1
|
Zhang K, Cao Y, Tang H, Lin D. Possible role of HE4 level elevation in the pathogenesis of TH2-high asthma. J Asthma 2024; 61:160-172. [PMID: 37902273 DOI: 10.1080/02770903.2023.2251056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/01/2023] [Accepted: 08/19/2023] [Indexed: 10/31/2023]
Abstract
OBJECTIVES As a heterogeneous disease, asthma is characterized by airway hyperresponsiveness, airway inflammation, and airway mucus hypersecretion. According to the pathological changes, symptoms, preventive and treatment methods, asthma can be divided into TH2-high and TH2-low asthma. We show that the expression of the tumor biomarker human epididymis protein 4 (HE4) was significantly increased in TH2-high asthma group, while there was no marked difference in its expression between TH2-low asthma and healthy control groups. HE4 levels were significantly increased in plasma, induced sputum, and alveolar lavage fluid (BALF) samples and airway epithelial cells from TH2-high asthma group, showing that HE4 has a possible role in the pathogenesis of TH2-high asthma. METHODS Using RT-qPCR, ELISA, Western blot (WB), and immunohistochemistry, we assessed differences in HE4 expression in plasma, induced sputum, BALF, and airway epithelial cells among patients with the TH2-related asthma subtypes and healthy controls. To explore the role of HE4 in TH2-high asthma, we conducted a correlation analysis between HE4 levels in plasma, induced sputum, BALF, and airway epithelial cells and multiple indicators of airway eosinophilic inflammation, airway mucus secretion, and airway remodeling. CONCLUSION We found for the first time that HE4 was differentially expressed in the TH2-related asthma subtypes. In TH2-high asthma, HE4 levels were markedly elevated in airway epithelial cells, plasma, induced sputum, and BALF. HE4 may play an important role in various pathogenic mechanisms of asthma, such as airway eosinophilic inflammation, airway mucus secretion, and airway remodeling. HE4 in plasma may be a clinically biomarker for differentiating TH2-related asthma subtypes.
Collapse
Affiliation(s)
- Kan Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yu Cao
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Hexuan Tang
- School of Information Engineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Dang Lin
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
2
|
Li Y, Zou C, Li J, Wang W, Wang F, Guo Y. Airway Microbiome Composition and Co-Occurrence Network Are Associated with Inflammatory Phenotypes of Asthma. Int Arch Allergy Immunol 2023; 184:1254-1263. [PMID: 37690443 PMCID: PMC10733928 DOI: 10.1159/000533315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/27/2023] [Indexed: 09/12/2023] Open
Abstract
INTRODUCTION The composition and co-occurrence network of the airway microbiome might influence the asthma inflammatory phenotype. Airway microbiota change with asthma phenotypes, and the structure of the bacterial community in the airway might differ between different asthma inflammatory phenotypes and may also influence therapy results. Identifying airway microbiota can help to investigate the role that microbiota play in the asthma inflammatory process. METHODS Induced sputum from 55 subjects and 12 healthy subjects from Beijing, China, was collected and analyzed for bacterial microbiota. Microbiome diversity, composition, co-occurrence networks, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were predicted and compared between the study groups. RESULTS Significant differences in the sputum microbiome composition, co-occurrence network, and predicted functional pathways were observed between the two inflammatory phenotypes. Asthmatics in the low FeNO group exhibited lower α-diversity in the sputum microbiota and had higher abundance of the phylum Proteobacteria compared with that of the high FeNO group. The network in the high FeNO group was more "closed" and "connected" compared with that of the low FeNO group, and an alteration in the abundance of keystone species T. socranskii was found. Significantly different predicted metabolic subfunctions including nucleotide metabolism, lipid metabolism, energy metabolism, replication and repair, and drug resistance antimicrobial and carbohydrate metabolism between the two studied phenotypes were also observed. CONCLUSION Our findings confirm that the airway microbiota is associated with the asthma inflammation process. The differences in the airway microbiome composition and co-occurrence network may affect distinct asthma inflammatory phenotypes, suggesting the possibility that more targeted therapies could be applied based on the airway bacterial genera.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Severe Weather of CMA, Chinese Academy of Meteorological Sciences, Beijing, China
| | - Congying Zou
- Department of Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jieying Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Feiran Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yue Guo
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Wang M, Gong L, Luo Y, He S, Zhang X, Xie X, Li X, Feng X. Transcriptomic analysis of asthma and allergic rhinitis reveals CST1 as a biomarker of unified airways. Front Immunol 2023; 14:1048195. [PMID: 36733482 PMCID: PMC9888248 DOI: 10.3389/fimmu.2023.1048195] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Background Allergic rhinitis (AR) is an important risk factor for the development of asthma. The "unified airway" theory considers the upper and lower airways as a morphological and functional whole. However, studies exploring biomarkers linking the upper and lower airways in allergic disease are lacking, which may provide insight into the mechanisms underlying AR comorbid asthma. Purpose To integrate bioinformatics techniques to explore biomarkers in airway allergic diseases, and to provide a molecular etiology profile for preventing the development of asthma in AR patients. Methods Biomarkers were screened by identifying key genes common between AR and asthma through WGCNA and differential gene analysis. GO and KEGG analyses were performed using DAVID. Immuno-infiltration analysis was performed by CIBERSORTx. The predictive value of CST1 to distinguish Th2-high asthma was determined by ROC curves. GSEA was used to analyze the signaling pathways involved in CST1. TargetScan and miRNet were combined with GSE142237 to construct ceRNA network. CMap was used to explore potential therapeutic drugs. Results Validation of datasets showed that CST1 was the only gene that was up-regulated in both upper and lower airways in patients with AR and asthma, and correlation heatmaps showed that CST1 was the gene with the highest sum of correlation coefficients. GO and KEGG analysis demonstrated that the lower airways of AR patients were mainly involved in inflammatory and immune responses, similar to asthma. Immune infiltration showed that CST1 was mainly positively correlated with activated CD4 memory T cells. According to the ROC curve, CST1 showed excellent diagnostic efficiency for Th2-high asthma. GSEA indicated that CST1 was involved in the FcϵRI signaling pathway and O-glycan biosynthesis. A ceRNA network including the lncRNAs KCNQ1OT1 and NEAT1 was constructed. Four drugs, including verrucarin-A, had the potential to prevent the development of asthma in AR patients. In addition, corticosteroids were found to downregulate CST1 expression. Conclusion CST1 plays a key role in the development of AR comorbid asthma and may be a biomarker for airway allergic diseases. Targeted treatment of CST1 has the potential to prevent the development of asthma in AR patients and deserves further study.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xin Feng
- *Correspondence: Xin Feng, ; Xuezhong Li,
| |
Collapse
|
4
|
Zhao L, Gao J, Chen G, Huang C, Kong W, Feng Y, Zhen G. Mitochondria dysfunction in airway epithelial cells is associated with type 2-low asthma. Front Genet 2023; 14:1186317. [PMID: 37152983 PMCID: PMC10160377 DOI: 10.3389/fgene.2023.1186317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Background: Type 2 (T2)-low asthma can be severe and corticosteroid-resistant. Airway epithelial cells play a pivotal role in the development of asthma, and mitochondria dysfunction is involved in the pathogenesis of asthma. However, the role of epithelial mitochondria dysfunction in T2-low asthma remains unknown. Methods: Differentially expressed genes (DEGs) were identified using gene expression omnibus (GEO) dataset GSE4302, which is originated from airway epithelial brushings from T2-high (n = 22) and T2-low asthma patients (n = 20). Gene set enrichment analysis (GSEA) was implemented to analyze the potential biological pathway involved between T2-low and T2-high asthma. T2-low asthma related genes were identified using weighted gene co-expression network analysis (WGCNA). The mitochondria-related genes (Mito-RGs) were referred to the Molecular Signatures Database (MSigDB). T2-low asthma related mitochondria (T2-low-Mito) DEGs were obtained by intersecting the DEGs, T2-low asthma related genes, and Mito-RGs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed to further explore the potential function of the T2-low-Mito DEGs. In addition, the hub genes were further identified by protein-protein interaction (PPI), and the expressions of hub genes were verified in another GEO dataset GSE67472 and bronchial brushings from patients recruited at Tongji Hospital. Results: Six hundred and ninety-two DEGs, including 107 downregulated genes and 585 upregulated genes were identified in airway epithelial brushings from T2-high and T2-low asthma patients included in GSE4302 dataset. GSEA showed that mitochondrial ATP synthesis coupled electron transport is involved in T2-low asthma. Nine hundred and four T2-low asthma related genes were identified using WGCNA. Twenty-two T2-low-Mito DEGs were obtained by intersecting the DEGs, T2-low asthma and Mito-RGs. The GO enrichment analysis of the T2-low-Mito DEGs showed significant enrichment of mitochondrial respiratory chain complex assembly, and respiratory electron transport chain. PPI network was constructed using 22 T2-low-Mito DEGs, and five hub genes, ATP5G1, UQCR10, NDUFA3, TIMM10, and NDUFAB1, were identified. Moreover, the expression of these hub genes was validated in another GEO dataset, and our cohort of asthma patients. Conclusion: This study suggests that mitochondria dysfunction contributes to T2-low asthma.
Collapse
Affiliation(s)
- Lu Zhao
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, Wuhan, China
| | - Jiali Gao
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, Wuhan, China
| | - Gongqi Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, Wuhan, China
| | - Chunli Huang
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, Wuhan, China
| | - Weiqiang Kong
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, Wuhan, China
| | - Yuchen Feng
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, Wuhan, China
- *Correspondence: Yuchen Feng, ; Guohua Zhen,
| | - Guohua Zhen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, Wuhan, China
- *Correspondence: Yuchen Feng, ; Guohua Zhen,
| |
Collapse
|
5
|
Lee SY, Lee HS, Park HW. Transcriptome analysis of sputum cells reveals two distinct molecular phenotypes of “asthma and chronic obstructive pulmonary disease overlap” in the elderly. Eur J Med Res 2022; 27:215. [DOI: 10.1186/s40001-022-00861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Little is known about the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD) overlap (ACO). This study examined the molecular phenotypes of ACO in the elderly.
Methods
A genome-wide investigation of gene expression in sputum cells from the elderly with asthma, ACO, or COPD was performed using gene set variation analysis (GSVA) with predefined asthma- or COPD-specific gene signatures. We then performed a subsequent cluster analysis using enrichment scores (ESs) to identify molecular clusters in the elderly with ACO. Finally, a second GSVA was conducted with curated gene signatures to gain insight into the pathogenesis of ACO associated with the identified molecular clusters.
Results
Seventy elderly individuals were enrolled (17 with asthma, 41 with ACO, and 12 with COPD). Two distinct molecular clusters of ACO were identified. Clinically, ACO cluster 1 (N = 23) was characterized by male and smoker dominance, more obstructive lung function, and higher proportions of both neutrophil and eosinophil in induced sputum compared to ACO cluster 2 (N = 18). ACO cluster 1 had molecular features similar to both asthma and COPD, with mitochondria and peroxisome dysfunction as important mechanisms in the pathogenesis of these diseases. The molecular features of ACO cluster 2 differed from those of asthma and COPD, with enhanced innate immune reactions to microorganisms identified as being important in the pathogenesis of this form of ACO.
Conclusion
Recognition of the unique biological pathways associated with the two distinct molecular phenotypes of ACO will deepen our understanding of ACO in the elderly.
Collapse
|
6
|
Higham A, Dungwa J, Pham T, McCrae C, Singh D. Increased mast cell activation in eosinophilic chronic obstructive pulmonary disease. Clin Transl Immunology 2022; 11:e1417. [PMID: 36188122 PMCID: PMC9512688 DOI: 10.1002/cti2.1417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022] Open
Abstract
Objectives A subset of chronic obstructive pulmonary disease (COPD) patients have increased numbers of airway eosinophils associated with elevated markers of T2 inflammation. This analysis focussed on mast cell counts and mast cell‐related gene expression in COPD patients with higher vs lower eosinophil counts. Methods We investigated gene expression of tryptase (TPSAB1), carboxypeptidase A3 (CPA3), chymase (CMA1) and two mast cell specific gene signatures; a bronchial biopsy signature (MCbb) and an IgE signature (MCIgE) using sputum cells and bronchial epithelial brushings. Gene expression analysis was conducted by RNA‐sequencing. We also examined bronchial biopsy mast cell numbers by immunohistochemistry. Results There was increased expression of TPSAB1, CPA3 and MCbb in eosinophilhigh than in eosinophillow COPD patients in sputum cells and bronchial epithelial brushings (fold change differences 1.21 and 1.28, respectively, P < 0.01). Mast cell gene expression was associated with markers of T2 and eosinophilic inflammation (IL13, CLCA1, CST1, CCL26, eosinophil counts in sputum and bronchial mucosa; rho = 0.4–0.8; P < 0.05). There was no difference in MCIgE gene expression between groups. There was no difference in the total number of bronchial biopsy mast cells between groups. Conclusion These results demonstrate that eosinophilic inflammation is associated with altered mast cell characteristics in COPD patients, implicating mast cells as a component of T2 inflammation present in a subset of COPD patients.
Collapse
Affiliation(s)
- Andrew Higham
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester and Manchester University NHS Foundation TrustManchesterUK
| | - Josiah Dungwa
- Medicines Evaluation UnitThe Langley BuildingManchesterUK
| | - Tuyet‐Hang Pham
- Translational Science & Experimental MedicineEarly Respiratory & Immunology, Research and Early Development, AstraZeneca, One MedImmune WayGaithersburgMDUSA
| | - Christopher McCrae
- Translational Science & Experimental MedicineEarly Respiratory & Immunology, Research and Early Development, AstraZeneca, One MedImmune WayGaithersburgMDUSA
| | - Dave Singh
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester and Manchester University NHS Foundation TrustManchesterUK
- Medicines Evaluation UnitThe Langley BuildingManchesterUK
| |
Collapse
|
7
|
Cao Y, Wu Y, Lin L, Yang L, Peng X, Chen L. Identifying key genes and functionally enriched pathways in Th2-high asthma by weighted gene co-expression network analysis. BMC Med Genomics 2022; 15:110. [PMID: 35550122 PMCID: PMC9097074 DOI: 10.1186/s12920-022-01241-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/14/2022] [Indexed: 12/05/2022] Open
Abstract
Background Asthma is a chronic lung disease characterized by reversible inflammation of the airways. The imbalance of Th1/Th2 cells plays a significant role in the mechanisms of asthma. The aim of this study was to identify asthma-related key genes and functionally enriched pathways in a Th2-high group by using weighted gene coexpression network analysis (WGCNA).
Methods The gene expression profiles of GSE4302, which included 42 asthma patients and 28 controls, were selected from the Gene Expression Omnibus (GEO). A gene network was constructed, and genes were classified into different modules using WGCNA. Gene ontology (GO) was performed to further explore the potential function of the genes in the most related module. In addition, the expression profile and diagnostic capacity (ROC curve) of hub genes of interest were verified by dataset GSE67472. Results In dataset GSE4302, subjects with asthma were divided into Th2-high and Th2-low groups according to the expression of the SERPINB2, POSTN and CLCA1 genes. A weighted gene coexpression network was constructed, and genes were classified into 7 modules. Among them, the red module was most closely associated with Th2-high asthma, which contained 60 genes. These genes were significantly enriched in different biological processes and molecular functions. A total of 8 hub genes (TPSB2, CPA3, ITLN1, CST1, SERPINB10, CEACAM5, CHD26 and P2RY14) were identified, and the expression levels of these genes (except TPSB2) were confirmed in dataset GSE67472. ROC curve analysis validated that the expression of these 8 genes exhibited excellent diagnostic efficiency for Th2-high asthma and Th2-low asthma. Conclusions The study provides a novel perspective on Th2-high asthma by WGCNA, and the hub genes and potential pathways involved may be beneficial for the diagnosis and management of Th2-high asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01241-9.
Collapse
Affiliation(s)
- Yao Cao
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China.,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, People's Republic of China
| | - Yi Wu
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China.,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, People's Republic of China
| | - Li Lin
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China.,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, People's Republic of China
| | - Lin Yang
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China.,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, People's Republic of China
| | - Xin Peng
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China.,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, People's Republic of China
| | - Lina Chen
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China. .,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, People's Republic of China.
| |
Collapse
|
8
|
Diver S, Sridhar S, Khalfaoui LC, Russell RJ, Emson C, Griffiths JM, de los Reyes M, Yin D, Colice G, Brightling CE. FeNO differentiates epithelial gene expression clusters: exploratory analysis from the MESOS randomised controlled trial. J Allergy Clin Immunol 2022; 150:830-840. [DOI: 10.1016/j.jaci.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/03/2022] [Accepted: 04/20/2022] [Indexed: 11/15/2022]
|
9
|
Bonser LR, Eckalbar WL, Rodriguez L, Shen J, Koh KD, Ghias K, Zlock LT, Christenson S, Woodruff PG, Finkbeiner WE, Erle DJ. The Type 2 Asthma Mediator IL-13 Inhibits Severe Acute Respiratory Syndrome Coronavirus 2 Infection of Bronchial Epithelium. Am J Respir Cell Mol Biol 2022; 66:391-401. [PMID: 34982656 PMCID: PMC8990122 DOI: 10.1165/rcmb.2021-0364oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Asthma is associated with chronic changes in the airway epithelium, a key target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Many epithelial changes, including goblet cell metaplasia, are driven by the type 2 cytokine IL-13, but the effects of IL-13 on SARS-CoV-2 infection are unknown. We found that IL-13 stimulation of differentiated human bronchial epithelial cells (HBECs) cultured at air-liquid interface reduced viral RNA recovered from SARS-CoV-2-infected cells and decreased double-stranded RNA, a marker of viral replication, to below the limit of detection in our assay. An intact mucus gel reduced SARS-CoV-2 infection of unstimulated cells, but neither a mucus gel nor SPDEF, which is required for goblet cell metaplasia, were required for the antiviral effects of IL-13. Bulk RNA sequencing revealed that IL-13 regulated 41 of 332 (12%) mRNAs encoding SARS-CoV-2-associated proteins that were detected in HBECs (>1.5-fold change; false discovery rate < 0.05). Although both IL-13 and IFN-α each inhibit SARS-CoV-2 infection, their transcriptional effects differed markedly. Single-cell RNA sequencing revealed cell type-specific differences in SARS-CoV-2-associated gene expression and IL-13 responses. Many IL-13-induced gene expression changes were seen in airway epithelium from individuals with type 2 asthma and chronic obstructive pulmonary disease. IL-13 effects on airway epithelial cells may protect individuals with type 2 asthma from COVID-19 and could lead to identification of novel strategies for reducing SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Walter L. Eckalbar
- Lung Biology Center, and,Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine,,UCSF CoLabs
| | | | | | | | | | | | - Stephanie Christenson
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine
| | - Prescott G. Woodruff
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine,,Cardiovascular Research Institute,,ImmunoX Initiative, and
| | | | - David J. Erle
- Lung Biology Center, and,UCSF CoLabs,,Cardiovascular Research Institute,,ImmunoX Initiative, and,Institute for Human Genetics, University of California, San Francisco, California
| |
Collapse
|
10
|
Frøssing L, Silberbrandt A, Von Bülow A, Kjaersgaard Klein D, Ross Christensen M, Backer V, Baines KJ, Porsbjerg C. Airway gene expression identifies subtypes of type 2 inflammation in severe asthma. Clin Exp Allergy 2021; 52:59-69. [PMID: 34142396 DOI: 10.1111/cea.13966] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Type 2 inflammation is characterized by enhanced activity of interleukin (IL)-4, -5 and -13, and treatments targeting these pathways are available for treatment of severe asthma. At present, the pattern of pathway activity and the implications overlapping of pathway activity are unknown. OBJECTIVE We hypothesized that clustering of airway mRNA expression would identify distinct molecular subtypes of severe asthma and thereby uncover the prevalence and overlap of pathway activity. METHODS Sputum mRNA expression of genes related to expression of IL-5(CLC, CPA3 and DNASE1L3), IL-13(IL13Ra1, TNFSF14 and SERPINB2), T1/Th17 activity(IL1B, ALPL and CXCR2) and in vitro response to corticosteroids (FKBP512) and mepolizumab (ARAP3) was analysed in patients (n = 109) with severe asthma and healthy controls (n = 22). A cluster analysis of gene expression was performed. The response to a short course of OCS was assessed in a subset of patients (n = 29). RESULTS Five molecular clusters were identified. Three had abundant T2 gene expression of which two (n = 39 and n = 9) were characterized by abundant expression of both IL-13- and IL-5-related genes. The last (n = 6) had only abundant IL-5-related gene expression. These T2-high molecular clusters could not be distinguished using T2 biomarkers. T2- and Th1/Th17-related mRNA expression were co-expressed across all clusters. OCS significantly reduced T2 gene expression (CLC, IL13Ra1, SERPINB2 and ARAP3) and significantly increase expression of Th1/Th17-related genes (ALPL and CXCR2). CONCLUSIONS AND CLINICAL RELEVANCE Clustering of airway mRNA expression identified five molecular clusters of severe asthma of which three were considered T2 high. Co-expression of IL-5- and IL-13-related genes at moderate levels was present in almost half of patients, while marked elevated expression of both was rare. In contrast to IL-5, clusters with isolated IL-13- and Th1/Th17-related gene expression were not identified.
Collapse
Affiliation(s)
- Laurits Frøssing
- Respiratory Research Unit, Department of Respiratory Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Copenhagen Center for Translational Research, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Alexander Silberbrandt
- Respiratory Research Unit, Department of Respiratory Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Copenhagen Center for Translational Research, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Anna Von Bülow
- Respiratory Research Unit, Department of Respiratory Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Ditte Kjaersgaard Klein
- Respiratory Research Unit, Department of Respiratory Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Copenhagen Center for Translational Research, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Marcus Ross Christensen
- Respiratory Research Unit, Department of Respiratory Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Vibeke Backer
- Centre for Physical Activity Research, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Katherine J Baines
- The Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Celeste Porsbjerg
- Respiratory Research Unit, Department of Respiratory Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Copenhagen Center for Translational Research, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
11
|
Southworth T, Van Geest M, Singh D. Type-2 airway inflammation in mild asthma patients with high blood eosinophils and high fractional exhaled nitric oxide. Clin Transl Sci 2021; 14:1259-1264. [PMID: 34106513 PMCID: PMC8301554 DOI: 10.1111/cts.13078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/19/2023] Open
Abstract
Type‐2 (T2) inflammation is a characteristic feature of asthma. Biological therapies have been developed to target T2‐inflammation in asthma. IL‐13 is a key component of T2‐inflammation in asthma, driving mucus hypersecretion, IgE‐induction, and smooth muscle contraction. Early phase clinical trials for treatments that target T2‐inflammation require biomarkers to assess pharmacological effects. The aim of this study was to examine levels of IL‐13 inducible biomarkers in the airway epithelium of patients with mild asthma compared to healthy controls. Ten patients with mild asthma with high blood eosinophil and high fractional exhaled nitric oxide (FeNO) were recruited, and six healthy subjects. Blood eosinophil and FeNO reproducibility was assessed prior to bronchoscopy. Epithelial brushings were collected and assessed for IL‐13 inducible gene expression. Blood eosinophil and FeNO levels remained consistent in both patients with asthma and healthy subjects. Of the 11 genes assessed, expression levels of 15LOX1, POSTN, CLCA1, SERPINB2, CCL26, and NOS2 were significantly higher in patients with asthma compared to healthy controls. These six genes, present in patients with mild asthma with T2 inflammation, have the potential to be used in translational early phase asthma clinical trials of novel therapies as bronchial epithelial biomarkers.
Collapse
Affiliation(s)
- Thomas Southworth
- Division of Infection, Immunity and Respiratory Medicine, Manchester University NHS Foundation Trust, University of Manchester, Manchester, UK.,Medicines Evaluation Unit, Manchester, UK
| | - Marleen Van Geest
- Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, Manchester University NHS Foundation Trust, University of Manchester, Manchester, UK.,Medicines Evaluation Unit, Manchester, UK
| |
Collapse
|
12
|
Zhang K, Feng Y, Liang Y, Wu W, Chang C, Chen D, Chen S, Gao J, Chen G, Yi L, Cheng D, Zhen G. Epithelial miR-206 targets CD39/extracellular ATP to upregulate airway IL-25 and TSLP in type 2-high asthma. JCI Insight 2021; 6:148103. [PMID: 33945508 PMCID: PMC8262281 DOI: 10.1172/jci.insight.148103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/28/2021] [Indexed: 02/05/2023] Open
Abstract
The epithelial cell–derived cytokines IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) initiate type 2 inflammation in allergic diseases, including asthma. However, the signaling pathway regulating these cytokines expression remains elusive. Since microRNAs are pivotal regulators of gene expression, we profiled microRNA expression in bronchial epithelial brushings from type 2–low and type 2–high asthma patients. miR-206 was the most highly expressed epithelial microRNA in type 2–high asthma relative to type 2–low asthma but was downregulated in both subsets compared with healthy controls. CD39, an ectonucleotidase degrading ATP, was a target of miR-206 and upregulated in asthma. Allergen-induced acute extracellular ATP accumulation led to miR-206 downregulation and CD39 upregulation in human bronchial epithelial cells, forming a feedback loop to eliminate excessive ATP. Airway ATP levels were markedly elevated and strongly correlated with IL-25 and TSLP expression in asthma patients. Intriguingly, airway miR-206 antagonism increased Cd39 expression; reduced ATP accumulation; suppressed IL-25, IL-33, and Tslp expression and group 2 innate lymphoid cell expansion; and alleviated type 2 inflammation in a mouse model of allergic airway inflammation. In contrast, airway miR-206 overexpression had opposite effects. Overall, epithelial miR-206 upregulates airway IL-25 and TSLP expression by targeting the CD39–extracellular ATP axis, which represents a potentially novel therapeutic target in type 2–high asthma.
Collapse
Affiliation(s)
- Kan Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China.,Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yuchen Feng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Yuxia Liang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Wenliang Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Chenli Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Dian Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Shengchong Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Jiali Gao
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Gongqi Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Lingling Yi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Dan Cheng
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guohua Zhen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| |
Collapse
|
13
|
Yi L, Zhang S, Feng Y, Wu W, Chang C, Chen D, Chen S, Zhao J, Zhen G. Increased epithelial galectin-13 expression associates with eosinophilic airway inflammation in asthma. Clin Exp Allergy 2021; 51:1566-1576. [PMID: 34075657 DOI: 10.1111/cea.13961] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Airway eosinophilic inflammation is a central feature in asthma which is mainly driven by type 2 response. The expression of galectin-13 was up-regulated in a parasitic infection model which is also characterized by type 2 immune response. We hypothesized that galectin-13 may be involved in airway eosinophilic inflammation in asthma. OBJECTIVE To unveil the role of galectin-13 in asthma airway inflammation. METHODS We measured galectin-13 expressions in bronchial brushings, sputum, and plasma of asthma patients (n = 54) and healthy controls (n = 15), and analysed the correlations between galectin-13 expression and airway eosinophilia. We used human bronchial epithelial cell line 16HBE to investigate the possible mechanism by which galectin-13 participates in eosinophilic inflammation. RESULTS The expression of galectin-13 was markedly increased in subjects with asthma compared to controls. Epithelial galectin-13 mRNA levels in asthmatic subjects were strongly correlated with eosinophilic airway inflammation (the percentage of sputum eosinophils, the number of eosinophils in bronchial submucosa and FeNO) and the expression of Th2 signature genes (CLCA1, POSTN and SERPINB2). Inhaled corticosteroid (ICS) treatment reduced plasma galectin-13 levels, and baseline plasma galectin-13 levels reflect the response to ICS treatment. In cultured 16HBE cells, knockdown of galectin-13 suppressed IL-13-stimulated MCP-1 and eotaxin-1 expression by inhibiting the activation of EGFR and ERK. CONCLUSIONS & CLINICAL RELEVANCE Galectin-13 is a novel marker for airway eosinophilia in asthma, and may contribute to allergic airway eosinophilic inflammation by up-regulating the expression of MCP-1 and eotaxin-1. Plasma galectin-13 levels may be useful for predicting responses to ICS treatment.
Collapse
Affiliation(s)
- Lingling Yi
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Shuchen Zhang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchen Feng
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Wenliang Wu
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Chenli Chang
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Dian Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Shengchong Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Jianping Zhao
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Guohua Zhen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| |
Collapse
|
14
|
Becker EJ, Faiz A, van den Berge M, Timens W, Hiemstra PS, Clark K, Liu G, Xiao X, Alekseyev YO, O'Connor G, Lam S, Spira A, Lenburg ME, Steiling K. Bronchial gene expression signature associated with rate of subsequent FEV 1 decline in individuals with and at risk of COPD. Thorax 2021; 77:31-39. [PMID: 33972452 DOI: 10.1136/thoraxjnl-2019-214476] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/10/2021] [Accepted: 04/08/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND COPD is characterised by progressive lung function decline. Leveraging prior work demonstrating bronchial airway COPD-associated gene expression alterations, we sought to determine if there are alterations associated with differences in the rate of FEV1 decline. METHODS We examined gene expression among ever smokers with and without COPD who at baseline had bronchial brushings profiled by Affymetrix microarrays and had longitudinal lung function measurements (n=134; mean follow-up=6.38±2.48 years). Gene expression profiles associated with the rate of FEV1 decline were identified by linear modelling. RESULTS Expression differences in 171 genes were associated with rate of FEV1 decline (false discovery rate <0.05). The FEV1 decline signature was replicated in an independent dataset of bronchial biopsies from patients with COPD (n=46; p=0.018; mean follow-up=6.76±1.32 years). Genes elevated in individuals with more rapid FEV1 decline are significantly enriched among the genes altered by modulation of XBP1 in two independent datasets (Gene Set Enrichment Analysis (GSEA) p<0.05) and are enriched in mucin-related genes (GSEA p<0.05). CONCLUSION We have identified and replicated an airway gene expression signature associated with the rate of FEV1 decline. Aspects of this signature are related to increased expression of XBP1-regulated genes, a transcription factor involved in the unfolded protein response, and genes related to mucin production. Collectively, these data suggest that molecular processes related to the rate of FEV1 decline can be detected in airway epithelium, identify a possible indicator of FEV1 decline and make it possible to detect, in an early phase, ever smokers with and without COPD most at risk of rapid FEV1 decline.
Collapse
Affiliation(s)
- Elizabeth J Becker
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| | - Alen Faiz
- Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Department of Pulmonary Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Department of Pulmonary Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kristopher Clark
- Internal Medicine Residency Program, Boston Medical Center, Boston, Massachusetts, USA
| | - Gang Liu
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Xiaohui Xiao
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Yuriy O Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - George O'Connor
- Division of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Stephen Lam
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Avrum Spira
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Bioinformatics Program, Boston University, Boston, Massachusetts, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Marc E Lenburg
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Bioinformatics Program, Boston University, Boston, Massachusetts, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Katrina Steiling
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA .,Bioinformatics Program, Boston University, Boston, Massachusetts, USA.,Division of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Coverstone AM, Seibold MA, Peters MC. Diagnosis and Management of T2-High Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 8:442-450. [PMID: 32037108 DOI: 10.1016/j.jaip.2019.11.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/07/2019] [Accepted: 11/24/2019] [Indexed: 12/15/2022]
Abstract
Type 2 (T2) inflammation plays a key role in the pathogenesis of asthma. IL-4, IL-5, and IL-13, along with other inflammatory mediators, lead to increased cellular eosinophilic inflammation. It is likely that around half of all patients with asthma have evidence of T2-high inflammation. Sputum and blood eosinophils, exhaled nitric oxide, blood IgE levels, and airway gene expression markers are frequently used biomarkers of T2-high asthma. Individuals with T2-high asthma tend to have several features of increased asthma severity, including reduced lung function and increased rates of asthma exacerbations, and T2-high patients demonstrate distinct pathologic features including increased airway remodeling and alterations in airway mucus production. Several monoclonal antibodies are now available to treat individuals with T2-high asthma and these medications significantly reduce asthma exacerbation rates.
Collapse
Affiliation(s)
- Andrea M Coverstone
- Department of Pediatrics, Division of Allergy, Immunology and Pulmonary Medicine, Washington University School of Medicine in Saint Louis, St Louis, Mo.
| | - Max A Seibold
- National Jewish Health, Department of Pediatrics, Center for Genes, Environment, and Health, Denver, Colo
| | - Michael C Peters
- Department of Medicine, San Francisco School of Medicine, University of California, San Francisco, Calif
| |
Collapse
|
16
|
Asghar Pasha M, Yang Q. Innate Lymphoid Cells in Airway Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:183-191. [PMID: 33788194 DOI: 10.1007/978-3-030-63046-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Airways are constantly exposed to antigens and various pathogens. Immune cells in the airways act as first line defense system against these pathogens, involving both innate and acquired immunity. There is accumulating evidence that innate lymphoid cells, newly identified lymphoid lineage cells, play a critical role in regulating tissue homeostasis and in the pathogenesis of inflammation. Cytokines produced by other cells activate innate lymphoid cells, which in turn produce large amount of cytokines that result in inflammation. Type 2 innate lymphoid cells (ILC2s) are recognized as key component of T helper type 2 (Th2) inflammation, and are known to be elevated in type 2 (T2) human airway diseases (asthma). Th2 cytokines produced by ILC2s amplify inflammation via activation of eosinophils, B cells, mast cell, and macrophages. "T2 high asthma" has an increased Th2 response triggered by elevation of IL-4, IL-5 and IL-13 and other inflammatory mediators, leading to increased eosinophilic inflammation. The growing evidence of ILC2 contribution in the induction and maintenance of allergic inflammation suggests that targeting upstream mediators may affect both the innate and adaptive immune responses and all disease phenotypes. Blocking ILC2 activators, activation of inhibitory pathways of ILC2, or suppression of ILC2-mediated pathways may be therapeutic strategies for the type 2 airway diseases.
Collapse
Affiliation(s)
- M Asghar Pasha
- Division of Allergy and Immunology, Department of Medicine, Albany Medical College, Albany, NY, USA.
| | - Qi Yang
- Department of Microbial Disease & Immunology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
17
|
Bonser LR, Eckalbar WL, Rodriguez L, Shen J, Koh KD, Zlock LT, Christenson S, Woodruff PG, Finkbeiner WE, Erle DJ. The type 2 asthma mediator IL-13 inhibits SARS-CoV-2 infection of bronchial epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.25.432762. [PMID: 33655249 PMCID: PMC7924269 DOI: 10.1101/2021.02.25.432762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RATIONALE Asthma is associated with chronic changes in the airway epithelium, a key target of SARS-CoV-2. Many epithelial changes are driven by the type 2 cytokine IL-13, but the effects of IL-13 on SARS-CoV-2 infection are unknown. OBJECTIVES We sought to discover how IL-13 and other cytokines affect expression of genes encoding SARS-CoV-2-associated host proteins in human bronchial epithelial cells (HBECs) and determine whether IL-13 stimulation alters susceptibility to SARS-CoV-2 infection. METHODS We used bulk and single cell RNA-seq to identify cytokine-induced changes in SARS-CoV-2-associated gene expression in HBECs. We related these to gene expression changes in airway epithelium from individuals with mild-moderate asthma and chronic obstructive pulmonary disease (COPD). We analyzed effects of IL-13 on SARS-CoV-2 infection of HBECs. MEASUREMENTS AND MAIN RESULTS Transcripts encoding 332 of 342 (97%) SARS-CoV-2-associated proteins were detected in HBECs (≥1 RPM in 50% samples). 41 (12%) of these mRNAs were regulated by IL-13 (>1.5-fold change, FDR < 0.05). Many IL-13-regulated SARS-CoV-2-associated genes were also altered in type 2 high asthma and COPD. IL-13 pretreatment reduced viral RNA recovered from SARS-CoV-2 infected cells and decreased dsRNA, a marker of viral replication, to below the limit of detection in our assay. Mucus also inhibited viral infection. CONCLUSIONS IL-13 markedly reduces susceptibility of HBECs to SARS-CoV-2 infection through mechanisms that likely differ from those activated by type I interferons. Our findings may help explain reports of relatively low prevalence of asthma in patients diagnosed with COVID-19 and could lead to new strategies for reducing SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Luke R. Bonser
- Lung Biology Center, Critical Care, Allergy and Sleep Medicine, Department of Medicine; University of California, San Francisco
| | - Walter L. Eckalbar
- Lung Biology Center, Critical Care, Allergy and Sleep Medicine, Department of Medicine; University of California, San Francisco
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine; University of California, San Francisco
- UCSF CoLabs; University of California, San Francisco
| | | | - Jiangshan Shen
- Lung Biology Center, Critical Care, Allergy and Sleep Medicine, Department of Medicine; University of California, San Francisco
| | - Kyung Duk Koh
- Lung Biology Center, Critical Care, Allergy and Sleep Medicine, Department of Medicine; University of California, San Francisco
| | - Lorna T. Zlock
- Department of Pathology; University of California, San Francisco
| | - Stephanie Christenson
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine; University of California, San Francisco
| | - Prescott G. Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine; University of California, San Francisco
- Cardiovascular Research Institute; University of California, San Francisco
- ImmunoX Initiative; University of California, San Francisco
| | | | - David J. Erle
- Lung Biology Center, Critical Care, Allergy and Sleep Medicine, Department of Medicine; University of California, San Francisco
- UCSF CoLabs; University of California, San Francisco
- Cardiovascular Research Institute; University of California, San Francisco
- ImmunoX Initiative; University of California, San Francisco
| |
Collapse
|
18
|
The role of genomic profiling in identifying molecular phenotypes in obstructive lung diseases. Curr Opin Pulm Med 2021; 26:84-89. [PMID: 31714272 DOI: 10.1097/mcp.0000000000000646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW The biology underlying asthma and chronic obstructive pulmonary disease (COPD) is heterogeneous. Targeting therapies to patient subgroups, or 'molecular phenotypes', based on their underlying biology is emerging as an efficacious treatment strategy. This review summarizes the role of airway sample gene expression profiling in understanding molecular phenotypes in obstructive lung disease. RECENT FINDINGS Recent gene expression studies have reinforced the importance of Type two (T2) inflammation in asthma and COPD subgroups. Studies in asthma also suggest that the molecular phenotype with enhanced T2 inflammation is itself heterogeneous with a subgroup that has steroid-refractory inflammation. Other inflammatory pathways are also emerging as implicated in asthma and COPD molecular phenotypes, including Type one and Type 17 adaptive immune responses and proinflammatory cytokines, such as interleukin-6. SUMMARY Genomic profiling studies are advancing our understanding of the complex biology contributing to asthma and COPD molecular phenotypes. Recent studies suggest that asthma and COPD subgroups may benefit from different treatment strategies than those currently in practice.
Collapse
|
19
|
The Airway Epithelium-A Central Player in Asthma Pathogenesis. Int J Mol Sci 2020; 21:ijms21238907. [PMID: 33255348 PMCID: PMC7727704 DOI: 10.3390/ijms21238907] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease characterized by variable airflow obstruction in response to a wide range of exogenous stimuli. The airway epithelium is the first line of defense and plays an important role in initiating host defense and controlling immune responses. Indeed, increasing evidence indicates a range of abnormalities in various aspects of epithelial barrier function in asthma. A central part of this impairment is a disruption of the airway epithelial layer, allowing inhaled substances to pass more easily into the submucosa where they may interact with immune cells. Furthermore, many of the identified susceptibility genes for asthma are expressed in the airway epithelium. This review focuses on the biology of the airway epithelium in health and its pathobiology in asthma. We will specifically discuss external triggers such as allergens, viruses and alarmins and the effect of type 2 inflammatory responses on airway epithelial function in asthma. We will also discuss epigenetic mechanisms responding to external stimuli on the level of transcriptional and posttranscriptional regulation of gene expression, as well the airway epithelium as a potential treatment target in asthma.
Collapse
|
20
|
Emson C, Diver S, Chachi L, Megally A, Small C, Downie J, Parnes JR, Bowen K, Colice G, Brightling CE. CASCADE: a phase 2, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the effect of tezepelumab on airway inflammation in patients with uncontrolled asthma. Respir Res 2020; 21:265. [PMID: 33050900 PMCID: PMC7550845 DOI: 10.1186/s12931-020-01513-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Patients with severe, uncontrolled asthma, particularly those with a non-eosinophilic phenotype, have a great unmet need for new treatments that act on a broad range of inflammatory pathways in the airway. Tezepelumab is a human monoclonal antibody that blocks the activity of thymic stromal lymphopoietin, an epithelial cytokine. In the PATHWAY phase 2b study (NCT02054130), tezepelumab reduced exacerbations by up to 71% in adults with severe, uncontrolled asthma, irrespective of baseline eosinophilic inflammatory status. This article reports the design and objectives of the phase 2 CASCADE study. METHODS CASCADE is an ongoing exploratory, phase 2, randomized, double-blind, placebo-controlled, parallel-group study aiming to assess the anti-inflammatory effects of tezepelumab 210 mg administered subcutaneously every 4 weeks for 28 weeks in adults aged 18-75 years with uncontrolled, moderate-to-severe asthma. The primary endpoint is the change from baseline to week 28 in airway submucosal inflammatory cells (eosinophils, neutrophils, T cells and mast cells) from bronchoscopic biopsies. Epithelial molecular phenotyping, comprising the three-gene-mean technique, will be used to assess participants' type 2 (T2) status to enable evaluation of the anti-inflammatory effect of tezepelumab across the continuum of T2 activation. Other exploratory analyses include assessments of the impact of tezepelumab on airway remodelling, including reticular basement membrane thickening and airway epithelial integrity. At the onset of the COVID-19 pandemic, the protocol was amended to address the possibility that site visits would be limited. The amendment allowed for: at-home dosing of study drug by a healthcare professional, extension of the treatment period by up to 6 months so patients are able to attend an onsite visit to undergo the end-of-treatment bronchoscopy, and replacement of final follow-up visits with a virtual or telephone visit. DISCUSSION CASCADE aims to determine the mechanisms by which tezepelumab improves clinical asthma outcomes by evaluating the effect of tezepelumab on airway inflammatory cells and remodelling in patients with moderate-to-severe, uncontrolled asthma. An important aspect of this study is the evaluation of the anti-inflammatory effect of tezepelumab across patients with differing levels of eosinophilic and T2 inflammation. TRIAL REGISTRATION NCT03688074 (ClinicalTrials.gov). Registered 28 September 2018.
Collapse
Affiliation(s)
- Claire Emson
- Translational Science and Experimental Medicine, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA.
| | | | | | - Ayman Megally
- Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Cherrie Small
- Development Operations, BioPharmaceuticals R&D, AstraZeneca, Mississauga, Ontario, Canada
| | | | | | - Karin Bowen
- Biometrics, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Gene Colice
- Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | | |
Collapse
|
21
|
Durack J, Christian LS, Nariya S, Gonzalez J, Bhakta NR, Ansel KM, Beigelman A, Castro M, Dyer AM, Israel E, Kraft M, Martin RJ, Mauger DT, Peters SP, Rosenberg SR, Sorkness CA, Wechsler ME, Wenzel SE, White SR, Lynch SV, Boushey HA, Huang YJ. Distinct associations of sputum and oral microbiota with atopic, immunologic, and clinical features in mild asthma. J Allergy Clin Immunol 2020; 146:1016-1026. [PMID: 32298699 DOI: 10.1016/j.jaci.2020.03.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/06/2020] [Accepted: 03/02/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Whether microbiome characteristics of induced sputum or oral samples demonstrate unique relationships to features of atopy or mild asthma in adults is unknown. OBJECTIVE We sought to determine sputum and oral microbiota relationships to clinical or immunologic features in mild atopic asthma and the impact on the microbiota of inhaled corticosteroid (ICS) treatment administered to ICS-naive subjects with asthma. METHODS Bacterial microbiota profiles were analyzed in induced sputum and oral wash samples from 32 subjects with mild atopic asthma before and after inhaled fluticasone treatment, 18 atopic subjects without asthma, and 16 nonatopic healthy subjects in a multicenter study (NCT01537133). Associations with clinical and immunologic features were examined, including markers of atopy, type 2 inflammation, immune cell populations, and cytokines. RESULTS Sputum bacterial burden inversely associated with bronchial expression of type 2 (T2)-related genes. Differences in specific sputum microbiota also associated with T2-low asthma phenotype, a subgroup of whom displayed elevations in lung inflammatory mediators and reduced sputum bacterial diversity. Differences in specific oral microbiota were more reflective of atopic status. After ICS treatment of patients with asthma, the compositional structure of sputum microbiota showed greater deviation from baseline in ICS nonresponders than in ICS responders. CONCLUSIONS Novel associations of sputum and oral microbiota to immunologic features were observed in this cohort of subjects with or without ICS-naive mild asthma. These findings confirm and extend our previous report of reduced bronchial bacterial burden and compositional complexity in subjects with T2-high asthma, with additional identification of a T2-low subgroup with a distinct microbiota-immunologic relationship.
Collapse
Affiliation(s)
- Juliana Durack
- Department of Medicine, Division of Gastroenterology, University of California, San Francisco, Calif
| | - Laura S Christian
- Department of Microbiology & Immunology and Sandler Asthma Basic Research Center, San Francisco, Calif
| | - Snehal Nariya
- Department of Medicine, Division of Pulmonary/Critical Care Medicine, University of California, San Francisco, Calif
| | - Jeanmarie Gonzalez
- Department of Microbiology & Immunology and Sandler Asthma Basic Research Center, San Francisco, Calif
| | - Nirav R Bhakta
- Department of Medicine, Division of Pulmonary/Critical Care Medicine, University of California, San Francisco, Calif
| | - K Mark Ansel
- Department of Microbiology & Immunology and Sandler Asthma Basic Research Center, San Francisco, Calif
| | - Avraham Beigelman
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, Washington University School of Medicine, St Louis, Mo; Kipper Institute of Allergy and Immunology, Schneider Children's Medical Center of Israel, Tel Aviv University, Tel Aviv, Israel
| | - Mario Castro
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St Louis, Mo
| | - Anne-Marie Dyer
- Department of Public Health Sciences, Penn State University, Hershey, Pa
| | - Elliot Israel
- Department of Medicine, Brigham & Women's Hospital, Boston, Mass
| | - Monica Kraft
- University of Arizona, Health Sciences, Tucson, Ariz
| | | | - David T Mauger
- Department of Public Health Sciences, Penn State University, Hershey, Pa
| | | | | | | | | | - Sally E Wenzel
- University of Pittsburgh Asthma Institute at UPMC/UPSOM, Pittsburgh, Pa
| | - Steven R White
- Department of Medicine, University of Chicago, Chicago, Ill
| | - Susan V Lynch
- Department of Medicine, Division of Gastroenterology, University of California, San Francisco, Calif
| | - Homer A Boushey
- Department of Medicine, Division of Pulmonary/Critical Care Medicine, University of California, San Francisco, Calif
| | - Yvonne J Huang
- Department of Internal Medicine, Division of Pulmonary/Critical Care Medicine, University of Michigan, Ann Arbor, Mich.
| | | |
Collapse
|
22
|
Kicic A, de Jong E, Ling KM, Nichol K, Anderson D, Wark PAB, Knight DA, Bosco A, Stick SM. Assessing the unified airway hypothesis in children via transcriptional profiling of the airway epithelium. J Allergy Clin Immunol 2020; 145:1562-1573. [PMID: 32113981 DOI: 10.1016/j.jaci.2020.02.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Emerging evidence suggests that disease vulnerability is expressed throughout the airways, the so-called unified airway hypothesis, but the evidence to support this is predominantly indirect. OBJECTIVES We sought to establish the transcriptomic profiles of the upper and lower airways and determine their level of similarity irrespective of airway symptoms (wheeze) and allergy. METHODS We performed RNA sequencing on upper and lower airway epithelial cells from 63 children with or without wheeze and accompanying atopy, using differential gene expression and gene coexpression analyses to determine transcriptional similarity. RESULTS We observed approximately 91% homology in the expressed genes between the 2 sites. When coexpressed genes were grouped into modules relating to biological functions, all were found to be conserved between the 2 regions, resulting in a consensus network containing 16 modules associated with ribosomal function, metabolism, gene expression, mitochondrial activity, and antiviral responses through IFN activity. Although symptom-associated gene expression changes were more prominent in the lower airway, they were reflected in nasal epithelium and included IL-1 receptor like 1, prostaglandin-endoperoxide synthase 1, CCL26, and periostin. Through network analysis we identified a cluster of coexpressed genes associated with atopic wheeze in the lower airway, which could equally distinguish atopic and nonatopic phenotypes in upper airway samples. CONCLUSIONS We show that the upper and lower airways are significantly conserved in their transcriptional composition, and that variations associated with disease are present in both nasal and tracheal epithelium. Findings from this study supporting a unified airway imply that clinical insight regarding the lower airway in health and disease can be gained from studying the nasal epithelium.
Collapse
Affiliation(s)
- Anthony Kicic
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Australia; Occupation and Environment, School of Public Health, Curtin University, Perth, Australia; School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, Australia.
| | - Emma de Jong
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Australia
| | - Kak-Ming Ling
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| | - Kristy Nichol
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, Australia
| | - Denise Anderson
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Australia
| | - Peter A B Wark
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, Australia
| | - Darryl A Knight
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Anthony Bosco
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Australia
| | - Stephen M Stick
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Australia; School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, Australia
| | -
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Australia
| | -
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Australia; Robinson Research Institute, University of Adelaide, Adelaide, Australia; Hunter Medical Research Institute, Priority Research Centre for Asthma and Respiratory Disease, New Lambton Heights, Australia
| |
Collapse
|
23
|
Peters MC, Wenzel SE. Intersection of biology and therapeutics: type 2 targeted therapeutics for adult asthma. Lancet 2020; 395:371-383. [PMID: 32007172 PMCID: PMC8522504 DOI: 10.1016/s0140-6736(19)33005-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/17/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022]
Abstract
Asthma is a disease of reversible airflow obstruction characterised clinically by wheezing, shortness of breath, and coughing. Increases in airway type 2 cytokine activity, including interleukin-4 (IL-4), IL-5, and IL-13, are now established biological mechanisms in asthma. Inhaled corticosteroids have been the foundation for asthma treatment, in a large part because they decrease airway type 2 inflammation. However, inhaled or systemic corticosteroids are ineffective treatments in many patients with asthma and few treatment options exist for patients with steroid resistant asthma. Although mechanisms for corticosteroid refractory asthma are likely to be numerous, the development of a new class of biologic agents that target airway type 2 inflammation has provided a new model for treating some patients with corticosteroid refractory asthma. The objective of this Therapeutic paper is to summarise the new type 2 therapeutics, with an emphasis on the biological rationale and clinical efficacy of this new class of asthma therapeutics.
Collapse
Affiliation(s)
- Michael C Peters
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Diamant Z, Vijverberg S, Alving K, Bakirtas A, Bjermer L, Custovic A, Dahlen S, Gaga M, Gerth van Wijk R, Del Giacco S, Hamelmann E, Heaney LG, Heffler E, Kalayci Ö, Kostikas K, Lutter R, Olin A, Sergejeva S, Simpson A, Sterk PJ, Tufvesson E, Agache I, Seys SF. Toward clinically applicable biomarkers for asthma: An EAACI position paper. Allergy 2019; 74:1835-1851. [PMID: 30953574 DOI: 10.1111/all.13806] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 12/13/2022]
Abstract
Inflammation, structural, and functional abnormalities within the airways are key features of asthma. Although these processes are well documented, their expression varies across the heterogeneous spectrum of asthma. Type 2 inflammatory responses are characterized by increased levels of eosinophils, FeNO, and type 2 cytokines in blood and/or airways. Presently, type 2 asthma is the best-defined endotype, typically found in patients with allergic asthma, but surprisingly also in nonallergic patients with (severe) asthma. The etiology of asthma with non-type 2 inflammation is less clear. During the past decade, targeted therapies, including biologicals and small molecules, have been increasingly integrated into treatment strategies of severe asthma. These treatments block specific inflammatory pathways or single mediators. Single or composite biomarkers help to identify patients who will benefit from these treatments. So far, only a few inflammatory biomarkers have been validated for clinical application. The European Academy of Allergy & Clinical Immunology Task Force on Biomarkers in Asthma was initiated to review different biomarker sampling methods and to investigate clinical applicability of new and existing inflammatory biomarkers (point-of-care) to support diagnosis, targeted treatment, and monitoring of severe asthma. Subsequently, we discuss existing and novel targeted therapies for asthma as well as applicable biomarkers.
Collapse
Affiliation(s)
- Zuzana Diamant
- Department of Respiratory Medicine and Allergology Institute for Clinical Science Skane University Hospital Lund Sweden
- Department of Clinical Pharmacy and Pharmacology UMCG and QPS‐NL Groningen The Netherlands
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Susanne Vijverberg
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Kjell Alving
- Department of Women's and Children's Health Uppsala University Uppsala Sweden
| | - Arzu Bakirtas
- Department of Pediatrics Division of Pediatric Allergy and Asthma Gazi University School of Medicine Ankara Turkey
| | - Leif Bjermer
- Department of Clinical Pharmacy and Pharmacology UMCG and QPS‐NL Groningen The Netherlands
| | - Adnan Custovic
- Section of Paediatrics Department of Medicine Imperial College London London UK
| | - Sven‐Erik Dahlen
- Experimental Asthma and Allergy Research Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
| | - Mina Gaga
- 7th Respiratory Medicine Department and Asthma Centre Athens Chest Hospital Athens Greece
| | - Roy Gerth van Wijk
- Section of Allergology Department of Internal Medicine Erasmus Medical Center Rotterdam the Netherlands
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health University of Cagliari Cagliari Italy
| | - Eckard Hamelmann
- Children's Center Protestant Hospital Bethel Bielefeld Germany
- Allergy Center Ruhr University Bochum Bochum Germany
| | - Liam G. Heaney
- Centre for Experimental Medicine, School of MedicineDentistry and Biomedical Sciences, Queen's University Belfast Belfast UK
| | - Enrico Heffler
- Department of Biomedical Sciences Humanitas University Milan Italy
- Personalized Medicine, Asthma and Allergy Humanitas Research Hospital Milan Italy
| | - Ömer Kalayci
- Division of Pediatric Allergy Faculty of Medicine Hacettepe University Ankara Turkey
| | - Konstantinos Kostikas
- Respiratory Medicine Department University of Ioannina Medical School Ioannina Greece
| | - Rene Lutter
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Anna‐Carin Olin
- Section of Occupational and Environmental Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | | | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine Faculty of Biology, Medicine and Health Manchester Academic Health Sciences Centre University of Manchester and University Hospital of South Manchester NHS Foundation Trust Manchester UK
| | - Peter J. Sterk
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Ellen Tufvesson
- Department of Clinical Pharmacy and Pharmacology UMCG and QPS‐NL Groningen The Netherlands
| | - Ioana Agache
- Department of Allergy and Clinical Immunology Faculty of Medicine Transylvania University Brasov Brasov Romania
| | - Sven F. Seys
- Allergy and Clinical Immunology Research Group Department of Microbiology, Immunology and Transplantation KU Leuven Leuven Belgium
| |
Collapse
|
25
|
Nakada EM, Bhakta NR, Korwin-Mihavics BR, Kumar A, Chamberlain N, Bruno SR, Chapman DG, Hoffman SM, Daphtary N, Aliyeva M, Irvin CG, Dixon AE, Woodruff PG, Amin S, Poynter ME, Desai DH, Anathy V. Conjugated bile acids attenuate allergen-induced airway inflammation and hyperresponsiveness by inhibiting UPR transducers. JCI Insight 2019; 4:98101. [PMID: 31045581 DOI: 10.1172/jci.insight.98101] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/02/2019] [Indexed: 12/14/2022] Open
Abstract
Conjugated bile acids (CBAs), such as tauroursodeoxycholic acid (TUDCA), are known to resolve the inflammatory and unfolded protein response (UPR) in inflammatory diseases, such as asthma. Whether CBAs exert their beneficial effects on allergic airway responses via 1 arm or several arms of the UPR, or alternatively through the signaling pathways for conserved bile acid receptor, remains largely unknown. We used a house dust mite-induced (HDM-induced) murine model of asthma to evaluate and compare the effects of 5 CBAs and 1 unconjugated bile acid in attenuating allergen-induced UPR and airway responses. Expression of UPR-associated transcripts was assessed in airway brushings from human patients with asthma and healthy subjects. Here we show that CBAs, such as alanyl β-muricholic acid (AβM) and TUDCA, significantly decreased inflammatory, immune, and cytokine responses; mucus metaplasia; and airway hyperresponsiveness, as compared with other CBAs in a model of allergic airway disease. CBAs predominantly bind to activating transcription factor 6α (ATF6α) compared with the other canonical transducers of the UPR, subsequently decreasing allergen-induced UPR activation and resolving allergic airway disease, without significant activation of the bile acid receptors. TUDCA and AβM also attenuated other HDM-induced ER stress markers in the lungs of allergic mice. Quantitative mRNA analysis of airway epithelial brushings from human subjects demonstrated that several ATF6α-related transcripts were significantly upregulated in patients with asthma compared with healthy subjects. Collectively, these results demonstrate that CBA-based therapy potently inhibits the allergen-induced UPR and allergic airway disease in mice via preferential binding of the canonical transducer of the UPR, ATF6α. These results potentially suggest a novel avenue to treat allergic asthma using select CBAs.
Collapse
Affiliation(s)
- Emily M Nakada
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Nirav R Bhakta
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, UCSF School of Medicine, San Francisco, California, USA
| | - Bethany R Korwin-Mihavics
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Amit Kumar
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Nicolas Chamberlain
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Sierra R Bruno
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - David G Chapman
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA.,Translational Airways Group, Discipline of Medical Science, University of Technology Sydney, Ultimo, Australia.,Woolcock Institute of Medical Research, University of Sydney, Glebe, Australia
| | - Sidra M Hoffman
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Nirav Daphtary
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Minara Aliyeva
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Charles G Irvin
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Anne E Dixon
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Prescott G Woodruff
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, UCSF School of Medicine, San Francisco, California, USA
| | - Shantu Amin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Matthew E Poynter
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Dhimant H Desai
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
26
|
Bhakta NR, Christenson SA, Nerella S, Solberg OD, Nguyen CP, Choy DF, Jung KL, Garudadri S, Bonser LR, Pollack JL, Zlock LT, Erle DJ, Langelier C, Derisi JL, Arron JR, Fahy JV, Woodruff PG. IFN-stimulated Gene Expression, Type 2 Inflammation, and Endoplasmic Reticulum Stress in Asthma. Am J Respir Crit Care Med 2019; 197:313-324. [PMID: 29064281 DOI: 10.1164/rccm.201706-1070oc] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE Quantification of type 2 inflammation provided a molecular basis for heterogeneity in asthma. Non-type 2 pathways that contribute to asthma pathogenesis are not well understood. OBJECTIVES To identify dysregulated pathways beyond type 2 inflammation. METHODS We applied RNA sequencing to airway epithelial brushings obtained from subjects with stable mild asthma not on corticosteroids (n = 19) and healthy control subjects (n = 16). Sequencing reads were mapped to human and viral genomes. In the same cohort, and in a separate group with severe asthma (n = 301), we profiled blood gene expression with microarrays. MEASUREMENTS AND MAIN RESULTS In airway brushings from mild asthma on inhaled corticosteroids, RNA sequencing yielded 1,379 differentially expressed genes (false discovery rate < 0.01). Pathway analysis revealed increased expression of type 2 markers, IFN-stimulated genes (ISGs), and endoplasmic reticulum (ER) stress-related genes. Airway epithelial ISG expression was not associated with type 2 inflammation in asthma or with viral transcripts but was associated with reduced lung function by FEV1 (ρ = -0.72; P = 0.0004). ER stress was confirmed by an increase in XBP1 (X-box binding protein 1) splicing in mild asthma and was associated with both type 2 inflammation and ISG expression. ISGs were also the most activated genes in blood cells in asthma and were correlated with airway ISG expression (ρ = 0.55; P = 0.030). High blood ISG expression in severe asthma was similarly unrelated to type 2 inflammation. CONCLUSIONS ISG activation is prominent in asthma, independent of viral transcripts, orthogonal to type 2 inflammation, and associated with distinct clinical features. ER stress is associated with both type 2 inflammation and ISG expression.
Collapse
Affiliation(s)
- Nirav R Bhakta
- 1 Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine
| | | | - Srilaxmi Nerella
- 1 Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine
| | - Owen D Solberg
- 1 Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine
| | - Christine P Nguyen
- 1 Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine
| | - David F Choy
- 2 Genentech, Inc., South San Francisco, California; and
| | - Kyle L Jung
- 1 Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine
| | - Suresh Garudadri
- 1 Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine
| | - Luke R Bonser
- 3 Cardiovascular Research Institute.,4 Lung Biology Center, Department of Medicine
| | | | | | - David J Erle
- 3 Cardiovascular Research Institute.,4 Lung Biology Center, Department of Medicine
| | - Charles Langelier
- 6 Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Joseph L Derisi
- 7 Department of Biochemistry and Biophysics, University of California at San Francisco and Howard Hughes Medical Institute, San Francisco, California
| | | | - John V Fahy
- 1 Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine.,3 Cardiovascular Research Institute
| | - Prescott G Woodruff
- 1 Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine.,3 Cardiovascular Research Institute
| |
Collapse
|
27
|
Biomarkers and asthma management: analysis and potential applications. Curr Opin Allergy Clin Immunol 2019; 18:96-108. [PMID: 29389730 DOI: 10.1097/aci.0000000000000426] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Asthma features a high degree of heterogeneity in both pathophysiology and therapeutic response, resulting in many asthma patients being treated inadequately. Biomarkers indicative of underlying pathological processes could be used to identify disease subtypes, determine prognosis and to predict or monitor treatment response. However, the newly identified as well as more established biomarkers have different applications and limitations. RECENT FINDINGS Conventional markers for type 2-high asthma, such as blood eosinophils, fraction of exhaled nitric oxide, serum IgE and periostin, feature limited sensitivity and specificity despite their significant correlations. More distinctive models have been developed by combining biomarkers and/or using omics techniques. Recently, a model with a positive predictive value of 100% for identification of type 2-high asthma based on a combination of minimally invasive biomarkers was developed. SUMMARY Individualisation of asthma treatment regimens on the basis of biomarkers is necessary to improve asthma control. However, the suboptimal properties of currently available conventional biomarkers limit its clinical utility. Newly identified biomarkers and models based on combinations and/or omics analysis must be validated and standardised before they can be routinely applied in clinical practice. The development of robust biomarkers will allow development of more efficacious precision medicine-based treatment approaches for asthma.
Collapse
|
28
|
Christenson SA, van den Berge M, Faiz A, Inkamp K, Bhakta N, Bonser LR, Zlock LT, Barjaktarevic IZ, Barr RG, Bleecker ER, Boucher RC, Bowler RP, Comellas AP, Curtis JL, Han MK, Hansel NN, Hiemstra PS, Kaner RJ, Krishnanm JA, Martinez FJ, O’Neal WK, Paine R, Timens W, Wells JM, Spira A, Erle DJ, Woodruff PG. An airway epithelial IL-17A response signature identifies a steroid-unresponsive COPD patient subgroup. J Clin Invest 2019; 129:169-181. [PMID: 30383540 PMCID: PMC6307967 DOI: 10.1172/jci121087] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/19/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a heterogeneous smoking-related disease characterized by airway obstruction and inflammation. This inflammation may persist even after smoking cessation and responds variably to corticosteroids. Personalizing treatment to biologically similar "molecular phenotypes" may improve therapeutic efficacy in COPD. IL-17A is involved in neutrophilic inflammation and corticosteroid resistance, and thus may be particularly important in a COPD molecular phenotype. METHODS We generated a gene expression signature of IL-17A response in bronchial airway epithelial brushings from smokers with and without COPD (n = 238), and validated it using data from 2 randomized trials of IL-17 blockade in psoriasis. This IL-17 signature was related to clinical and pathologic characteristics in 2 additional human studies of COPD: (a) SPIROMICS (n = 47), which included former and current smokers with COPD, and (b) GLUCOLD (n = 79), in which COPD participants were randomized to placebo or corticosteroids. RESULTS The IL-17 signature was associated with an inflammatory profile characteristic of an IL-17 response, including increased airway neutrophils and macrophages. In SPIROMICS the signature was associated with increased airway obstruction and functional small airways disease on quantitative chest CT. In GLUCOLD the signature was associated with decreased response to corticosteroids, irrespective of airway eosinophilic or type 2 inflammation. CONCLUSION These data suggest that a gene signature of IL-17 airway epithelial response distinguishes a biologically, radiographically, and clinically distinct COPD subgroup that may benefit from personalized therapy. TRIAL REGISTRATION ClinicalTrials.gov NCT01969344. FUNDING Primary support from the NIH, grants K23HL123778, K12HL11999, U19AI077439, DK072517, U01HL137880, K24HL137013 and R01HL121774 and contracts HHSN268200900013C, HHSN268200900014C, HHSN268200900015C, HHSN268200900016C, HHSN268200900017C, HHSN268200900018C, HHSN268200900019C and HHSN268200900020C.
Collapse
Affiliation(s)
| | - Maarten van den Berge
- University Medical Center Groningen, Department of Pulmonary Diseases and Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Alen Faiz
- University Medical Center Groningen, Department of Pulmonary Diseases and Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Kai Inkamp
- University Medical Center Groningen, Department of Pulmonary Diseases and Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Nirav Bhakta
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Luke R. Bonser
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Lorna T. Zlock
- Department of Pathology, UCSF, San Francisco, California, USA
| | | | - R. Graham Barr
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | | | - Richard C. Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - Jeffrey L. Curtis
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - MeiLan K. Han
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nadia N. Hansel
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pieter S. Hiemstra
- Department of Pulmonology, University Medical Center, Leiden, Netherlands
| | - Robert J. Kaner
- Department of Medicine, Weill Cornell Medical Center, New York, New York, USA
| | - Jerry A. Krishnanm
- Breathe Chicago Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Wanda K. O’Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robert Paine
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Wim Timens
- University Medical Center Groningen, Department of Pathology and Medical Biology and Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - J. Michael Wells
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - David J. Erle
- Department of Medicine, UCSF, San Francisco, California, USA
| | | |
Collapse
|
29
|
Mo Y, Zhang K, Feng Y, Yi L, Liang Y, Wu W, Zhao J, Zhang Z, Xu Y, Hu Q, He J, Zhen G. Epithelial SERPINB10, a novel marker of airway eosinophilia in asthma, contributes to allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol 2018; 316:L245-L254. [PMID: 30382768 DOI: 10.1152/ajplung.00362.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serine peptidase inhibitor, clade B, member 10 (SERPINB10) expression is increased in IL-13-stimulated human bronchial epithelial cells and in a murine model of allergic airway inflammation. However, the role of SERPINB10 in asthma remains unknown. We examined the association between epithelial SERPINB10 expression and airway eosinophilia in subjects with asthma and the role of Serpinb10 in allergic airway inflammation in an animal model. Epithelial SERPINB10 mRNA and protein expression were markedly increased in subjects with asthma ( n = 60) compared with healthy controls ( n = 25). Epithelial SERPINB10 mRNA levels were significantly correlated with airway hyperresponsiveness (AHR) and three parameters reflecting airway eosinophilia including the percentage of sputum eosinophils, the number of eosinophils in bronchial submucosa, and fraction of exhaled nitric oxide in subjects with asthma. Moreover, epithelial SERPINB10 expression was strongly correlated with the epithelial gene signature ( CLCA1, POSTN, and SERPINB2) for type 2 status. In normal human bronchial epithelial cells cultured at air-liquid interface, knockdown of SERPINB10 suppressed IL-13-stimulated periostin (encoded by POSTN) and CCL26 (eotaxin-3) expression by inhibiting the activation of p38 MAPK. Epithelial CCL26 mRNA levels were correlated with SERPINB10 expression in subjects with asthma. Airway knockdown of Serpinb10 alleviated AHR, airway eosinophilia and the expression of periostin and Ccl26 in a murine model of allergic airway disease. Taken together, epithelial SERPINB10 is a novel marker for airway eosinophilia in asthma. Epithelial SERPINB10 contributes to allergic airway eosinophilic inflammation, at least in part, by regulating the expression of periostin and CCL26.
Collapse
Affiliation(s)
- Yuqing Mo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases, Ministry of Health , Wuhan , China
| | - Kan Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases, Ministry of Health , Wuhan , China
| | - Yuchen Feng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases, Ministry of Health , Wuhan , China
| | - Lingling Yi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases, Ministry of Health , Wuhan , China
| | - Yuxia Liang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases, Ministry of Health , Wuhan , China
| | - Wenliang Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases, Ministry of Health , Wuhan , China
| | - Jianping Zhao
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases, Ministry of Health , Wuhan , China
| | - Zhenxiang Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases, Ministry of Health , Wuhan , China
| | - Yongjian Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases, Ministry of Health , Wuhan , China
| | - Qinghua Hu
- Key Laboratory of Respiratory Diseases, Ministry of Health , Wuhan , China.,Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Jianguo He
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Guohua Zhen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases, Ministry of Health , Wuhan , China
| |
Collapse
|
30
|
Giovannini-Chami L, Paquet A, Sanfiorenzo C, Pons N, Cazareth J, Magnone V, Lebrigand K, Chevalier B, Vallauri A, Julia V, Marquette CH, Marcet B, Leroy S, Barbry P. The "one airway, one disease" concept in light of Th2 inflammation. Eur Respir J 2018; 52:13993003.00437-2018. [PMID: 30190271 DOI: 10.1183/13993003.00437-2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022]
Abstract
In line with the pathophysiological continuum described between nose and bronchus in allergic respiratory diseases, we assessed whether nasal epithelium could mirror the Type 2 T-helper cell (Th2) status of bronchial epithelium.Nasal and bronchial cells were collected by brushing from healthy controls (C, n=13), patients with allergic rhinitis and asthma (AR, n=12), and patients with isolated allergic rhinitis (R, n=14). Cellular composition was assessed by flow cytometry, gene expression was analysed by RNA sequencing and Th2, Type 17 T-helper cell (Th17) and interferon (IFN) signatures were derived from the literature.Infiltration by polymorphonuclear neutrophils (PMN) in the nose excluded 30% of the initial cohort. All bronchial samples from the AR group were Th2-high. The gene expression profile of nasal samples from the AR group correctly predicted the paired bronchial sample Th2 status in 71% of cases. Nevertheless, nasal cells did not appear to be a reliable surrogate for the Th2 response, in particular due to a more robust influence of the IFN response in 14 out of 26 nasal samples. The Th2 scores in the nose and bronchi correlated with mast cell count (both p<0.001) and number of sensitisations (p=0.006 and 0.002), while the Th17 scores correlated with PMN count (p=0.006 and 0.003).The large variability in nasal cell composition and type of inflammation restricts its use as a surrogate for assessing bronchial Th2 inflammation in AR patients.
Collapse
Affiliation(s)
- Lisa Giovannini-Chami
- Pediatric Pulmonology and Allergology Dept, Hôpitaux Pédiatriques de Nice CHU-Lenval, Université Côte d'Azur, Nice, France.,Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Sophia Antipolis, France.,These authors contributed equally to this work
| | - Agnès Paquet
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Sophia Antipolis, France.,These authors contributed equally to this work
| | - Céline Sanfiorenzo
- Pulmonology Dept, FHU Oncoage, CHU de Nice, Université Côte d'Azur, Nice, France
| | - Nicolas Pons
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Sophia Antipolis, France
| | - Julie Cazareth
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Sophia Antipolis, France
| | - Virginie Magnone
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Sophia Antipolis, France
| | - Kévin Lebrigand
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Sophia Antipolis, France
| | - Benoit Chevalier
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Sophia Antipolis, France
| | - Ambre Vallauri
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Sophia Antipolis, France
| | - Valérie Julia
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Sophia Antipolis, France
| | | | - Brice Marcet
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Sophia Antipolis, France
| | - Sylvie Leroy
- Pulmonology Dept, FHU Oncoage, CHU de Nice, Université Côte d'Azur, Nice, France.,These authors contributed equally to this work
| | - Pascal Barbry
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Sophia Antipolis, France.,These authors contributed equally to this work
| |
Collapse
|
31
|
Zhang K, Liang Y, Feng Y, Wu W, Zhang H, He J, Hu Q, Zhao J, Xu Y, Liu Z, Zhen G. Decreased epithelial and sputum miR-221-3p associates with airway eosinophilic inflammation and CXCL17 expression in asthma. Am J Physiol Lung Cell Mol Physiol 2018; 315:L253-L264. [PMID: 29644894 DOI: 10.1152/ajplung.00567.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Airway eosinophilic inflammation is a key feature of type 2 high asthma. The role of epithelial microRNA (miR) in airway eosinophilic inflammation remains unclear. We examined the expression of miR-221-3p in bronchial brushings, induced sputum, and plasma from 77 symptomatic, recently diagnosed, steroid-naive subjects with asthma and 36 healthy controls by quantitative PCR and analyzed the correlation between miR-221-3p expression and airway eosinophilia. We found that epithelial, sputum, and plasma miR-221-3p expression was significantly decreased in subjects with asthma. Epithelial miR-221-3p correlated with eosinophil in induced sputum and bronchial biopsies, fraction of exhaled nitric oxide, blood eosinophil, epithelial gene signature of type 2 status, and methacholine provocative dosage required to cause a 20% decline in forced expiratory volume in the first second in subjects with asthma. Sputum miR-221-3p also correlated with airway eosinophilia and was partially restored after inhaled corticosteroid treatment. Inhibition of miR-221-3p expression suppressed chemokine (C-C motif) ligand (CCL) 24 (eotaxin-2), CCL26 (eotaxin-3), and periostin (POSTN) expression in BEAS-2B bronchial epithelial cells. We verified that chemokine (C-X-C motif) ligand (CXCL) 17, an anti-inflammatory chemokine, is a target of miR-221-3p, and epithelial CXCL17 expression significantly increased in asthma. CXCL17 inhibited CCL24, CCL26, and POSTN expression via the p38 MAPK pathway. Airway overexpression of miR-221-3p exacerbated airway eosinophilic inflammation, suppressed CXCL17 expression, and enhanced CCL24, CCL26, and POSTN expression in house dust mite-challenged mice. Taken together, epithelial and sputum miR-221-3p are novel biomarkers for airway eosinophilic inflammation in asthma. Decreased epithelial miR-221-3p may protect against airway eosinophilic inflammation by upregulating anti-inflammatory chemokine CXCL17.
Collapse
Affiliation(s)
- Kan Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases of Ministry of Health , Wuhan , China
| | - Yuxia Liang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases of Ministry of Health , Wuhan , China
| | - Yuchen Feng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases of Ministry of Health , Wuhan , China
| | - Wenliang Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases of Ministry of Health , Wuhan , China
| | - Huilan Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases of Ministry of Health , Wuhan , China
| | - Jianguo He
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Qinghua Hu
- Key Laboratory of Respiratory Diseases of Ministry of Health , Wuhan , China.,Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Jianping Zhao
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases of Ministry of Health , Wuhan , China
| | - Yongjian Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases of Ministry of Health , Wuhan , China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Guohua Zhen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases of Ministry of Health , Wuhan , China
| |
Collapse
|
32
|
Lachowicz-Scroggins ME, Finkbeiner WE, Gordon ED, Yuan S, Zlock L, Bhakta NR, Woodruff PG, Fahy JV, Boushey HA. Corticosteroid and long-acting ß-agonist therapy reduces epithelial goblet cell metaplasia. Clin Exp Allergy 2017; 47:1534-1545. [PMID: 28833774 DOI: 10.1111/cea.13015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/03/2017] [Accepted: 08/13/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bronchial epithelial goblet cell metaplasia (GCM) with hyperplasia is a prominent feature of asthma, but the effects of treatment with corticosteroids alone or in combination with a long-acting β2 -adrenergic receptor agonist (LABA) on GCM in the bronchial epithelium are unknown. OBJECTIVES To determine whether corticosteroid alone or in combination with a LABA alters protein and gene expression pathways associated with IL-13-induced goblet cell metaplasia. RESULTS We evaluated the effects of fluticasone propionate (FP) and of salmeterol (SM), on the response of well-differentiated cultured bronchial epithelial cells to interleukin-13 (IL-13). Outcome measures included gene expression of SPDEF/FOXa2, gene expression and protein production of MUC5AC/MUC5B and morphologic appearance of cultured epithelial cell sheets. We additionally analysed expression of these genes in bronchial epithelial brushings from healthy, steroid-naïve asthmatic and steroid-treated asthmatic subjects. In cultured airway epithelial cells, FP treatment inhibited IL-13-induced suppression of FOXa2 gene expression and up-regulation of SPDEF, alterations in gene and protein measures of MUC5AC and MUC5B and induction of GCM. The addition of SM synergistically modified the effects of FP modestly-only for gel-forming mucin MUC5AC. In bronchial epithelial cells recovered from asthmatic vs healthy human subjects, we found FOXa2 and MUC5B gene expression to be reduced and SPDEF and MUC5AC gene expression to be increased; these alterations were not observed in bronchial epithelial cells recovered after treatment with inhaled corticosteroids. CONCLUSION AND CLINICAL RELEVANCE Corticosteroid treatment inhibits IL-13-induced GCM of the airways in asthma, possibly through its effects on SPDEF and FOXa2 regulation of mucin gene expression. These effects are modestly augmented by the addition of a long-acting ß-agonist. As we found evidence for drug treatment counteracting the effects of IL-13 on the epithelium, we conclude that further exploration into the mechanisms by which corticosteroids and long-acting β2 -adrenergic agonists confer protection against pathologic airway changes is warranted.
Collapse
Affiliation(s)
- M E Lachowicz-Scroggins
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - W E Finkbeiner
- Department of Pathology, San Francisco General Hospital, University of California San Francisco, San Francisco, CA, USA
| | - E D Gordon
- Department of Medicine Division of Pulmonary/Critical Care Medicine University of California San Francisco, San Francisco, CA, USA
| | - S Yuan
- The David Rockefeller Graduate Program, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - L Zlock
- Department of Pathology, San Francisco General Hospital, University of California San Francisco, San Francisco, CA, USA
| | - N R Bhakta
- Department of Medicine Division of Pulmonary/Critical Care Medicine University of California San Francisco, San Francisco, CA, USA
| | - P G Woodruff
- Department of Medicine Division of Pulmonary/Critical Care Medicine University of California San Francisco, San Francisco, CA, USA
| | - J V Fahy
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.,Department of Medicine Division of Pulmonary/Critical Care Medicine University of California San Francisco, San Francisco, CA, USA
| | - H A Boushey
- Department of Medicine Division of Pulmonary/Critical Care Medicine University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
33
|
Abstract
The mucosal surfaces of the human body are typically colonized by polymicrobial communities seeded in infancy and are continuously shaped by environmental exposures. These communities interact with the mucosal immune system to maintain homeostasis in health, but perturbations in their composition and function are associated with lower airway diseases, including asthma, a developmental and heterogeneous chronic disease with various degrees and types of airway inflammation. This review will summarize recent studies examining airway microbiota dysbioses associated with asthma and their relationship with the pathophysiology of this disease.
Collapse
|
34
|
Peters MC, Nguyen MLT, Dunican EM. Biomarkers of Airway Type-2 Inflammation and Integrating Complex Phenotypes to Endotypes in Asthma. Curr Allergy Asthma Rep 2017; 16:71. [PMID: 27613654 DOI: 10.1007/s11882-016-0651-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Over the past decade, the most important advance in the field of asthma has been the widespread recognition that asthma is a heterogeneous disease driven by multiple molecular processes. RECENT FINDINGS The most well-established molecular mechanism in asthma is increased airway type-2 inflammation, and consequently, non-invasive biomarkers of increased airway type-2 inflammation, such as blood eosinophil counts or blood periostin levels, have proven important in stratifying asthma patients in clinical trials of type-2 cytokine inhibitors. However, it remains ambiguous how well these non-invasive biomarkers represent airway measures of type-2 inflammation in asthma. As a result, the utility of these biomarkers to assist with asthma management or as research tools to better understand asthma pathogenesis remains unclear. This article reviews primary data assessing biomarkers of airway type-2 inflammation in asthma and describes how the use of biomarkers can advance a precision medicine approach to asthma treatment.
Collapse
Affiliation(s)
- Michael C Peters
- The Airway Clinical Research Center, University of California, Box 0130, 505 Parnassus Avenue, San Francisco, CA, 94143, USA. .,Division of Pulmonary and Critical Care Medicine, University of California, Box 0130, 505 Parnassus Avenue, San Francisco, CA, 94143, USA. .,Cardiovascular Research Institute, University of California, Box 0130, 505 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | | | - Eleanor M Dunican
- The Airway Clinical Research Center, University of California, Box 0130, 505 Parnassus Avenue, San Francisco, CA, 94143, USA.,Division of Pulmonary and Critical Care Medicine, University of California, Box 0130, 505 Parnassus Avenue, San Francisco, CA, 94143, USA.,Cardiovascular Research Institute, University of California, Box 0130, 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
35
|
Seys SF, Scheers H, Van den Brande P, Marijsse G, Dilissen E, Van Den Bergh A, Goeminne PC, Hellings PW, Ceuppens JL, Dupont LJ, Bullens DMA. Cluster analysis of sputum cytokine-high profiles reveals diversity in T(h)2-high asthma patients. Respir Res 2017; 18:39. [PMID: 28231834 PMCID: PMC5324270 DOI: 10.1186/s12931-017-0524-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/17/2017] [Indexed: 12/17/2022] Open
Abstract
Background Asthma is characterized by a heterogeneous inflammatory profile and can be subdivided into T(h)2-high and T(h)2-low airway inflammation. Profiling of a broader panel of airway cytokines in large unselected patient cohorts is lacking. Methods Patients (n = 205) were defined as being “cytokine-low/high” if sputum mRNA expression of a particular cytokine was outside the respective 10th/90th percentile range of the control group (n = 80). Unsupervised hierarchical clustering was used to determine clusters based on sputum cytokine profiles. Results Half of patients (n = 108; 52.6%) had a classical T(h)2-high (“IL-4-, IL-5- and/or IL-13-high”) sputum cytokine profile. Unsupervised cluster analysis revealed 5 clusters. Patients with an “IL-4- and/or IL-13-high” pattern surprisingly did not cluster but were equally distributed among the 5 clusters. Patients with an “IL-5-, IL-17A-/F- and IL-25- high” profile were restricted to cluster 1 (n = 24) with increased sputum eosinophil as well as neutrophil counts and poor lung function parameters at baseline and 2 years later. Four other clusters were identified: “IL-5-high or IL-10-high” (n = 16), “IL-6-high” (n = 8), “IL-22-high” (n = 25). Cluster 5 (n = 132) consists of patients without “cytokine-high” pattern or patients with only high IL-4 and/or IL-13. Conclusion We identified 5 unique asthma molecular phenotypes by biological clustering. Type 2 cytokines cluster with non-type 2 cytokines in 4 out of 5 clusters. Unsupervised analysis thus not supports a priori type 2 versus non-type 2 molecular phenotypes. www.clinicaltrials.gov NCT01224938. Registered 18 October 2010. Electronic supplementary material The online version of this article (doi:10.1186/s12931-017-0524-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sven F Seys
- Lab of clinical immunology, Department of Microbiology and Immunology, Herestraat 49/811, 3000, Leuven, KU, Belgium. .,Department of Public Health and Primary Care, Environmental Health Unit, Lab of pneumology, Leuven, KU, Belgium.
| | - Hans Scheers
- Department of Public Health and Primary Care, Environmental Health Unit, Lab of pneumology, Leuven, KU, Belgium
| | | | - Gudrun Marijsse
- Lab of clinical immunology, Department of Microbiology and Immunology, Herestraat 49/811, 3000, Leuven, KU, Belgium
| | - Ellen Dilissen
- Lab of clinical immunology, Department of Microbiology and Immunology, Herestraat 49/811, 3000, Leuven, KU, Belgium
| | | | - Pieter C Goeminne
- Respiratory department, Leuven, UZ, Belgium.,Lab of respiratory disease, and lab of pediatric immunology, Department of Clinical and Experimental Medicine, Leuven, KU, Belgium
| | | | - Jan L Ceuppens
- Lab of clinical immunology, Department of Microbiology and Immunology, Herestraat 49/811, 3000, Leuven, KU, Belgium
| | - Lieven J Dupont
- Respiratory department, Leuven, UZ, Belgium.,Lab of respiratory disease, and lab of pediatric immunology, Department of Clinical and Experimental Medicine, Leuven, KU, Belgium
| | - Dominique M A Bullens
- Paediatric department, Leuven, UZ, Belgium.,Lab of paediatric immunology, Department of Microbiology and Immunology, Leuven, KU, Belgium
| |
Collapse
|
36
|
Features of the bronchial bacterial microbiome associated with atopy, asthma, and responsiveness to inhaled corticosteroid treatment. J Allergy Clin Immunol 2016; 140:63-75. [PMID: 27838347 DOI: 10.1016/j.jaci.2016.08.055] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/02/2016] [Accepted: 08/12/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Compositional differences in the bronchial bacterial microbiota have been associated with asthma, but it remains unclear whether the findings are attributable to asthma, to aeroallergen sensitization, or to inhaled corticosteroid treatment. OBJECTIVES We sought to compare the bronchial bacterial microbiota in adults with steroid-naive atopic asthma, subjects with atopy but no asthma, and nonatopic healthy control subjects and to determine relationships of the bronchial microbiota to phenotypic features of asthma. METHODS Bacterial communities in protected bronchial brushings from 42 atopic asthmatic subjects, 21 subjects with atopy but no asthma, and 21 healthy control subjects were profiled by using 16S rRNA gene sequencing. Bacterial composition and community-level functions inferred from sequence profiles were analyzed for between-group differences. Associations with clinical and inflammatory variables were examined, including markers of type 2-related inflammation and change in airway hyperresponsiveness after 6 weeks of fluticasone treatment. RESULTS The bronchial microbiome differed significantly among the 3 groups. Asthmatic subjects were uniquely enriched in members of the Haemophilus, Neisseria, Fusobacterium, and Porphyromonas species and the Sphingomonodaceae family and depleted in members of the Mogibacteriaceae family and Lactobacillales order. Asthma-associated differences in predicted bacterial functions included involvement of amino acid and short-chain fatty acid metabolism pathways. Subjects with type 2-high asthma harbored significantly lower bronchial bacterial burden. Distinct changes in specific microbiota members were seen after fluticasone treatment. Steroid responsiveness was linked to differences in baseline compositional and functional features of the bacterial microbiome. CONCLUSION Even in subjects with mild steroid-naive asthma, differences in the bronchial microbiome are associated with immunologic and clinical features of the disease. The specific differences identified suggest possible microbiome targets for future approaches to asthma treatment or prevention.
Collapse
|
37
|
Gordon ED, Palandra J, Wesolowska-Andersen A, Ringel L, Rios CL, Lachowicz-Scroggins ME, Sharp LZ, Everman JL, MacLeod HJ, Lee JW, Mason RJ, Matthay MA, Sheldon RT, Peters MC, Nocka KH, Fahy JV, Seibold MA. IL1RL1 asthma risk variants regulate airway type 2 inflammation. JCI Insight 2016; 1:e87871. [PMID: 27699235 PMCID: PMC5033813 DOI: 10.1172/jci.insight.87871] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/21/2016] [Indexed: 01/19/2023] Open
Abstract
Genome-wide association studies of asthma have identified genetic variants in the IL1RL1 gene, but the molecular mechanisms conferring risk are unknown. IL1RL1 encodes the ST2 receptor (ST2L) for IL-33 and an inhibitory decoy receptor (sST2). IL-33 promotes type 2 inflammation, which is present in some but not all asthmatics. We find that two single nucleotide polymorphisms (SNPs) in IL1RL1 - rs1420101 and rs11685480 - are strongly associated with plasma sST2 levels, though neither is an expression quantitative trait locus (eQTL) in whole blood. Rather, rs1420101 and rs11685480 mark eQTLs in airway epithelial cells and distal lung parenchyma, respectively. We find that the genetically determined plasma sST2 reservoir, derived from the lung, neutralizes IL-33 activity, and these eQTL SNPs additively increase the risk of airway type 2 inflammation among asthmatics. These risk variants define a population of asthmatics at risk of IL-33-driven type 2 inflammation.
Collapse
Affiliation(s)
- Erin D. Gordon
- Department of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Joe Palandra
- Pfizer Inc., Pharmacodynamics and Metabolism, Andover, Massachusetts, USA
| | | | - Lando Ringel
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
| | - Cydney L. Rios
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
| | | | - Louis Z. Sharp
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Jamie L. Everman
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
| | - Hannah J. MacLeod
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Jae W. Lee
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
- Department of Anesthesiology, UCSF, San Francisco, California, USA
| | - Robert J. Mason
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Michael A. Matthay
- Department of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
- Department of Anesthesiology, UCSF, San Francisco, California, USA
| | | | - Michael C. Peters
- Department of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Karl H. Nocka
- Pfizer Inc., Inflammation and Immunology, Cambridge, Massachusetts, USA
| | - John V. Fahy
- Department of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Max A. Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado-Denver, Denver, Colorado, USA
| |
Collapse
|
38
|
Alternative splicing of interleukin-33 and type 2 inflammation in asthma. Proc Natl Acad Sci U S A 2016; 113:8765-70. [PMID: 27432971 DOI: 10.1073/pnas.1601914113] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Type 2 inflammation occurs in a large subgroup of asthmatics, and novel cytokine-directed therapies are being developed to treat this population. In mouse models, interleukin-33 (IL-33) activates lung resident innate lymphoid type 2 cells (ILC2s) to initiate airway type 2 inflammation. In human asthma, which is chronic and difficult to model, the role of IL-33 and the target cells responsible for persistent type 2 inflammation remain undefined. Full-length IL-33 is a nuclear protein and may function as an "alarmin" during cell death, a process that is uncommon in chronic stable asthma. We demonstrate a previously unidentified mechanism of IL-33 activity that involves alternative transcript splicing, which may operate in stable asthma. In human airway epithelial cells, alternative splicing of the IL-33 transcript is consistently present, and the deletion of exons 3 and 4 (Δ exon 3,4) confers cytoplasmic localization and facilitates extracellular secretion, while retaining signaling capacity. In nonexacerbating asthmatics, the expression of Δ exon 3,4 is strongly associated with airway type 2 inflammation, whereas full-length IL-33 is not. To further define the extracellular role of IL-33 in stable asthma, we sought to determine the cellular targets of its activity. Comprehensive flow cytometry and RNA sequencing of sputum cells suggest basophils and mast cells, not ILC2s, are the cellular sources of type 2 cytokines in chronic asthma. We conclude that IL-33 isoforms activate basophils and mast cells to drive type 2 inflammation in chronic stable asthma, and novel IL-33 inhibitors will need to block all biologically active isoforms.
Collapse
|
39
|
Mosteller M, Hosking L, Murphy K, Shen J, Song K, Nelson M, Ghosh S. No evidence of large genetic effects on steroid response in asthma patients. J Allergy Clin Immunol 2016; 139:797-803.e7. [PMID: 27523435 DOI: 10.1016/j.jaci.2016.05.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 05/17/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Inhaled corticosteroids (ICSs) are considered the most effective anti-inflammatory therapy for asthma control and management; however, there is substantial treatment response variability. OBJECTIVE We sought to identify genetic markers of ICS response by conducting the largest pharmacogenetic investigation to date in 2672 ICS-treated patients with asthma. METHODS Genotyping and imputation was performed in fluticasone furoate (FF) or fluticasone propionate-treated patients with asthma from 3 phase IIB and 4 phase IIIA randomized, double-blind, placebo-controlled, parallel group, multicenter studies. The primary end point analyzed was change in trough FEV1 (ΔFEV1) from baseline to 8 to 12 weeks of treatment. RESULTS More than 9.8 million common genetic variants (minor allele frequency ≥ 1%) were analyzed to test for association with ΔFEV1. No genetic variant met the prespecified threshold for statistical significance. CONCLUSIONS This study provides no evidence to confirm previously reported associations between candidate genetic variants and ICS response (ΔFEV1) in patients with asthma. In addition, no variant satisfied the criterion for genome-wide significance in our study. Common genetic variants are therefore unlikely to prove useful as predictive biomarkers of ICS response in patients with asthma.
Collapse
|
40
|
Huo X, Zhang K, Yi L, Mo Y, Liang Y, Zhao J, Zhang Z, Xu Y, Zhen G. Decreased epithelial and plasma miR-181b-5p expression associates with airway eosinophilic inflammation in asthma. Clin Exp Allergy 2016; 46:1281-90. [PMID: 27192552 DOI: 10.1111/cea.12754] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 04/22/2016] [Accepted: 05/03/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND Airway eosinophilic inflammation is a pivotal feature of asthma. Epithelial cells play critical roles in airway eosinophilia. We hypothesized that epithelial microRNAs (miRNAs) are involved in airway eosinophilia. OBJECTIVE This study investigated the associations between epithelial and plasma miR-181b-5p and airway eosinophilic inflammation, and the possible mechanism by which miR-181b-5p participates in eosinophilic inflammation. METHODS Epithelial miRNAs expression was profiled by miRNA array in eight subjects with asthma and four healthy controls. Epithelial miR-181b-5p expression was confirmed by quantitative PCR in the subjects for array experiment and another cohort including 21 subjects with asthma and 10 controls. Plasma miR-181b-5p was determined by quantitative PCR in 72 subjects with asthma and 35 controls. Correlation assays between epithelial and plasma miR-181b-5p expression and airway eosinophilia were performed. The target of miR-181b-5p, SPP1, was predicted by online algorithms and verified in BEAS-2B cells. The role of miR-181b-5p in epithelial proinflammatory cytokine expression was examined in an in vitro system. RESULTS Epithelial miR-181b-5p expression was decreased in subjects with asthma. Epithelial miR-181b-5p levels were inversely correlated with sputum and bronchial submucosal eosinophilia. Plasma miR-181b-5p was decreased and correlated with epithelial miR-181b-5p in subjects with asthma. There was a strong inverse correlation between plasma miR-181b-5p and airway eosinophilia in subjects with asthma. Plasma miR-181b-5p was increased after inhaled corticosteroids treatment. We verified that SPP1 is a target of miR-181b-5p. In human bronchial epithelial cells, miR-181b-5p regulated IL-13-induced IL-1β and CCL11 expression by targeting SPP1. Dexamethasone restored IL-13-induced miR-181b-5p down-regulation and suppressed IL-13-induced SPP1, IL-1β and CCL11 expression. CONCLUSIONS AND CLINICAL RELEVANCE Epithelial and plasma miR-181b-5p are potential biomarkers for airway eosinophilia in asthma. MiR-181b-5p may participate in eosinophilic airway inflammation by regulating proinflammatory cytokines expression via targeting SPP1.
Collapse
Affiliation(s)
- X Huo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health and Family Planning Commission of the People's Republic of China, Wuhan, China
| | - K Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health and Family Planning Commission of the People's Republic of China, Wuhan, China
| | - L Yi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health and Family Planning Commission of the People's Republic of China, Wuhan, China
| | - Y Mo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health and Family Planning Commission of the People's Republic of China, Wuhan, China
| | - Y Liang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health and Family Planning Commission of the People's Republic of China, Wuhan, China
| | - J Zhao
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health and Family Planning Commission of the People's Republic of China, Wuhan, China
| | - Z Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health and Family Planning Commission of the People's Republic of China, Wuhan, China
| | - Y Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health and Family Planning Commission of the People's Republic of China, Wuhan, China
| | - G Zhen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health and Family Planning Commission of the People's Republic of China, Wuhan, China
| |
Collapse
|
41
|
Sweerus K, Lachowicz-Scroggins M, Gordon E, LaFemina M, Huang X, Parikh M, Kanegai C, Fahy JV, Frank JA. Claudin-18 deficiency is associated with airway epithelial barrier dysfunction and asthma. J Allergy Clin Immunol 2016; 139:72-81.e1. [PMID: 27215490 DOI: 10.1016/j.jaci.2016.02.035] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/28/2016] [Accepted: 02/17/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Epithelial barrier dysfunction and increased permeability may contribute to antigen sensitization and disease progression in asthma. Claudin-18.1 is the only known lung-specific tight junction protein, but its contribution to airway barrier function or asthma is unclear. OBJECTIVES We sought to test the hypotheses that claudin-18 is a determinant of airway epithelial barrier function that is downregulated by IL-13 and that claudin-18 deficiency results in increased aeroantigen sensitization and airway hyperresponsiveness. METHODS Claudin-18.1 mRNA levels were measured in airway epithelial brushings from healthy controls and patients with asthma. In patients with asthma, claudin-18 levels were compared with a three-gene-mean marker of TH2 inflammation. Airway epithelial permeability changes due to claudin-18 deficiency were measured in 16HBE cells and claudin-18 null mice. The effect of IL-13 on claudin expression was determined in primary human airway epithelial cells and in mice. Airway hyperresponsiveness and serum IgE levels were compared in claudin-18 null and wild-type mice following aspergillus sensitization. RESULTS Epithelial brushings from patients with asthma (n = 67) had significantly lower claudin-18 mRNA levels than did those from healthy controls (n = 42). Claudin-18 levels were lowest among TH2-high patients with asthma. Loss of claudin-18 was sufficient to impair epithelial barrier function in 16HBE cells and in mouse airways. IL-13 decreased claudin-18 expression in primary human cells and in mice. Claudin-18 null mice had significantly higher serum IgE levels and increased airway responsiveness following intranasal aspergillus sensitization. CONCLUSIONS These data support the hypothesis that claudin-18 is an essential contributor to the airway epithelial barrier to aeroantigens. Furthermore, TH2 inflammation suppresses claudin-18 expression, potentially promoting sensitization and airway hyperresponsiveness.
Collapse
Affiliation(s)
- Kelly Sweerus
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of California, San Francisco, Calif; San Francisco VA Medical Center and Northern California Institute for Research and Education, San Francisco, Calif
| | - Marrah Lachowicz-Scroggins
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of California, San Francisco, Calif; Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, Calif
| | - Erin Gordon
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of California, San Francisco, Calif
| | - Michael LaFemina
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of California, San Francisco, Calif; San Francisco VA Medical Center and Northern California Institute for Research and Education, San Francisco, Calif
| | - Xiaozhu Huang
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of California, San Francisco, Calif; Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, Calif
| | - Mihir Parikh
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of California, San Francisco, Calif; San Francisco VA Medical Center and Northern California Institute for Research and Education, San Francisco, Calif
| | - Cindy Kanegai
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of California, San Francisco, Calif
| | - John V Fahy
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of California, San Francisco, Calif; Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, Calif
| | - James A Frank
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of California, San Francisco, Calif; San Francisco VA Medical Center and Northern California Institute for Research and Education, San Francisco, Calif.
| |
Collapse
|
42
|
Presence of rhinovirus in the respiratory tract of adolescents and young adults with asthma without symptoms of infection. Respir Med 2016; 115:1-6. [PMID: 27215496 PMCID: PMC7125923 DOI: 10.1016/j.rmed.2016.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/10/2016] [Accepted: 04/13/2016] [Indexed: 12/15/2022]
Abstract
Background Viral respiratory infections have been associated with up to 80% of wheezing episodes and asthma exacerbations. However, studies on the role of these viruses in asthmatic patients in the interval between exacerbations are sparse. This study aimed to determine the presence of respiratory viruses, without symptoms of infection, in the airways of young asthmatics as compared to healthy controls. Material and Methods Patients 10–35 years of age with stable asthma and a group of healthy controls were analyzed regarding the presence of RNA from common respiratory viruses in nasopharyngeal aspirates by PCR. Self-reported asthma control and quality of life, fraction of exhaled nitric oxide (FeNO), spirometry, and bronchial responsiveness to methacholine were recorded. Blood samples were collected to assess IgE sensitisation and eosinophil cationic protein (ECP) levels. Results In 354 patients with asthma and 108 healthy controls, human rhinovirus (HRV) was the only virus detected (4.5% of asthmatics vs. 0.9% of controls; p = 0.08). HRV+ asthma patients had a higher degree of aeroallergen IgE sensitisation (median 37.7 vs. 10.4 kUA/L, p = 0.04), and a tendency for higher levels of serum ECP (median 17.2 vs. 12.6 μg/L, p = 0.07), as compared to their HRV− counterparts. Conclusions Absence of symptoms of respiratory tract infection notwithstanding, HRV seems to be more prevalent in the airways of adolescents and young adults with asthma and a high degree of aeroallergen IgE sensitisation than in controls. The presence of HRV seems also to be related to systemic eosinophilic inflammation despite ongoing treatment with inhaled corticosteroids. Cross-sectional study on adolescents and young adults with asthma and healthy controls. Common respiratory viruses examined in nasopharyngeal aspirates by PCR. Only rhinovirus detected in subjects without symptoms of respiratory tract infection. Prevalence of rhinovirus tended to be higher in asthmatics compared to controls. Presence of rhinovirus associated with high degree of aeroallergen IgE sensitisation.
Collapse
|
43
|
Kadiyala V, Sasse SK, Altonsy MO, Berman R, Chu HW, Phang TL, Gerber AN. Cistrome-based Cooperation between Airway Epithelial Glucocorticoid Receptor and NF-κB Orchestrates Anti-inflammatory Effects. J Biol Chem 2016; 291:12673-12687. [PMID: 27076634 DOI: 10.1074/jbc.m116.721217] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Indexed: 12/11/2022] Open
Abstract
Antagonism of pro-inflammatory transcription factors by monomeric glucocorticoid receptor (GR) has long been viewed as central to glucocorticoid (GC) efficacy. However, the mechanisms and targets through which GCs exert therapeutic effects in diseases such as asthma remain incompletely understood. We previously defined a surprising cooperative interaction between GR and NF-κB that enhanced expression of A20 (TNFAIP3), a potent inhibitor of NF-κB. Here we extend this observation to establish that A20 is required for maximal cytokine repression by GCs. To ascertain the global extent of GR and NF-κB cooperation, we determined genome-wide occupancy of GR, the p65 subunit of NF-κB, and RNA polymerase II in airway epithelial cells treated with dexamethasone, TNF, or both using chromatin immunoprecipitation followed by deep sequencing. We found that GR recruits p65 to dimeric GR binding sites across the genome and discovered additional regulatory elements in which GR-p65 cooperation augments gene expression. GR targets regulated by this mechanism include key anti-inflammatory and injury response genes such as SERPINA1, which encodes α1 antitrypsin, and FOXP4, an inhibitor of mucus production. Although dexamethasone treatment reduced RNA polymerase II occupancy of TNF targets such as IL8 and TNFAIP2, we were unable to correlate specific binding sequences for GR or occupancy patterns with repressive effects on transcription. Our results suggest that cooperative anti-inflammatory gene regulation by GR and p65 contributes to GC efficacy, whereas tethering interactions between GR and p65 are not universally required for GC-based gene repression.
Collapse
Affiliation(s)
- Vineela Kadiyala
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Sarah K Sasse
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Mohammed O Altonsy
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206,; Department of Zoology, Sohag University, Sohag 825224, Egypt, and
| | - Reena Berman
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Hong W Chu
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Tzu L Phang
- Department of Medicine, University of Colorado, Denver, Colorado 80045
| | - Anthony N Gerber
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206,; Department of Medicine, University of Colorado, Denver, Colorado 80045.
| |
Collapse
|
44
|
Grunig G, Baghdassarian A, Park SH, Pylawka S, Bleck B, Reibman J, Berman-Rosenzweig E, Durmus N. Challenges and Current Efforts in the Development of Biomarkers for Chronic Inflammatory and Remodeling Conditions of the Lungs. Biomark Insights 2016; 10:59-72. [PMID: 26917944 PMCID: PMC4756863 DOI: 10.4137/bmi.s29514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 02/06/2023] Open
Abstract
This review discusses biomarkers that are being researched for their usefulness to phenotype chronic inflammatory lung diseases that cause remodeling of the lung's architecture. The review focuses on asthma, chronic obstructive pulmonary disease (COPD), and pulmonary hypertension. Bio-markers of environmental exposure and specific classes of biomarkers (noncoding RNA, metabolism, vitamin, coagulation, and microbiome related) are also discussed. Examples of biomarkers that are in clinical use, biomarkers that are under development, and biomarkers that are still in the research phase are discussed. We chose to present examples of the research in biomarker development by diseases, because asthma, COPD, and pulmonary hypertension are distinct entities, although they clearly share processes of inflammation and remodeling.
Collapse
Affiliation(s)
- Gabriele Grunig
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA.; Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Aram Baghdassarian
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Sung-Hyun Park
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Serhiy Pylawka
- College of Dental Medicine, Columbia University, New York, NY, USA
| | - Bertram Bleck
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Joan Reibman
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | | | - Nedim Durmus
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
45
|
Airway molecular endotypes of asthma: dissecting the heterogeneity. Curr Opin Allergy Clin Immunol 2016; 15:163-8. [PMID: 25961390 DOI: 10.1097/aci.0000000000000148] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW This review will cover advances over the past year in defining airway endotypes in asthma by gene expression and the relationship between these endotypes and clinical traits. RECENT FINDINGS Expression profiling studies of asthmatic airway samples continue to reveal significant heterogeneity in airway inflammation and dysfunction. Recent studies have indicated multiple distinct, but related Th2 inflammatory asthma endotypes. Moreover, novel biomarkers of Th2 inflammation are being identified in more accessible nasal brushing and induced sputum cell samples. New data suggest the presence of multiple non-Th2-driven asthma molecular endotypes, including ones related to neutrophilic inflammation, airway remodeling, and chemosensory dysfunction. Many of these endotypes are associated with clinical disease features and treatment response. SUMMARY Molecular endotyping of asthmatic patients using gene expression profiling of airway samples is helping to uncover disease mechanisms and potential novel treatment targets. The advancement of endotyping methods holds the promise of future personalized treatment for asthma.
Collapse
|
46
|
Piyadasa H, Altieri A, Basu S, Schwartz J, Halayko AJ, Mookherjee N. Biosignature for airway inflammation in a house dust mite-challenged murine model of allergic asthma. Biol Open 2016; 5:112-21. [PMID: 26740570 PMCID: PMC4823983 DOI: 10.1242/bio.014464] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
House dust mite (HDM) challenge is commonly used in murine models of allergic asthma for preclinical pathophysiological studies. However, few studies define objective readouts or biomarkers in this model. In this study we characterized immune responses and defined molecular markers that are specifically altered after HDM challenge. In this murine model, we used repeated HDM challenge for two weeks which induced hallmarks of allergic asthma seen in humans, including airway hyper-responsiveness (AHR) and elevated levels of circulating total and HDM-specific IgE and IgG1. Kinetic studies showed that at least 24 h after last HDM challenge results in significant AHR along with eosinophil infiltration in the lungs. Histologic assessment of lung revealed increased epithelial thickness and goblet cell hyperplasia, in the absence of airway wall collagen deposition, suggesting ongoing tissue repair concomitant with acute allergic lung inflammation. Thus, this model may be suitable to delineate airway inflammation processes that precede airway remodeling and development of fixed airway obstruction. We observed that a panel of cytokines e.g. IFN-γ, IL-1β, IL-4, IL-5, IL-6, KC, TNF-α, IL-13, IL-33, MDC and TARC were elevated in lung tissue and bronchoalveolar fluid, indicating local lung inflammation. However, levels of these cytokines remained unchanged in serum, reflecting lack of systemic inflammation in this model. Based on these findings, we further monitored the expression of 84 selected genes in lung tissues by quantitative real-time PCR array, and identified 31 mRNAs that were significantly up-regulated in lung tissue from HDM-challenged mice. These included genes associated with human asthma (e.g. clca3, ear11, il-13, il-13ra2, il-10, il-21, arg1 and chia1) and leukocyte recruitment in the lungs (e.g. ccl11, ccl12 and ccl24). This study describes a biosignature to enable broad and systematic interrogation of molecular mechanisms and intervention strategies for airway inflammation pertinent to allergic asthma that precedes and possibly potentiates airway remodeling and fibrosis. Summary: This study describes a systematic analysis of molecular end points in an murine model of allergic asthma. The biosignature described can be used to interrogate molecular mechanisms and intervention strategies for airway inflammation pertinent to allergic asthma that precedes and possibly potentiates airway remodeling and fibrosis.
Collapse
Affiliation(s)
- Hadeesha Piyadasa
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada Department of Immunology, University of Manitoba, Winnipeg, Manitoba, R3E 0T5, Canada
| | - Anthony Altieri
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada Department of Immunology, University of Manitoba, Winnipeg, Manitoba, R3E 0T5, Canada
| | - Sujata Basu
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada
| | - Jacquie Schwartz
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada
| | - Andrew J Halayko
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, R3E 0T5, Canada Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada Canadian Respiratory Research Network
| | - Neeloffer Mookherjee
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada Department of Immunology, University of Manitoba, Winnipeg, Manitoba, R3E 0T5, Canada Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada Canadian Respiratory Research Network
| |
Collapse
|
47
|
Choy DF, Hart KM, Borthwick LA, Shikotra A, Nagarkar DR, Siddiqui S, Jia G, Ohri CM, Doran E, Vannella KM, Butler CA, Hargadon B, Sciurba JC, Gieseck RL, Thompson RW, White S, Abbas AR, Jackman J, Wu LC, Egen JG, Heaney LG, Ramalingam TR, Arron JR, Wynn TA, Bradding P. T
H
2 and T
H
17 inflammatory pathways are reciprocally regulated in asthma. Sci Transl Med 2015; 7:301ra129. [DOI: 10.1126/scitranslmed.aab3142] [Citation(s) in RCA: 320] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Abstract
Several years ago, omalizumab became commercially available for the treatment of severe asthma. It remains the only monoclonal antibody to be marketed for this purpose. Since then, many studies have been published endorsing its efficacy and effectiveness. Concomitantly, evidence of an overlap between atopic and non-atopic severe asthma has emerged. However, there also appears to be some disagreement regarding the value of omalizumab in the management of non-atopic disease, as some studies have failed to show any benefit in these patients. The recent literature has also sought to identify appropriate prognostic biomarkers for the use of omalizumab, other than immunoglobulin (IgE) levels. This article briefly summarizes the evolution of asthma treatment, the pathophysiology of the condition, and the method of action of omalizumab. The author describes the controlled and uncontrolled studies (also named "real-life studies") published in adult and pediatric populations in different countries and expresses his view on the current place of the drug in the management of severe allergic asthma. He offers a personal perspective on the recent evidence for the use of omalizumab in non-atopic patients, highlighting the implications for current clinical practice and the gaps in our knowledge. The author justifies his belief that omalizumab is not only an IgE-blocking drug and should be considered as a disease-modifying therapy because of its multiple effects on different biologic pathways. Finally, some areas for future research are indicated.
Collapse
Affiliation(s)
- Christian Domingo
- Pulmonary Service, Hospital de Sabadell (Corporació Sanitària i Universitària Parc Taulí), Parc Taulí 1, 08208, Sabadell (Barcelona), Spain,
| |
Collapse
|
49
|
Christenson SA, Steiling K, van den Berge M, Hijazi K, Hiemstra PS, Postma DS, Lenburg ME, Spira A, Woodruff PG. Asthma-COPD overlap. Clinical relevance of genomic signatures of type 2 inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2015; 191:758-66. [PMID: 25611785 PMCID: PMC4407484 DOI: 10.1164/rccm.201408-1458oc] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/21/2015] [Indexed: 01/18/2023] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease and likely includes a subgroup that is biologically comparable to asthma. Studying asthma-associated gene expression changes in COPD could add insight into COPD pathogenesis and reveal biomarkers that predict a favorable response to corticosteroids. OBJECTIVES To determine whether asthma-associated gene signatures are increased in COPD and associated with asthma-related features. METHODS We compared disease-associated airway epithelial gene expression alterations in an asthma cohort (n = 105) and two COPD cohorts (n = 237, 171). The T helper type 2 (Th2) signature (T2S) score, a gene expression metric induced in Th2-high asthma, was evaluated in these COPD cohorts. The T2S score was correlated with asthma-related features and response to corticosteroids in COPD in a randomized, placebo-controlled trial, the Groningen and Leiden Universities study of Corticosteroids in Obstructive Lung Disease (GLUCOLD; n = 89). MEASUREMENTS AND MAIN RESULTS The 200 genes most differentially expressed in asthma versus healthy control subjects were enriched among genes associated with more severe airflow obstruction in these COPD cohorts (P < 0.001), suggesting significant gene expression overlap. A higher T2S score was associated with decreased lung function (P < 0.001), but not asthma history, in both COPD cohorts. Higher T2S scores correlated with increased airway wall eosinophil counts (P = 0.003), blood eosinophil percentage (P = 0.03), bronchodilator reversibility (P = 0.01), and improvement in hyperinflation after corticosteroid treatment (P = 0.019) in GLUCOLD. CONCLUSIONS These data identify airway gene expression alterations that can co-occur in asthma and COPD. The association of the T2S score with increased severity and "asthma-like" features (including a favorable corticosteroid response) in COPD suggests that Th2 inflammation is important in a COPD subset that cannot be identified by clinical history of asthma.
Collapse
|
50
|
Bleck B, Kazeros A, Bakal K, Garcia-Medina L, Adams A, Liu M, Lee RA, Tse DB, Chiu A, Grunig G, Egan JP, Reibman J. Coexpression of type 2 immune targets in sputum-derived epithelial and dendritic cells from asthmatic subjects. J Allergy Clin Immunol 2015; 136:619-627.e5. [PMID: 25813919 DOI: 10.1016/j.jaci.2014.12.1950] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 12/23/2014] [Accepted: 12/31/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Noninvasive sputum sampling has enabled the identification of biomarkers in asthmatic patients. Studies of discrete cell populations in sputum can enhance measurements compared with whole sputum in which changes in rare cells and cell-cell interactions can be masked. OBJECTIVE We sought to enrich for sputum-derived human bronchial epithelial cells (sHBECs) and sputum-derived myeloid type 1 dendritic cells (sDCs) to describe transcriptional coexpression of targets associated with a type 2 immune response. METHODS A case-control study was conducted with patients with mild asthma (asthmatic cases) and healthy control subjects. Induced sputum was obtained for simultaneous enrichment of sHBECs and sDCs by using flow cytometry. Quantitative PCR was used to measure mRNA for sHBEC thymic stromal lymphopoietin (TSLP), IL33, POSTN, and IL25 and downstream targets in sDCs (OX40 ligand [OX40L], CCL17, PPP1R14A, CD1E, CD1b, CD80, and CD86). RESULTS Final analyses for the study sample were based on 11 control subjects and 13 asthmatic cases. Expression of TSLP, IL33, and POSTN mRNA was increased in sHBECs in asthmatic cases (P = .001, P = .05, and P = .04, respectively). Expression of sDC OX40L and CCL17 mRNA was increased in asthmatic cases (P = .003 and P = .0001, respectively). sHBEC TSLP mRNA expression was strongly associated with sDC OX40L mRNA expression (R = 0.65, P = .001) and less strongly with sDC CCL17 mRNA expression. sHBEC IL33 mRNA expression was associated with sDC OX40L mRNA expression (R = 0.42, P = .04) but not sDC CCL17 mRNA expression. CONCLUSIONS Noninvasive sampling and enrichment of select cell populations from sputum can further our understanding of cell-cell interactions in asthmatic patients with the potential to enhance endotyping of asthmatic patients.
Collapse
Affiliation(s)
- Bertram Bleck
- Department of Medicine, New York University Langone Medical Center, New York, NY
| | - Angeliki Kazeros
- Department of Medicine, New York University Langone Medical Center, New York, NY
| | - Keren Bakal
- Department of Medicine, New York University Langone Medical Center, New York, NY
| | | | - Alexandra Adams
- Department of Medicine, New York University Langone Medical Center, New York, NY
| | - Mengling Liu
- Department of Environmental Medicine, New York University Langone Medical Center, New York, NY; Population Health, New York University School of Medicine, New York, NY
| | - Richard A Lee
- Department of Medicine, New York University Langone Medical Center, New York, NY
| | - Doris B Tse
- Department of Medicine, New York University Langone Medical Center, New York, NY
| | - Amanda Chiu
- Department of Medicine, New York University Langone Medical Center, New York, NY
| | - Gabriele Grunig
- Department of Environmental Medicine, New York University Langone Medical Center, New York, NY
| | - John P Egan
- Department of Medicine, New York University Langone Medical Center, New York, NY
| | - Joan Reibman
- Department of Medicine, New York University Langone Medical Center, New York, NY; Department of Environmental Medicine, New York University Langone Medical Center, New York, NY.
| |
Collapse
|