1
|
Gurevitch G, Lubianiker N, Markovits T, Or-Borichev A, Sharon H, Fine NB, Fruchtman-Steinbok T, Keynan JN, Shahar M, Friedman A, Singer N, Hendler T. Amygdala self-neuromodulation capacity as a window for process-related network recruitment. Philos Trans R Soc Lond B Biol Sci 2024; 379:20240186. [PMID: 39428877 PMCID: PMC11491848 DOI: 10.1098/rstb.2024.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/12/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024] Open
Abstract
Neurofeedback (NF) has emerged as a promising avenue for demonstrating process-related neuroplasticity, enabling self-regulation of brain function. NF targeting the amygdala has drawn attention to therapeutic potential in psychiatry, by potentially harnessing emotion-regulation processes. However, not all individuals respond equally to NF training, possibly owing to varying self-regulation abilities. This underscores the importance of understanding the mechanisms behind successful neuromodulation (i.e. capacity). This study aimed to investigate the establishment and neural correlates of neuromodulation capacity using data from repeated sessions of amygdala electrical fingerprint (Amyg-EFP)-NF and post-training functional magnetic resonance imaging (fMRI)-NF sessions. Results from 97 participants (healthy controls and post-traumatic stress disorder and fibromyalgia patients) revealed increased Amyg-EFP neuromodulation capacity over training, associated with post-training amygdala-fMRI modulation capacity and improvements in alexithymia. Individual differenaces in this capacity were associated with pre-training amygdala reactivity and initial neuromodulation success. Additionally, amygdala downregulation during fMRI-NF co-modulated with other regions such as the posterior insula and parahippocampal gyrus. This combined modulation better explained EFP-modulation capacity and improvement in alexithymia than the amygdala modulation alone, suggesting the relevance of this broader network to gained capacity. These findings support a network-based approach for NF and highlight the need to consider individual differences in brain function and modulation capacity to optimize NF interventions. This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Guy Gurevitch
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Nitzan Lubianiker
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
- Psychology Department, Yale University, New Haven, CT, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Taly Markovits
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Ayelet Or-Borichev
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Haggai Sharon
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel
- Department of Anesthesia and Critical Care Medicine, Institute of Pain Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Naomi B. Fine
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | | | - Jacob N. Keynan
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Moni Shahar
- The Center for AI and Data Science, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Alon Friedman
- Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Dalhousie University, Halifax, Nova Scotia, Canada
| | - Neomi Singer
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Talma Hendler
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
2
|
Harnett NG, Merrill LC, Fani N. Racial and ethnic socioenvironmental inequity and neuroimaging in psychiatry: a brief review of the past and recommendations for the future. Neuropsychopharmacology 2024; 50:3-15. [PMID: 38902354 PMCID: PMC11526029 DOI: 10.1038/s41386-024-01901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Neuroimaging is a major tool that holds immense translational potential for understanding psychiatric disorder phenomenology and treatment. However, although epidemiological and social research highlights the many ways inequity and representativeness influences mental health, there is a lack of consideration of how such issues may impact neuroimaging features in psychiatric research. More specifically, the potential extent to which racialized inequities may affect underlying neurobiology and impact the generalizability of neural models of disorders is unclear. The present review synthesizes research focused on understanding the potential consequences of racial/ethnic inequities relevant to neuroimaging in psychiatry. We first discuss historical and contemporary drivers of inequities that persist today. We then discuss the neurobiological consequences of these inequities as revealed through current research, and note emergent research demonstrating the impact such inequities have on our ability to use neuroimaging to understand psychiatric disease. We end with a set of recommendations and practices to move the field towards more equitable approaches that will advance our abilities to develop truly generalizable neurobiological models of psychiatric disorders.
Collapse
Affiliation(s)
- Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Livia C Merrill
- Department of Psychology, University of Houston, Houston, TX, USA
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
3
|
Brouillard A, Davignon LM, Vachon-Presseau É, Roy M, Marin MF. Starting the pill during adolescence: Age of onset and duration of use influence morphology of the hippocampus and ventromedial prefrontal cortex. Eur J Neurosci 2024; 60:5876-5899. [PMID: 39245916 DOI: 10.1111/ejn.16509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024]
Abstract
From adolescence, women become more likely to experience fear dysregulation. Oral contraceptives (OCs) can modulate the brain regions involved in fear processes. OCs are generally used for years and often initiated during adolescence, a sensitive period where certain brain regions involved in the fear circuitry are still undergoing important reorganization. It remains unknown whether OC use during adolescence may induce long-lasting changes in the fear circuitry. This study aimed to examine whether age of onset moderated the relationship between duration of use and fear-related brain structures. We collected structural MRI data in 98 healthy adult women (61 current users, 37 past users) and extracted grey matter volumes (GMV) and cortical thickness (CT) of key regions of the fear circuitry. Non-linear multiple regressions revealed interaction effects between age of onset and quadratic duration of use on GMV of the right hippocampus and right ventromedial prefrontal cortex (vmPFC). Among women who initiated OCs earlier in adolescence, a short duration of use was associated with smaller hippocampal GMV and thicker vmPFC compared to a longer duration of use. For both GMV and CT of the right vmPFC, women with an early OC onset had more grey matter at a short duration of use than those with a later onset. Our results suggest that OC use earlier in adolescence may induce lasting effects on structural correlates of fear learning and its regulation. These findings support further investigation into the timing of OC use to better comprehend how OCs could disrupt normal brain development processes.
Collapse
Affiliation(s)
- Alexandra Brouillard
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| | - Lisa-Marie Davignon
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| | - Étienne Vachon-Presseau
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Mathieu Roy
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Marie-France Marin
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| |
Collapse
|
4
|
Agathos J, Putica A, Steward T, Felmingham KL, O'Donnell ML, Davey C, Harrison BJ. Neuroimaging evidence of disturbed self-appraisal in posttraumatic stress disorder: A systematic review. Psychiatry Res Neuroimaging 2024; 344:111888. [PMID: 39236486 DOI: 10.1016/j.pscychresns.2024.111888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND The experience of self-hood in posttraumatic stress disorder (PTSD) is altered cognitively and somatically. Dysfunctional negative cognitions about the self are a central mechanism of PTSD symptomatology and treatment. However, while higher-order brain models of disturbances in self-appraisal (i.e., cognitive processes relating to evaluating the self) have been examined in other psychiatric disorders, it is unclear how normative brain function during self-appraisal is impaired in PTSD. METHODS This paper presents a PRISMA systematic review of functional neuroimaging studies (n = 5), to establish a neurobiological account of how self-appraisal processes are disturbed in PTSD. The review was prospectively registered with PROSPERO (CRD42023450509). RESULTS Self-appraisal in PTSD is linked to disrupted activity in core self-processing regions of the Default Mode Network (DMN); and regions involved in cognitive control and emotion regulation, salience and valuation. LIMITATIONS Because self-appraisal in PTSD is relatively under-studied, only a small number of studies could be included for review. Cross-study heterogeneity in analytic approaches and trauma-exposure history prohibited a quantitative meta-analysis. CONCLUSIONS This paper proposes a mechanistic account of how neural dysfunctions may manifest clinically in PTSD and inform targeted selection of appropriate treatment options. We present a research agenda for future work to advance the field.
Collapse
Affiliation(s)
- J Agathos
- Department of Psychiatry, The University of Melbourne, Level 3, 161 Barry Street, Parkville, Victoria 3053, Australia.
| | - A Putica
- Department of Psychology, Counselling and Therapy, La Trobe University, Bundoora, Victoria, Australia
| | - T Steward
- Department of Psychiatry, The University of Melbourne, Level 3, 161 Barry Street, Parkville, Victoria 3053, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - K L Felmingham
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - M L O'Donnell
- Phoenix Australia Centre for Posttraumatic Mental Health, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - C Davey
- Department of Psychiatry, The University of Melbourne, Level 3, 161 Barry Street, Parkville, Victoria 3053, Australia
| | - B J Harrison
- Department of Psychiatry, The University of Melbourne, Level 3, 161 Barry Street, Parkville, Victoria 3053, Australia.
| |
Collapse
|
5
|
Burgess HJ, Rizvydeen M, Huizenga B, Prasad M, Bahl S, Duval ER, Kim HM, Phan KL, Liberzon I, Abelson J, Klumpp H, Horwitz A, Mooney A, Raglan GB, Zalta AK. A 4-week morning light treatment reduces amygdala reactivity and clinical symptoms in adults with traumatic stress. Psychiatry Res 2024; 342:116209. [PMID: 39316998 DOI: 10.1016/j.psychres.2024.116209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Trauma leads to mental health problems including posttraumatic stress disorder (PTSD), depression, and anxiety. New treatments are needed for traumatic stress that can overcome barriers to care while targeting underlying biological mechanisms of the pathology. Morning light treatment has potential as a novel intervention for traumatic stress. We conducted a randomized clinical trial testing 3 doses of a 4-week morning light treatment in people with traumatic stress to evaluate brain mechanisms underlying the treatment. Forty-six participants completed a baseline week followed by a 4-week morning light treatment (15, 30 or 60 mins each morning). Functional magnetic resonance imaging was conducted at pre- and post-treatment using an emotional faces task to probe the amygdala, based on prior work showing direct effects of light on the amygdala and the role of amygdala in traumatic stress. Clinician-rated symptoms and self-reported symptoms were also assessed at pre- and post-treatment. No group differences were observed in left amygdala reactivity, but right amygdala reactivity reduced only in the 30 and 60 min groups with medium effect sizes. Clinical symptoms reduced in all groups with medium to large effect sizes. Self-reported depression and anxiety scores reduced more in the 60 min than in the 15 min group (p = .02). The results suggest that 4 weeks of morning light treatment of at least 30 min per day can reduce amygdala reactivity and symptoms of traumatic stress. Morning light treatment should be further explored as a potential treatment for traumatic stress, given it is relatively safe, acceptable, accessible and scalable.
Collapse
Affiliation(s)
- Helen J Burgess
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
| | - Muneer Rizvydeen
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Brooke Huizenga
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Masumi Prasad
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Sonal Bahl
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Elizabeth R Duval
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Hyungjin Myra Kim
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - K Luan Phan
- Department of Psychiatry, Ohio State University, Columbus, OH, USA
| | - Israel Liberzon
- Department of Psychiatry, Texas A&M University, College Station, TX, USA
| | - James Abelson
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Heide Klumpp
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Adam Horwitz
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Ann Mooney
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Greta B Raglan
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Alyson K Zalta
- Department of Psychological Science, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
6
|
Korem N, Duek O, Ben-Zion Z, Spiller TR, Gordon C, Amen S, Levy I, Harpaz-Rotem I. Post-treatment alterations in white matter integrity in PTSD: Effects on symptoms and functional connectivity a secondary analysis of an RCT. Psychiatry Res Neuroimaging 2024; 343:111864. [PMID: 39111111 DOI: 10.1016/j.pscychresns.2024.111864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/26/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Post-traumatic stress disorder (PTSD) has been linked to altered communication within the limbic system, including reduced structural connectivity in the uncinate fasciculus (UNC; i.e., decreased fractional anisotropy; FA) and reduced resting-state functional connectivity (RSFC) between the hippocampus and ventromedial prefrontal cortex (vmPFC). Previous research has demonstrated attenuation of PTSD symptoms and alterations in RSFC following exposure-based psychotherapy. However, the relationship between changes in structural and functional connectivity patterns and PTSD symptoms following treatment remains unclear. To investigate this, we conducted a secondary analysis of data from a randomized clinical trial of intensive exposure therapy, evaluating alterations in UNC FA, hippocampus-vmPFC RSFC, and PTSD symptoms before (pre-treatment), 7 days after (post-treatment), and 30 days after (follow-up) the completion of therapy. Our results showed that post-treatment changes in RSFC were positively correlated with post-treatment and follow-up changes in UNC FA and that post-treatment changes in UNC FA were positively correlated with post-treatment and follow-up changes in PTSD symptoms. These findings suggest that early changes in functional connectivity are associated with sustained changes in anatomical connectivity, which in turn are linked to reduced PTSD symptom severity.
Collapse
Affiliation(s)
- Nachshon Korem
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, CT, USA.
| | - Or Duek
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Epidemiology, Biostatistics and Community Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ziv Ben-Zion
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Tobias R Spiller
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, CT, USA; Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich (USZ), Zurich, Switzerland
| | - Charles Gordon
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Shelley Amen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Ifat Levy
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, CT, USA; Yale University Departments of Psychology and Neuroscience, New Haven, CT, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, CT, USA; Yale University Departments of Psychology and Neuroscience, New Haven, CT, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
van der Heijden AC, van der Werf YD, van den Heuvel OA, Talamini LM, van Marle HJF. Targeted memory reactivation to augment treatment in post-traumatic stress disorder. Curr Biol 2024; 34:3735-3746.e5. [PMID: 39116885 DOI: 10.1016/j.cub.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/30/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder with traumatic memories at its core. Post-treatment sleep may offer a unique time window to increase therapeutic efficacy through consolidation of therapeutically modified traumatic memories. Targeted memory reactivation (TMR) enhances memory consolidation by presenting reminder cues (e.g., sounds associated with a memory) during sleep. Here, we applied TMR in PTSD patients to strengthen therapeutic memories during sleep after one treatment session with eye movement desensitization and reprocessing (EMDR). PTSD patients received either slow oscillation (SO) phase-targeted TMR, using modeling-based closed-loop neurostimulation (M-CLNS) with EMDR clicks as a reactivation cue (n = 17), or sham stimulation (n = 16). Effects of TMR on sleep were assessed through high-density polysomnography. Effects on treatment outcome were assessed through subjective, autonomic, and fMRI responses to script-driven imagery (SDI) of the targeted traumatic memory and overall PTSD symptom level. Compared to sham stimulation, TMR led to stimulus-locked increases in SO and spindle dynamics, which correlated positively with PTSD symptom reduction in the TMR group. Given the role of SOs and spindles in memory consolidation, these findings suggest that TMR may have strengthened the consolidation of the EMDR-treatment memory. Clinically, TMR vs. sham stimulation resulted in a larger reduction of avoidance level during SDI. TMR did not disturb sleep or trigger nightmares. Together, these data provide first proof of principle that TMR may be a safe and viable future treatment augmentation strategy for PTSD. The required follow-up studies may implement multi-night TMR or TMR during REM sleep to further establish the clinical effect of TMR for traumatic memories.
Collapse
Affiliation(s)
- Anna C van der Heijden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Boelelaan 1081 HV Amsterdam, the Netherlands; University of Amsterdam, Department of Psychology, Brain & Cognition, Nieuwe Achtergracht 1018 WS Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Boelelaan 1081 HV Amsterdam, the Netherlands
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Boelelaan 1081 HV Amsterdam, the Netherlands
| | - Lucia M Talamini
- University of Amsterdam, Department of Psychology, Brain & Cognition, Nieuwe Achtergracht 1018 WS Amsterdam, the Netherlands; University of Amsterdam, Amsterdam Brain and Cognition, Nieuwe Achtergracht 1001 NK Amsterdam, the Netherlands
| | - Hein J F van Marle
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Boelelaan 1081 HV Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Oldenaller 1081 HJ Amsterdam, the Netherlands; ARQ National Psychotrauma Center, Nienoord 1112 XE Diemen, the Netherlands.
| |
Collapse
|
8
|
Varkevisser T, Geuze E, van Honk J. Amygdala fMRI-A Critical Appraisal of the Extant Literature. Neurosci Insights 2024; 19:26331055241270591. [PMID: 39148643 PMCID: PMC11325331 DOI: 10.1177/26331055241270591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Even before the advent of fMRI, the amygdala occupied a central space in the affective neurosciences. Yet this amygdala-centred view on emotion processing gained even wider acceptance after the inception of fMRI in the early 1990s, a landmark that triggered a goldrush of fMRI studies targeting the amygdala in vivo. Initially, this amygdala fMRI research was mostly confined to task-activation studies measuring the magnitude of the amygdala's response to emotional stimuli. Later, interest began to shift more towards the study of the amygdala's resting-state functional connectivity and task-based psychophysiological interactions. Later still, the test-retest reliability of amygdala fMRI came under closer scrutiny, while at the same time, amygdala-based real-time fMRI neurofeedback gained widespread popularity. Each of these major subdomains of amygdala fMRI research has left its marks on the field of affective neuroscience at large. The purpose of this review is to provide a critical assessment of this literature. By integrating the insights garnered by these research branches, we aim to answer the question: What part (if any) can amygdala fMRI still play within the current landscape of affective neuroscience? Our findings show that serious questions can be raised with regard to both the reliability and validity of amygdala fMRI. These conclusions force us to cast doubt on the continued viability of amygdala fMRI as a core pilar of the affective neurosciences.
Collapse
Affiliation(s)
- Tim Varkevisser
- University Medical Center, Utrecht, The Netherlands
- Brain Research and Innovation Center, Ministry of Defence, Utrecht, The Netherlands
- Utrecht University, Utrecht, The Netherlands
| | - Elbert Geuze
- University Medical Center, Utrecht, The Netherlands
- Brain Research and Innovation Center, Ministry of Defence, Utrecht, The Netherlands
| | - Jack van Honk
- Utrecht University, Utrecht, The Netherlands
- University of Cape Town, Cape Town, South Africa
| |
Collapse
|
9
|
Koek RJ, Avecillas-Chasin J, Krahl SE, Chen JW, Sultzer DL, Kulick AD, Mandelkern MA, Malpetti M, Gordon HL, Landry HN, Einstein EH, Langevin JP. Deep brain stimulation of the amygdala for treatment-resistant combat post-traumatic stress disorder: Long-term results. J Psychiatr Res 2024; 175:131-139. [PMID: 38733927 PMCID: PMC11419692 DOI: 10.1016/j.jpsychires.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Deep brain stimulation (DBS) holds promise for neuropsychiatric conditions where imbalance in network activity contributes to symptoms. Treatment-resistant Combat post-traumatic stress disorder (TR-PTSD) is a highly morbid condition and 50% of PTSD sufferers fail to recover despite psychotherapy or pharmacotherapy. Reminder-triggered symptoms may arise from inadequate top-down ventromedial prefrontal cortex (vmPFC) control of amygdala reactivity. Here, we report long-term data on two TR-PTSD participants from an investigation utilizing high-frequency amygdala DBS. The two combat veterans were implanted bilaterally with quadripolar electrodes targeting the basolateral amygdala. Following a randomized staggered onset, patients received stimulation with adjustments based on PTSD symptom severity for four years while psychiatric and neuropsychiatric symptoms, neuropsychological performance, and electroencephalography were systematically monitored. Evaluation of vmPFC-Amygdala network engagement was assessed with 18FDG positron emission tomography (PET). CAPS-IV scores varied over time, but improved 55% from 119 at baseline to 53 at 4-year study endpoint in participant 1; and 44%, from 68 to 38 in participant 2. Thereafter, during 5 and 1.5 years of subsequent clinical care respectively, long-term bilateral amygdala DBS was associated with additional, clinically significant symptomatic and functional improvement. There were no serious stimulation-related adverse psychiatric, neuropsychiatric, neuropsychological, neurological, or neurosurgical effects. In one subject, symptomatic improvement was associated with an intensity-dependent reduction in amygdala theta frequency power. In our two participants, FDG-PET findings were inconclusive regarding the hypothesized mechanism of suppression of amygdala hyperactivity. Our findings encourage further research to confirm and extend our preliminary observations.
Collapse
Affiliation(s)
- Ralph J Koek
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, 760 Westwood Blvd., Room 58-229, Los Angeles, CA, USA, 90095-1759; Psychiatry Service, Mental Health and Behavioral Sciences, Sepulveda Ambulatory Care Center, VAGLAHS, 16111 Plummer St. (116A-11), North Hills, CA, USA, 91343.
| | - Josue Avecillas-Chasin
- Department of Neurosurgery University of Nebraska Medical Center College of Medicine, 42nd and Emile, Omaha, Nebraska USA, 68198.
| | - Scott E Krahl
- Department of Neurosurgery, University of California at Los Angeles (UCLA), 300 Stein Plaza Driveway Suite 420, Los Angeles, CA, 90095, USA; Research Service, VAGLAHS (Clinical Neurophysiology), 16111 Plummer St., Building 1, North Hills, CA, USA, 91343.
| | - James Wy Chen
- Department of Neurology, UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA; Neurology Service (Epilepsy Center of Excellence), VAGLAHS, 11301 Wilshire Blvd, Los Angeles, CA, USA, 90073.
| | - David L Sultzer
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, 760 Westwood Blvd., Room 58-229, Los Angeles, CA, USA, 90095-1759; Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine Institute for Memory Impairments and Neurological Disorders, 3214 Biological Sciences III, Irvine, CA, USA, 92697-4545.
| | - Alexis D Kulick
- Psychology Service (Neuropsychology), Mental Health and Behavioral Sciences, VAGLAHS, 16111 Plummer St. (116A-11) North Hills, CA, USA, 91343.
| | - Mark A Mandelkern
- Imaging Department, VAGLAHS, 11301 Wilshire Blvd, Los Angeles, CA, USA, 90073.
| | - Maura Malpetti
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK.
| | - Hailey L Gordon
- STEM Pathways at Boston University, 610 Commonwealth Avenue, Room 402, Boston, MA, 02215, USA.
| | | | - Evan H Einstein
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, 760 Westwood Blvd., Room 58-229, Los Angeles, CA, USA, 90095-1759
| | - Jean-Philippe Langevin
- Department of Neurosurgery, UCLA, 300 Stein Plaza Driveway Suite 420, Los Angeles, CA, 90095, USA; Southwest VA Epilepsy Center of Excellence, 11301 Wilshire Blvd, Bldg 500 (10H2), Los Angeles, CA, USA, 90073.
| |
Collapse
|
10
|
Burklund LJ, Davies CD, Niles A, Torre JB, Brown L, Vinograd M, Lieberman MD, Craske MG. Affect labeling: a promising new neuroscience-based approach to treating combat-related PTSD in veterans. Front Psychol 2024; 15:1270424. [PMID: 38911954 PMCID: PMC11192197 DOI: 10.3389/fpsyg.2024.1270424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/24/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction A significant portion of individuals exposed to combat-related trauma will develop posttraumatic stress disorder (PTSD), a severe, debilitating disorder with adverse impacts on both mental and physical functioning. Current treatments are effective for many individuals, however, there is a need for new treatment approaches to improve outcomes in PTSD and address the many existing barriers to seeking or completing treatment. Methods In this open trial pilot study, we tested a novel, brief, computer-based intervention for PTSD utilizing "affect labeling" that was inspired by recent advances in neuroscience with U.S. veterans. Results As expected, pre-intervention clinical and fMRI neuroimaging data indicated that U.S. veterans with combat-related PTSD (N = 20) had significantly higher PTSD symptoms, depression symptoms, and amygdala reactivity to trauma cues than trauma-exposed healthy control veterans (N = 20). Veterans with PTSD who completed the affect labeling intervention (N = 13) evidenced reduced PTSD symptoms and these reductions were correlated with reductions in amygdala reactivity. Discussion Results from this initial proof-of-concept study are intriguing and suggest that affect labeling training offers significant potential as a novel, cost-effective, computer-based intervention for PTSD. Implications and next steps for further developing affect labeling interventions for PTSD are discussed. Clinical Trial Registration https://clinicaltrials.gov/, identifier NCT05924399.
Collapse
Affiliation(s)
- Lisa J. Burklund
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
- NeuroGen Technologies Inc., Los Angeles, CA, United States
| | - Carolyn D. Davies
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Andrea Niles
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jared B. Torre
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lily Brown
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Meghan Vinograd
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matthew D. Lieberman
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michelle G. Craske
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
11
|
Haris EM, Bryant RA, Korgaonkar MS. Structural covariance, topological organization, and volumetric features of amygdala subnuclei in posttraumatic stress disorder. Neuroimage Clin 2024; 42:103619. [PMID: 38744025 PMCID: PMC11108976 DOI: 10.1016/j.nicl.2024.103619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/14/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The amygdala is divided into functional subnuclei which have been challenging to investigate due to functional magnetic resonance imaging (MRI) limitations in mapping small neural structures. Hence their role in the neurobiology of posttraumatic stress disorder (PTSD) remains poorly understood. Examination of covariance of structural MRI measures could be an alternate approach to circumvent this issue. T1-weighted anatomical scans from a 3 T scanner from non-trauma-exposed controls (NEC; n = 71, 75 % female) and PTSD participants (n = 67, 69 % female) were parcellated into 105 brain regions. Pearson's r partial correlations were computed for three and nine bilateral amygdala subnuclei and every other brain region, corrected for age, sex, and total brain volume. Pairwise correlation comparisons were performed to examine subnuclei covariance profiles between-groups. Graph theory was employed to investigate subnuclei network topology. Volumetric measures were compared to investigate structural changes. We found differences between amygdala subnuclei in covariance with the hippocampus for both groups, and additionally with temporal brain regions for the PTSD group. Network topology demonstrated the importance of the right basal nucleus in facilitating network communication only in PTSD. There were no between-group differences for any of the three structural metrics. These findings are in line with previous work that has failed to find structural differences for amygdala subnuclei between PTSD and controls. However, differences between amygdala subnuclei covariance profiles observed in our study highlight the need to investigate amygdala subnuclei functional connectivity in PTSD using higher field strength fMRI for better spatial resolution.
Collapse
Affiliation(s)
- Elizabeth M Haris
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; School of Psychology, University of New South Wales, Sydney, Australia.
| | - Richard A Bryant
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; School of Psychology, University of New South Wales, Sydney, Australia
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; Discipline of Psychiatry, Sydney Medical School, Westmead, NSW, Australia; Department of Radiology, Western Sydney Local Health District, Westmead, NSW, Australia.
| |
Collapse
|
12
|
Lim RY, Lew WCL, Ang KK. Review of EEG Affective Recognition with a Neuroscience Perspective. Brain Sci 2024; 14:364. [PMID: 38672015 PMCID: PMC11048077 DOI: 10.3390/brainsci14040364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Emotions are a series of subconscious, fleeting, and sometimes elusive manifestations of the human innate system. They play crucial roles in everyday life-influencing the way we evaluate ourselves, our surroundings, and how we interact with our world. To date, there has been an abundance of research on the domains of neuroscience and affective computing, with experimental evidence and neural network models, respectively, to elucidate the neural circuitry involved in and neural correlates for emotion recognition. Recent advances in affective computing neural network models often relate closely to evidence and perspectives gathered from neuroscience to explain the models. Specifically, there has been growing interest in the area of EEG-based emotion recognition to adopt models based on the neural underpinnings of the processing, generation, and subsequent collection of EEG data. In this respect, our review focuses on providing neuroscientific evidence and perspectives to discuss how emotions potentially come forth as the product of neural activities occurring at the level of subcortical structures within the brain's emotional circuitry and the association with current affective computing models in recognizing emotions. Furthermore, we discuss whether such biologically inspired modeling is the solution to advance the field in EEG-based emotion recognition and beyond.
Collapse
Affiliation(s)
- Rosary Yuting Lim
- Institute for Infocomm Research, Agency for Science, Technology and Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632, Singapore; (R.Y.L.); (W.-C.L.L.)
| | - Wai-Cheong Lincoln Lew
- Institute for Infocomm Research, Agency for Science, Technology and Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632, Singapore; (R.Y.L.); (W.-C.L.L.)
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., 32 Block N4 02a, Singapore 639798, Singapore
| | - Kai Keng Ang
- Institute for Infocomm Research, Agency for Science, Technology and Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632, Singapore; (R.Y.L.); (W.-C.L.L.)
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., 32 Block N4 02a, Singapore 639798, Singapore
| |
Collapse
|
13
|
Leighton T, VanHorne E, Parsons D. Oxygen Straight to the Brain: An Overview of Hyperbaric Oxygen Therapy for a Variety of Brain Morbidities. Curr Sports Med Rep 2024; 23:130-136. [PMID: 38578490 DOI: 10.1249/jsr.0000000000001158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
ABSTRACT Hyperbaric oxygen therapy as a treatment for conditions like traumatic brain injury, posttraumatic stress disorder, and migraines would seem intuitive, given its effect on condition-related ischemia and inflammation. However, hyperbaric therapeutic impacts for these in acute and chronic, or prolonged symptoms are elusive. This narrative review of hyperbaric's utility provided in sections per disease renders first a review of conventional pathological mechanisms and then articulates hyperbaric treatment targets versus their respective impacts. Multiple challenges exist using hyperbaric oxygen therapy for each morbidity, even in tertiary and adjunctive treatments. An almost universal shortfall across studies includes a lack of consistent, appropriate patient selection criteria intersected with delivery timing of therapy to symptomatic target, necessary to provide a higher fidelity in treatment metrics. Further research into these respective conditions is needed along with a revisitation of hyperbaric oxygen therapy's application to their conventional pathological mechanisms, lending new perspective to their employment and efficacy.
Collapse
Affiliation(s)
- Terrance Leighton
- Basic Underwater Demolition/SEAL Training Command, Naval Special Warfare Center, San Diego, CA
| | - Edgar VanHorne
- Naval Hospital Camp Pendleton Sports Medicine Fellowship, Camp Pendleton North, CA
| | - Dale Parsons
- United States Marine Corps School of Infantry West, Camp Pendleton North, CA
| |
Collapse
|
14
|
Stevens L, Bregulla M, Scheele D. Out of touch? How trauma shapes the experience of social touch - Neural and endocrine pathways. Neurosci Biobehav Rev 2024; 159:105595. [PMID: 38373642 DOI: 10.1016/j.neubiorev.2024.105595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/20/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Trauma can shape the way an individual experiences the world and interacts with other people. Touch is a key component of social interactions, but surprisingly little is known about how trauma exposure influences the processing of social touch. In this review, we examine possible neurobiological pathways through which trauma can influence touch processing and lead to touch aversion and avoidance in trauma-exposed individuals. Emerging evidence indicates that trauma may affect sensory touch thresholds by modulating activity in the primary sensory cortex and posterior insula. Disturbances in multisensory integration and oxytocin reactivity combined with diminished reward-related and anxiolytic responses may induce a bias towards negative appraisal of touch contexts. Furthermore, hippocampus deactivation during social touch may reflect a dissociative state. These changes depend not only on the type and severity of the trauma but also on the features of the touch. We hypothesise that disrupted touch processing may impair social interactions and confer elevated risk for future stress-related disorders.
Collapse
Affiliation(s)
- Laura Stevens
- Social Neuroscience, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Medicine, Ruhr University Bochum, Germany; Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Germany
| | - Madeleine Bregulla
- Social Neuroscience, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Medicine, Ruhr University Bochum, Germany; Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Germany
| | - Dirk Scheele
- Social Neuroscience, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Medicine, Ruhr University Bochum, Germany; Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Germany.
| |
Collapse
|
15
|
Eyraud N, Bloch S, Brizard B, Pena L, Tharsis A, Surget A, El-Hage W, Belzung C. Influence of Stress Severity on Contextual Fear Extinction and Avoidance in a Posttraumatic-like Mouse Model. Brain Sci 2024; 14:311. [PMID: 38671963 PMCID: PMC11048507 DOI: 10.3390/brainsci14040311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Posttraumatic stress disorder (PTSD) is a widespread fear-related psychiatric affection associated with fear extinction impairments and important avoidance behaviors. Trauma-related exposure therapy is the current first-hand treatment for PTSD, yet it needs to be improved to shorten the time necessary to reach remission and increase responsiveness. Additional studies to decipher the neurobiological bases of extinction and effects on PTSD-like symptoms could therefore be of use. However, a PTSD-like animal model exhibiting pronounced PTSD-related phenotypes even after an extinction training directly linked to the fearful event is necessary. Thus, using a contextual fear conditioning model of PTSD, we increased the severity of stress during conditioning to search for effects on extinction acquisition and on pre- and post-extinction behaviors. During conditioning, mice received either two or four electrical shocks while a control group was constituted of mice only exposed to the context. Stressed mice exhibited important fear generalization, high fear reaction to the context and selective avoidance of a contextual reminder even after the extinction protocol. Increasing the number of footshocks did not induce major changes on these behaviors.
Collapse
Affiliation(s)
- Noémie Eyraud
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Solal Bloch
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Bruno Brizard
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Laurane Pena
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Antoine Tharsis
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Alexandre Surget
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Wissam El-Hage
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
- Pôle de Psychiatrie et d’Addictologie, Centre Hospitalier Régional Universitaire de Tours, 37000 Tours, France
| | - Catherine Belzung
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| |
Collapse
|
16
|
Kampa M, Stark R, Klucken T. The impact of past childhood adversity and recent life events on neural responses during fear conditioning. J Neuroimaging 2024; 34:217-223. [PMID: 38009652 DOI: 10.1111/jon.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Many studies have shown that exposure to life events can have a negative impact on mental health. Life events like the death of a spouse or the birth of a child pose a challenge and require temporal or permanent adjustments. Meta-analyses on brain stress responses found bilateral anterior insula activation in response to acute stress. Fear conditioning is assumed a crucial mechanism for the development of anxiety disorders associated with increased activation in the bilateral amygdala. Empirical evidence is lacking regarding the relationship of exposure to recent life events and past childhood adversity with neural processing during fear conditioning. METHODS In the present study, we analyzed data from 103 young, healthy participants. Multiple linear regressions were performed on functional magnetic resonance imaging activation during fear conditioning with the Life Events Scale for Students and the Childhood Trauma questionnaire included as covariates in two separate models. RESULTS We found a positive relationship between the number of life events in the last year and left amygdala activation to the conditioned stimulus. A second finding was a positive relationship between childhood adversity and right anterior insula response to the unconditioned stimulus. CONCLUSIONS Many studies have shown increased amygdala activity after stressful life events. In addition, the anterior insula is activated during acute stress. The present study points to stressor-induced increased salience processing during fear conditioning. We suggest that this could be a potential mechanism for resilience versus mental illness.
Collapse
Affiliation(s)
- Miriam Kampa
- Department of Clinical Psychology and Psychotherapy, University of Siegen, Siegen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University, Giessen, Germany
| | - Rudolf Stark
- Bender Institute of Neuroimaging, Justus Liebig University, Giessen, Germany
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Tim Klucken
- Department of Clinical Psychology and Psychotherapy, University of Siegen, Siegen, Germany
| |
Collapse
|
17
|
Seligowski AV, Grewal SS, Abohashem S, Zureigat H, Qamar I, Aldosoky W, Gharios C, Hanlon E, Alani O, Bollepalli SC, Armoundas A, Fayad ZA, Shin LM, Osborne MT, Tawakol A. PTSD increases risk for major adverse cardiovascular events through neural and cardio-inflammatory pathways. Brain Behav Immun 2024; 117:149-154. [PMID: 38218349 PMCID: PMC10932910 DOI: 10.1016/j.bbi.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024] Open
Abstract
While posttraumatic stress disorder (PTSD) is known to associate with an elevated risk for major adverse cardiovascular events (MACE), few studies have examined mechanisms underlying this link. Recent studies have demonstrated that neuro-immune mechanisms, (manifested by heightened stress-associated neural activity (SNA), autonomic nervous system activity, and inflammation), link common stress syndromes to MACE. However, it is unknown if neuro-immune mechanisms similarly link PTSD to MACE. The current study aimed to test the hypothesis that upregulated neuro-immune mechanisms increase MACE risk among individuals with PTSD. This study included N = 118,827 participants from a large hospital-based biobank. Demographic, diagnostic, and medical history data collected from the biobank. SNA (n = 1,520), heart rate variability (HRV; [n = 11,463]), and high sensitivity C-reactive protein (hs-CRP; [n = 15,164]) were obtained for a subset of participants. PTSD predicted MACE after adjusting for traditional MACE risk factors (hazard ratio (HR) [95 % confidence interval (CI)] = 1.317 [1.098, 1.580], β = 0.276, p = 0.003). The PTSD-to-MACE association was mediated by SNA (CI = 0.005, 0.133, p < 0.05), HRV (CI = 0.024, 0.056, p < 0.05), and hs-CRP (CI = 0.010, 0.040, p < 0.05). This study provides evidence that neuro-immune pathways may play important roles in the mechanisms linking PTSD to MACE. Future studies are needed to determine if these markers are relevant targets for PTSD treatment and if improvements in SNA, HRV, and hs-CRP associate with reduced MACE risk in this patient population.
Collapse
Affiliation(s)
- Antonia V Seligowski
- Deparment of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Simran S Grewal
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shady Abohashem
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hadil Zureigat
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Iqra Qamar
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wesam Aldosoky
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Charbel Gharios
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Erin Hanlon
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Omar Alani
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Antonis Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Broad Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa M Shin
- Deparment of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Psychology, Tufts University, Medford, MA, USA
| | - Michael T Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ahmed Tawakol
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Huggins AA, Baird CL, Briggs M, Laskowitz S, Hussain A, Fouda S, Haswell C, Sun D, Salminen LE, Jahanshad N, Thomopoulos SI, Veltman DJ, Frijling JL, Olff M, van Zuiden M, Koch SBJ, Nawjin L, Wang L, Zhu Y, Li G, Stein DJ, Ipser J, Seedat S, du Plessis S, van den Heuvel LL, Suarez-Jimenez B, Zhu X, Kim Y, He X, Zilcha-Mano S, Lazarov A, Neria Y, Stevens JS, Ressler KJ, Jovanovic T, van Rooij SJH, Fani N, Hudson AR, Mueller SC, Sierk A, Manthey A, Walter H, Daniels JK, Schmahl C, Herzog JI, Říha P, Rektor I, Lebois LAM, Kaufman ML, Olson EA, Baker JT, Rosso IM, King AP, Liberzon I, Angstadt M, Davenport ND, Sponheim SR, Disner SG, Straube T, Hofmann D, Qi R, Lu GM, Baugh LA, Forster GL, Simons RM, Simons JS, Magnotta VA, Fercho KA, Maron-Katz A, Etkin A, Cotton AS, O'Leary EN, Xie H, Wang X, Quidé Y, El-Hage W, Lissek S, Berg H, Bruce S, Cisler J, Ross M, Herringa RJ, Grupe DW, Nitschke JB, Davidson RJ, Larson CL, deRoon-Cassini TA, Tomas CW, Fitzgerald JM, Blackford JU, Olatunji BO, Kremen WS, Lyons MJ, Franz CE, Gordon EM, May G, Nelson SM, Abdallah CG, Levy I, Harpaz-Rotem I, Krystal JH, Dennis EL, Tate DF, Cifu DX, Walker WC, Wilde EA, Harding IH, Kerestes R, Thompson PM, Morey R. Smaller total and subregional cerebellar volumes in posttraumatic stress disorder: a mega-analysis by the ENIGMA-PGC PTSD workgroup. Mol Psychiatry 2024; 29:611-623. [PMID: 38195980 PMCID: PMC11153161 DOI: 10.1038/s41380-023-02352-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p-FDR < 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.
Collapse
Grants
- I01 RX002171 RRD VA
- R21MH106998 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX002170 RRD VA
- 27040 Brain and Behavior Research Foundation (Brain & Behavior Research Foundation)
- R01 MH129832 NIMH NIH HHS
- R01MH105535 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX002172 RRD VA
- P41 EB015922 NIBIB NIH HHS
- P50 U.S. Department of Health & Human Services | NIH | National Institute on Alcohol Abuse and Alcoholism (NIAAA)
- I01 RX002174 RRD VA
- W81XWH-10-1-0925 U.S. Department of Defense (United States Department of Defense)
- R56 MH071537 NIMH NIH HHS
- 20ZDA079 National Natural Science Foundation of China (National Science Foundation of China)
- P30 HD003352 NICHD NIH HHS
- R01AG059874 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01MH107382 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R61NS120249 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- K01 MH122774 NIMH NIH HHS
- I01 RX003444 RRD VA
- IK2 RX002922 RRD VA
- R01AG022381 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- 31971020 National Natural Science Foundation of China (National Science Foundation of China)
- R21 MH098212 NIMH NIH HHS
- R01 MH113574 NIMH NIH HHS
- K12 HD085850 NICHD NIH HHS
- 1IK2CX001680 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- R01 MH071537 NIMH NIH HHS
- HD085850 U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- R21 MH106998 NIMH NIH HHS
- I01 RX003442 RRD VA
- IK2 CX001680 CSRD VA
- 14848 Michael J. Fox Foundation for Parkinson's Research (Michael J. Fox Foundation)
- R01 AG064955 NIA NIH HHS
- R01MH110483 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 CX001135 CSRD VA
- 1IK2RX000709 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- R21 MH112956 NIMH NIH HHS
- W81XWH-08-2-0038 United States Department of Defense | United States Army | Army Medical Command | Congressionally Directed Medical Research Programs (CDMRP)
- R01 MH105355 NIMH NIH HHS
- K23MH090366 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- K01 MH118428 NIMH NIH HHS
- R01 MH105535 NIMH NIH HHS
- MH101380 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- WA 1539/8-2 Deutsche Forschungsgemeinschaft (German Research Foundation)
- M01RR00039 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- M01 RR000039 NCRR NIH HHS
- I01 RX003443 RRD VA
- R01 MH111671 NIMH NIH HHS
- R01 MH106574 NIMH NIH HHS
- R01 MH116147 NIMH NIH HHS
- R01MH111671 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01MH117601 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- 1K2RX002922 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- I01 RX001880 RRD VA
- R21MH102634 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- MH071537 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX000622 RRD VA
- R01MH096987 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- K01MH122774 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 HX003155 HSRD VA
- R01MH106574 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- U54 EB020403 NIBIB NIH HHS
- R01 MH117601 NIMH NIH HHS
- I01 RX001774 RRD VA
- I01 CX002097 CSRD VA
- UL1TR000454 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- I01 RX002076 RRD VA
- R01 MH119227 NIMH NIH HHS
- K01MH118467 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- SFB/TRR 58: C06, C07 Deutsche Forschungsgemeinschaft (German Research Foundation)
- U21A20364 National Natural Science Foundation of China (National Science Foundation of China)
- BK20221554 Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation)
- UL1 TR000454 NCATS NIH HHS
- R01 MH107382 NIMH NIH HHS
- R01MH119227 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 CX001246 CSRD VA
- MH098212 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R56 AG058854 NIA NIH HHS
- 40-00812-98-10041 ZonMw (Netherlands Organisation for Health Research and Development)
- T32 MH018931 NIMH NIH HHS
- R01 AG076838 NIA NIH HHS
- K23 MH101380 NIMH NIH HHS
- R01 MH043454 NIMH NIH HHS
- R21 MH102634 NIMH NIH HHS
- K01MH118428 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- HD071982 U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- R01 HD071982 NICHD NIH HHS
- K23 MH090366 NIMH NIH HHS
- I01 RX002173 RRD VA
- R01MH105355 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01RX000622 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- W81XWH-12-2-0012 U.S. Department of Defense (United States Department of Defense)
- R61 NS120249 NINDS NIH HHS
- R21MH098198 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- K01 MH118467 NIMH NIH HHS
- I01 CX002096 CSRD VA
- I01 CX001820 CSRD VA
- R21MH112956 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- IK2 RX000709 RRD VA
- I01 RX001135 RRD VA
- DA 1222/4-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- R01 MH096987 NIMH NIH HHS
- 1184403 Department of Health | National Health and Medical Research Council (NHMRC)
- R01 AG022381 NIA NIH HHS
- R01 AG050595 NIA NIH HHS
- M01RR00039 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01AG050595 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01 AG059874 NIA NIH HHS
- VA Mid-Atlantic MIRECC
- Michael J. Fox Foundation for Parkinson’s Research (Michael J. Fox Foundation)
- Amsterdam Academic Medical Center grant
- South African Medical Research Council (SAMRC)
- Ghent University Special Research Fund (BOF) 01J05415
- Julia Kasparian Fund for Neuroscience Research
- McLean Hospital Trauma Scholars Fund, Barlow Family Fund, Julia Kasparian Fund for Neuroscience Research
- Foundation for the Social Development Project of Jiangsu No. BE2022705
- Center for Brain and Behavior Research Pilot Grant, South Dakota Governor’s Research Center Grant
- Center for Brain and Behavior Research Pilot Grant, South Dakota Governor ’s Research Center Grant
- Fondation Pierre Deniker pour la Recherche et la Prévention en Santé Mentale (Fondation Pierre Deniker pour la Recherche & la Prévention en Santé Mentale)
- PHRC, SFR FED4226
- Dana Foundation (Charles A. Dana Foundation)
- UW | Institute for Clinical and Translational Research, University of Wisconsin, Madison (UW Institute for Clinical and Translational Research)
- National Science Foundation (NSF)
- US VA VISN17 Center of Excellence Pilot funding
- VA National Center for PTSD, Beth K and Stuart Yudofsky Chair in the Neuropsychiatry of Military Post Traumatic Stress Syndrome
- US VA National Center for PTSD, NCATS
- This work was supported by the Assistant Secretary of Defense for Health Affairs endorsed by the Department of Defense, through the Psychological Health/Traumatic Brain Injury Research Program Long-Term Impact of Military-Relevant Brain Injury Consortium (LIMBIC) Award/W81XWH-18-PH/TBIRP-LIMBIC under Awards No. W81XWH1920067 and W81XWH-13-2-0095, and by the U.S. Department of Veterans Affairs Awards No. I01 CX002097, I01 CX002096, I01 CX001820, I01 HX003155, I01 RX003444, I01 RX003443, I01 RX003442, I01 CX001135, I01 CX001246, I01 RX001774, I01 RX 001135, I01 RX 002076, I01 RX 001880, I01 RX 002172, I01 RX 002173, I01 RX 002171, I01 RX 002174, and I01 RX 002170. The U.S. Army Medical Research Acquisition Activity, 839 Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering acquisition office.
- HFP90-020
- VA VISN6 MIRECC
Collapse
Affiliation(s)
- Ashley A Huggins
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA.
| | - C Lexi Baird
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Melvin Briggs
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Sarah Laskowitz
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Ahmed Hussain
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Samar Fouda
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
- Department of Psychiatry & Behavioral Sciences, Duke School of Medicine, Durham, NC, USA
| | - Courtney Haswell
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Delin Sun
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
- Department of Psychology, The Education University of Hong Kong, Ting Kok, Hong Kong
| | - Lauren E Salminen
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Dick J Veltman
- Amsterdam UMC Vrije Universiteit, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jessie L Frijling
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Miranda Olff
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- ARQ National Psychotrauma Centre, Diemen, The Netherlands
| | - Mirjam van Zuiden
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Saskia B J Koch
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Laura Nawjin
- Amsterdam UMC Vrije Universiteit, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Li Wang
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ye Zhu
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gen Li
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Center for Global Health Equity, New York University Shanghai, Shanghai, China
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jonathan Ipser
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders (GBD), Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Stefan du Plessis
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders (GBD), Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Leigh L van den Heuvel
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders (GBD), Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Xi Zhu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Yoojean Kim
- New York State Psychiatric Institute, New York, NY, USA
| | - Xiaofu He
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | | | - Amit Lazarov
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Yuval Neria
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna R Hudson
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Anika Sierk
- University Medical Centre Charité, Berlin, Germany
| | | | | | - Judith K Daniels
- Department of Clinical Psychology, University of Groningen, Groningen, The Netherlands
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Julia I Herzog
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Pavel Říha
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- CEITEC-Central European Institute of Technology, Multimodal and Functional Neuroimaging Research Group, Masaryk University, Brno, Czech Republic
| | - Ivan Rektor
- CEITEC-Central European Institute of Technology, Multimodal and Functional Neuroimaging Research Group, Masaryk University, Brno, Czech Republic
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Women's Mental Health, McLean Hospital, Belmont, MA, USA
| | - Elizabeth A Olson
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Justin T Baker
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Isabelle M Rosso
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Anthony P King
- Department of Psychiatry and Behavioral Health, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Isreal Liberzon
- Department of Psychiatry, Texas A&M University, Bryan, Texas, USA
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas D Davenport
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Seth G Disner
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lee A Baugh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
| | - Gina L Forster
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Raluca M Simons
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Department of Psychology, University of South Dakota, Vermillion, SD, USA
- Disaster Mental Health Institute, Vermillion, SD, USA
| | - Jeffrey S Simons
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
- Department of Psychology, University of South Dakota, Vermillion, SD, USA
| | - Vincent A Magnotta
- Departments of Radiology, Psychiatry, and Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Kelene A Fercho
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
- Civil Aerospace Medical Institute, US Federal Aviation Administration, Oklahoma City, OK, USA
| | - Adi Maron-Katz
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Andrew S Cotton
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Erin N O'Leary
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Hong Xie
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Xin Wang
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Yann Quidé
- School of Psychology, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Wissam El-Hage
- UMR1253, Université de Tours, Inserm, Tours, France
- CIC1415, CHRU de Tours, Inserm, Tours, France
| | - Shmuel Lissek
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Hannah Berg
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Steven Bruce
- Department of Psychological Sciences, Center for Trauma Recovery University of Missouri-St. Louis, St. Louis, MO, USA
| | - Josh Cisler
- Department of Psychiatry, University of Texas at Austin, Austin, TX, USA
| | - Marisa Ross
- Northwestern Neighborhood and Network Initiative, Northwestern University Institute for Policy Research, Evanston, IL, USA
| | - Ryan J Herringa
- School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, USA
| | - Daniel W Grupe
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - Jack B Nitschke
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christine L Larson
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Terri A deRoon-Cassini
- Division of Trauma and Acute Care Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Comprehensive Injury Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Carissa W Tomas
- Comprehensive Injury Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Epidemiology and Social Sciences, Institute of Health and Equity, Medical College of Wisconsin Milwaukee, Milwaukee, WI, USA
| | | | - Jennifer Urbano Blackford
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bunmi O Olatunji
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Michael J Lyons
- Dept. of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Carol E Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Geoffrey May
- Veterans Integrated Service Network-17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, Minneapolis, MN, USA
| | - Chadi G Abdallah
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ifat Levy
- Departments of Comparative Medicine, Neuroscience and Psychology, Wu Tsai Institute, Yale University, New Haven, CT, USA
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
- Departments of Psychiatry and of Psychology, Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - David X Cifu
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - William C Walker
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
- Veterans Affairs (VA) Richmond Health Care, Richmond, VA, USA
| | - Elizabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Vic, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Vic, Australia
| | - Rebecca Kerestes
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Vic, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Rajendra Morey
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| |
Collapse
|
19
|
Norred MA, Zuschlag ZD, Hamner MB. A Neuroanatomic and Pathophysiologic Framework for Novel Pharmacological Approaches to the Treatment of Post-traumatic Stress Disorder. Drugs 2024; 84:149-164. [PMID: 38413493 DOI: 10.1007/s40265-023-01983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 02/29/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating disorder inflicting high degrees of symptomatic and socioeconomic burdens. The development of PTSD results from a cascade of events with contributions from multiple processes and the underlying pathophysiology is complex, involving neurotransmitters, neurocircuitry, and neuroanatomical pathways. Presently, only two medications are US FDA-approved for the treatment of PTSD, both selective serotonin reuptake inhibitors (SSRIs). However, the complex underlying pathophysiology suggests a number of alternative pathways and mechanisms that may be targets for potential drug development. Indeed, investigations and drug development are proceeding in a number of these alternative, non-serotonergic pathways in an effort to improve the management of PTSD. In this manuscript, the authors introduce novel and emerging treatments for PTSD, including drugs in various stages of development and clinical testing (BI 1358894, BNC-210, PRAX-114, JZP-150, LU AG06466, NYV-783, PH-94B, SRX246, TNX-102), established agents and known compounds being investigated for their utility in PTSD (brexpiprazole, cannabidiol, doxasoin, ganaxolone, intranasal neuropeptide Y, intranasal oxytocin, tianeptine oxalate, verucerfont), and emerging psychedelic interventions (ketamine, MDMA-assisted psychotherapy, psilocybin-assisted psychotherapy), with an aim to examine and integrate these agents into the underlying pathophysiological frameworks of trauma-related disorders.
Collapse
Affiliation(s)
- Michael A Norred
- Mental Health and Behavioral Sciences Service, James A. Haley Veterans Hospital, Tampa, FL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL, USA
| | - Zachary D Zuschlag
- Mental Health and Behavioral Sciences Service, James A. Haley Veterans Hospital, Tampa, FL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL, USA
| | - Mark B Hamner
- Behavioral Health Service, Ralph H. Johnson VA Medical Center, 109 Bee Street, Charleston, SC, 29401, USA.
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
20
|
Chen HJ, Guo Y, Ke J, Qiu J, Zhang L, Xu Q, Zhong Y, Lu GM, Qin H, Qi R, Chen F. Characterizing Typhoon-related Posttraumatic Stress Disorder Based on Multimodal Fusion of Structural, Diffusion, and Functional Magnetic Resonance Imaging. Neuroscience 2024; 537:141-150. [PMID: 38042250 DOI: 10.1016/j.neuroscience.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/04/2023]
Abstract
Diagnosing posttraumatic stress disorder (PTSD) using only single-modality images is controversial. We aimed to use multimodal magnetic resonance imaging (MRI) combining structural, diffusion, and functional MRI to possibly provide a more comprehensive viewpoint on the decisive characteristics of PTSD patients. Typhoon-exposed individuals with (n = 26) and without PTSD (n = 32) and healthy volunteers (n = 30) were enrolled. Five MRI features from three modalities, including two resting-state functional MRI (rs-fMRI) features (amplitude of low-frequency fluctuation, ALFF; and regional homogeneity, ReHo), one structural MRI feature (gray matter density, GM), and two diffusion tensor imaging (DTI) features (fractional anisotropy, FA; and mean diffusivity, MD) were investigated simultaneously with a multimodal canonical correlation analysis + joint independent component analysis model to identify abnormalities in the PTSD brain. We identified statistical differences between PTSD patients and healthy controls in terms of 1 rs-fMRI (ALFF, ReHo) alterations in the superior frontal gyrus, precuneus, inferior parietal lobule (IPL), anterior cingulate cortex (ACC), and posterior cingulate cortex (PCC), 2 DTI (FA, MD) changes in the pons, genu, and splenium of the corpus callosum, and 3 Structural MRI abnormalities in the precuneus, IPL, ACC, and PCC. A novel ReHo component was found to distinguish PTSD and trauma-exposed controls, including the precuneus, IPL, middle frontal gyrus, middle occipital gyrus, and cerebellum. This study reveals that PTSD individuals exhibit intertwined functional and structural anomalies within the default mode network. Some alterations within this network may serve as a potential marker to distinguish between PTSD patients and trauma-exposed controls.
Collapse
Affiliation(s)
- Hui Juan Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan 570311, PR China
| | - Yihao Guo
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan 570311, PR China
| | - Jun Ke
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, PR China; Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, PR China
| | - Jie Qiu
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan 570311, PR China
| | - Li Zhang
- Mental Health Institute, The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, PR China
| | - Yuan Zhong
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, PR China
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, PR China
| | - Haodong Qin
- MR Collaboration, Siemens Healthineers Ltd., Guangzhou, PR China
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, PR China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan 570311, PR China.
| |
Collapse
|
21
|
Kim BH, Baek J, Kim O, Kim H, Ko M, Chu SH, Jung YC. North Korean defectors with PTSD and complex PTSD show alterations in default mode network resting-state functional connectivity. BJPsych Open 2024; 10:e25. [PMID: 38179593 PMCID: PMC10790227 DOI: 10.1192/bjo.2023.636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND North Korean defectors (NKDs) have often been exposed to traumatic events. However, there have been few studies of neural alterations in NKDs with post-traumatic stress disorder (PTSD) and complex PTSD (cPTSD). AIMS To investigate neural alterations in NKDs with PTSD and cPTSD, with a specific focus on alterations in resting-state functional connectivity networks, including the default mode network (DMN). METHOD Resting-state functional connectivity was assessed using brain functional magnetic resonance imaging in three groups of NKDs: without PTSD, with PTSD and with cPTSD. Statistical tests were performed, including region of interest (ROI)-to-ROI and ROI-to-voxel analysis, followed by post hoc correlation analysis. RESULTS In the ROI-to-ROI analysis, differences in functional connectivity were found among the components of the DMN, as well as in the thalamus and the basal ganglia. Right hippocampus-left pallidum and right amygdala-left lingual gyrus connectivity differed between groups in the ROI-to-voxel analysis, as did connectivity involving the basal ganglia. The post hoc analysis revealed negative correlations between Coping and Adaptation Processing Scale (CAPS) score and left posterior cingulate cortex-right pallidum connectivity and between CAPS score and right putamen-left angular gyrus connectivity in the control group, which were not observed in other groups. CONCLUSIONS The results suggest that there are alterations in the functional connectivity of the DMN and the limbic system in NKDs with PTSD and cPTSD, and that these alterations involve the basal ganglia. The lower correlations of CAPS score with right basal ganglia-DMN functional connectivity in patients compared with controls further implies that these connectivities are potential targets for treatment of PTSD and cPTSD.
Collapse
Affiliation(s)
- Byung-Hoon Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea; and Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jiwon Baek
- Mo-Im Kim Nursing Research Institute, Yonsei University College of Nursing, Seoul, South Korea
| | - Ocksim Kim
- Department of Nursing, Yonsei University College of Nursing and Brain Korea 21 FOUR Project, Seoul, South Korea
| | - Hokon Kim
- Department of Nursing, Yonsei University College of Nursing, Seoul, South Korea; and Brain Korea 21 FOUR Project, Seoul, South Korea
| | - Minjeong Ko
- Department of Nursing, Yonsei University College of Nursing, Seoul, South Korea
| | - Sang Hui Chu
- Mo-Im Kim Nursing Research Institute, Yonsei University College of Nursing, Seoul, South Korea; and Department of Nursing, Yonsei University College of Nursing, Seoul, South Korea
| | - Young-Chul Jung
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea; and Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
22
|
Fine NB, Neuman Fligelman E, Carlton N, Bloch M, Hendler T, Helpman L, Seligman Z, Armon DB. Integration of limbic self-neuromodulation with psychotherapy for complex post-traumatic stress disorder: treatment rationale and case study. Eur J Psychotraumatol 2024; 15:2256206. [PMID: 38166532 PMCID: PMC10769120 DOI: 10.1080/20008066.2023.2256206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/24/2023] [Indexed: 01/04/2024] Open
Abstract
Treatment Rationale: Exposure to repeated sexual trauma, particularly during childhood, often leads to protracted mental health problems. Childhood adversity is specifically associated with complex posttraumatic stress disorder (PTSD) presentation, which is particularly tenacious and treatment refractory, and features severe emotion dysregulation. Augmentation approaches have been suggested to enhance treatment efficacy in PTSD thus integrating first-line psychotherapy with mechanistically informed self-neuromodulation procedures (i.e. neurofeedback) may pave the way to enhanced clinical outcomes. A central neural mechanism of PTSD and emotion dysregulation involves amygdala hyperactivity that can be volitionally regulated by neurofeedback. We outline a treatment rationale that includes a detailed justification for the potential of combining psychotherapy and NF and delineate mechanisms of change. We illustrate key processes of reciprocal interactions between neurofeedback engagement and therapeutic goals.Case Study: We describe a clinical case of a woman with complex PTSD due to early and repetitive childhood sexual abuse using adjunctive neurofeedback as an augmentation to an ongoing, stable, traditional treatment plan. The woman participated in (a) ten sessions of neurofeedback by the use of an fMRI-inspired EEG model of limbic related activity (Amygdala Electrical-Finger-Print; AmygEFP-NF), (b) traditional weekly individual psychotherapy, (c) skills group. Before and after NF training period patient was blindly assessed for PTSD symptoms, followed by a 1, 3- and 6-months self-report follow-up. We demonstrate mechanisms of change as well as the clinical effectiveness of adjunctive treatment as indicated by reduced PTSD symptoms and improved daily functioning within this single case.Conclusions: We outline an integrative neuropsychological framework for understanding the unique mechanisms of change conferring value to conjoining NF applications with trauma-focused psychotherapy in complex PTSD.
Collapse
Affiliation(s)
- Naomi B. Fine
- Faculty of Social Sciences, School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol Brain Institute Tel-Aviv, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Ellie Neuman Fligelman
- Lotem Center for Treatment of Sexual Trauma, Department of Psychiatry, Sourasky Medical Center, Tel Aviv, Israel
| | - Nora Carlton
- Lotem Center for Treatment of Sexual Trauma, Department of Psychiatry, Sourasky Medical Center, Tel Aviv, Israel
| | - Miki Bloch
- Psychiatric Department, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Talma Hendler
- Faculty of Social Sciences, School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol Brain Institute Tel-Aviv, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Liat Helpman
- Psychiatric Department, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Department of Counseling and Human Development, University of Haifa, Haifa, Israel
| | - Zivya Seligman
- Lotem Center for Treatment of Sexual Trauma, Department of Psychiatry, Sourasky Medical Center, Tel Aviv, Israel
| | - Daphna Bardin Armon
- Lotem Center for Treatment of Sexual Trauma, Department of Psychiatry, Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
23
|
Ben-Zion Z, Korem N, Fine NB, Katz S, Siddhanta M, Funaro MC, Duek O, Spiller TR, Danböck SK, Levy I, Harpaz-Rotem I. Structural Neuroimaging of Hippocampus and Amygdala Subregions in Posttraumatic Stress Disorder: A Scoping Review. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:120-134. [PMID: 38298789 PMCID: PMC10829655 DOI: 10.1016/j.bpsgos.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 02/02/2024] Open
Abstract
Numerous studies have explored the relationship between posttraumatic stress disorder (PTSD) and the hippocampus and the amygdala because both regions are implicated in the disorder's pathogenesis and pathophysiology. Nevertheless, those key limbic regions consist of functionally and cytoarchitecturally distinct substructures that may play different roles in the etiology of PTSD. Spurred by the availability of automatic segmentation software, structural neuroimaging studies of human hippocampal and amygdala subregions have proliferated in recent years. Here, we present a preregistered scoping review of the existing structural neuroimaging studies of the hippocampus and amygdala subregions in adults diagnosed with PTSD. A total of 3513 studies assessing subregion volumes were identified, 1689 of which were screened, and 21 studies were eligible for this review (total N = 2876 individuals). Most studies examined hippocampal subregions and reported decreased CA1, CA3, dentate gyrus, and subiculum volumes in PTSD. Fewer studies investigated amygdala subregions and reported altered lateral, basal, and central nuclei volumes in PTSD. This review further highlights the conceptual and methodological limitations of the current literature and identifies future directions to increase understanding of the distinct roles of hippocampal and amygdalar subregions in posttraumatic psychopathology.
Collapse
Affiliation(s)
- Ziv Ben-Zion
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Nachshon Korem
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Naomi B. Fine
- Sagol Brain Institute Tel-Aviv, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Social Sciences, School of Psychological Science, Tel Aviv University, Tel Aviv, Israel
| | - Sophia Katz
- Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Megha Siddhanta
- Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Melissa C. Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, Connecticut
| | - Or Duek
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Department of Epidemiology, Biostatistics and Community Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tobias R. Spiller
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Sarah K. Danböck
- Yale School of Medicine, Yale University, New Haven, Connecticut
- Division of Clinical Psychology and Psychopathology, Department of Psychology, Paris London University of Salzburg, Salzburg, Austria
| | - Ifat Levy
- Yale School of Medicine, Yale University, New Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Ilan Harpaz-Rotem
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| |
Collapse
|
24
|
Aarts I, Vriend C, van den Heuvel OA, Thomaes K. Brain activation during an emotional task in participants with PTSD and borderline and/or cluster C personality disorders. Neuroimage Clin 2023; 41:103554. [PMID: 38128160 PMCID: PMC10777111 DOI: 10.1016/j.nicl.2023.103554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Although comorbidity of post-traumatic stress disorder (PTSD) with borderline personality disorder (BPD) and/or cluster C personality disorders (CPD) is common, neural correlates of this comorbidity are unknown. METHODS We acquired functional MRI scans during an emotional face task in participants with PTSD + CPD (n = 34), PTSD + BPD (n = 24), PTSD + BPD + CPD (n = 18) and controls (n = 30). We used ANCOVAs and Bayesian analyses on specific ROIs in a fearful vs. scrambled faces contrast. We also investigated associations with clinical measures. RESULTS There were no robust differences in brain activation between the groups with ANCOVAs. Transdiagnostically, we found a negative association between severity of dissociation and right insula and right dmPFC activation, and emotion regulation problems with right dmPFC activation. Bayesian analyses showed credible evidence for higher activation in all ROIs in the PTSD + BPD + CPD group compared to PTSD + BPD and PTSD + CPD. DISCUSSION Our Bayesian and correlation analyses support new dimensional conceptualizations of personality disorders.
Collapse
Affiliation(s)
- Inga Aarts
- Sinai Centrum, Arkin, Amstelveen, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy and Neurosciences, Boelelaan 1117, Amsterdam, the Netherlands.
| | - Chris Vriend
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy and Neurosciences, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention program, Amsterdam, the Netherlands
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy and Neurosciences, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention program, Amsterdam, the Netherlands
| | - Kathleen Thomaes
- Sinai Centrum, Arkin, Amstelveen, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy and Neurosciences, Boelelaan 1117, Amsterdam, the Netherlands
| |
Collapse
|
25
|
Miller LN, Forbes D, McFarlane AC, Lawrence-Wood E, Simmons JG, Felmingham K. Cumulative trauma load and timing of trauma prior to military deployment differentially influences inhibitory control processing across deployment. Sci Rep 2023; 13:21414. [PMID: 38049477 PMCID: PMC10696090 DOI: 10.1038/s41598-023-48505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
Military personnel experience high trauma load that can change brain circuitry leading to impaired inhibitory control and posttraumatic stress disorder (PTSD). Inhibitory control processing may be particularly vulnerable to developmental and interpersonal trauma. This study examines the differential role of cumulative pre-deployment trauma and timing of trauma on inhibitory control using the Go/NoGo paradigm in a military population. The Go/NoGo paradigm was administered to 166 predominately male army combat personnel at pre- and post-deployment. Linear mixed models analyze cumulative trauma, trauma onset, and post-deployment PTSD symptoms on NoGo-N2 and NoGo-P3 amplitude and latency across deployment. Here we report, NoGo-N2 amplitude increases and NoGo-P3 amplitude and latency decreases in those with high prior interpersonal trauma across deployment. Increases in NoGo-P3 amplitude following adolescent-onset trauma and NoGo-P3 latency following childhood-onset and adolescent-onset trauma are seen across deployment. Arousal symptoms positively correlated with conflict monitoring. Our findings support the cumulative trauma load and sensitive period of trauma exposure models for inhibitory control processing in a military population. High cumulative interpersonal trauma impacts conflict monitoring and response suppression and increases PTSD symptoms whereas developmental trauma differentially impacts response suppression. This research highlights the need for tailored strategies for strengthening inhibitory control, and that consider timing and type of trauma in military personnel.
Collapse
Affiliation(s)
- Lisa N Miller
- Melbourne School of Psychological Science, Trauma Anxiety and Stress Lab, The University of Melbourne, Level 7, Redmond Barry Building, Melbourne, VIC, 3010, Australia.
| | - David Forbes
- Department of Psychiatry, The University of Melbourne, Melbourne, Australia
- Phoenix Australia, Centre for Posttraumatic Mental Health, Melbourne, Australia
| | - Alexander C McFarlane
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Ellie Lawrence-Wood
- Department of Psychiatry, The University of Melbourne, Melbourne, Australia
- Phoenix Australia, Centre for Posttraumatic Mental Health, Melbourne, Australia
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Julian G Simmons
- Melbourne School of Psychological Science, Trauma Anxiety and Stress Lab, The University of Melbourne, Level 7, Redmond Barry Building, Melbourne, VIC, 3010, Australia
| | - Kim Felmingham
- Melbourne School of Psychological Science, Trauma Anxiety and Stress Lab, The University of Melbourne, Level 7, Redmond Barry Building, Melbourne, VIC, 3010, Australia
| |
Collapse
|
26
|
Andrews K, Lloyd CS, Densmore M, Kearney BE, Harricharan S, McKinnon MC, Théberge J, Jetly R, Lanius RA. 'I am afraid you will see the stain on my soul': Direct gaze neural processing in individuals with PTSD after moral injury recall. Soc Cogn Affect Neurosci 2023; 18:nsad053. [PMID: 37897804 PMCID: PMC10612569 DOI: 10.1093/scan/nsad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/20/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
Direct eye contact is essential to understanding others' thoughts and feelings in social interactions. However, those with post-traumatic stress disorder (PTSD) and exposure to moral injury (MI) may exhibit altered theory-of-mind (ToM)/mentalizing processes and experience shame which precludes one's capacity for direct eye contact. We investigated blood oxygenation level-dependent (BOLD) responses associated with direct vs averted gaze using a virtual reality paradigm in individuals with PTSD (n = 28) relative to healthy controls (n = 18) following recall of a MI vs a neutral memory. Associations between BOLD responses and clinical symptomatology were also assessed. After MI recall, individuals with PTSD showed greater activation in the right temporoparietal junction as compared to controls (T = 4.83; pFDR < 0.001; k = 237) during direct gaze. No significant activation occurred during direct gaze after neutral memory recall. Further, a significant positive correlation was found between feelings of distress and right medial superior frontal gyrus activation in individuals with PTSD (T = 5.03; pFDR = 0.049; k = 123). These findings suggest that direct gaze after MI recall prompts compensatory ToM/mentalizing processing. Implications for future interventions aimed at mitigating the effects of PTSD on social functioning are discussed.
Collapse
Affiliation(s)
- Krysta Andrews
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON L8N 3K7, Canada
- Homewood Research Institute, Guelph, ON N1E 6K9, Canada
| | - Chantelle S Lloyd
- Homewood Research Institute, Guelph, ON N1E 6K9, Canada
- Department of Psychiatry, Western University, London, ON N6C 0A7, Canada
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Maria Densmore
- Department of Psychiatry, Western University, London, ON N6C 0A7, Canada
- Imaging Division, Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - Breanne E Kearney
- Department of Neuroscience, Western University, London, ON N6A 3K7, Canada
| | - Sherain Harricharan
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON L8N 3K7, Canada
| | - Margaret C McKinnon
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON L8N 3K7, Canada
- Homewood Research Institute, Guelph, ON N1E 6K9, Canada
- Mood Disorders Program, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 3K7, Canada
| | - Jean Théberge
- Department of Psychiatry, Western University, London, ON N6C 0A7, Canada
- Imaging Division, Lawson Health Research Institute, London, ON N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada
| | - Rakesh Jetly
- Canadian Forces, Health Services, Ottawa, ON K1A 0S2, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Ruth A Lanius
- Homewood Research Institute, Guelph, ON N1E 6K9, Canada
- Department of Psychiatry, Western University, London, ON N6C 0A7, Canada
- Imaging Division, Lawson Health Research Institute, London, ON N6A 4V2, Canada
- Department of Neuroscience, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
27
|
Dehdar K, Raoufy MR. Brain structural and functional alterations related to anxiety in allergic asthma. Brain Res Bull 2023; 202:110727. [PMID: 37562517 DOI: 10.1016/j.brainresbull.2023.110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Psychiatric disorders are common in patients with allergic asthma, and they can have a significant impact on their quality of life and disease control. Recent studies have suggested that there may be potential immune-brain communication mechanisms in asthma, which can activate inflammatory responses in different brain areas, leading to structural and functional alterations and behavioral changes. However, the precise mechanisms underlying these alterations remain unclear. In this paper, we comprehensively review the relevant research on asthma-induced brain structural and functional alterations that lead to the initiation and promotion of anxiety. We summarize the possible pathways for peripheral inflammation to affect the brain's structure and function. Our review highlights the importance of addressing neuropsychiatric disorders in the clinical guidelines of asthma, to improve the quality of life of these patients. We suggest that a better understanding of the mechanisms underlying psychiatric comorbidities in asthma could lead to the development of more effective treatments for these patients.
Collapse
Affiliation(s)
- Kolsoum Dehdar
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
28
|
Haris EM, Bryant RA, Williamson T, Korgaonkar MS. Functional connectivity of amygdala subnuclei in PTSD: a narrative review. Mol Psychiatry 2023; 28:3581-3594. [PMID: 37845498 PMCID: PMC10730419 DOI: 10.1038/s41380-023-02291-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
While the amygdala is often implicated in the neurobiology of posttraumatic stress disorder (PTSD), the pattern of results remains mixed. One reason for this may be the heterogeneity of amygdala subnuclei and their functional connections. This review used PRISMA guidelines to synthesize research exploring the functional connectivity of three primary amygdala subnuclei, basolateral (BLA), centromedial (CMA), and superficial nuclei (SFA), in PTSD (N = 331) relative to trauma-exposed (N = 155) and non-trauma-exposed controls (N = 210). Although studies were limited (N = 11), preliminary evidence suggests that in PTSD compared to trauma-exposed controls, the BLA shows greater connectivity with the dorsal anterior cingulate, an area involved in salience detection. In PTSD compared to non-trauma-exposed controls, the BLA shows greater connectivity with the middle frontal gyrus, an area involved in attention. No other connections were replicated across studies. A secondary aim of this review was to outline the limitations of this field to better shape future research. Importantly, the results from this review indicate the need to consider potential mediators of amygdala subnuclei connectivity, such as trauma type and sex, when conducting such studies. They also highlight the need to be aware of the limited inferences we can make with such small samples that investigate small subcortical structures on low field strength magnetic resonance imaging scanners. Collectively, this review demonstrates the importance of exploring the differential connectivity of amygdala subnuclei to understand the pathophysiology of PTSD and stresses the need for future research to harness the strength of ultra-high field imaging to gain a more sensitive picture of the neural connectivity underlying PTSD.
Collapse
Affiliation(s)
- Elizabeth M Haris
- School of Psychology, University of New South Wales, Sydney, NSW, Australia.
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.
| | - Richard A Bryant
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Thomas Williamson
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.
- Discipline of Psychiatry, Sydney Medical School, Westmead, NSW, Australia.
- Western Sydney Local Health District, Westmead, NSW, Australia.
| |
Collapse
|
29
|
Fraile E, Gagnepain P, Eustache F, Groussard M, Platel H. Musical experience prior to traumatic exposure as a resilience factor: a conceptual analysis. Front Psychol 2023; 14:1220489. [PMID: 37599747 PMCID: PMC10436084 DOI: 10.3389/fpsyg.2023.1220489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
Resilience mechanisms can be dynamically triggered throughout the lifecourse by resilience factors in order to prevent individuals from developing stress-related pathologies such as posttraumatic stress disorder (PTSD). Some interventional studies have suggested that listening to music and musical practice after experiencing a traumatic event decrease the intensity of PTSD, but surprisingly, no study to our knowledge has explored musical experience as a potential resilience factor before the potential occurrence of a traumatic event. In the present conceptual analysis, we sought to summarize what is known about the concept of resilience and how musical experience could trigger two key mechanisms altered in PTSD: emotion regulation and cognitive control. Our hypothesis is that the stimulation of these two mechanisms by musical experience during the pre-traumatic period could help protect against the symptoms of emotional dysregulation and intrusions present in PTSD. We then developed a new framework to guide future research aimed at isolating and investigating the protective role of musical experience regarding the development of PTSD in response to trauma. The clinical application of this type of research could be to develop pre-trauma training that promotes emotional regulation and cognitive control, aimed at populations at risk of developing PTSD such as healthcare workers, police officers, and military staffs.
Collapse
|
30
|
Suarez-Jimenez B, Lazarov A, Zhu X, Pine DS, Bar-Haim Y, Neria Y. Attention allocation to negatively-valenced stimuli in PTSD is associated with reward-related neural pathways. Psychol Med 2023; 53:4666-4674. [PMID: 35652602 PMCID: PMC9715854 DOI: 10.1017/s003329172200157x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/13/2022] [Accepted: 05/11/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND In a recent eye-tracking study we found a differential dwell time pattern for negatively-valenced and neutral faces among patients with posttraumatic stress disorder (PTSD), trauma-exposed healthy control (TEHCs), and healthy control (HC) participants. Here, we explored whether these group differences relate to resting-state functional connectivity (rsFC) patterns of brain areas previously linked to both attention processes and PTSD. These encompass the amygdala, dorsal anterior cingulate cortex (dACC), dorsolateral prefrontal cortex (dlPFC), ventrolateral prefrontal cortex (vlPFC), and nucleus accumbens (NAcc). METHODS Ten minutes magnetic resonance imaging rsFC scans were recorded in 17 PTSD patients, 21 TEHCs, and 16 HCs. Participants then completed a free-viewing eye-tracking task assessing attention allocation outside the scanner. Dwell time on negatively-valenced stimuli (DT%) were assessed relative to functional connectivity in the aforementioned seed regions of interest (amygdala, dACC, dlPFC, vlPFC, and NAcc) to whole-brain voxel-wise rsFC. RESULTS As previously reported, group differences occurred in attention allocation to negative-valence stimuli, with longer dwell time on negatively valence stimuli in the PTSD and TEHC groups than the HC group. Higher DT% correlated with weaker NAcc-orbitofrontal cortex (OFC) connectivity in patients with PTSD. Conversely, a positive association emerged in the HC group between DT% and NAcc-OFC connectivity. CONCLUSIONS While exploratory in nature, present findings may suggest that reward-related brain areas are involved in disengaging attention from negative-valenced stimuli, and possibly in regulating ensuing negative emotions.
Collapse
Affiliation(s)
- Benjamin Suarez-Jimenez
- Department of Neuroscience, The Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Amit Lazarov
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Xi Zhu
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, NY, USA
| | - Daniel S. Pine
- Section on Developmental Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Yair Bar-Haim
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Neria
- Department of Psychiatry, Columbia University Medical Center and New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
31
|
Chen HJ, Ke J, Qiu J, Xu Q, Zhong Y, Lu GM, Wu Y, Qi R, Chen F. Altered whole-brain resting-state functional connectivity and brain network topology in typhoon-related post-traumatic stress disorder. Ther Adv Psychopharmacol 2023; 13:20451253231175302. [PMID: 37342156 PMCID: PMC10278414 DOI: 10.1177/20451253231175302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/24/2023] [Indexed: 06/22/2023] Open
Abstract
Background Altered resting-state functional connectivity has been found in patients with post-traumatic stress disorder (PTSD). However, the alteration of resting-state functional connectivity at whole-brain level in typhoon-traumatized individuals with PTSD remains largely unknown. Objectives To investigate changes in whole-brain resting-state functional connectivity and brain network topology in typhoon-traumatized subjects with and without PTSD. Design Cross-sectional study. Methods Twenty-seven patients with typhoon-related PTSD, 33 trauma-exposed controls (TEC), and 30 healthy controls (HC) underwent resting-state functional MRI scanning. The whole brain resting-state functional connectivity network was constructed based on the automated anatomical labeling atlas. The graph theory method was used to analyze the topological properties of the large-scale resting-state functional connectivity network. Whole-brain resting-state functional connectivity and the topological network property were compared by analyzing the variance. Results There was no significant difference in the area under the curve of γ, λ, σ, global efficiency, and local efficiency among the three groups. The PTSD group showed increased dorsal cingulate cortex (dACC) resting-state functional connectivity with the postcentral gyrus (PoCG) and paracentral lobe and increased nodal betweenness centrality in the precuneus relative to both control groups. Compared with the PTSD and HC groups, the TEC group showed increased resting-state functional connectivity between the hippocampus and PoCG and increased connectivity strength in the putamen. In addition, compared with the HC group, both the PTSD and TEC groups showed increased connectivity strength and nodal efficiency in the insula. Conclusion Aberrant resting-state functional connectivity and topology were found in all trauma-exposed individuals. These findings broaden our knowledge of the neuropathological mechanisms of PTSD.
Collapse
Affiliation(s)
- Hui Juan Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Jun Ke
- Department of Medical Imaging, Jinling Hospital, Medical School, Nanjing University, Nanjing, China
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Qiu
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Yuan Zhong
- Department of Medical Imaging, Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Yanglei Wu
- MR Collaboration, Siemens Healthineers Ltd., Beijing, China
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua Street, Xiuying District, Haikou 570311, Hainan, China
| |
Collapse
|
32
|
Fennema D, Barker GJ, O'Daly O, Duan S, Carr E, Goldsmith K, Young AH, Moll J, Zahn R. Self-blame-selective hyper-connectivity between anterior temporal and subgenual cortices predicts prognosis in major depressive disorder. Neuroimage Clin 2023; 39:103453. [PMID: 37352570 PMCID: PMC10336192 DOI: 10.1016/j.nicl.2023.103453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Self-blame-related fMRI measures were shown to predict subsequent recurrence in remitted major depressive disorder (MDD). Their role in current MDD, however, is unknown. We hypothesised that these neural signatures reflect a highly recurrent but remitting course of MDD and therefore predict favourable outcomes over a four-month follow-up period in current MDD. METHODS Forty-five participants with current MDD and non-responders to at least two serotonergic antidepressants, were encouraged to optimise their medication and followed up after receiving four months of primary care treatment-as-usual. Prior to their medication review, participants completed an fMRI paradigm in which they viewed self- and other-blame emotion-evoking statements. Thirty-nine participants met pre-defined fMRI data minimum quality thresholds. Psychophysiological interaction analysis was used to determine baseline connectivity of the right superior anterior temporal lobe (RSATL), with an a priori BA25 region-of-interest for self-blaming vs other-blaming emotions, using Quick Inventory of Depressive Symptomatology (16-item) percentage change as a covariate. RESULTS We corroborated our pre-registered hypothesis that a favourable clinical outcome was associated with higher self-blame-selective RSATL-BA25 connectivity (Family-Wise Error-corrected p <.05 over the a priori BA25 region-of-interest; rs(34) = -0.47, p =.005). This generalised to the sample including participants with suboptimal fMRI quality (rs(39) = -0.32, p =.05). CONCLUSIONS This study shows that neural signatures of overgeneralised self-blame are relevant for prognostic stratification of current treatment-resistant MDD. Future studies need to confirm whether this neural signature indeed represents a trait-like feature of a fully remitting subtype of MDD, or whether it is also modulated by depressive state and related to treatment effects.
Collapse
Affiliation(s)
- Diede Fennema
- Centre of Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, Centre for Affective Disorders, King's College London, London, UK
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Suqian Duan
- Centre of Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, Centre for Affective Disorders, King's College London, London, UK
| | - Ewan Carr
- Department of Biostatics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Kimberley Goldsmith
- Department of Biostatics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Allan H Young
- Centre of Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, Centre for Affective Disorders, King's College London, London, UK; National Service for Affective Disorders, South London and Maudsley NHS Foundation Trust, London, UK
| | - Jorge Moll
- Cognitive and Behavioural Neuroscience Unit, D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Roland Zahn
- Centre of Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, Centre for Affective Disorders, King's College London, London, UK; Cognitive and Behavioural Neuroscience Unit, D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; National Service for Affective Disorders, South London and Maudsley NHS Foundation Trust, London, UK.
| |
Collapse
|
33
|
Jia R, Ruderman L, Pietrzak RH, Gordon C, Ehrlich D, Horvath M, Mirchandani S, DeFontes C, Southwick S, Krystal JH, Harpaz-Rotem I, Levy I. Neural valuation of rewards and punishments in posttraumatic stress disorder: a computational approach. Transl Psychiatry 2023; 13:101. [PMID: 36977676 PMCID: PMC10050320 DOI: 10.1038/s41398-023-02388-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is associated with changes in fear learning and decision-making, suggesting involvement of the brain's valuation system. Here we investigate the neural mechanisms of subjective valuation of rewards and punishments in combat veterans. In a functional MRI study, male combat veterans with a wide range of posttrauma symptoms (N = 48, Clinician Administered PTSD Scale, CAPS-IV) made a series of choices between sure and uncertain monetary gains and losses. Activity in the ventromedial prefrontal cortex (vmPFC) during valuation of uncertain options was associated with PTSD symptoms, an effect which was consistent for gains and losses, and specifically driven by numbing symptoms. In an exploratory analysis, computational modeling of choice behavior was used to estimate the subjective value of each option. The neural encoding of subjective value varied as a function of symptoms. Most notably, veterans with PTSD exhibited enhanced representations of the saliency of gains and losses in the neural valuation system, especially in ventral striatum. These results suggest a link between the valuation system and the development and maintenance of PTSD, and demonstrate the significance of studying reward and punishment processing within subject.
Collapse
Affiliation(s)
- Ruonan Jia
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Lital Ruderman
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Robert H Pietrzak
- National Center for PTSD, West Haven VA Medical Center, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Charles Gordon
- National Center for PTSD, West Haven VA Medical Center, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Daniel Ehrlich
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Mark Horvath
- National Center for PTSD, West Haven VA Medical Center, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Serena Mirchandani
- National Center for PTSD, West Haven VA Medical Center, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Clara DeFontes
- National Center for PTSD, West Haven VA Medical Center, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Steven Southwick
- National Center for PTSD, West Haven VA Medical Center, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - John H Krystal
- National Center for PTSD, West Haven VA Medical Center, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Wu-Tsai Institute, Yale University, New Haven, CT, USA
| | - Ilan Harpaz-Rotem
- National Center for PTSD, West Haven VA Medical Center, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Wu-Tsai Institute, Yale University, New Haven, CT, USA
| | - Ifat Levy
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA.
- National Center for PTSD, West Haven VA Medical Center, West Haven, CT, USA.
- Department of Psychology, Yale University, New Haven, CT, USA.
- Wu-Tsai Institute, Yale University, New Haven, CT, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
34
|
Korgaonkar MS, Felmingham KL, Malhi GS, Williamson TH, Williams LM, Bryant RA. Changes in neural responses during affective and non-affective tasks and improvement of posttraumatic stress disorder symptoms following trauma-focused psychotherapy. Transl Psychiatry 2023; 13:85. [PMID: 36894538 PMCID: PMC9998447 DOI: 10.1038/s41398-023-02375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
At least one-third posttraumatic stress disorder (PTSD) patients do not respond to trauma-focused psychotherapy (TF-psychotherapy), which is the treatment of choice for PTSD. To clarify the change mechanisms that may be associated with treatment response, this study examined changes in neural activations during affective and non-affective processing that occur with improvement of symptoms after TF-psychotherapy. This study assessed PTSD treatment-seeking patients (n = 27) prior to and after TF-psychotherapy using functional magnetic resonance imaging when they completed three tasks: (a) passive viewing of affective faces, (b) cognitive reappraisal of negative images, and (c) non-affective response inhibition. Patients then underwent 9 sessions of TF-psychotherapy, and were assessed on the Clinician-Administered PTSD Scale following treatment. Changes in neural responses in affect and cognitive processing regions-of-interest for each task were correlated with reduction of PTSD severity from pretreatment to posttreatment in the PTSD cohort. Data from 21 healthy controls was used for comparison. Improvement of symptoms in PTSD were associated with increased activation of left anterior insula, reductions in the left hippocampus and right posterior insula during viewing of supraliminally presented affective images, and reduced connectivity between the left hippocampus with the left amygdala and rostral anterior cingulate. Treatment response was also associated with reduced activation in the left dorsolateral prefrontal cortex during reappraisal of negative images. There were no associations between response and activation change during response inhibition. This pattern of findings indicates that improvement of PTSD symptoms following TF-psychotherapy is associated with changes in affective rather than non-affective processes. These findings accord with prevailing models that TF-psychotherapy promotes engagement and mastery of affective stimuli.Clinical Trials Registration: Trial Registration: Prospectively registered at Australian and New Zealand Clinical Trials Registry, ACTRN12612000185864 and ACTRN12609000324213. https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=83857.
Collapse
Affiliation(s)
- Mayuresh S Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia. .,Department of Psychiatry, University of Sydney, Westmead, Australia.
| | - Kim L Felmingham
- Discipline of Psychological Science, University of Melbourne, Melbourne, Australia
| | - Gin S Malhi
- Department of Psychiatry, University of Sydney, Westmead, Australia
| | - Thomas H Williamson
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia.,School of Psychology, University of New South Wales, Kensington, Australia
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, USA.,Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC) VA Palo Alto Health Care System, Palo Alto, USA
| | - Richard A Bryant
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia. .,School of Psychology, University of New South Wales, Kensington, Australia.
| |
Collapse
|
35
|
Gimbel SI, Wang CC, Hungerford L, Twamley EW, Ettenhofer ML. Associations of mTBI and post-traumatic stress to amygdala structure and functional connectivity in military Service Members. FRONTIERS IN NEUROIMAGING 2023; 2:1129446. [PMID: 37554633 PMCID: PMC10406312 DOI: 10.3389/fnimg.2023.1129446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 08/10/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is one of the highest public health priorities, especially among military personnel where comorbidity with post-traumatic stress symptoms and resulting consequences is high. Brain injury and post-traumatic stress symptoms are both characterized by dysfunctional brain networks, with the amygdala specifically implicated as a region with both structural and functional abnormalities. METHODS This study examined the structural volumetrics and resting state functional connectivity of 68 Active Duty Service Members with or without chronic mild TBI (mTBI) and comorbid symptoms of Post-Traumatic Stress (PTS). RESULTS AND DISCUSSION Structural analysis of the amygdala revealed no significant differences in volume between mTBI and healthy comparison participants with and without post-traumatic stress symptoms. Resting state functional connectivity with bilateral amygdala revealed decreased anterior network connectivity and increased posterior network connectivity in the mTBI group compared to the healthy comparison group. Within the mTBI group, there were significant regions of correlation with amygdala that were modulated by PTS severity, including networks implicated in emotional processing and executive functioning. An examination of a priori regions of amygdala connectivity in the default mode network, task positive network, and subcortical structures showed interacting influences of TBI and PTS, only between right amygdala and right putamen. These results suggest that mTBI and PTS are associated with hypo-frontal and hyper-posterior amygdala connectivity. Additionally, comorbidity of these conditions appears to compound these neural activity patterns. PTS in mTBI may change neural resource recruitment for information processing between the amygdala and other brain regions and networks, not only during emotional processing, but also at rest.
Collapse
Affiliation(s)
- Sarah I. Gimbel
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, United States
- Traumatic Brain Injury Clinic, Naval Medical Center San Diego, San Diego, CA, United States
- General Dynamics Information Technology, Falls Church, VA, United States
| | - Cailynn C. Wang
- Department of Psychology, University of California, San Diego, San Diego, CA, United States
| | - Lars Hungerford
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, United States
- Traumatic Brain Injury Clinic, Naval Medical Center San Diego, San Diego, CA, United States
- General Dynamics Information Technology, Falls Church, VA, United States
| | - Elizabeth W. Twamley
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Mark L. Ettenhofer
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, United States
- Traumatic Brain Injury Clinic, Naval Medical Center San Diego, San Diego, CA, United States
- General Dynamics Information Technology, Falls Church, VA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
36
|
Zukerman G, Pinhas M, Icht M. Hypervigilance or shutdown? Electrophysiological processing of trauma-unrelated aversive stimuli after traumatic life events. Exp Brain Res 2023; 241:1185-1197. [PMID: 36847844 DOI: 10.1007/s00221-023-06578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
Post-Traumatic Stress Disorder (PTSD) research indicates that hyper-reactivity to trauma-related stimuli reflects reduced prefrontal cortex (PFC) modulation of amygdala reactivity. However, other studies indicate a dissociative "shutdown" reaction to overwhelming aversive stimuli, possibly reflecting PFC over-modulation. To explore this, we used an Event-Related Potential (ERP) oddball paradigm to study P3 responses in the presence of the following: 1. Trauma-unrelated morbid distractors (e.g., "injured bear") related to the Rorschach inkblot test, and 2. Negative distractors (e.g., "significant failure"), among participants with high post-traumatic stress symptoms (PTS; n = 20), low PTS (n = 17), and controls (n = 15). Distractors were presented at 20% frequency amongst the more frequent (60%) neutral standard stimuli (e.g., "desk lamp") and the equally frequent (20%) neutral trauma-unrelated target stimulus ("golden fish"). P3 amplitudes were high in the presence of morbid distractors and low in the presence of negative distractors only amongst the control group. Possible mechanisms underlying the lack of P3 amplitude modulation after trauma are discussed.
Collapse
Affiliation(s)
- Gil Zukerman
- Department of Communication Disorders, School of Health Sciences, Ariel University, 40700, Ariel, Israel.
| | - Michal Pinhas
- Department of Psychology, Ariel University, Ariel, Israel
| | - Michal Icht
- Department of Communication Disorders, School of Health Sciences, Ariel University, 40700, Ariel, Israel
| |
Collapse
|
37
|
Fessel J. Supplementary Pharmacotherapy for the Behavioral Abnormalities Caused by Stressors in Humans, Focused on Post-Traumatic Stress Disorder (PTSD). J Clin Med 2023; 12:1680. [PMID: 36836215 PMCID: PMC9967886 DOI: 10.3390/jcm12041680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Used as a supplement to psychotherapy, pharmacotherapy that addresses all of the known metabolic and genetic contributions to the pathogenesis of psychiatric conditions caused by stressors would require an inordinate number of drugs. Far simpler is to address the abnormalities caused by those metabolic and genetic changes in the cell types of the brain that mediate the behavioral abnormality. Relevant data regarding the changed brain cell types are described in this article and are derived from subjects with the paradigmatic behavioral abnormality of PTSD and from subjects with traumatic brain injury or chronic traumatic encephalopathy. If this analysis is correct, then therapy is required that benefits all of the affected brain cell types; those are astrocytes, oligodendrocytes, synapses and neurons, endothelial cells, and microglia (the pro-inflammatory (M1) subtype requires switching to the anti-inflammatory (M2) subtype). Combinations are advocated using several drugs, erythropoietin, fluoxetine, lithium, and pioglitazone, that benefit all of the five cell types, and that should be used to form a two-drug combination, suggested as pioglitazone with either fluoxetine or lithium. Clemastine, fingolimod, and memantine benefit four of the cell types, and one chosen from those could be added to the two-drug combination to form a three-drug combination. Using low doses of chosen drugs will limit both toxicity and drug-drug interactions. A clinical trial is required to validate both the advocated concept and the choice of drugs.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA 94123, USA
| |
Collapse
|
38
|
Bauer EA, Wilson KA, Phan KL, Shankman SA, MacNamara A. A Neurobiological Profile Underlying Comorbidity Load and Prospective Increases in Dysphoria in a Focal Fear Sample. Biol Psychiatry 2023; 93:352-361. [PMID: 36280453 PMCID: PMC10866641 DOI: 10.1016/j.biopsych.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Knowledge of the neural mechanisms underlying increased disease burden in anxiety disorders that is unaccounted for by individual categorical diagnoses could lead to improved clinical care. Here, we tested the utility of a joint functional magnetic resonance imaging-electroencephalography neurobiological profile characterized by overvaluation of negative stimuli (amygdala) in combination with blunted elaborated processing of these same stimuli (the late positive potential [LPP], an event-related potential) in predicting increased psychopathology across a 2-year period in people with anxiety disorders. METHODS One hundred ten participants (64 female, 45 male, 1 other) including 78 participants with phobias who varied in the extent of their internalizing comorbidity and 32 participants who were free from psychopathology viewed negative and neutral pictures during separate functional magnetic resonance imaging blood oxygen level-dependent and electroencephalogram recordings. Dysphoria was assessed at baseline and 2 years later. RESULTS Participants with both heightened amygdala activation and blunted LPPs to negative pictures showed the greatest increases in dysphoria 2 years later. Cross-sectionally, participants with higher comorbidity load (≥2 additional diagnoses, n = 34) showed increased amygdala activation to negative pictures compared with participants with lower comorbidity load (≤1 additional diagnosis, n = 44) and compared with participants free from psychopathology. In addition, high comorbid participants showed reduced LPPs to negative pictures compared with low comorbid participants. CONCLUSIONS Heightened amygdala in response to negative stimuli in combination with blunted LPPs could indicate overvaluation of threatening stimuli in the absence of elaborated processing that might otherwise help regulate threat responding. This brain profile could underlie the worsening and maintenance of internalizing psychopathology over time.
Collapse
Affiliation(s)
- Elizabeth A Bauer
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas.
| | - Kayla A Wilson
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas
| | - K Luan Phan
- Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, Ohio
| | - Stewart A Shankman
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Evanston, Illinois
| | - Annmarie MacNamara
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
39
|
Exploration driven by a medial preoptic circuit facilitates fear extinction in mice. Commun Biol 2023; 6:106. [PMID: 36707677 PMCID: PMC9883483 DOI: 10.1038/s42003-023-04442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 01/09/2023] [Indexed: 01/29/2023] Open
Abstract
Repetitive exposure to fear-associated targets is a typical treatment for patients with panic or post-traumatic stress disorder (PTSD). The success of exposure therapy depends on the active exploration of a fear-eliciting target despite an innate drive to avoid it. Here, we found that a circuit running from CaMKIIα-positive neurons of the medial preoptic area to the ventral periaqueductal gray (MPA-vPAG) facilitates the exploration of a fear-conditioned zone and subsequent fear extinction in mice. Activation or inhibition of this circuit did not induce preference/avoidance of a specific zone. Repeated entries into the fear-conditioned zone, induced by the motivation to chase a head-mounted object due to MPA-vPAG circuit photostimulation, facilitated fear extinction. Our results show how the brain forms extinction memory against avoidance of a fearful target and suggest a circuit-based mechanism of exposure therapy.
Collapse
|
40
|
Stopyra MA, Simon JJ, Rheude C, Nikendei C. Pathophysiological aspects of complex PTSD - a neurobiological account in comparison to classic posttraumatic stress disorder and borderline personality disorder. Rev Neurosci 2023; 34:103-128. [PMID: 35938987 DOI: 10.1515/revneuro-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/25/2022] [Indexed: 01/11/2023]
Abstract
Despite a great diagnostic overlap, complex posttraumatic stress disorder (CPTSD) has been recognised by the ICD-11 as a new, discrete entity and recent empirical evidence points towards a distinction from simple posttraumatic stress disorder (PTSD) and borderline personality disorder (BPD). The development and maintenance of these disorders is sustained by neurobiological alterations and studies using functional magnetic resonance imaging (fMRI) may further contribute to a clear differentiation of CPTSD, PTSD and BPD. However, there are no existing fMRI studies directly comparing CPTSD, PTSD and BPD. In addition to a summarization of diagnostic differences and similarities, the current review aims to provide a qualitative comparison of neuroimaging findings on affective, attentional and memory processing in CPTSD, PTSD and BPD. Our narrative review alludes to an imbalance in limbic-frontal brain networks, which may be partially trans-diagnostically linked to the degree of trauma symptoms and their expression. Thus, CPTSD, PTSD and BPD may underlie a continuum where similar brain regions are involved but the direction of activation may constitute its distinct symptom expression. The neuronal alterations across these disorders may conceivably be better understood along a symptom-based continuum underlying CPTSD, PTSD and BPD. Further research is needed to amend for the heterogeneity in experimental paradigms and sample criteria.
Collapse
Affiliation(s)
- Marion A Stopyra
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Joe J Simon
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Christiane Rheude
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Christoph Nikendei
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
41
|
Zhu W, Li Y, Ma X, Yang H, Wang Z, Shi R, Shi W, Cong B. Bibliometric analysis of post-traumatic stress disorder in forensic medicine: Research trends, hot spots, and prospects. Front Psychol 2023; 13:1074999. [PMID: 36726521 PMCID: PMC9884826 DOI: 10.3389/fpsyg.2022.1074999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023] Open
Abstract
Background Post-traumatic stress disorder (PTSD) has various risk factors, complex pathogenesis, and diverse symptoms, and is often comorbid with other injuries and diseases, making forensic diagnosis difficult. Methods To explore the current research status and trends of PTSD, we used the Web of Science Core Collection databases to screen PTSD-related literature published between 2010 and 2021 and CiteSpace to perform bibliometric analysis. Results In recent years, PTSD-related research has grown steadily. The countries and institutions with the most research results were the United States and England, and King's College London and Boston University, respectively. Publications were identified from 2,821 different journals, including 13 forensic-related journals, but the journal distribution was relatively scattered and there was a lack of professional core journals. Keyword co-occurrence and clustering identified many hot topics; "rat model," "mental health," and "satisfaction" were the topics most likely to have a clear effect on future research. Analysis extracted nine turning points from the literature that suggested that neural network centers, the hypothalamic-pituitary-adrenal axis, and biomarkers were new research directions. It was found that COVID-19 can cause severe psychological stress and induce PTSD, but the relationship needs further study. The literature on stress response areas and biomarkers has gradually increased over time, but specific systemic neural brain circuits and biomarkers remain to be determined. Conclusion There is a need to expand the collection of different types of biological tissue samples from patients with different backgrounds, screen PTSD biomarkers and molecular targets using multi-omics and molecular biology techniques, and establish PTSD-related molecular networks. This may promote a systematic understanding of the abnormal activation of neural circuits in patients with PTSD and help to establish a personalized, accurate, and objective forensic diagnostic standard.
Collapse
|
42
|
Carvalho CM, Coimbra BM, Bugiga A, Marques DF, Kiyomi Ota V, Mello AF, Mello MF, Belangero SI. Hyperarousal Symptom Severity in Women with Posttraumatic Stress Disorder Might Be Associated with LINE-1 Hypomethylation in Childhood Sexual Abuse Victims. Complex Psychiatry 2023; 9:44-56. [PMID: 37034826 PMCID: PMC10080193 DOI: 10.1159/000529698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction Sexual assault and a history of childhood sexual abuse (CSA) are related to posttraumatic stress disorder (PTSD) development. Long interspersed nuclear elements (LINE-1) are transposable elements, and their methylation is used to infer DNA global methylation. DNA methylation can be affected by trauma exposition which in turn would be associated with PTSD. Thus, we investigated if the LINE-1 methylation pattern is related to PTSD symptoms in females with a history of CSA. Methods This is a case-control study that examined, at baseline (W1), 64 women victims of sexual assault diagnosed with PTSD and 31 patients with PTSD who completed the 1-year follow-up (W2). Participants were categorized into two groups according to the presence of CSA (PTSDCSA+: NW1 = 19, NW2 = 10; PTSDCSA-: NW1 = 45, NW2 = 21). PTSD symptoms (re-experiencing, avoidance, hyperarousal, alterations in cognition/mood) were assessed using the Clinician-Administered PTSD Scale, and the history of CSA was assessed by the Childhood Trauma Questionnaire. LINE-1 methylation was measured in three sites (CpG1, CpG2, CpG3) located in the 5'UTR region using bisulfite conversion followed by pyrosequencing. Linear regression models were performed to test the relation between LINE-1 CpG sites methylation and PTSD symptoms. Results We found a negative association between CpG2 methylation and hyperarousal symptoms among those in the PTSDCSA+ group in W1 (adjusted p = 0.003) compared to the PTSDCSA- group (p > 0.05). Still, no association was observed between other PTSD symptoms and other CpG sites. Further, in the longitudinal analysis, LINE-1 hypomethylation was no longer observed in PTSD participants exposed to CSA. Conclusion Our findings suggest that LINE-1 methylation may help understand the relationship between trauma and PTSD. However, more studies are needed to investigate LINE-1 as an epigenetic marker of psychiatric disorders.
Collapse
Affiliation(s)
- Carolina Muniz Carvalho
- Department of Psychiatry of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- LiNC - Laboratory of Integrative Neuroscience of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Bruno Messina Coimbra
- Department of Psychiatry of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Department of Psychiatry, Amsterdam Public Health Research Institute and Amsterdam Neuroscience Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Amanda Bugiga
- LiNC - Laboratory of Integrative Neuroscience of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Diogo Ferri Marques
- Department of Psychiatry of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- LiNC - Laboratory of Integrative Neuroscience of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | - Vanessa Kiyomi Ota
- LiNC - Laboratory of Integrative Neuroscience of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Andrea Feijó Mello
- Department of Psychiatry of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Marcelo Feijó Mello
- Department of Psychiatry of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Sintia Iole Belangero
- LiNC - Laboratory of Integrative Neuroscience of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
43
|
Zühlsdorff K, López-Cruz L, Dutcher EG, Jones JA, Pama C, Sawiak S, Khan S, Milton AL, Robbins TW, Bullmore ET, Dalley JW. Sex-dependent effects of early life stress on reinforcement learning and limbic cortico-striatal functional connectivity. Neurobiol Stress 2023; 22:100507. [PMID: 36505960 PMCID: PMC9731893 DOI: 10.1016/j.ynstr.2022.100507] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) is a stress-related condition hypothesized to involve aberrant reinforcement learning (RL) with positive and negative stimuli. The present study investigated whether repeated early maternal separation (REMS) stress, a procedure widely recognized to cause depression-like behaviour, affects how subjects learn from positive and negative feedback. The REMS procedure was implemented by separating male and female rats from their dam for 6 h each day from post-natal day 5-19. Control rat offspring were left undisturbed during this period. Rats were tested as adults for behavioral flexibility and feedback sensitivity on a probabilistic reversal learning task. A computational approach based on RL theory was used to derive latent behavioral variables related to reward learning and flexibility. To assess underlying brain substrates, a seed-based functional MRI connectivity analysis was applied both before and after an additional adulthood stressor in control and REMS rats. Female but not male rats exposed to REMS stress showed increased response 'stickiness' (repeated responses regardless of reward outcome). Following repeated adulthood stress, reduced functional connectivity from the basolateral amygdala (BLA) to the dorsolateral striatum (DLS), cingulate cortex (Cg), and anterior insula (AI) cortex was observed in females. By contrast, control male rats exposed to the second stressor showed impaired learning from negative feedback (i.e., non-reward) and reduced functional connectivity from the BLA to the DLS and AI compared to maternally separated males. RL in male rats exposed to REMS was unaffected. The fMRI data further revealed that connectivity between the mOFC and other prefrontal cortical and subcortical structures was positively correlated with response 'stickiness'. These findings reveal differences in how females and males respond to early life adversity and subsequent stress. These effects may be mediated by functional divergence in resting-state connectivity between the basolateral amygdala and fronto-striatal brain regions.
Collapse
Affiliation(s)
- Katharina Zühlsdorff
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
| | - Laura López-Cruz
- Faculty of Science, Technology, Engineering & Mathematics, The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK
| | - Ethan G. Dutcher
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
| | - Jolyon A. Jones
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
| | - Claudia Pama
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
| | - Stephen Sawiak
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Box 65, Cambridge, CB2 0QQ, UK
| | - Shahid Khan
- GlaxoSmithKline Research & Development, Stevenage, UK
| | - Amy L. Milton
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
| | - Trevor W. Robbins
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
| | - Edward T. Bullmore
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
- Department of Psychiatry, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Cambridge, CB2 0SZ, UK
| | - Jeffrey W. Dalley
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
- Department of Psychiatry, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Cambridge, CB2 0SZ, UK
| |
Collapse
|
44
|
Huang J, Xu F, Yang L, Tuolihong L, Wang X, Du Z, Zhang Y, Yin X, Li Y, Lu K, Wang W. Involvement of the GABAergic system in PTSD and its therapeutic significance. Front Mol Neurosci 2023; 16:1052288. [PMID: 36818657 PMCID: PMC9928765 DOI: 10.3389/fnmol.2023.1052288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
The neurobiological mechanism of post-traumatic stress disorder (PTSD) is poorly understood. The inhibition of GABA neurons, especially in the amygdala, is crucial for the precise regulation of the consolidation, expression, and extinction of fear conditioning. The GABAergic system is involved in the pathophysiological process of PTSD, with several studies demonstrating that the function of the GABAergic system decreases in PTSD patients. This paper reviews the preclinical and clinical studies, neuroimaging techniques, and pharmacological studies of the GABAergic system in PTSD and summarizes the role of the GABAergic system in PTSD. Understanding the role of the GABAergic system in PTSD and searching for new drug targets will be helpful in the treatment of PTSD.
Collapse
Affiliation(s)
| | - Fei Xu
- Department of Psychiatry of School of Public Health, Southern Medical University, Guangzhou, China
| | - Liping Yang
- Department of Applied Psychology of School of Public Health, Southern Medical University, Guangzhou, China
| | - Lina Tuolihong
- Department of Basic Medical of Basic Medical College, Southern Medical University, Guangzhou, China
| | - Xiaoyu Wang
- Eight-Year Master's and Doctoral Program in Clinical Medicine of the First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Zibo Du
- Eight-Year Master's and Doctoral Program in Clinical Medicine of the First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yiqi Zhang
- Eight-Year Master's and Doctoral Program in Clinical Medicine of the First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Xuanlin Yin
- Department of Basic Medical of Basic Medical College, Southern Medical University, Guangzhou, China
| | - Yingjun Li
- Department of Medical Laboratory Science, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Kangrong Lu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
| | - Wanshan Wang
- Department of Laboratory Animal Center, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Woodward SH, Jamison AL, Khan C, Gala S, Bhowmick C, Villasenor D, Tamayo G, Puckett M, Parker KJ. Reading the mind in the eyes in PTSD: Limited Moderation by the presence of a service dog. J Psychiatr Res 2022; 155:320-330. [PMID: 36174367 DOI: 10.1016/j.jpsychires.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/02/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022]
Abstract
Persons with posttraumatic stress disorder (PTSD) frequently experience relationship failures in family and occupational domains resulting in loss of social supports. Prior research has implicated impairments in social cognition. The Reading the Mind in the Eyes Test (RMET) measures a key component of social cognition, the ability to infer the internal states of other persons based on features of the eyes region of the face; however, studies administering this popular test to persons with PTSD have yielded mixed results. This study assessed RMET performance in 47 male U.S. military Veterans with chronic, severe PTSD. Employing a within-subjects design that avoided selection biases, it aimed specifically to determine whether components of RMET performance, including accuracy, response latency, and stimulus dwell time, were improved by the company of a service dog, an intervention that has improved social function in other populations. RMET accuracies and response latencies in this PTSD sample were in the normal range. The presence of a familiar service dog did not improve RMET accuracy, reduce response latencies, or increase dwell times. Dog presence increased the speed of visual scanning perhaps consistent with reduced social fear.
Collapse
Affiliation(s)
- Steven H Woodward
- National Center for PTSD, Dissemination and Training Division, VA Palo Alto Healthcare System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA.
| | - Andrea L Jamison
- National Center for PTSD, Dissemination and Training Division, VA Palo Alto Healthcare System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - Christina Khan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305-5485, USA
| | - Sasha Gala
- National Center for PTSD, Dissemination and Training Division, VA Palo Alto Healthcare System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - Chloe Bhowmick
- National Center for PTSD, Dissemination and Training Division, VA Palo Alto Healthcare System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - Diana Villasenor
- National Center for PTSD, Dissemination and Training Division, VA Palo Alto Healthcare System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - Gisselle Tamayo
- National Center for PTSD, Dissemination and Training Division, VA Palo Alto Healthcare System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - Melissa Puckett
- Trauma Recovery Programs and Recreation Service, VA Palo Alto Healthcare System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - Karen J Parker
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305-5485, USA; Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305-5342, USA
| |
Collapse
|
46
|
Dirven BCJ, Botan A, van der Geugten D, Kraakman B, van Melis L, Merjenburgh S, van Rijn R, Waajen L, Homberg JR, Kozicz T, Henckens MJAG. Longitudinal assessment of amygdala activity in mice susceptible to trauma. Psychoneuroendocrinology 2022; 145:105912. [PMID: 36113379 DOI: 10.1016/j.psyneuen.2022.105912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/20/2022] [Accepted: 08/26/2022] [Indexed: 10/31/2022]
Abstract
Resilience to consequences of trauma exposure contains relevant information about the processes that contribute to the maintenance of mental health in the face of adversity; information that is essential to improve treatment success of stress-related mental diseases. Prior literature has implicated aberrant amygdala (re)activity as potential factor contributing to trauma susceptibility. However, it remains to be resolved which amygdalar subregions and neuronal subclasses are involved, and when - i.e., pre-, peri- or post-trauma exposure - and under what conditions changes in amygdala (re)activity manifest themselves. Here, we implemented a preclinical rodent model for PTSD that entailed exposure to a traumatic event (severe, unpredictable foot shock) followed by a trigger (mild, predictable foot shock). Using behavioral phenotyping, trauma susceptible vs. resilient mice were identified and pre-, peri- or post-trauma amygdala activity was compared. Neuronal activity was tagged in living mice by the use of the ArcTRAP transgenic mouse line, labeling all activated (i.e., Arc-expressing) neurons by a systemic injection of tamoxifen. Furthermore, we assessed amygdala responses during fear memory recall, induced by either (re-)exposure to the trauma, trigger, or a novel, yet similar context, and analyzed behavioral fear responses under these conditions, as well as basal anxiety in the mice. Results revealed no major differences dissociating susceptible vs. resilient mice prior to trauma exposure, but exaggerated activity in specifically the basolateral amygdala (BLA) peri-trauma that predicted susceptibility to later PTSD-like symptoms. Post-trauma, susceptible mice did not display altered basal amygdala activity, but BLA hyperreactivity in response to trigger context re-exposure, and BLA hyporesponsivity in response to the trauma context. Exposure to the novel, similar context evoked a differential temporal pattern of freezing behavior in susceptible mice and an increased activity of amygdalar somatostatin-expressing neurons specifically. As such, these results for the first time show that deviant BLA activity during fear learning predicts susceptibility to its long-term consequences and that aberrant subsequent BLA responses to stressful contexts depend on the exact context.
Collapse
Affiliation(s)
- Bart C J Dirven
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Andriana Botan
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Dewi van der Geugten
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Blom Kraakman
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Lennart van Melis
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Sanne Merjenburgh
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Rebecca van Rijn
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Liz Waajen
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Tamas Kozicz
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Department of Clinical Genomics, and Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Marloes J A G Henckens
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands.
| |
Collapse
|
47
|
Ning M, Wen S, Zhou P, Zhang C. Ventral tegmental area dopaminergic action in music therapy for post-traumatic stress disorder: A literature review. Front Psychol 2022; 13:1014202. [PMID: 36300072 PMCID: PMC9589351 DOI: 10.3389/fpsyg.2022.1014202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating sequela of extraordinary traumatic sufferings that threaten personal health and dramatically attenuate the patient's quality of life. Accumulating lines of evidence suggest that functional disorders in the ventral tegmental area (VTA) dopaminergic system contribute substantially to PTSD symptomatology. Notably, music therapy has been shown to greatly ameliorate PTSD symptoms. In this literature review, we focused on whether music improved PTSD symptoms, based on VTA dopaminergic action, including the effects of music on dopamine (DA)-related gene expression, the promotion of DA release and metabolism, and the activation of VTA functional activities. In addition, the strengths and limitations of the studies concerning the results of music therapy on PTSD are discussed. Collectively, music therapy is an effective approach for PTSD intervention, in which the VTA dopaminergic system may hold an important position.
Collapse
Affiliation(s)
- Meng Ning
- School of Music, Huainan Normal University, Huainan, China
| | - Shizhe Wen
- School of Educational Sciences, Lingnan Normal University, Zhanjiang, China
| | - Peiling Zhou
- School of Educational Sciences, Lingnan Normal University, Zhanjiang, China
- Peiling Zhou
| | - Changzheng Zhang
- School of Educational Sciences, Lingnan Normal University, Zhanjiang, China
- *Correspondence: Changzheng Zhang
| |
Collapse
|
48
|
Domitrovic Spudic S, Nikolac Perkovic M, Uzun S, Nedic Erjavec G, Kozumplik O, Svob Strac D, Mimica N, Pivac N. Reduced plasma BDNF concentration and cognitive decline in veterans with PTSD. Psychiatry Res 2022; 316:114772. [PMID: 35961151 DOI: 10.1016/j.psychres.2022.114772] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/15/2022] [Accepted: 08/04/2022] [Indexed: 12/22/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a trauma and stress related disorder frequently associated with cognitive decline. War veterans with PTSD have a higher risk of developing dementia than healthy subjects. Brain derived neurotrophic factor (BDNF) is an important protein that modulates plasticity, memory consolidation and cognitive processes. Lower circulating BDNF levels were related to memory impairment and cognitive deterioration. The aim of this study was to evaluate cognitive deterioration and plasma BDNF concentration in 120 veterans with combat related PTSD, 120 healthy controls, 47 subjects with mild cognitive impairment (MCI) and 76 patients with Alzheimer's disease (AD), and to assess if plasma BDNF concentration might be used as biomarker of cognitive deterioration. Veterans with PTSD had significantly decreased plasma BDNF concentration and worse cognitive performances (assessed using the Mini Mental State Examination, Clock Drawing test and Montreal Cognitive Assessment scores/categories) than healthy subjects, and similarly reduced plasma BDNF and cognitive decline as MCI subjects. Reduced plasma BDNF was found in cognitively impaired subjects. These results suggest that veterans with PTSD should be closely monitored in order to early detect and predict cognitive worsening and promote interventions that might help restore blood BDNF levels and cognitive functions.
Collapse
Affiliation(s)
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, 10090 Zagreb, Croatia; School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia
| | - Oliver Kozumplik
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, 10090 Zagreb, Croatia
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, 10090 Zagreb, Croatia; School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia.
| |
Collapse
|
49
|
Seligowski AV, Webber TK, Marvar PJ, Ressler KJ, Philip NS. Involvement of the brain-heart axis in the link between PTSD and cardiovascular disease. Depress Anxiety 2022; 39:663-674. [PMID: 35708302 PMCID: PMC9588548 DOI: 10.1002/da.23271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) has long been associated with a heightened risk of cardiovascular disease (CVD). A number of mechanisms have been implicated to underlie this brain-heart axis relationship, such as altered functioning of the autonomic nervous system and increased systemic inflammation. While neural alterations have repeatedly been observed in PTSD, they are rarely considered in the PTSD-CVD link. The brain-heart axis is a pathway connecting frontal and limbic brain regions to the brainstem and periphery via the autonomic nervous system and it may be a promising model for understanding CVD risk in PTSD given its overlap with PTSD neural deficits. We first provide a summary of the primary mechanisms implicated in the association between PTSD and CVD. We then review the brain-heart axis and its relevance to PTSD, as well as findings from PTSD trials demonstrating that a number of PTSD treatments have effects on areas of the brain-heart axis. Finally, we discuss sex considerations in the PTSD-CVD link. A critical next step in this study is to determine if PTSD treatments that affect the brain-heart axis (e.g., brain stimulation that improves autonomic function) also reduce the risk of CVD.
Collapse
Affiliation(s)
- Antonia V. Seligowski
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | | | | | - Kerry J. Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Noah S. Philip
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School, of Brown University, Providence, RI, USA
| |
Collapse
|
50
|
Boosting psychological change: Combining non-invasive brain stimulation with psychotherapy. Neurosci Biobehav Rev 2022; 142:104867. [PMID: 36122739 DOI: 10.1016/j.neubiorev.2022.104867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022]
Abstract
Mental health disorders and substance use disorders are a leading cause of morbidity and mortality worldwide, and one of the most important challenges for public health systems. While evidence-based psychotherapy is generally pursued to address mental health challenges, psychological change is often hampered by non-adherence to treatments, relapses, and practical barriers (e.g., time, cost). In recent decades, Non-invasive brain stimulation (NIBS) techniques have emerged as promising tools to directly target dysfunctional neural circuitry and promote long-lasting plastic changes. While the therapeutic efficacy of NIBS protocols for mental illnesses has been established, neuromodulatory interventions might also be employed to support the processes activated by psychotherapy. Indeed, combining psychotherapy with NIBS might help tailor the treatment to the patient's unique characteristics and therapeutic goal, and would allow more direct control of the neuronal changes induced by therapy. Herein, we overview emerging evidence on the use of NIBS to enhance the psychotherapeutic effect, while highlighting the next steps in advancing clinical and research methods toward personalized intervention approaches.
Collapse
|