.8 ± 1.44, P < 0.0001, effect size 0.94), and PEA (4.93 ± 0.32 vs. 7.15 ± 0.37, P < 0.0001, effect size 0.65), but not AA and 2-AG. Serum levels of AEA, OEA, and PEA were not significantly associated or correlated with age, gender, BMI, medications, and adaptive functioning of ASD participants. In children with ASD, but not in the control group, younger age and lower BMI tended to correlate with lower AEA levels. However, these correlations were not statistically significant after a correction for multiple comparisons. Conclusions We found lower serum levels of AEA, PEA, and OEA in children with ASD. Further studies are needed to determine whether circulating endocannabinoid levels can be used as stratification biomarkers that identify clinically significant subgroups within the autism spectrum and if they reflect lower endocannabinoid “tone” in the brain, as found in animal models of ASD. Electronic supplementary material The online version of this article (10.1186/s13229-019-0256-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adi Aran
- 1Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031 Jerusalem, Israel
| | - Maya Eylon
- 2Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Moria Harel
- 1Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031 Jerusalem, Israel
| | - Lola Polianski
- 1Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031 Jerusalem, Israel
| | - Alina Nemirovski
- 2Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sigal Tepper
- 3Department of Nutritional Sciences, Tel Hai Academic College, Upper Galilee, 1220800 Kiryat Shmona, Israel
| | - Aviad Schnapp
- 1Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031 Jerusalem, Israel
| | - Hanoch Cassuto
- 1Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031 Jerusalem, Israel
| | - Nadia Wattad
- 1Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031 Jerusalem, Israel
| | - Joseph Tam
- 2Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
16
|
Culture and cannabinoid receptor gene polymorphism interact to influence the perception of happiness. PLoS One 2018; 13:e0209552. [PMID: 30576341 PMCID: PMC6303049 DOI: 10.1371/journal.pone.0209552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 12/07/2018] [Indexed: 01/03/2023] Open
Abstract
Previous studies have shown that a cytosine (C) to thymine (T) single nucleotide polymorphism (SNP) of the human cannabinoid receptor 1 (CNR1) gene is associated with positive emotional processing. C allele carriers are more sensitive to positive emotional stimuli including happiness. The effects of several gene polymorphisms related to sensitivity to emotional stimuli, such as that in the serotonin transporter gene-linked polymorphic region (5HTTLPR), on emotional processing have been reported to differ among cultures–e.g., between those that are independent and interdependent. Thus, we postulated that the effects of the CNR1 genotype on happiness might differ among different cultures because the concept of happiness varies by culture. We recruited healthy male and female young adults in Japan, where favorable external circumstances determine the concept of happiness, and Canada, where the concept of happiness centers on positive inner feelings, and compared the effects of the CNR1 genotype on both subjective happiness levels (self-evaluation as being a happy person) and situation-specific happiness (happy feelings accompanying various positive events) by using a questionnaire. We found that the effect of CNR1 on subjective happiness was different between the Japanese and Canadian groups. The subjective happiness level was the highest in Japanese individuals with the CC genotype, whereas in Canadian participants, it was the highest in individuals with the TT genotype. Furthermore, the effects of CNR1 genotype on situation-specific happiness were also different between the groups. Happiness accompanied with being surrounded by happy people was the highest among Japanese individuals with the CC genotype, whereas among Canadian individuals, it was the highest in TT genotype carriers. These findings suggest that culture and CNR1 polymorphism interact to influence the perception of happiness.
Collapse
|
17
|
Kuo HY, Liu FC. Molecular Pathology and Pharmacological Treatment of Autism Spectrum Disorder-Like Phenotypes Using Rodent Models. Front Cell Neurosci 2018; 12:422. [PMID: 30524240 PMCID: PMC6262306 DOI: 10.3389/fncel.2018.00422] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with a high prevalence rate. The core symptoms of ASD patients are impaired social communication and repetitive behavior. Genetic and environmental factors contribute to pathophysiology of ASD. Regarding environmental risk factors, it is known that valproic acid (VPA) exposure during pregnancy increases the chance of ASD among offspring. Over a decade of animal model studies have shown that maternal treatment with VPA in rodents recapitulates ASD-like pathophysiology at a molecular, cellular and behavioral level. Here, we review the prevailing theories of ASD pathogenesis, including excitatory/inhibitory imbalance, neurotransmitter dysfunction, dysfunction of mTOR and endocannabinoid signaling pathways, neuroinflammation and epigenetic alterations that have been associated with ASD. We also describe the evidence linking neuropathological changes to ASD-like behavioral abnormalities in maternal VPA-treated rodents. In addition to obtaining an understanding of the neuropathological mechanisms, the VPA-induced ASD-like animal models also serve as a good platform for testing pharmacological reagents that might be use treating ASD. We therefore have summarized the various pharmacological studies that have targeted the classical neurotransmitter systems, the endocannabinoids, the Wnt signal pathway and neuroinflammation. These approaches have been shown to often be able to ameliorate the ASD-like phenotypes induced by maternal VPA treatments.
Collapse
Affiliation(s)
- Hsiao-Ying Kuo
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
18
|
Aran A, Cassuto H, Lubotzky A, Wattad N, Hazan E. Brief Report: Cannabidiol-Rich Cannabis in Children with Autism Spectrum Disorder and Severe Behavioral Problems—A Retrospective Feasibility Study. J Autism Dev Disord 2018; 49:1284-1288. [DOI: 10.1007/s10803-018-3808-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Routledge KM, Williams LM, Harris AWF, Schofield PR, Clark CR, Gatt JM. Genetic correlations between wellbeing, depression and anxiety symptoms and behavioral responses to the emotional faces task in healthy twins. Psychiatry Res 2018; 264:385-393. [PMID: 29677622 DOI: 10.1016/j.psychres.2018.03.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/05/2018] [Accepted: 03/18/2018] [Indexed: 10/17/2022]
Abstract
Currently there is a very limited understanding of how mental wellbeing versus anxiety and depression symptoms are associated with emotion processing behaviour. For the first time, we examined these associations using a behavioural emotion task of positive and negative facial expressions in 1668 healthy adult twins. Linear mixed model results suggested faster reaction times to happy facial expressions was associated with higher wellbeing scores, and slower reaction times with higher depression and anxiety scores. Multivariate twin modelling identified a significant genetic correlation between depression and anxiety symptoms and reaction time to happy facial expressions, in the absence of any significant correlations with wellbeing. We also found a significant negative phenotypic relationship between depression and anxiety symptoms and accuracy for identifying neutral emotions, although the genetic or environment correlations were not significant in the multivariate model. Overall, the phenotypic relationships between speed of identifying happy facial expressions and wellbeing on the one hand, versus depression and anxiety symptoms on the other, were in opposing directions. Twin modelling revealed a small common genetic correlation between response to happy faces and depression and anxiety symptoms alone, suggesting that wellbeing and depression and anxiety symptoms show largely independent relationships with emotion processing at the behavioral level.
Collapse
Affiliation(s)
- Kylie M Routledge
- The Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW 2145, Australia.
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94305-5717, USA.
| | - Anthony W F Harris
- The Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW 2145, Australia; Discipline of Psychiatry, Sydney Medical School, University of Sydney, Westmead, NSW 2145, Australia.
| | - Peter R Schofield
- Neuroscience Research Australia, Barker St, Randwick, Sydney, NSW 2031 Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - C Richard Clark
- School of Psychology, Flinders University, Bedford Park, SA 5042, Australia.
| | - Justine M Gatt
- Neuroscience Research Australia, Barker St, Randwick, Sydney, NSW 2031 Australia; School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
20
|
Chakrabarti B, Haffey A, Canzano L, Taylor CP, McSorley E. Individual differences in responsivity to social rewards: Insights from two eye-tracking tasks. PLoS One 2017; 12:e0185146. [PMID: 29045458 PMCID: PMC5646758 DOI: 10.1371/journal.pone.0185146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 09/07/2017] [Indexed: 12/13/2022] Open
Abstract
Humans generally prefer social over nonsocial stimuli from an early age. Reduced preference for social rewards has been observed in individuals with autism spectrum conditions (ASC). This preference has typically been noted in separate tasks that measure orienting toward and engaging with social stimuli. In this experiment, we used two eye-tracking tasks to index both of these aspects of social preference in in 77 typical adults. We used two measures, global effect and preferential looking time. The global effect task measures saccadic deviation toward a social stimulus (related to ‘orienting’), while the preferential looking task records gaze duration bias toward social stimuli (relating to ‘engaging’). Social rewards were found to elicit greater saccadic deviation and greater gaze duration bias, suggesting that they have both greater salience and higher value compared to nonsocial rewards. Trait empathy was positively correlated with the measure of relative value of social rewards, but not with their salience. This study thus elucidates the relationship of empathy with social reward processing.
Collapse
Affiliation(s)
- Bhismadev Chakrabarti
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences University of Reading, Whiteknights Campus, Reading, United Kingdom
- * E-mail:
| | - Anthony Haffey
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences University of Reading, Whiteknights Campus, Reading, United Kingdom
| | - Loredana Canzano
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences University of Reading, Whiteknights Campus, Reading, United Kingdom
- Psychology Department, Sapienza University of Rome, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | - Christopher P. Taylor
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences University of Reading, Whiteknights Campus, Reading, United Kingdom
- New England College of Optometry, Department of Biomedical Sciences and Disease, Boston, MA, United States of America
| | - Eugene McSorley
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences University of Reading, Whiteknights Campus, Reading, United Kingdom
| |
Collapse
|
21
|
The Endocannabinoid System and Autism Spectrum Disorders: Insights from Animal Models. Int J Mol Sci 2017; 18:ijms18091916. [PMID: 28880200 PMCID: PMC5618565 DOI: 10.3390/ijms18091916] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/22/2017] [Accepted: 09/04/2017] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) defines a group of neurodevelopmental disorders whose symptoms include impaired communication and social interaction with restricted or repetitive motor movements, frequently associated with general cognitive deficits. Although it is among the most severe chronic childhood disorders in terms of prevalence, morbidity, and impact to the society, no effective treatment for ASD is yet available, possibly because its neurobiological basis is not clearly understood hence specific drugs have not yet been developed. The endocannabinoid (EC) system represents a major neuromodulatory system involved in the regulation of emotional responses, behavioral reactivity to context, and social interaction. Furthermore, the EC system is also affected in conditions often present in subsets of patients diagnosed with ASD, such as seizures, anxiety, intellectual disabilities, and sleep pattern disturbances. Despite the indirect evidence suggestive of an involvement of the EC system in ASD, only a few studies have specifically addressed the role of the EC system in the context of ASD. This review describes the available data on the investigation of the presence of alterations of the EC system as well as the effects of its pharmacological manipulations in animal models of ASD-like behaviors.
Collapse
|
22
|
Cannabinoid Receptor Type 1 and mu-Opioid Receptor Polymorphisms Are Associated With Cyclic Vomiting Syndrome. Am J Gastroenterol 2017; 112:933-939. [PMID: 28349993 DOI: 10.1038/ajg.2017.73] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 02/01/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Cyclic vomiting syndrome (CVS) is a disorder defined by recurrent, unexplained episodes of severe nausea and vomiting. Our aim was to investigate whether CVS and pathophysiological mechanisms underlying this condition are associated with selected variations in genes encoding the components of the endogenous cannabinoid and opioid systems. METHODS This case-control study included 65 patients with CVS-16 male and 49 female, and 1,092 healthy controls-525 male and 567 female from the 1000 Genomes Project. CVS subjects filled out study-specific questionnaires. Single-nucleotide polymorphisms (SNPs) in genes encoding cannabinoid receptors (CNR1 and CNR2), fatty acid amide hydrolase (FAAH) and mu-opioid receptor (OPRM1) were analyzed using the TaqMan SNP genotyping assay. Correlations between SNP's and clinical characteristics of CVS were ascertained. RESULTS Our study disclosed an increased risk of CVS among individuals with AG and GG genotypes of CNR1 rs806380 (P<0.01), whereas the CC genotype of CNR1 rs806368 and AG and GG genotypes of OPRM1 rs1799971 were associated with a decreased risk of CVS (P<0.05). In addition, AG and GG genotypes of OPRM1 rs1799971 were correlated with migraine episodes, AG and GG of OPRM1 rs1799971, and CT and CC of CNR1 rs806368 with a family history of migraines (second degree relatives), and CT and CC of CNR1 rs2023239 with a positive response to therapy. CONCLUSIONS Our results show for the first time that the variations in CNR1 and OPRM1 genes are associated with CVS and that different genotypes may contribute to the risk of CVS.
Collapse
|
23
|
Wei D, Allsop S, Tye K, Piomelli D. Endocannabinoid Signaling in the Control of Social Behavior. Trends Neurosci 2017; 40:385-396. [PMID: 28554687 DOI: 10.1016/j.tins.2017.04.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/16/2017] [Accepted: 04/21/2017] [Indexed: 11/25/2022]
Abstract
Many mammalian species, including humans, exhibit social behavior and form complex social groups. Mechanistic studies in animal models have revealed important roles for the endocannabinoid signaling system, comprising G protein-coupled cannabinoid receptors and their endogenous lipid-derived agonists, in the control of neural processes that underpin social anxiety and social reward, two key aspects of social behavior. An emergent insight from these studies is that endocannabinoid signaling in specific circuits of the brain is context dependent and selectively recruited. These insights open new vistas on the neural basis of social behavior and social impairment.
Collapse
Affiliation(s)
- Don Wei
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA; School of Medicine, University of California, Irvine, CA, USA
| | - Stephen Allsop
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Kay Tye
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA; School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
24
|
Abstract
Autism spectrum disorders (ASDs) are diagnosed on the basis of three behavioral features, namely, (1) deficits in social communication, (2) absence or delay in language and (3) stereotypy. The consensus regarding the neurological pathogenesis of ASDs is aberrant synaptogenesis and synapse function. Further, it is now widely accepted that ASD is neurodevelopmental in nature, placing emphasis on derangements occurring at the level of intra- and intercellular signaling during corticogenesis. At present, there is an ever-growing list of mutations in putative susceptibility genes in affected individuals, preventing effective transformation of knowledge gathered from basic science research to the clinic. In response, the focus of ASD biology has shifted toward the identification of cellular signaling pathways that are common to various ASD-related mutations in hopes that these shared pathways may serve as more promising treatment targets than targeting individual genes or proteins. To this end, the endogenous cannabinoid (endocannabinoid, eCB) system has recently emerged as a promising therapeutic target in the field of ASD research. The eCB system is altered in several neurological disorders, but the role of these bioactive lipids in ASD etiology remains poorly understood. In this perspective, we review current evidence linking eCB signaling to ASDs and put forth the notion that continued focus on eCBs in autism research may provide valuable insight into pathophysiology and treatment strategies. In addition to its role in modulating transmitter release at mature synapses, the eCB signaling system plays important roles in many aspects of cortical development, and disruption of these effects of eCBs may also be related to ASD pathophysiology.
Collapse
Affiliation(s)
- Mason L Yeh
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06032, USA
| | - Eric S Levine
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06032, USA
| |
Collapse
|
25
|
Savage JE, Sawyers C, Roberson-Nay R, Hettema JM. The genetics of anxiety-related negative valence system traits. Am J Med Genet B Neuropsychiatr Genet 2017; 174:156-177. [PMID: 27196537 PMCID: PMC5349709 DOI: 10.1002/ajmg.b.32459] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/05/2016] [Indexed: 01/11/2023]
Abstract
NIMH's Research Domain Criteria (RDoC) domain of negative valence systems (NVS) captures constructs of negative affect such as fear and distress traditionally subsumed under the various internalizing disorders. Through its aims to capture dimensional measures that cut across diagnostic categories and are linked to underlying neurobiological systems, a large number of phenotypic constructs have been proposed as potential research targets. Since "genes" represent a central "unit of analysis" in the RDoC matrix, it is important for studies going forward to apply what is known about the genetics of these phenotypes as well as fill in the gaps of existing knowledge. This article reviews the extant genetic epidemiological data (twin studies, heritability) and molecular genetic association findings for a broad range of putative NVS phenotypic measures. We find that scant genetic epidemiological data is available for experimentally derived measures such as attentional bias, peripheral physiology, or brain-based measures of threat response. The molecular genetic basis of NVS phenotypes is in its infancy, since most studies have focused on a small number of candidate genes selected for putative association to anxiety disorders (ADs). Thus, more research is required to provide a firm understanding of the genetic aspects of anxiety-related NVS constructs. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jeanne E. Savage
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Chelsea Sawyers
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Roxann Roberson-Nay
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA,Department of Psychiatry, Virginia Commonwealth University, Richmond, VA
| | - John M. Hettema
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA,Department of Psychiatry, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
26
|
Pharmacological inhibition of fatty acid amide hydrolase attenuates social behavioural deficits in male rats prenatally exposed to valproic acid. Pharmacol Res 2016; 113:228-235. [DOI: 10.1016/j.phrs.2016.08.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/12/2016] [Accepted: 08/30/2016] [Indexed: 11/19/2022]
|
27
|
Rodriguez-Sanchez IP, Guindon J, Ruiz M, Tejero ME, Hubbard G, Martinez-de-Villarreal LE, Barrera-Saldaña HA, Dick EJ, Comuzzie AG, Schlabritz-Loutsevitch NE. The endocannabinoid system in the baboon (Papio spp.) as a complex framework for developmental pharmacology. Neurotoxicol Teratol 2016; 58:23-30. [PMID: 27327781 PMCID: PMC5897907 DOI: 10.1016/j.ntt.2016.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 05/19/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The consumption of marijuana (exogenous cannabinoid) almost doubled in adults during last decade. Consumption of exogenous cannabinoids interferes with the endogenous cannabinoid (or "endocannabinoid" (eCB)) system (ECS), which comprises N-arachidonylethanolamide (anandamide, AEA), 2-arachidonoyl glycerol (2-AG), endocannabinoid receptors (cannabinoid receptors 1 and 2 (CB1R and CB2R), encoded by CNR1 and CNR2, respectively), and synthesizing/degrading enzymes (FAAH, fatty-acid amide hydrolase; MAGL, monoacylglycerol lipase; DAGL-α, diacylglycerol lipase-alpha). Reports regarding the toxic and therapeutic effects of pharmacological compounds targeting the ECS are sometimes contradictory. This may be caused by the fact that structure of the eCBs varies in the species studied. OBJECTIVES First: to clone and characterize the cDNAs of selected members of ECS in a non-human primate (baboon, Papio spp.), and second: to compare those cDNA sequences to known human structural variants (single nucleotide polymorphisms and haplotypes). MATERIALS AND METHODS Polymerase chain reaction-amplified gene products from baboon tissues were transformed into Escherichia coli. Amplicon-positive clones were sequenced, and the obtained sequences were conceptually translated into amino-acid sequences using the genetic code. RESULTS Among the ECS members, CNR1 was the best conserved gene between humans and baboons. The phenotypes associated with mutations in the untranslated regions of this gene in humans have not been described in baboons. One difference in the structure of CNR2 between humans and baboons was detected in the region with the only known clinically relevant polymorphism in a human receptor. All of the differences in the amino-acid structure of DAGL-α between humans and baboons were located in the hydroxylase domain, close to phosphorylation sites. None of the differences in the amino-acid structure of MAGL observed between baboons and humans were located in the area critical for enzyme function. CONCLUSION The evaluation of the data, obtained in non-human primate model of cannabis-related developmental exposure should take into consideration possible evolutionary-determined species-specific differences in the CB1R expression, CB2R transduction pathway, and FAAH and DAGLα substrate-enzyme interactions.
Collapse
Affiliation(s)
- Iram P Rodriguez-Sanchez
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Genética, Monterrey, Nuevo León, Mexico
| | - Josee Guindon
- Department of Pharmacology and Neurobiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Marco Ruiz
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin, Odessa, TX, USA
| | - M Elizabeth Tejero
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F., Mexico
| | - Gene Hubbard
- Department of Pathology, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - Hugo A Barrera-Saldaña
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica y Medicina Molecular, Monterrey, Nuevo León, Mexico
| | - Edward J Dick
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Anthony G Comuzzie
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | |
Collapse
|
28
|
Targeting anandamide metabolism rescues core and associated autistic-like symptoms in rats prenatally exposed to valproic acid. Transl Psychiatry 2016; 6:e902. [PMID: 27676443 PMCID: PMC5048215 DOI: 10.1038/tp.2016.182] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/13/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorders (ASD) are characterized by altered sociability, compromised communication and stereotyped/repetitive behaviors, for which no specific treatments are currently available. Prenatal exposure to valproic acid (VPA) is a known, although still underestimated, environmental risk factor for ASD. Altered endocannabinoid activity has been observed in autistic patients, and endocannabinoids are known to modulate behavioral traits that are typically affected in ASD. On this basis, we tested the hypothesis that changes in the endocannabinoid tone contribute to the altered phenotype induced by prenatal VPA exposure in rats, with focus on behavioral features that resemble the core and associated symptoms of ASD. In the course of development, VPA-exposed rats showed early deficits in social communication and discrimination, compromised sociability and social play behavior, stereotypies and increased anxiety, thus providing preclinical proof of the long-lasting deleterious effects induced by prenatal VPA exposure. At the neurochemical level, VPA-exposed rats displayed altered phosphorylation of CB1 cannabinoid receptors in different brain areas, associated with changes in anandamide metabolism from infancy to adulthood. Interestingly, enhancing anandamide signaling through inhibition of its degradation rescued the behavioral deficits displayed by VPA-exposed rats at infancy, adolescence and adulthood. This study therefore shows that abnormalities in anandamide activity may underlie the deleterious impact of environmental risk factors on ASD-relevant behaviors and that the endocannabinoid system may represent a therapeutic target for the core and associated symptoms displayed by autistic patients.
Collapse
|
29
|
Wei D, Dinh D, Lee D, Li D, Anguren A, Moreno-Sanz G, Gall CM, Piomelli D. Enhancement of Anandamide-Mediated Endocannabinoid Signaling Corrects Autism-Related Social Impairment. Cannabis Cannabinoid Res 2016; 1:81-89. [PMID: 28861483 PMCID: PMC5549436 DOI: 10.1089/can.2015.0008] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Introduction: We recently uncovered a signaling mechanism by which the endocannabinoid anandamide mediates the action of oxytocin, a neuropeptide that is crucial for social behavior, to control social reward. Oxytocin signaling has been implicated in autism spectrum disorder (ASD), and social reward is a key aspect of social functioning that is thought to be disrupted in ASD. Therefore, as a proof of principle for the core component of ASD—social impairment—we tested an endocannabinoid-enhancing compound on two widely studied mouse models of ASD, the BTBR and fmr1−/− (model of Fragile X Syndrome). Methods: We used the established three-chambered social approach test. We specifically increased the activity of anandamide by administering the compound URB597, a selective inhibitor of fatty acid amide hydrolase (FAAH), the hydrolytic enzyme for anandamide. Results: Remarkably, we found that FAAH blockade completely reversed the social impairment in both mouse models. CB1 receptor blockade prevented the prosocial action of FAAH inhibition in BTBR mice. These results were likely independent of effects on anxiety, as FAAH inhibition did not alter the performance of BTBR mice in the elevated plus maze. Conclusions: The results suggest that increasing anandamide activity at CB1 receptors improves ASD-related social impairment and identify FAAH as a novel therapeutic target for ASD.
Collapse
Affiliation(s)
- Don Wei
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - Drake Dinh
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - DaYeon Lee
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - Dandan Li
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California.,Department of Ophthalmology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Allison Anguren
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - Guillermo Moreno-Sanz
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California.,Department of Biological Chemistry, University of California, Irvine, Irvine, California.,Unit of Drug Discovery and Development, Italian Institute of Technology, Genova, Italy
| |
Collapse
|
30
|
Ewald A, Becker S, Heinrich A, Banaschewski T, Poustka L, Bokde A, Büchel C, Bromberg U, Cattrell A, Conrod P, Desrivières S, Frouin V, Papadopoulos-Orfanos D, Gallinat J, Garavan H, Heinz A, Walter H, Ittermann B, Gowland P, Paus T, Martinot JL, Paillère Martinot ML, Smolka MN, Vetter N, Whelan R, Schumann G, Flor H, Nees F. The role of the cannabinoid receptor in adolescents' processing of facial expressions. Eur J Neurosci 2015; 43:98-105. [PMID: 26527537 DOI: 10.1111/ejn.13118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 01/22/2023]
Abstract
The processing of emotional faces is an important prerequisite for adequate social interactions in daily life, and might thus specifically be altered in adolescence, a period marked by significant changes in social emotional processing. Previous research has shown that the cannabinoid receptor CB1R is associated with longer gaze duration and increased brain responses in the striatum to happy faces in adults, yet, for adolescents, it is not clear whether an association between CBR1 and face processing exists. In the present study we investigated genetic effects of the two CB1R polymorphisms, rs1049353 and rs806377, on the processing of emotional faces in healthy adolescents. They participated in functional magnetic resonance imaging during a Faces Task, watching blocks of video clips with angry and neutral facial expressions, and completed a Morphed Faces Task in the laboratory where they looked at different facial expressions that switched from anger to fear or sadness or from happiness to fear or sadness, and labelled them according to these four emotional expressions. A-allele versus GG-carriers in rs1049353 displayed earlier recognition of facial expressions changing from anger to sadness or fear, but not for expressions changing from happiness to sadness or fear, and higher brain responses to angry, but not neutral, faces in the amygdala and insula. For rs806377 no significant effects emerged. This suggests that rs1049353 is involved in the processing of negative facial expressions with relation to anger in adolescence. These findings add to our understanding of social emotion-related mechanisms in this life period.
Collapse
Affiliation(s)
- Anais Ewald
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Susanne Becker
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Angela Heinrich
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Child and Adolescent Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Arun Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neurosciences, Trinity College Dublin, Dublin 2, Ireland
| | | | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Cattrell
- Institute of Psychiatry, King's College London, London, UK.,Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Kings College London, London, UK
| | - Patricia Conrod
- Institute of Psychiatry, King's College London, London, UK.,Department of Psychiatry, Universite de Montreal, CHU Ste Justine Hospital, Montreal, QC, Canada
| | - Sylvane Desrivières
- Institute of Psychiatry, King's College London, London, UK.,Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Kings College London, London, UK
| | - Vincent Frouin
- Neurospin, Commissariat à l'Energie Atomique, CEA-Saclay Center, Paris, France
| | | | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, USA
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Penny Gowland
- School of Psychology, University of Nottingham, Nottingham, UK
| | - Tomáš Paus
- School of Psychology, University of Nottingham, Nottingham, UK.,Baycrest and Departments of Psychology and Psychiatry, Rotman Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jean-Luc Martinot
- INSERM, UMR 1000, Research Unit Imaging and Psychiatry, CEA, DSV, I2BM-Service Hospitalier Frédéric Joliot, Orsay, France.,University Paris-Sud 11, Orsay, France.,University Paris Descartes, Sorbonne Paris Cité, Paris, France.,Psychiatry Department 91G16, Orsay Hospital, Orsay, France
| | - Marie-Laure Paillère Martinot
- INSERM, UMR 1000, Research Unit Imaging and Psychiatry, CEA, DSV, I2BM-Service Hospitalier Frédéric Joliot, Orsay, France.,University Paris-Sud 11, Orsay, France.,University Paris Descartes, Sorbonne Paris Cité, Paris, France.,AP-HP, Department of Adolescent Psychopathology and Medicine, Maison de Solenn, Cochin Hospital, Paris, France
| | - Michael N Smolka
- Department of Psychiatry and Psychotherapy, Faculty of Medicine Carl Gustav Carus, Section of Systems Neuroscience, Technische Universität Dresden, Dresden, Germany
| | - Nora Vetter
- Department of Psychiatry and Psychotherapy, Faculty of Medicine Carl Gustav Carus, Section of Systems Neuroscience, Technische Universität Dresden, Dresden, Germany
| | - Rob Whelan
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neurosciences, Trinity College Dublin, Dublin 2, Ireland
| | - Gunter Schumann
- Institute of Psychiatry, King's College London, London, UK.,Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Kings College London, London, UK
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | | |
Collapse
|
31
|
Abstract
Autism spectrum disorder (ASD) is a complex behavioral condition with onset during early childhood and a lifelong course in the vast majority of cases. To date, no behavioral, genetic, brain imaging, or electrophysiological test can specifically validate a clinical diagnosis of ASD. However, these medical procedures are often implemented in order to screen for syndromic forms of the disorder (i.e., autism comorbid with known medical conditions). In the last 25 years a good deal of information has been accumulated on the main components of the "endocannabinoid (eCB) system", a rather complex ensemble of lipid signals ("endocannabinoids"), their target receptors, purported transporters, and metabolic enzymes. It has been clearly documented that eCB signaling plays a key role in many human health and disease conditions of the central nervous system, thus opening the avenue to the therapeutic exploitation of eCB-oriented drugs for the treatment of psychiatric, neurodegenerative, and neuroinflammatory disorders. Here we present a modern view of the eCB system, and alterations of its main components in human patients and animal models relevant to ASD. This review will thus provide a critical perspective necessary to explore the potential exploitation of distinct elements of eCB system as targets of innovative therapeutics against ASD.
Collapse
Affiliation(s)
- Bhismadev Chakrabarti
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Antonio Persico
- Center of Integrated Research and School of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128, Rome, Italy
- Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| | - Natalia Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- Center of Integrated Research and School of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128, Rome, Italy.
- European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
32
|
Parameterising ecological validity and integrating individual differences within second-person neuroscience. Behav Brain Sci 2014; 36:414-5. [PMID: 23883743 DOI: 10.1017/s0140525x12002099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This commentary situates the second person account within a broader framework of ecological validity for experimental paradigms in social cognitive neuroscience. It then considers how individual differences at psychological and genetic levels can be integrated within the proposed framework.
Collapse
|
33
|
Damiano CR, Aloi J, Dunlap K, Burrus CJ, Mosner MG, Kozink RV, McLaurin RE, Mullette-Gillman OA, Carter RM, Huettel SA, McClernon FJ, Ashley-Koch A, Dichter GS. Association between the oxytocin receptor (OXTR) gene and mesolimbic responses to rewards. Mol Autism 2014; 5:7. [PMID: 24485285 PMCID: PMC3922109 DOI: 10.1186/2040-2392-5-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/17/2014] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND There has been significant progress in identifying genes that confer risk for autism spectrum disorders (ASDs). However, the heterogeneity of symptom presentation in ASDs impedes the detection of ASD risk genes. One approach to understanding genetic influences on ASD symptom expression is to evaluate relations between variants of ASD candidate genes and neural endophenotypes in unaffected samples. Allelic variations in the oxytocin receptor (OXTR) gene confer small but significant risk for ASDs for which the underlying mechanisms may involve associations between variability in oxytocin signaling pathways and neural response to rewards. The purpose of this preliminary study was to investigate the influence of allelic variability in the OXTR gene on neural responses to monetary rewards in healthy adults using functional magnetic resonance imaging (fMRI). METHODS The moderating effects of three single nucleotide polymorphisms (SNPs) (rs1042778, rs2268493 and rs237887) of the OXTR gene on mesolimbic responses to rewards were evaluated using a monetary incentive delay fMRI task. RESULTS T homozygotes of the rs2268493 SNP demonstrated relatively decreased activation in mesolimbic reward circuitry (including the nucleus accumbens, amygdala, insula, thalamus and prefrontal cortical regions) during the anticipation of rewards but not during the outcome phase of the task. Allelic variation of the rs1042778 and rs237887 SNPs did not moderate mesolimbic activation during either reward anticipation or outcomes. CONCLUSIONS This preliminary study suggests that the OXTR SNP rs2268493, which has been previously identified as an ASD risk gene, moderates mesolimbic responses during reward anticipation. Given previous findings of decreased mesolimbic activation during reward anticipation in ASD, the present results suggest that OXTR may confer ASD risk via influences on the neural systems that support reward anticipation.
Collapse
Affiliation(s)
- Cara R Damiano
- Department of Psychology, University of North Carolina, CB#3270, Davie Hall, UNC-CH, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Understanding the reward system functioning in anorexia nervosa: Crucial role of physical activity. Biol Psychol 2013; 94:575-81. [DOI: 10.1016/j.biopsycho.2013.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/02/2013] [Accepted: 10/10/2013] [Indexed: 11/23/2022]
|
35
|
Abstract
AbstractIn this response we address additions to as well as criticisms and possible misinterpretations of our proposal for a second-person neuroscience. We map out the most crucial aspects of our approach by (1) acknowledging that second-person engaged interaction is not the only way to understand others, although we claim that it is ontogenetically prior; (2) claiming that spectatorial paradigms need to be complemented in order to enable a full understanding of social interactions; and (3) restating that our theoretical proposal not only questions the mechanism by which a cognitive process comes into being, but asks whether it is at all meaningful to speak of a mechanism and a cognitive process when it is confined to intra-agent space. We address theoretical criticisms of our approach by pointing out that while a second-person social understanding may not be the only mechanism, alternative approaches cannot hold their ground without resorting to second-person concepts, if not in the expression, certainly in the development of social understanding. In this context, we also address issues of agency and intentionality, theoretical alternatives, and clinical implications of our approach.
Collapse
|
36
|
Abstract
AbstractIn spite of the remarkable progress made in the burgeoning field of social neuroscience, the neural mechanisms that underlie social encounters are only beginning to be studied and could – paradoxically – be seen as representing the “dark matter” of social neuroscience. Recent conceptual and empirical developments consistently indicate the need for investigations that allow the study of real-time social encounters in a truly interactive manner. This suggestion is based on the premise that social cognition is fundamentally different when we are in interaction with others rather than merely observing them. In this article, we outline the theoretical conception of a second-person approach to other minds and review evidence from neuroimaging, psychophysiological studies, and related fields to argue for the development of a second-person neuroscience, which will help neuroscience to really “go social”; this may also be relevant for our understanding of psychiatric disorders construed as disorders of social cognition.
Collapse
|
37
|
Litvin Y, Phan A, Hill MN, Pfaff DW, McEwen BS. CB1receptor signaling regulates social anxiety and memory. GENES BRAIN AND BEHAVIOR 2013; 12:479-89. [DOI: 10.1111/gbb.12045] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/15/2013] [Accepted: 04/27/2013] [Indexed: 01/31/2023]
Affiliation(s)
| | | | - M. N. Hill
- Laboratory of Neuroendocrinology; The Rockefeller University; New York; NY; USA
| | | | - B. S. McEwen
- Laboratory of Neuroendocrinology; The Rockefeller University; New York; NY; USA
| |
Collapse
|
38
|
Kerr DM, Downey L, Conboy M, Finn DP, Roche M. Alterations in the endocannabinoid system in the rat valproic acid model of autism. Behav Brain Res 2013; 249:124-32. [PMID: 23643692 DOI: 10.1016/j.bbr.2013.04.043] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 12/17/2022]
Abstract
The endocannabinoid system plays a crucial role in regulating emotionality and social behaviour, however it is unknown whether this system plays a role in symptoms associated with autism spectrum disorders. The current study evaluated if alterations in the endocannabinoid system accompany behavioural changes in the valproic acid (VPA) rat model of autism. Adolescent rats prenatally exposed to VPA exhibited impaired social investigatory behaviour, hypoalgesia and reduced lococmotor activity on exposure to a novel aversive arena. Levels of the endocananbinoids, anandamide (AEA) and 2-arachidonylglycerol (2-AG) in the hippocampus, frontal cortex or cerebellum were not altered in VPA- versus saline-exposed animals. However, the expression of mRNA for diacylglycerol lipase α, the enzyme primarily responsible for the synthesis of 2-AG, was reduced in the cerebellum of VPA-exposed rats. Furthermore, while the expression of mRNA for the 2-AG-catabolising enzyme monoacylglycerol lipase was reduced, the activity of this enzyme was increased, in the hippocampus of VPA-exposed animals. CB1 or CB2 receptor expression was not altered in any of the regions examined, however VPA-exposed rats exhibited reduced PPARα and GPR55 expression in the frontal cortex and PPARγ and GPR55 expression in the hippocampus, additional receptor targets of the endocannabinoids. Furthermore, tissue levels of the fatty acid amide hydrolase substrates, AEA, oleoylethanolamide and palmitoylethanolamide, were higher in the hippocampus of VPA-exposed rats immediately following social exposure. These data indicate that prenatal VPA exposure is associated with alterations in the brain's endocannabinoid system and support the hypothesis that endocannabinoid dysfunction may underlie behavioural abnormalities observed in autism spectrum disorders.
Collapse
Affiliation(s)
- D M Kerr
- Physiology, School of Medicine, National University of Ireland Galway, Ireland
| | | | | | | | | |
Collapse
|
39
|
Micale V, Di Marzo V, Sulcova A, Wotjak CT, Drago F. Endocannabinoid system and mood disorders: Priming a target for new therapies. Pharmacol Ther 2013; 138:18-37. [DOI: 10.1016/j.pharmthera.2012.12.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
Endocannabinoids in amygdala and nucleus accumbens mediate social play reward in adolescent rats. J Neurosci 2013; 32:14899-908. [PMID: 23100412 DOI: 10.1523/jneurosci.0114-12.2012] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The brain endocannabinoid system plays a crucial role in emotional processes. We have previously identified an important role for endocannabinoids in social play behavior, a highly rewarding form of social interaction in adolescent rats. Here, we tested the hypothesis that endocannabinoid modulation of social play behavior occurs in brain regions implicated in emotion and motivation. Social play increased levels of the endocannabinoid anandamide in the amygdala and nucleus accumbens (NAc), but not in prefrontal cortex or hippocampus of 4- to 5-week-old male Wistar rats. Furthermore, social play increased phosphorylation of CB1 cannabinoid receptors in the amygdala. Systemic administration of the anandamide hydrolysis inhibitor URB597 increased social play behavior, and augmented the associated elevation in anandamide levels in the amygdala, but not the NAc. Infusion of URB597 into the basolateral amygdala (BLA) increased social play behavior, and blockade of BLA CB1 cannabinoid receptors with the antagonist/inverse agonist SR141716A prevented the play-enhancing effects of systemic administration of URB597. Infusion of URB597 into the NAc also increased social play, but blockade of NAc CB1 cannabinoid receptors did not antagonize the play-enhancing effects of systemic URB597 treatment. Last, SR141716A did not affect social play after infusion into the core and shell subregions of the NAc, while it reduced social play when infused into the BLA. These data show that increased anandamide signaling in the amygdala and NAc augments social play, and identify the BLA as a prominent site of action for endocannabinoids to modulate the rewarding properties of social interactions in adolescent rats.
Collapse
|
41
|
Abstract
Reduced focus toward the eyes is a characteristic of atypical gaze on emotional faces in autism spectrum disorders (ASD). Along with the atypical gaze, aberrant amygdala activity during face processing compared with neurotypically developed (NT) participants has been repeatedly reported in ASD. It remains unclear whether the previously reported dysfunctional amygdalar response patterns in ASD support an active avoidance of direct eye contact or rather a lack of social attention. Using a recently introduced emotion classification task, we investigated eye movements and changes in blood oxygen level-dependent (BOLD) signal in the amygdala with a 3T MRI scanner in 16 autistic and 17 control adult human participants. By modulating the initial fixation position on faces, we investigated changes triggered by the eyes compared with the mouth. Between-group interaction effects revealed different patterns of gaze and amygdalar BOLD changes in ASD and NT: Individuals with ASD gazed more often away from than toward the eyes, compared with the NT group, which showed the reversed tendency. An interaction contrast of group and initial fixation position further yielded a significant cluster of amygdala activity. Extracted parameter estimates showed greater response to eyes fixation in ASD, whereas the NT group showed an increase for mouth fixation. The differing patterns of amygdala activity in combination with differing patterns of gaze behavior between groups triggered by direct eye contact and mouth fixation, suggest a dysfunctional profile of the amygdala in ASD involving an interplay of both eye-avoidance processing and reduced orientation.
Collapse
|
42
|
Bogdan R, Nikolova YS, Pizzagalli DA. Neurogenetics of depression: a focus on reward processing and stress sensitivity. Neurobiol Dis 2012; 52:12-23. [PMID: 22659304 DOI: 10.1016/j.nbd.2012.05.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 04/30/2012] [Accepted: 05/24/2012] [Indexed: 11/27/2022] Open
Abstract
Major depressive disorder (MDD) is etiologically complex and has a heterogeneous presentation. This heterogeneity hinders the ability of molecular genetic research to reliably detect the small effects conferred by common genetic variation. As a result, significant research efforts have been directed at investigating more homogenous intermediate phenotypes believed to be more proximal to gene function and lie between genes and/or environmental effects and disease processes. In the current review we survey and integrate research on two promising intermediate phenotypes linked to depression: reward processing and stress sensitivity. A synthesis of this burgeoning literature indicates that a molecular genetic approach focused on intermediate phenotypes holds significant promise to fundamentally improve our understanding of the pathophysiology and etiology of depression, which will be required for improved diagnostic definitions and the development of novel and more efficacious treatment and prevention strategies. We conclude by highlighting challenges facing intermediate phenotype research and future development that will be required to propel this pivotal research into new directions.
Collapse
Affiliation(s)
- Ryan Bogdan
- BRAIN Laboratory, Department of Psychology, Washington University in St. Louis, Box 1125, One Brookings Drive, St. Louis, MO 63130, USA.
| | | | | |
Collapse
|