1
|
Pushpam M, Talukdar A, Anilkumar S, Maurya SK, Issac TG, Diwakar L. Recurrent endothelin-1 mediated vascular insult leads to cognitive impairment protected by trophic factor pleiotrophin. Exp Neurol 2024; 381:114938. [PMID: 39197707 DOI: 10.1016/j.expneurol.2024.114938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/12/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Vascular dementia (VaD) is a complex neurodegenerative condition, with cerebral small vessel dysfunctions as the central role in its pathogenesis. Given the lack of suitable animal models to study the disease pathogenesis, we developed a mouse model to closely emulate the clinical scenarios of recurrent transient ischemic attacks (TIAs) leading to VaD using vasoconstricting peptide Endothelin-1(ET-1). We observed that administration of ET-1 led to blood-brain barrier (BBB) disruption and detrimental changes in its components, such as endothelial cells and pericytes, along with neuronal loss and synaptic dysfunction, resulting in irreversible memory loss. Further, in our pursuit of understanding potential interventions, we co-administered pleiotrophin (PTN) alongside ET-1 injections. PTN exhibited remarkable efficacy in preserving vital components of the BBB, including endothelial cells and pericytes, thereby restoring BBB integrity, preventing neuronal loss, and enhancing memory function. Our findings give a valuable framework for understanding the detrimental effects of multiple TIAs on brain health and provide a useful animal model to explore VaD's underlying mechanisms further and pave the way for promising therapies.
Collapse
Affiliation(s)
- Mayank Pushpam
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India; Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Ankita Talukdar
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
| | - Shobha Anilkumar
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
| | | | - Thomas Gregor Issac
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
| | - Latha Diwakar
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
2
|
Chen Y, Wang Y, Zhang M, Zhou Y, Zhang H, Li P, Wu J. The clinical and neuropsychological profiles of Alzheimer's disease with white matter hyperintensity in North China. Front Neurol 2024; 15:1436030. [PMID: 39416665 PMCID: PMC11480061 DOI: 10.3389/fneur.2024.1436030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Background Patients with Alzheimer's disease (AD) often exhibit characteristic clinical manifestations, particularly neuropsychiatric symptoms. Previous studies have shown that white matter hyperintensity (WMH) is strongly associated with AD progression, as well as neuropsychiatric symptoms. The purpose of this study was to investigate the clinical and neuropsychological characteristics of AD patients with WMH. Methods This retrospective study involved 104 18-fluorodeoxyglucose-positron emission computed tomography (18FDG-PET-CT)-defined AD patients treated at Tianjin Huanhu Hospital from January 2010 to December 2022. Cranial magnetic resonance imaging (MRI) provided semi-quantitative data on brain structure and WMH. Collect and analyze patient clinical data. Neuropsychological assessments were used to evaluate cognitive function and psychobehavioral traits. Results Among the 104 patients, 66 were in the WMH group (63.5%) and 38 in the non-white matter hyperintensity (non-WMH) group (36.5%). There were no significant differences in gender, age, age of onset, education, BMI, smoking, drinking, diabetes, coronary heart disease, dementia family history, fasting blood glucose, total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) between the two groups. The WMH group showed higher rates of hypertension, homocysteine (Hcy) levels, NPI, and CDR scores as compared to the non-WMH group (p < 0.05). MMSE and MoCA scores were significantly lower in the WMH group (p < 0.05). In the MMSE subitem analysis, patients in the WMH group showed a decrease in attention, recall, and language scores. In the MOCA subitem analysis, WMH patients had lower scores in executive function, naming, attention, language, abstraction, and orientation (p < 0.05). Furthermore, subgroup analysis of NPI showed a higher incidence of delusions, depression, and apathy in the WMH group (p < 0.05). According to the hierarchical analysis of mild, moderate and severe dementia groups, the hypertension, leukoencephalopathy, Hcy level, Fazekas total score, PWMH and DWMH scores in the severe dementia group were significantly higher than those in the mild and moderate dementia groups (p < 0.05). As the disease progresses, more and more patients show increased white matter hyperintensity. Conclusion White matter lesions are closely correlated with cognitive decline and psychobehavioral symptoms in AD patients, and may be used as an indicator of disease progression. Priority should be given to early screening and prevention of WMH-related risk factors.
Collapse
Affiliation(s)
- Yuan Chen
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Yan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Miao Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Huihong Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Pan Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Jialing Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
3
|
Zhu H, Zhu C, Liu T, Wang P, Li W, Zhang Q, Zhao Y, Yu T, Liu X, Zhang Q, Zhao J, Zhang Y. Alterations in the Glymphatic System and Association with Brain Structure and Cognitive Function in Moyamoya Disease. Transl Stroke Res 2024:10.1007/s12975-024-01296-z. [PMID: 39245689 DOI: 10.1007/s12975-024-01296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/09/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
The glymphatic system is crucial for clearing metabolic waste from the brain, maintaining neural health and cognitive function. This study explores the glymphatic system's role in Moyamoya disease (MMD), characterized by progressive cerebral artery stenosis and brain structural lesions. We assessed 33 MMD patients and 21 healthy controls using diffusion tensor imaging along the perivascular space (DTI-ALPS) and global cortical gray matter-cerebrospinal fluid (CSF) coupling indices (gBOLD-CSF), which are indirect measurements of the glymphatic system. Cerebral perfusion in patients was evaluated via computed tomography perfusion imaging. We also measured the peak width of skeletonized mean diffusivity (PSMD), white matter hyperintensity (WMH) burden, and cognitive function. MMD patients exhibited lower ALPS and gBOLD-CSF coupling indices compared to controls (P < 0.01), indicating disrupted glymphatic function. Significant cognitive impairment was also observed in MMD patients (P < 0.01). ALPS indices varied with cerebral perfusion stages, being higher in earlier ischemic stages (P < 0.05). Analysis of brain structure showed increased CSF volume, PSMD index, and higher WMH burden in MMD patients (P < 0.01). The ALPS index positively correlated with white matter volume and cognitive scores, and negatively correlated with CSF volume, PSMD, and WMH burden (P < 0.05). Mediation analysis revealed the number of periventricular WMH significantly mediated the relationship between glymphatic dysfunction and cognitive impairment. In summary, MMD patients exhibit significant glymphatic system impairments, associated with brain structural changes and cognitive deficits.
Collapse
Affiliation(s)
- Huan Zhu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Chenyu Zhu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Tong Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Peijiong Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Wenjie Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Qihang Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Yahui Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Tao Yu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Xingju Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Qian Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Jizong Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Yan Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
4
|
Aleksic S, Fleysher R, Weiss EF, Tal N, Darby T, Blumen HM, Vazquez J, Ye KQ, Gao T, Siegel SM, Barzilai N, Lipton ML, Milman S. Hypothalamic MRI-derived microstructure is associated with neurocognitive aging in humans. Neurobiol Aging 2024; 141:102-112. [PMID: 38850591 PMCID: PMC11295133 DOI: 10.1016/j.neurobiolaging.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The hypothalamus regulates homeostasis across the lifespan and is emerging as a regulator of aging. In murine models, aging-related changes in the hypothalamus, including microinflammation and gliosis, promote accelerated neurocognitive decline. We investigated relationships between hypothalamic microstructure and features of neurocognitive aging, including cortical thickness and cognition, in a cohort of community-dwelling older adults (age range 65-97 years, n=124). Hypothalamic microstructure was evaluated with two magnetic resonance imaging diffusion metrics: mean diffusivity (MD) and fractional anisotropy (FA), using a novel image processing pipeline. Hypothalamic MD was cross-sectionally positively associated with age and it was negatively associated with cortical thickness. Hypothalamic FA, independent of cortical thickness, was cross-sectionally positively associated with neurocognitive scores. An exploratory analysis of longitudinal neurocognitive performance suggested that lower hypothalamic FA may predict cognitive decline. No associations between hypothalamic MD, age, and cortical thickness were identified in a younger control cohort (age range 18-63 years, n=99). To our knowledge, this is the first study to demonstrate that hypothalamic microstructure is associated with features of neurocognitive aging in humans.
Collapse
Affiliation(s)
- Sandra Aleksic
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Roman Fleysher
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States; Department of Radiology, Albert Einstein College of Medicine, Gruss Magnetic Resonance Research Center, Bronx, NY, United States
| | - Erica F Weiss
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Noa Tal
- Department of Medicine, Cedars-Sinai, Los Angeles, CA, United States
| | - Timothy Darby
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - Helena M Blumen
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Juan Vazquez
- Department of Internal Medicine, John Hopkins University, Baltimore, MD, United States
| | - Kenny Q Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tina Gao
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Shira M Siegel
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States
| | - Nir Barzilai
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael L Lipton
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States; Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Sofiya Milman
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
5
|
Funayama M, Koreki A, Takata T, Nakagawa Y, Mimura M. Post-stroke urinary incontinence is associated with behavior control deficits and overactive bladder. Neuropsychologia 2024; 201:108942. [PMID: 38906459 DOI: 10.1016/j.neuropsychologia.2024.108942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Although urinary incontinence in stroke survivors can substantially impact the patient's quality of life, the underlying neuropsychological mechanisms and its neural basis have not been adequately investigated. Therefore, we investigated this topic via neuropsychological assessment and neuroimaging in a cross-sectional study. METHODS We recruited 71 individuals with cerebrovascular disease. The relationship between urinary incontinence and neuropsychological indices was investigated using simple linear regression analysis or Mann-Whitney U test, along with other explanatory variables, e.g., severity of overactive bladder. Variables with a p-value of <0.1 in the simple regression analysis were entered in the final multiple linear regression model to control for potential confounding factors. To carry out an in-depth examination of the neuroanatomical substrate for urinary incontinence, voxel-based lesion-behavior mapping was performed using MRIcron software. RESULTS Behavioral control deficits and severity of overactive bladder were closely related to severity of urinary incontinence. The voxel-based lesion-behavior mapping suggests a potential role for ventromedial prefrontal cortex lesioning in the severity of urinary incontinence, although this association is not statistically significant. CONCLUSIONS Post-stroke urinary incontinence is closely related to two factors: neurogenic overactive bladder, a physiological disinhibition of micturition reflex, and cognitive dysfunction, characterized by behavior control deficits.
Collapse
Affiliation(s)
- Michitaka Funayama
- Department of Neuropsychiatry, Ashikaga Red Cross Hospital, Ashikaga, Tochigi, 326-0843, Japan; Department of Rehabilitation, Edogawa Hospital, Edogawa, Tokyo, 133-0052, Japan; Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, 160-0016, Japan.
| | - Akihiro Koreki
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, 266-0007, Japan
| | - Taketo Takata
- Department of Neuropsychiatry, Ashikaga Red Cross Hospital, Ashikaga, Tochigi, 326-0843, Japan
| | - Yoshitaka Nakagawa
- Department of Rehabilitation, Edogawa Hospital, Edogawa, Tokyo, 133-0052, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, 160-0016, Japan
| |
Collapse
|
6
|
Dominguez EN, Corrada MM, Kawas CH, Stark CEL. Resilience to AD pathology in Top Cognitive Performers. Front Aging Neurosci 2024; 16:1428695. [PMID: 39055052 PMCID: PMC11270559 DOI: 10.3389/fnagi.2024.1428695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Successful cognitive aging is often thought to result from resistance to the accumulation of pathology, resilience to the effects of pathological accumulation, or some combination of the two. While evidence for resilience has been found in typical aging populations, the oldest-old provide us with a unique window into the role of pathological accumulation in impacting cognition. Here, we aimed to assess group differences in measures of amyloid and tau across older age groups using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI age: 60-89) and The 90+ Study (age: 90-101). Additionally, using the ADNI dataset, we performed exploratory analyses of regional cingulate AV-45 SUVRs to assess if amyloid load in particular areas was associated with Top Cognitive Performance (TCP). Consistent with the literature, results showed no group differences in amyloid SUVRs both regionally and in the whole cortex. For tau with AV-1451, we also observed no differences in Braak composite SUVRs. Interestingly, these relationships persisted in the oldest-old. This indicates that Top Cognitive Performance throughout aging does not reflect resistance to amyloid and tau burden, but that other mechanisms may be associated with protection against amyloid and tau related neurodegeneration.
Collapse
Affiliation(s)
- Elena Nicole Dominguez
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - María M. Corrada
- Department of Neurology, University of California, Irvine, Irvine, CA, United States
- Department of Epidemiology, University of California, Irvine, Irvine, CA, United States
| | - Claudia H. Kawas
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Department of Neurology, University of California, Irvine, Irvine, CA, United States
| | - Craig E. L. Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
7
|
Pradeep A, Raghavan S, Przybelski SA, Preboske GM, Schwarz CG, Lowe VJ, Knopman DS, Petersen RC, Jack CR, Graff-Radford J, Cogswell PM, Vemuri P. Can white matter hyperintensities based Fazekas visual assessment scales inform about Alzheimer's disease pathology in the population? Alzheimers Res Ther 2024; 16:157. [PMID: 38987827 PMCID: PMC11234605 DOI: 10.1186/s13195-024-01525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND White matter hyperintensities (WMH) are considered hallmark features of cerebral small vessel disease and have recently been linked to Alzheimer's disease (AD) pathology. Their distinct spatial distributions, namely periventricular versus deep WMH, may differ by underlying age-related and pathobiological processes contributing to cognitive decline. We aimed to identify the spatial patterns of WMH using the 4-scale Fazekas visual assessment and explore their differential association with age, vascular health, AD imaging markers, namely amyloid and tau burden, and cognition. Because our study consisted of scans from GE and Siemens scanners with different resolutions, we also investigated inter-scanner reproducibility and combinability of WMH measurements on imaging. METHODS We identified 1144 participants from the Mayo Clinic Study of Aging consisting of a population-based sample from Olmsted County, Minnesota with available structural magnetic resonance imaging (MRI), amyloid, and tau positron emission tomography (PET). WMH distribution patterns were assessed on FLAIR-MRI, both 2D axial and 3D, using Fazekas ratings of periventricular and deep WMH severity. We compared the association of periventricular and deep WMH scales with vascular risk factors, amyloid-PET, and tau-PET standardized uptake value ratio, automated WMH volume, and cognition using Pearson partial correlation after adjusting for age. We also evaluated vendor compatibility and reproducibility of the Fazekas scales using intraclass correlations (ICC). RESULTS Periventricular and deep WMH measurements showed similar correlations with age, cardiometabolic conditions score (vascular risk), and cognition, (p < 0.001). Both periventricular WMH and deep WMH showed weak associations with amyloidosis (R = 0.07, p = < 0.001), and none with tau burden. We found substantial agreement between data from the two scanners for Fazekas measurements (ICC = 0.82 and 0.74). The automated WMH volume had high discriminating power for identifying participants with Fazekas ≥ 2 (area under curve = 0.97) and showed poor correlation with amyloid and tau PET markers similar to the visual grading. CONCLUSION Our study investigated risk factors underlying WMH spatial patterns and their impact on global cognition, with no discernible differences between periventricular and deep WMH. We observed minimal impact of amyloidosis on WMH severity. These findings, coupled with enhanced inter-scanner reproducibility of WMH data, suggest the combinability of inter-scanner data assessed by harmonized protocols in the context of vascular contributions to cognitive impairment and dementia biomarker research.
Collapse
Affiliation(s)
| | - Sheelakumari Raghavan
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Gregory M Preboske
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Christopher G Schwarz
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Petrice M Cogswell
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
8
|
Garo-Pascual M, Zhang L, Valentí-Soler M, Strange BA. Superagers Resist Typical Age-Related White Matter Structural Changes. J Neurosci 2024; 44:e2059232024. [PMID: 38684365 PMCID: PMC11209667 DOI: 10.1523/jneurosci.2059-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 05/02/2024] Open
Abstract
Superagers are elderly individuals with the memory ability of people 30 years younger and provide evidence that age-related cognitive decline is not inevitable. In a sample of 64 superagers (mean age, 81.9; 59% women) and 55 typical older adults (mean age, 82.4; 64% women) from the Vallecas Project, we studied, cross-sectionally and longitudinally over 5 years with yearly follow-ups, the global cerebral white matter status as well as region-specific white matter microstructure assessment derived from diffusivity measures. Superagers and typical older adults showed no difference in global white matter health (total white matter volume, Fazekas score, and lesions volume) cross-sectionally or longitudinally. However, analyses of diffusion parameters revealed the better white matter microstructure in superagers than in typical older adults. Cross-sectional differences showed higher fractional anisotropy (FA) in superagers mostly in frontal fibers and lower mean diffusivity (MD) in most white matter tracts, expressed as an anteroposterior gradient with greater group differences in anterior tracts. FA decrease over time is slower in superagers than in typical older adults in all white matter tracts assessed, which is mirrored by MD increases over time being slower in superagers than in typical older adults in all white matter tracts except for the corticospinal tract, the uncinate fasciculus, and the forceps minor. The better preservation of white matter microstructure in superagers relative to typical older adults supports resistance to age-related brain structural changes as a mechanism underpinning the remarkable memory capacity of superagers, while their regional aging pattern is in line with the last-in-first-out hypothesis.
Collapse
Affiliation(s)
- Marta Garo-Pascual
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid 28223, Spain
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Centre, Madrid 28031, Spain
- PhD Program in Neuroscience, Autonomous University of Madrid-Cajal Institute, Madrid 28029, Spain
| | - Linda Zhang
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Centre, Madrid 28031, Spain
| | - Meritxell Valentí-Soler
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Centre, Madrid 28031, Spain
| | - Bryan A Strange
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid 28223, Spain
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Centre, Madrid 28031, Spain
| |
Collapse
|
9
|
Wang Y, Wang T, Yu Z, Wang J, Liu F, Ye M, Fang X, Liu Y, Liu J. Alterations in structural integrity of superior longitudinal fasciculus III associated with cognitive performance in cerebral small vessel disease. BMC Med Imaging 2024; 24:138. [PMID: 38858645 PMCID: PMC11165890 DOI: 10.1186/s12880-024-01324-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND This study aimed to investigate the alterations in structural integrity of superior longitudinal fasciculus subcomponents with increasing white matter hyperintensity severity as well as the relationship to cognitive performance in cerebral small vessel disease. METHODS 110 cerebral small vessel disease study participants with white matter hyperintensities were recruited. According to Fazekas grade scale, white matter hyperintensities of each subject were graded. All subjects were divided into two groups. The probabilistic fiber tracking method was used for analyzing microstructure characteristics of superior longitudinal fasciculus subcomponents. RESULTS Probabilistic fiber tracking results showed that mean diffusion, radial diffusion, and axial diffusion values of the left arcuate fasciculus as well as the mean diffusion value of the right arcuate fasciculus and left superior longitudinal fasciculus III in high white matter hyperintensities rating group were significantly higher than those in low white matter hyperintensities rating group (p < 0.05). The mean diffusion value of the left superior longitudinal fasciculus III was negatively related to the Montreal Cognitive Assessment score of study participants (p < 0.05). CONCLUSIONS The structural integrity injury of bilateral arcuate fasciculus and left superior longitudinal fasciculus III is more severe with the aggravation of white matter hyperintensities. The structural integrity injury of the left superior longitudinal fasciculus III correlates to cognitive impairment in cerebral small vessel disease.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Radiology, Eye& ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, China
| | - Tianyao Wang
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zekuan Yu
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Junjie Wang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fang Liu
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Mengwen Ye
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Xianjin Fang
- Anhui University of Science and Technology, Anhui, China
| | - Yinhong Liu
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Beijing, China.
| | - Jun Liu
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200050, China.
| |
Collapse
|
10
|
Chen J, Li J, Wang X, Fu X, Ke J, Li J, Wen J, Cheng K, Li S, Shi Z. Heme Oxygenase-1 Gene (GT)n Polymorphism Linked to Deep White Matter Hyperintensities, Not Periventricular Hyperintensities. J Am Heart Assoc 2024; 13:e033981. [PMID: 38818928 PMCID: PMC11255616 DOI: 10.1161/jaha.123.033981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Oxidative stress plays a principal role in the pathogenesis of white matter hyperintensities (WMHs). The induction of heme oxygenase-1 (HO-1) gene in the brain represents 1 of the pivotal mechanisms to counteract the noxious effects of reactive oxygen species, and the transcriptional modulation of HO-1 induction depends on the length of a GT-repeat (GT)n in the promoter region. We investigated whether the HO-1 gene (GT)n polymorphism is associated with the risk of WMHs. METHODS AND RESULTS A total of 849 subjects from the memory clinic were consecutively enrolled, and the HO-1 (GT)n genotype was determined. WMHs were assessed with the Fazekas scale and further divided into periventricular WMHs and deep WMHs (DWMHs). Allelic HO-1 (GT)n polymorphisms were classified as short (≤24 (GT)n), median (25≤[GT]n<31), or long (31≤[GT]n). Multivariate logistic regression analysis was used to evaluate the effect of the HO-1 (GT)n variants on WMHs. The number of repetitions of the HO-1 gene (GT)n ranged from 15 to 39 with a bimodal distribution at lengths 23 and 30. The proportion of S/S genotypes was higher for moderate/severe DWMHs than none/mild DWMHs (22.22% versus 12.44%; P=0.001), but the association for periventricular WMHs was not statistically significant. Logistic regression suggested that the S/S genotype was significantly associated with moderate/severe DWMHs (S/S versus non-S/S: odds ratio, 2.001 [95% CI, 1.323-3.027]; P<0.001). The HO-1 gene (GT)n S/S genotype and aging synergistically contributed to the progression of DWMHs (relative excess risk attributable to interaction, 6.032 [95% CI, 0.149-11.915]). CONCLUSIONS Short (GT)n variants in the HO-1 gene may confer susceptibility to rather than protection from DWMHs, but not periventricular WMHs. REGISTRATION URL: https://www.chictr.org.cn; Unique identifier: ChiCTR2100045869.
Collapse
Affiliation(s)
- Junting Chen
- Department of Neurology and Memory CenterThe 10th Affiliate Hospital, Southern Medical UniversityDongguanChina
- Postgraduate SchoolGuangdong Medical UniversityZhanjiangGuangdongChina
| | - Jinrui Li
- Department of Neurology and Memory CenterThe 10th Affiliate Hospital, Southern Medical UniversityDongguanChina
- The 1st Clinical Medical SchoolSouthern Medical UniversityDongguanChina
| | - Xiaomian Wang
- Postgraduate SchoolGuangdong Medical UniversityZhanjiangGuangdongChina
| | - Xiaoli Fu
- Department of Neurology and Memory CenterThe 10th Affiliate Hospital, Southern Medical UniversityDongguanChina
| | - Jianxia Ke
- The 1st Clinical Medical SchoolSouthern Medical UniversityDongguanChina
| | - Jintao Li
- The 1st Clinical Medical SchoolSouthern Medical UniversityDongguanChina
| | - Jia Wen
- Postgraduate SchoolGuangdong Medical UniversityZhanjiangGuangdongChina
| | - Kailin Cheng
- Postgraduate SchoolGuangdong Medical UniversityZhanjiangGuangdongChina
| | - Shuen Li
- Department of Neurology and Memory CenterThe 10th Affiliate Hospital, Southern Medical UniversityDongguanChina
| | - Zhu Shi
- Department of Neurology and Memory CenterThe 10th Affiliate Hospital, Southern Medical UniversityDongguanChina
- Postgraduate SchoolGuangdong Medical UniversityZhanjiangGuangdongChina
- The 1st Clinical Medical SchoolSouthern Medical UniversityDongguanChina
| |
Collapse
|
11
|
Dorrepaal DJ, Goedegebuure WJ, van der Steen M, Bos D, Hokken – Koelega AC. Cerebral white matter hyperintensities in adults born small for gestational age at 12 years after cessation of childhood growth hormone treatment: a prospective cohort study including untreated controls. EClinicalMedicine 2024; 72:102637. [PMID: 38779170 PMCID: PMC11109348 DOI: 10.1016/j.eclinm.2024.102637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Background Increased cerebrovascular morbidity was reported in adults born small for gestational age (SGA) who were treated with growth hormone (GH) during childhood compared to the general population. Yet, previous studies lacked an appropriate control group which is a major limitation. We prospectively studied cerebral white matter hyperintensities (WMHs) in adults born SGA at 12 years after cessation of childhood GH-treatment (SGA-GH), compared to appropriate controls. Methods In this prospective cohort study, performed between May 2016 and December 2020, total WMHs, periventricular WMHs (PVWMHs) and deep WMHs (DWMHs) were the primary outcomes of the study, they were qualitatively assessed using 3 Tesla (T) Magnetic Resonance Imaging (MRI) and scored using the Fazekas scale in SGA-GH adults and in 3 untreated control groups: adults born SGA with persistent short stature (SGA-S), adults born SGA with spontaneous catch-up growth to a normal height (SGA-CU) and adults born appropriate for gestational age with a normal height (AGA). Regression analyses were performed in the total cohort to evaluate the associations of GH-treatment and birth characteristics with WMHs. Findings 297 adults were investigated (91 SGA-GH, 206 controls). Prevalence of total WMHs was 53.8% (95% CI 43.1-64.3) in SGA-GH, 40.5% (95% CI 25.6-56.7) in SGA-S, 73.9% (95% CI 61.9-83.7) in SGA-CU and 41.1% (95% CI 31.1-51.6) in AGA adults. No statistically significant differences in total WMHs, PVWMHs and DWMHs were found between SGA-GH compared to SGA-S and AGA adults. Highest prevalence of all type of WMHs was found in SGA-CU adults compared to all groups. Higher prevalence of total WMHs was associated with lower birth weight standard deviation score (SDS), but not with GH-treatment. Interpretation Our findings suggest that GH-treatment in children born SGA has no negative impact on the prevalence of all type of WMHs at 12 years after GH cessation compared to appropriate controls. SGA-CU adults had the highest prevalence of all type of WMHs around age 30 years. Funding Novo Nordisk.
Collapse
Affiliation(s)
- Demi J. Dorrepaal
- Department of Pediatrics, Erasmus MC - University Medical Center-Sophia Children's Hospital, 3015 CN, Rotterdam, the Netherlands
| | - Wesley J. Goedegebuure
- Department of Pediatrics, Erasmus MC - University Medical Center-Sophia Children's Hospital, 3015 CN, Rotterdam, the Netherlands
| | - Manouk van der Steen
- Department of Pediatrics, Erasmus MC - University Medical Center-Sophia Children's Hospital, 3015 CN, Rotterdam, the Netherlands
| | - Daniel Bos
- Department of Radiology & Nuclear Medicine, Erasmus MC - University Medical Center, 3015 CN, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC - University Medical Center, 3015 CN, Rotterdam, the Netherlands
| | - Anita C.S. Hokken – Koelega
- Department of Pediatrics, Erasmus MC - University Medical Center-Sophia Children's Hospital, 3015 CN, Rotterdam, the Netherlands
| |
Collapse
|
12
|
Pradeep A, Raghavan S, Przybelski SA, Preboske G, Schwarz CG, Lowe VJ, Knopman DS, Petersen RC, Jack CR, Graff-Radford J, Cogswell PM, Vemuri P. Can white matter hyperintensities based Fazekas visual assessment scales inform about Alzheimer's disease pathology in the population? RESEARCH SQUARE 2024:rs.3.rs-4017874. [PMID: 38558965 PMCID: PMC10980106 DOI: 10.21203/rs.3.rs-4017874/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background White matter hyperintensities (WMH) are considered hallmark features of cerebral small vessel disease and have recently been linked to Alzheimer's disease pathology. Their distinct spatial distributions, namely periventricular versus deep WMH, may differ by underlying age-related and pathobiological processes contributing to cognitive decline. We aimed to identify the spatial patterns of WMH using the 4-scale Fazekas visual assessment and explore their differential association with age, vascular health, Alzheimer's imaging markers, namely amyloid and tau burden, and cognition. Because our study consisted of scans from GE and Siemens scanners with different resolutions, we also investigated inter-scanner reproducibility and combinability of WMH measurements on imaging. Methods We identified 1144 participants from the Mayo Clinic Study of Aging consisting of older adults from Olmsted County, Minnesota with available structural magnetic resonance imaging (MRI), amyloid, and tau positron emission tomography (PET). WMH distribution patterns were assessed on FLAIR-MRI, both 2D axial and 3D, using Fazekas ratings of periventricular and deep WMH severity. We compared the association of periventricular and deep WMH scales with vascular risk factors, amyloid-PET and tau-PET standardized uptake value ratio, WMH volume, and cognition using Pearson partial correlation after adjusting for age. We also evaluated vendor compatibility and reproducibility of the Fazekas scales using intraclass correlations (ICC). Results Periventricular and deep WMH measurements showed similar correlations with age, cardiometabolic conditions score (vascular risk), and cognition, (p < 0.001). Both periventricular WMH and deep WMH showed weak associations with amyloidosis (R = 0.07, p = < 0.001), and none with tau burden. We found substantial agreement between data from the two scanners for Fazekas measurements (ICC = 0.78). The automated WMH volume had high discriminating power for identifying participants with Fazekas ≥ 2 (area under curve = 0.97). Conclusion Our study investigates risk factors underlying WMH spatial patterns and their impact on global cognition, with no discernible differences between periventricular and deep WMH. We observed minimal impact of amyloidosis on WMH severity. These findings, coupled with enhanced inter-scanner reproducibility of WMH data, suggest the combinability of inter-scanner data assessed by harmonized protocols in the context of vascular contributions to cognitive impairment and dementia biomarker research.
Collapse
|
13
|
Nabizadeh F, Zafari R, Mohamadi M, Maleki T, Fallahi MS, Rafiei N. MRI features and disability in multiple sclerosis: A systematic review and meta-analysis. J Neuroradiol 2024; 51:24-37. [PMID: 38172026 DOI: 10.1016/j.neurad.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND In this systematic review and meta-analysis, we aimed to investigate the correlation between disability in patients with Multiple sclerosis (MS) measured by the Expanded Disability Status Scale (EDSS) and brain Magnetic Resonance Imaging (MRI) features to provide reliable results on which characteristics in the MRI can predict disability and prognosis of the disease. METHODS A systematic literature search was performed using three databases including PubMed, Scopus, and Web of Science. The selected peer-reviewed studies must report a correlation between EDSS scores and MRI features. The correlation coefficients of included studies were converted to the Fisher's z scale, and the results were pooled. RESULTS Overall, 105 studies A total of 16,613 patients with MS entered our study. We found no significant correlation between total brain volume and EDSS assessment (95 % CI: -0.37 to 0.08; z-score: -0.15). We examined the potential correlation between the volume of T1 and T2 lesions and the level of disability. A positive significant correlation was found (95 % CI: 0.19 to 0.43; z-score: 0.31), (95 % CI: 0.17 to 0.33; z-score: 0.25). We observed a significant correlation between white matter volume and EDSS score in patients with MS (95 % CI: -0.37 to -0.03; z-score: -0.21). Moreover, there was a significant negative correlation between gray matter volume and disability (95 % CI: -0.025 to -0.07; z-score: -0.16). CONCLUSION In conclusion, this systematic review and meta-analysis revealed that disability in patients with MS is linked to extensive changes in different brain regions, encompassing gray and white matter, as well as T1 and T2 weighted MRI lesions.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasa Zafari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobin Mohamadi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Maleki
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nazanin Rafiei
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Dhabalia R, Kashikar SV, Parihar PS, Mishra GV. Unveiling the Intricacies: A Comprehensive Review of Magnetic Resonance Imaging (MRI) Assessment of T2-Weighted Hyperintensities in the Neuroimaging Landscape. Cureus 2024; 16:e54808. [PMID: 38529430 PMCID: PMC10961652 DOI: 10.7759/cureus.54808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/24/2024] [Indexed: 03/27/2024] Open
Abstract
T2-weighted hyperintensities in neuroimaging represent areas of heightened signal intensity on magnetic resonance imaging (MRI) scans, holding crucial importance in neuroimaging. This comprehensive review explores the T2-weighted hyperintensities, providing insights into their definition, characteristics, clinical relevance, and underlying causes. It highlights the significance of these hyperintensities as sensitive markers for neurological disorders, including multiple sclerosis, vascular dementia, and brain tumors. The review also delves into advanced neuroimaging techniques, such as susceptibility-weighted and diffusion tensor imaging, and the application of artificial intelligence and machine learning in hyperintensities analysis. Furthermore, it outlines the challenges and pitfalls associated with their assessment and emphasizes the importance of standardized protocols and a multidisciplinary approach. The review discusses future directions for research and clinical practice, including the development of biomarkers, personalized medicine, and enhanced imaging techniques. Ultimately, the review underscores the profound impact of T2-weighted hyperintensities in shaping the landscape of neurological diagnosis, prognosis, and treatment, contributing to a deeper understanding of complex neurological conditions and guiding more informed and effective patient care.
Collapse
Affiliation(s)
- Rishabh Dhabalia
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Shivali V Kashikar
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Pratap S Parihar
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Gaurav V Mishra
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
15
|
Zhang W, Fu F, Zhan Z. Association between intracranial and extracranial atherosclerosis and white matter hyperintensities: a systematic review and meta-analysis. Front Aging Neurosci 2024; 15:1240509. [PMID: 38259641 PMCID: PMC10800362 DOI: 10.3389/fnagi.2023.1240509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
Abstract
Background White matter hyperintensities (WMHs) are key neuroimaging markers of cerebral small vessel diseases. This study aimed to investigate whether intracranial and extracranial atherosclerotic stenosis is associated with WMHs. Methods Following a previously registered protocol (PROSPERO protocol: CRD42023407465), PubMed, Web of Science, and Embase were systematically searched for relevant literature published until March 2023. Cross-sectional studies examining the association between intracranial and extracranial atherosclerotic stenosis and WMHs were included. Random effects models were used to calculate the pooled estimates. Results Twenty-one eligible studies, including 10,841 participants, were identified. Intracranial and extracranial atherosclerotic stenosis was associated with an increased risk of WMHs (OR 1.80, 95% CI 1.25-2.57, I2 = 75%) and increased WMH volumes (SMD 0.40, 95% CI 0.18-0.63, I2 = 63%). Heterogeneity resulted from the WMHs rating method and the location. Extracranial atherosclerotic stenosis (ECAS) was significantly associated with WMHs (OR 2.10, 95% CI 1.22-3.62, I2 = 71%), but intracranial atherosclerotic stenosis (ICAS) was insignificantly associated with WMHs (OR 1.75, 95% CI 0.97-3.15, I2 = 84%). The association was stable in the subgroup analysis based on WMHs location, which included deep WMHs and periventricular WMHs. Conclusion Intracranial and extracranial atherosclerotic stenosis is associated with WMHs. This association is significant in ECAS, but attenuated in ICAS.
Collapse
Affiliation(s)
- Wenyuan Zhang
- Department of Neurology, Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, China
| | - Fangwang Fu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenxiang Zhan
- Department of Neurology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
16
|
Chou CJ, Yang HC, Chang PY, Chen CJ, Wu HM, Lin CF, Lai IC, Peng SJ. Automated identification and quantification of metastatic brain tumors and perilesional edema based on a deep learning neural network. J Neurooncol 2024; 166:167-174. [PMID: 38133789 DOI: 10.1007/s11060-023-04540-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE This paper presents a deep learning model for use in the automated segmentation of metastatic brain tumors and associated perilesional edema. METHODS The model was trained using Gamma Knife surgical data (90 MRI sets from 46 patients), including the initial treatment plan and follow-up images (T1-weighted contrast-enhanced (T1cWI) and T2-weighted images (T2WI)) manually annotated by neurosurgeons to indicate the target tumor and edema regions. A mask region-based convolutional neural network was used to extract brain parenchyma, after which the DeepMedic 3D convolutional neural network was in the segmentation of tumors and edemas. RESULTS Five-fold cross-validation demonstrated the efficacy of the brain parenchyma extraction model, achieving a Dice similarity coefficient of 96.4%. The segmentation models used for metastatic tumors and brain edema achieved Dice similarity coefficients of 71.6% and 85.1%, respectively. This study also presents an intuitive graphical user interface to facilitate the use of these models in clinical analysis. CONCLUSION This paper introduces a deep learning model for the automated segmentation and quantification of brain metastatic tumors and perilesional edema trained using only T1cWI and T2WI. This technique could facilitate further research on metastatic tumors and perilesional edema as well as other intracranial lesions.
Collapse
Affiliation(s)
- Chi-Jen Chou
- Division of Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Huai-Che Yang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Yao Chang
- Department of Electrical Engineering, National Central University, Taoyuan, Taiwan
| | - Ching-Jen Chen
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, 22903, USA
| | - Hsiu-Mei Wu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Fu Lin
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - I-Chun Lai
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Heavy Particles & Radiation Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Syu-Jyun Peng
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St., Xinyi Dist., Taipei City, 110, Taiwan.
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
17
|
Parent O, Bussy A, Devenyi GA, Dai A, Costantino M, Tullo S, Salaciak A, Bedford S, Farzin S, Béland ML, Valiquette V, Villeneuve S, Poirier J, Tardif CL, Dadar M, Chakravarty MM. Assessment of white matter hyperintensity severity using multimodal magnetic resonance imaging. Brain Commun 2023; 5:fcad279. [PMID: 37953840 PMCID: PMC10636521 DOI: 10.1093/braincomms/fcad279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/05/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
White matter hyperintensities are radiological abnormalities reflecting cerebrovascular dysfunction detectable using MRI. White matter hyperintensities are often present in individuals at the later stages of the lifespan and in prodromal stages in the Alzheimer's disease spectrum. Tissue alterations underlying white matter hyperintensities may include demyelination, inflammation and oedema, but these are highly variable by neuroanatomical location and between individuals. There is a crucial need to characterize these white matter hyperintensity tissue alterations in vivo to improve prognosis and, potentially, treatment outcomes. How different MRI measure(s) of tissue microstructure capture clinically-relevant white matter hyperintensity tissue damage is currently unknown. Here, we compared six MRI signal measures sampled within white matter hyperintensities and their associations with multiple clinically-relevant outcomes, consisting of global and cortical brain morphometry, cognitive function, diagnostic and demographic differences and cardiovascular risk factors. We used cross-sectional data from 118 participants: healthy controls (n = 30), individuals at high risk for Alzheimer's disease due to familial history (n = 47), mild cognitive impairment (n = 32) and clinical Alzheimer's disease dementia (n = 9). We sampled the median signal within white matter hyperintensities on weighted MRI images [T1-weighted (T1w), T2-weighted (T2w), T1w/T2w ratio, fluid-attenuated inversion recovery (FLAIR)] as well as the relaxation times from quantitative T1 (qT1) and T2* (qT2*) images. qT2* and fluid-attenuated inversion recovery signals within white matter hyperintensities displayed different age- and disease-related trends compared to normal-appearing white matter signals, suggesting sensitivity to white matter hyperintensity-specific tissue deterioration. Further, white matter hyperintensity qT2*, particularly in periventricular and occipital white matter regions, was consistently associated with all types of clinically-relevant outcomes in both univariate and multivariate analyses and across two parcellation schemes. qT1 and fluid-attenuated inversion recovery measures showed consistent clinical relationships in multivariate but not univariate analyses, while T1w, T2w and T1w/T2w ratio measures were not consistently associated with clinical variables. We observed that the qT2* signal was sensitive to clinically-relevant microstructural tissue alterations specific to white matter hyperintensities. Our results suggest that combining volumetric and signal measures of white matter hyperintensity should be considered to fully characterize the severity of white matter hyperintensities in vivo. These findings may have implications in determining the reversibility of white matter hyperintensities and the potential efficacy of cardio- and cerebrovascular treatments.
Collapse
Affiliation(s)
- Olivier Parent
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Aurélie Bussy
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Gabriel Allan Devenyi
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Alyssa Dai
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Manuela Costantino
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
| | - Stephanie Tullo
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Alyssa Salaciak
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
| | - Saashi Bedford
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Sarah Farzin
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
| | - Marie-Lise Béland
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
| | - Vanessa Valiquette
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Sylvia Villeneuve
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Center for the Studies in the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Judes Poirier
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Center for the Studies in the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Molecular Neurobiology Unit, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Christine Lucas Tardif
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Mahsa Dadar
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
18
|
Coelho P, Madureira J, Franco A, Peralta AR, Bentes C, Campos AR, Anink J, Aronica E, Roque R, Pimentel J. Histopathological characterization of cerebral small vessel disease in epilepsy patients with temporal lobe epilepsy submitted to surgery: A case-control study. Eur J Neurol 2023; 30:2999-3007. [PMID: 37402214 DOI: 10.1111/ene.15963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND Cerebrovascular disease (CVD) is a major contributor to epilepsy; however, patients with epilepsy also have a significantly increased risk of stroke. The way in which epilepsy contributes to the increased risk of stroke is still uncertain and is ill-characterized in neuropathological studies. A neuropathological characterization of cerebral small vessel disease (cSVD) in patients with chronic epilepsy was performed. METHODS Thirty-three patients with refractory epilepsy and hippocampal sclerosis (HS) submitted to epilepsy surgery from a reference center were selected between 2010 and 2020 and compared with 19 autopsy controls. Five randomly selected arterioles from each patient were analyzed using a previously validated scale for cSVD. The presence of CVD disease imaging markers in pre-surgical brain magnetic resonance imaging (MRI) was studied. RESULTS There were no differences in age (43.8 vs. 41.6 years; p = 0.547) or gender distribution (female gender 60.6% vs. male gender 52.6%; p = 0.575) between groups. Most CVD findings in brain MRI were mild. Patients had a mean time between the epilepsy onset and surgery of 26 ± 14.7 years and were medicated with a median number of three antiseizure medication (ASMs) [IQR 2-3]. Patients had higher median scores in arteriolosclerosis (3 vs. 1; p < 0.0001), microhemorrhages (4 vs. 1; p < 0.0001) and total score value (12 vs. 8.9; p = 0.031) in comparison with controls. No correlation was found between age, number of years until surgery, number of ASMs or cumulative defined daily dosage of ASM. CONCLUSION The present study provides evidence supporting the increased burden of cSVD in the neuropathological samples of patients with chronic epilepsy.
Collapse
Affiliation(s)
- Pedro Coelho
- Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
- Department of (Neuro)pathology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João Madureira
- Serviço de Imagiologia Neurológica, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Ana Franco
- Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
- Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Laboratório EEG/Sono, Departamento de Neurociências e Saúde Mental (Neurologia), Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
- Centro de Referência para a Área de Epilepsias Refratárias, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - Ana Rita Peralta
- Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
- Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Laboratório EEG/Sono, Departamento de Neurociências e Saúde Mental (Neurologia), Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
- Centro de Referência para a Área de Epilepsias Refratárias, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - Carla Bentes
- Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
- Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Laboratório EEG/Sono, Departamento de Neurociências e Saúde Mental (Neurologia), Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
- Centro de Referência para a Área de Epilepsias Refratárias, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - Alexandre Rainha Campos
- Centro de Referência para a Área de Epilepsias Refratárias, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
- Serviço de Neurocirurgia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - Jasper Anink
- Department of (Neuro)pathology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)pathology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Rafael Roque
- Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
- Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Laboratório de Neuropatologia, Departamento de Neurociências e Saúde Mental (Neurologia), Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - José Pimentel
- Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
- Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Laboratório de Neuropatologia, Departamento de Neurociências e Saúde Mental (Neurologia), Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| |
Collapse
|
19
|
Salvalaggio S, Turolla A, Andò M, Barresi R, Burgio F, Busan P, Cortese AM, D’Imperio D, Danesin L, Ferrazzi G, Maistrello L, Mascotto E, Parrotta I, Pezzetta R, Rigon E, Vedovato A, Zago S, Zorzi M, Arcara G, Mantini D, Filippini N. Prediction of rehabilitation induced motor recovery after stroke using a multi-dimensional and multi-modal approach. Front Aging Neurosci 2023; 15:1205063. [PMID: 37469951 PMCID: PMC10352609 DOI: 10.3389/fnagi.2023.1205063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Background Stroke is a debilitating disease affecting millions of people worldwide. Despite the survival rate has significantly increased over the years, many stroke survivors are left with severe impairments impacting their quality of life. Rehabilitation programs have proved to be successful in improving the recovery process. However, a reliable model of sensorimotor recovery and a clear identification of predictive markers of rehabilitation-induced recovery are still needed. This article introduces the cross-modality protocols designed to investigate the rehabilitation treatment's effect in a group of stroke survivors. Methods/design A total of 75 stroke patients, admitted at the IRCCS San Camillo rehabilitation Hospital in Venice (Italy), will be included in this study. Here, we describe the rehabilitation programs, clinical, neuropsychological, and physiological/imaging [including electroencephalography (EEG), transcranial magnetic stimulation (TMS), and magnetic resonance imaging (MRI) techniques] protocols set up for this study. Blood collection for the characterization of predictive biological biomarkers will also be taken. Measures derived from data acquired will be used as candidate predictors of motor recovery. Discussion/summary The integration of cutting-edge physiological and imaging techniques, with clinical and cognitive assessment, dose of rehabilitation and biological variables will provide a unique opportunity to define a predictive model of recovery in stroke patients. Taken together, the data acquired in this project will help to define a model of rehabilitation induced sensorimotor recovery, with the final aim of developing personalized treatments promoting the greatest chance of recovery of the compromised functions.
Collapse
Affiliation(s)
- Silvia Salvalaggio
- IRCCS San Camillo Hospital, Venice, Italy
- Padova Neuroscience Center, Università degli Studi di Padova, Padua, Italy
| | - Andrea Turolla
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum – Università di Bologna, Bologna, Italy
- Unit of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | | | | | | | - Anna Maria Cortese
- Department of Rehabilitation Medicine, AULSS 3 Serenissima, Venice, Italy
| | | | | | | | | | - Eleonora Mascotto
- Department of Physical Medicine and Rehabilitation, Venice Hospital, Venice, Italy
| | | | | | | | - Anna Vedovato
- General Hospital San Camillo of Treviso, Treviso, Italy
| | - Sara Zago
- IRCCS San Camillo Hospital, Venice, Italy
| | - Marco Zorzi
- IRCCS San Camillo Hospital, Venice, Italy
- Padova Neuroscience Center, Università degli Studi di Padova, Padua, Italy
- Department of General Psychology, University of Padova, Padua, Italy
| | | | - Dante Mantini
- IRCCS San Camillo Hospital, Venice, Italy
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
20
|
Wang W, Shi L, Ma H, Zhu S, Ge Y, Xu K. Comparison of the clinical value of MRI and plasma markers for cognitive impairment in patients aged ≥75 years: a retrospective study. PeerJ 2023; 11:e15581. [PMID: 37366421 PMCID: PMC10290829 DOI: 10.7717/peerj.15581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Background Dementia has become the main cause of disability in older adults aged ≥75 years. Cerebral small vessel disease (CSVD) is involved in cognitive impairment (CI) and dementia and is a cause of vascular CI (VCI), which is manageable and its onset and progression can be delayed. Simple and effective markers will be beneficial to the early detection and intervention of CI. The aim of this study is to investigate the clinical application value of plasma amyloid β1-42 (Aβ42), phosphorylated tau 181 (p-tau181) and conventional structural magnetic resonance imaging (MRI) parameters for cognitive impairment (CI) in patients aged ≥75 years. Methods We retrospectively selected patients who visited the Affiliated Hospital of Xuzhou Medical University and were clinically diagnosed with or without cognitive dysfunction between May 2018 and November 2021. Plasma indicators (Aβ42 and p-tau181) and conventional structural MRI parameters were collected and analyzed. Multivariate logistic regression and receiver operator characteristic (ROC) curve were used to evaluate the diagnostic value. Results One hundred and eighty-four subjects were included, including 54 cases in CI group and 130 cases in noncognitive impairment (NCI) groups, respectively. Univariate logistic regression analysis revealed that the percentages of Aβ42+, P-tau 181+, and Aβ42+/P-tau181+ showed no significant difference between the groups of CI and NCI (all P > 0.05). Multivariate logistic regression analysis showed that moderate/severe periventricular WMH (PVWMH) (OR 2.857, (1.365-5.983), P = 0.005), lateral ventricle body index (LVBI) (OR 0.413, (0.243-0.700), P = 0.001), and cortical atrophy (OR 1.304, (1.079-1.575), P = 0.006) were factors associated with CI. The combined model including PVWMH, LVBI, and cortical atrophy to detect CI and NCI showed an area under the ROC curve (AUROC) is 0.782, with the sensitivity and specificity 68.5% and 78.5%, respectively. Conclusion For individuals ≥75 years, plasma Aβ42 and P-tau181 might not be associated with cognitive impairment, and MRI parameters, including PVWMH, LVBI and cortical atrophy, are related to CI. The cognitive statuses of people over 75 years old were used as the endpoint event in this study. Therefore, it can be considered that these MRI markers might have more important clinical significance for early assessment and dynamic observation, but more studies are still needed to verify this hypothesis.
Collapse
Affiliation(s)
- Wei Wang
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Shi
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shangdong, China
| | - Hong Ma
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shiguang Zhu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yaqiong Ge
- GE Healthcare, Precision Health Institution, Shanghai, China
| | - Kai Xu
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
21
|
Trofimova O, Latypova A, DiDomenicantonio G, Lutti A, de Lange AMG, Kliegel M, Stringhini S, Marques-Vidal P, Vaucher J, Vollenweider P, Strippoli MPF, Preisig M, Kherif F, Draganski B. Topography of associations between cardiovascular risk factors and myelin loss in the ageing human brain. Commun Biol 2023; 6:392. [PMID: 37037939 PMCID: PMC10086032 DOI: 10.1038/s42003-023-04741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Our knowledge of the mechanisms underlying the vulnerability of the brain's white matter microstructure to cardiovascular risk factors (CVRFs) is still limited. We used a quantitative magnetic resonance imaging (MRI) protocol in a single centre setting to investigate the cross-sectional association between CVRFs and brain tissue properties of white matter tracts in a large community-dwelling cohort (n = 1104, age range 46-87 years). Arterial hypertension was associated with lower myelin and axonal density MRI indices, paralleled by higher extracellular water content. Obesity showed similar associations, though with myelin difference only in male participants. Associations between CVRFs and white matter microstructure were observed predominantly in limbic and prefrontal tracts. Additional genetic, lifestyle and psychiatric factors did not modulate these results, but moderate-to-vigorous physical activity was linked to higher myelin content independently of CVRFs. Our findings complement previously described CVRF-related changes in brain water diffusion properties pointing towards myelin loss and neuroinflammation rather than neurodegeneration.
Collapse
Affiliation(s)
- Olga Trofimova
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Adeliya Latypova
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Giulia DiDomenicantonio
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ann-Marie G de Lange
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Matthias Kliegel
- Department of Psychology, University of Geneva, Geneva, Switzerland
| | - Silvia Stringhini
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Julien Vaucher
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie-Pierre F Strippoli
- Center for Research in Psychiatric Epidemiology and Psychopathology, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Martin Preisig
- Center for Research in Psychiatric Epidemiology and Psychopathology, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ferath Kherif
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Neurology Department, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
22
|
Nalepa J, Kotowski K, Machura B, Adamski S, Bozek O, Eksner B, Kokoszka B, Pekala T, Radom M, Strzelczak M, Zarudzki L, Krason A, Arcadu F, Tessier J. Deep learning automates bidimensional and volumetric tumor burden measurement from MRI in pre- and post-operative glioblastoma patients. Comput Biol Med 2023; 154:106603. [PMID: 36738710 DOI: 10.1016/j.compbiomed.2023.106603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
Tumor burden assessment by magnetic resonance imaging (MRI) is central to the evaluation of treatment response for glioblastoma. This assessment is, however, complex to perform and associated with high variability due to the high heterogeneity and complexity of the disease. In this work, we tackle this issue and propose a deep learning pipeline for the fully automated end-to-end analysis of glioblastoma patients. Our approach simultaneously identifies tumor sub-regions, including the enhancing tumor, peritumoral edema and surgical cavity in the first step, and then calculates the volumetric and bidimensional measurements that follow the current Response Assessment in Neuro-Oncology (RANO) criteria. Also, we introduce a rigorous manual annotation process which was followed to delineate the tumor sub-regions by the human experts, and to capture their segmentation confidences that are later used while training deep learning models. The results of our extensive experimental study performed over 760 pre-operative and 504 post-operative adult patients with glioma obtained from the public database (acquired at 19 sites in years 2021-2020) and from a clinical treatment trial (47 and 69 sites for pre-/post-operative patients, 2009-2011) and backed up with thorough quantitative, qualitative and statistical analysis revealed that our pipeline performs accurate segmentation of pre- and post-operative MRIs in a fraction of the manual delineation time (up to 20 times faster than humans). Volumetric measurements were in strong agreement with experts with the Intraclass Correlation Coefficient (ICC): 0.959, 0.703, 0.960 for ET, ED, and cavity. Similarly, automated RANO compared favorably with experienced readers (ICC: 0.681 and 0.866) producing consistent and accurate results. Additionally, we showed that RANO measurements are not always sufficient to quantify tumor burden. The high performance of the automated tumor burden measurement highlights the potential of the tool for considerably improving and simplifying radiological evaluation of glioblastoma in clinical trials and clinical practice.
Collapse
Affiliation(s)
- Jakub Nalepa
- Graylight Imaging, Gliwice, Poland; Department of Algorithmics and Software, Silesian University of Technology, Gliwice, Poland.
| | | | | | | | - Oskar Bozek
- Department of Radiodiagnostics and Invasive Radiology, School of Medicine in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Bartosz Eksner
- Department of Radiology and Nuclear Medicine, ZSM Chorzów, Chorzów, Poland
| | - Bartosz Kokoszka
- Department of Radiodiagnostics, Interventional Radiology and Nuclear Medicine, University Clinical Centre, Katowice, Poland
| | - Tomasz Pekala
- Department of Radiodiagnostics, Interventional Radiology and Nuclear Medicine, University Clinical Centre, Katowice, Poland
| | - Mateusz Radom
- Department of Radiology and Diagnostic Imaging, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Marek Strzelczak
- Department of Radiology and Diagnostic Imaging, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Lukasz Zarudzki
- Department of Radiology and Diagnostic Imaging, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Agata Krason
- Roche Pharmaceutical Research & Early Development, Early Clinical Development Oncology, Roche Innovation Center Basel, Basel, Switzerland
| | - Filippo Arcadu
- Roche Pharmaceutical Research & Early Development, Early Clinical Development Informatics, Roche Innovation Center Basel, Basel, Switzerland
| | - Jean Tessier
- Roche Pharmaceutical Research & Early Development, Early Clinical Development Oncology, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
23
|
Guo XY, Kwon HJ, Rhee HY, Park S, Cho AR, Ryu CW, Jahng GH. Microvascular morphology alteration using relaxation rate change with gadolinium-based magnetic resonance imaging contrast agent in patients with Alzheimer's disease. Quant Imaging Med Surg 2023; 13:1-16. [PMID: 36620129 PMCID: PMC9816741 DOI: 10.21037/qims-22-524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
Abstract
Background Conventional magnetic resonance imaging (MRI) techniques cannot demonstrate microvascular alterations in mild Alzheimer's disease (AD). Thus, the diagnosis of microvascular pathology commonly relies on postmortem. The purpose of this study was to evaluate alterations of microvascular structures in patients with AD using a 3T clinical MRI system with a commercially available contrast agent. Methods Eleven patients with AD and 11 cognitively normal (CN) controls were included in this cross-sectional prospective study. R2 and R2* relaxation rate changes (∆R2 and ∆R2*) before and after a Gadolinium (Gd)-based contrast agent injection were calculated from images obtained with a multi-echo turbo spin-echo sequence and multi-echo gradient-echo sequence to obtain microvascular index maps of blood volume fraction (BVf), mean vessel diameter (mVD), vessel size index (VSI), mean vessel density (Q), and microvessel-weighted imaging (MvWI). Two-sample t-test was used to compare those values between the two groups. Correlation analysis was performed to evaluate the relationship between those values and age. Results BVfs at the corpus callosum and at the thalamus were significantly increased in the AD group (P=0.024 and P=0.005, respectively). BVf at the gray matter (P=0.020) and white matter area (P=0.012) were also significantly increased in the AD group compared with the CN group. MvWIs at the hippocampus and parahippocampal gyrus were significantly increased in the AD group compared with the CN group (P=0.020 and P=0.006, respectively). Voxel-based analysis showed both mVD and VSI were significantly decreased at the prefrontal lobe in the AD group. Q were not significant difference between CN and AD groups. MvWI were significantly positively correlated with age. Conclusions Microvascular index was a useful non-invasive method to evaluate microvascular morphology alteration. The microvascular morphology of AD was manifested as increasing BVf and microvessel-weighted.
Collapse
Affiliation(s)
- Xiao-Yi Guo
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeok Jung Kwon
- Department of Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hak Young Rhee
- Department of Neurology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Soonchan Park
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ah Rang Cho
- Department of Psychiatry, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chang-Woo Ryu
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Agrawal S, Farfel JM, Arfanakis K, Al-Harthi L, Shull T, Teppen TL, Evia AM, Patel MB, Ely EW, Leurgans SE, Bennett DA, Mehta R, Schneider JA. Brain autopsies of critically ill COVID-19 patients demonstrate heterogeneous profile of acute vascular injury, inflammation and age-linked chronic brain diseases. Acta Neuropathol Commun 2022; 10:186. [PMID: 36528671 PMCID: PMC9758667 DOI: 10.1186/s40478-022-01493-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND This study examined neuropathological findings of patients who died following hospitalization in an intensive care unit with SARS-CoV-2. METHODS Data originate from 20 decedents who underwent brain autopsy followed by ex-vivo imaging and dissection. Systematic neuropathologic examinations were performed to assess histopathologic changes including cerebrovascular disease and tissue injury, neurodegenerative diseases, and inflammatory response. Cerebrospinal fluid (CSF) and fixed tissues were evaluated for the presence of viral RNA and protein. RESULTS The mean age-at-death was 66.2 years (range: 26-97 years) and 14 were male. The patient's medical history included cardiovascular risk factors or diseases (n = 11, 55%) and dementia (n = 5, 25%). Brain examination revealed a range of acute and chronic pathologies. Acute vascular pathologic changes were common in 16 (80%) subjects and included infarctions (n = 11, 55%) followed by acute hypoxic/ischemic injury (n = 9, 45%) and hemorrhages (n = 7, 35%). These acute pathologic changes were identified in both younger and older groups and those with and without vascular risk factors or diseases. Moderate-to-severe microglial activation were noted in 16 (80%) brains, while moderate-to-severe T lymphocyte accumulation was present in 5 (25%) brains. Encephalitis-like changes included lymphocytic cuffing (n = 6, 30%) and neuronophagia or microglial nodule (most prominent in the brainstem, n = 6, 30%) were also observed. A single brain showed vasculitis-like changes and one other exhibited foci of necrosis with ball-ring hemorrhages reminiscent of acute hemorrhagic leukoencephalopathy changes. Chronic pathologies were identified in only older decedents: 7 brains exhibited neurodegenerative diseases and 8 brains showed vascular disease pathologies. CSF and brain samples did not show evidence of viral RNA or protein. CONCLUSIONS Acute tissue injuries and microglial activation were the most common abnormalities in COVID-19 brains. Focal evidence of encephalitis-like changes was noted despite the lack of detectable virus. The majority of older subjects showed age-related brain pathologies even in the absence of known neurologic disease. Findings of this study suggest that acute brain injury superimposed on common pre-existing brain disease may put older subjects at higher risk of post-COVID neurologic sequelae.
Collapse
Affiliation(s)
- Sonal Agrawal
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago, IL, 60612, USA.
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA.
| | - Jose M Farfel
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago, IL, 60612, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Tanner Shull
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Tara L Teppen
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Arnold M Evia
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago, IL, 60612, USA
| | - Mayur B Patel
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Health Services Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- The Geriatric Research Education Clinical Center (GRECC), Nashville Veterans Affairs Medical Center, Tennessee Valley Healthcare System (TVHS), Nashville, TN, USA
| | - E Wesley Ely
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Health Services Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- The Geriatric Research Education Clinical Center (GRECC), Nashville Veterans Affairs Medical Center, Tennessee Valley Healthcare System (TVHS), Nashville, TN, USA
| | - Sue E Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Rupal Mehta
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago, IL, 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago, IL, 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
25
|
Giulivi C, Wang JY, Hagerman RJ. Artificial neural network applied to fragile X-associated tremor/ataxia syndrome stage diagnosis based on peripheral mitochondrial bioenergetics and brain imaging outcomes. Sci Rep 2022; 12:21382. [PMID: 36496525 PMCID: PMC9741636 DOI: 10.1038/s41598-022-25615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
No proven prognosis is available for the neurodegenerative disorder fragile X-associated tremor/ataxia syndrome (FXTAS). Artificial neural network analyses (ANN) were used to predict FXTAS progression using data from 127 adults (noncarriers and FMR1 premutation carriers with and without FXTAS) with five outcomes from brain MRI imaging and 22 peripheral bioenergetic outcomes from two cell types. Diagnosis accuracy by ANN predictions ranged from 41.7 to 86.3% (depending on the algorithm used), and those misclassified usually presented a higher FXTAS stage. ANN prediction of FXTAS stages was based on a combination of two imaging findings (white matter hyperintensity and whole-brain volumes adjusted for intracranial volume) and four bioenergetic outcomes. Those at Stage 3 vs. 0-2 showed lower mitochondrial mass, higher oxidative stress, and an altered electron transfer consistent with mitochondrial unfolded protein response activation. Those at Stages 4-5 vs. 3 had higher oxidative stress and glycerol-3-phosphate-linked ATP production, suggesting that targeting mGPDH activity may prevent a worse prognosis. This was confirmed by the bioenergetic improvement of inhibiting mGPDH with metformin in affected fibroblasts. ANN supports the prospect of an unbiased molecular definition in diagnosing FXTAS stages while identifying potential targets for personalized medicine.
Collapse
Affiliation(s)
- Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
- MIND Institute, University of California at Davis Medical Center, Sacramento, CA, USA.
| | - Jun Yi Wang
- MIND Institute, University of California at Davis Medical Center, Sacramento, CA, USA
- Center for Mind and Brain, University of California Davis, Davis, CA, USA
| | - Randi J Hagerman
- MIND Institute, University of California at Davis Medical Center, Sacramento, CA, USA
- Department of Pediatrics, University of California at Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
26
|
Cai J, Sun J, Chen H, Chen Y, Zhou Y, Lou M, Yu R. Different mechanisms in periventricular and deep white matter hyperintensities in old subjects. Front Aging Neurosci 2022; 14:940538. [PMID: 36034143 PMCID: PMC9399809 DOI: 10.3389/fnagi.2022.940538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveAlthough multiple pieces of evidence have suggested that there are different mechanisms in periventricular white matter hyperintensities (PWMHs) and deep white matter hyperintensities (DWMHs), the exact mechanism remains uncertain.MethodsWe reviewed clinical and imaging data of old participants from a local She Ethnic group. We assessed the cerebral blood flow of white matter (WM-CBF) on arterial spin-labeling, deep medullary veins (DMVs) visual score on susceptibility-weighted imaging, and index for diffusion tensor image analysis along the perivascular space (ALPS index), indicating glymphatic function on diffusion tensor imaging. Furthermore, we investigated their relationships with volumes of PWMHs and DWMHs.ResultsA total of 152 subjects were included, with an average age of 63 ± 8 years old. We found that higher age and history of hypertension were independently related to higher volumes of both PWMHs and DWMHs (all p < 0.05). Lower ALPS index was independently associated with higher PWMHs volumes (β = 0.305, p < 0.001), and this relationship was accounted for by the indirect pathway via DMVs score (β = 0.176, p = 0.017). Both lower ALPS index and WM-CBF were independent risk factors for higher DWMHs volumes (β = −0.146, p = 0.041; β = −0.147, p = 0.036).ConclusionsOur study indicated that there were different mechanisms in PWMHs and DWMHs. PWMHs were mainly attributed to the damage of veins due to the dysfunction of the glymphatic pathway, while DWMHs could be affected by both ischemia-hypoperfusion and dysfunction of the glymphatic pathway.Advances in knowledgeThe relationship between glymphatic dysfunction and PWMHs might be accounted for by the indirect pathway via venous abnormalities, a glymphatic dysfunction, and lower CBF in white matter were independent risk factors for DWMHs.
Collapse
Affiliation(s)
- Jinsong Cai
- Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianzhong Sun
- Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyan Chen
- Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Chen
- Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zhou
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Lou
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Risheng Yu
- Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Risheng Yu
| |
Collapse
|
27
|
Brabec J, Durmo F, Szczepankiewicz F, Brynolfsson P, Lampinen B, Rydelius A, Knutsson L, Westin CF, Sundgren PC, Nilsson M. Separating Glioma Hyperintensities From White Matter by Diffusion-Weighted Imaging With Spherical Tensor Encoding. Front Neurosci 2022; 16:842242. [PMID: 35527815 PMCID: PMC9069143 DOI: 10.3389/fnins.2022.842242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Tumor-related hyperintensities in high b-value diffusion-weighted imaging (DWI) are radiologically important in the workup of gliomas. However, the white matter may also appear as hyperintense, which may conflate interpretation. Purpose To investigate whether DWI with spherical b-tensor encoding (STE) can be used to suppress white matter and enhance the conspicuity of glioma hyperintensities unrelated to white matter. Materials and Methods Twenty-five patients with a glioma tumor and at least one pathology-related hyperintensity on DWI underwent conventional MRI at 3 T. The DWI was performed both with linear and spherical tensor encoding (LTE-DWI and STE-DWI). The LTE-DWI here refers to the DWI obtained with conventional diffusion encoding and averaged across diffusion-encoding directions. Retrospectively, the differences in contrast between LTE-DWI and STE-DWI, obtained at a b-value of 2,000 s/mm2, were evaluated by comparing hyperintensities and contralateral normal-appearing white matter (NAWM) both visually and quantitatively in terms of the signal intensity ratio (SIR) and contrast-to-noise ratio efficiency (CNReff). Results The spherical tensor encoding DWI was more effective than LTE-DWI at suppressing signals from white matter and improved conspicuity of pathology-related hyperintensities. The median SIR improved in all cases and on average by 28%. The median (interquartile range) SIR was 1.9 (1.6 – 2.1) for STE and 1.4 (1.3 – 1.7) for LTE, with a significant difference of 0.4 (0.3 –0.5) (p < 10–4, paired U-test). In 40% of the patients, the SIR was above 2 for STE-DWI, but with LTE-DWI, the SIR was below 2 for all patients. The CNReff of STE-DWI was significantly higher than of LTE-DWI: 2.5 (2 – 3.5) vs. 2.3 (1.7 – 3.1), with a significant difference of 0.4 (−0.1 –0.6) (p < 10–3, paired U-test). The STE improved CNReff in 70% of the cases. We illustrate the benefits of STE-DWI in three patients, where STE-DWI may facilitate an improved radiological description of tumor-related hyperintensity, including one case that could have been missed out if only LTE-DWI was inspected. Conclusion The contrast mechanism of high b-value STE-DWI results in a stronger suppression of white matter than conventional LTE-DWI, and may, therefore, be more sensitive and specific for assessment of glioma tumors and DWI-hyperintensities.
Collapse
Affiliation(s)
- Jan Brabec
- Medical Radiation Physics, Lund University, Lund, Sweden
- *Correspondence: Jan Brabec,
| | - Faris Durmo
- Diagnostic Radiology, Lund University, Lund, Sweden
| | - Filip Szczepankiewicz
- Diagnostic Radiology, Lund University, Lund, Sweden
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Patrik Brynolfsson
- Division of Medical Radiation Physics, Department of Translational Medicine, Lund University, Lund, Sweden
| | - Björn Lampinen
- Medical Radiation Physics, Lund University, Lund, Sweden
| | - Anna Rydelius
- Department of Neurology, Lund University, Lund, Sweden
| | - Linda Knutsson
- Medical Radiation Physics, Lund University, Lund, Sweden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Pia C. Sundgren
- Diagnostic Radiology, Lund University, Lund, Sweden
- Lund University Bioimaging Center, Lund University, Lund, Sweden
- Department of Imaging and Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | | |
Collapse
|
28
|
Predictive MRI Biomarkers in MS—A Critical Review. Medicina (B Aires) 2022; 58:medicina58030377. [PMID: 35334554 PMCID: PMC8949449 DOI: 10.3390/medicina58030377] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: In this critical review, we explore the potential use of MRI measurements as prognostic biomarkers in multiple sclerosis (MS) patients, for both conventional measurements and more novel techniques such as magnetization transfer, diffusion tensor, and proton spectroscopy MRI. Materials and Methods: All authors individually and comprehensively reviewed each of the aspects listed below in PubMed, Medline, and Google Scholar. Results: There are numerous MRI metrics that have been proven by clinical studies to hold important prognostic value for MS patients, most of which can be readily obtained from standard 1.5T MRI scans. Conclusions: While some of these parameters have passed the test of time and seem to be associated with a reliable predictive power, some are still better interpreted with caution. We hope this will serve as a reminder of how vast a resource we have on our hands in this versatile tool—it is up to us to make use of it.
Collapse
|
29
|
Nalepa J, Adamski S, Kotowski K, Chelstowska S, Machnikowska-Sokolowska M, Bozek O, Wisz A, Jurkiewicz E. Segmenting pediatric optic pathway gliomas from MRI using deep learning. Comput Biol Med 2022; 142:105237. [DOI: 10.1016/j.compbiomed.2022.105237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/03/2022]
|
30
|
Zeiner PS, Mann L, Filipski K, Starzetz T, Forster MT, Ronellenfitsch MW, Steinbach JP, Mittelbronn M, Wagner M, Harter PN. Immune profile and radiological characteristics of progressive multifocal leukoencephalopathy. Eur J Neurol 2021; 29:543-554. [PMID: 34644450 DOI: 10.1111/ene.15140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND PURPOSE Progressive multifocal leukoencephalopathy (PML) constitutes a severe disease with increasing incidence, mostly in the context of immunosuppressive therapies. A detailed understanding of immune response in PML appears critical for the treatment strategy. The aim was a comprehensive immunoprofiling and radiological characterization of magnetic resonance imaging (MRI) defined PML variants. METHODS All biopsy-confirmed PML patients (n = 15) treated in our department between January 2004 and July 2019 were retrospectively analysed. Data from MRI, histology as well as detailed clinical and outcome data were collected. The MRI-defined variants of classical (cPML) and inflammatory (iPML) PML were discriminated based on the intensity of gadolinium enhancement. In these PML variants, intensity and localization (perivascular vs. parenchymal) of inflammation in MRI and histology as well as the cellular composition by immunohistochemistry were assessed. The size of the demyelinating lesions was correlated with immune cell infiltration. RESULTS Patients with MRI-defined iPML showed a stronger intensity of inflammation with an increased lymphocyte infiltration on histological level. Also, iPML was characterized by a predominantly perivascular inflammation. However, cPML patients also demonstrated certain inflammatory tissue alterations. Infiltration of CD163-positive microglia and macrophage (M/M) subtypes correlated with PML lesion size. CONCLUSIONS The non-invasive MRI-based discrimination of PML variants allows for an estimation of inflammatory tissue alterations, although exhibiting limitations in MRI-defined cPML. The association of a distinct phagocytic M/M subtype with the extent of demyelination might reflect disease progression.
Collapse
Affiliation(s)
- Pia S Zeiner
- Dr Senckenberg Institute of Neurooncology, University Hospital, Frankfurt am Main, Germany.,Department of Neurology, University Hospital, Frankfurt am Main, Germany.,Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Leonhard Mann
- Department of Neurology, University Hospital, Frankfurt am Main, Germany.,Neurological Institute (Edinger Institute), University Hospital, Frankfurt am Main, Germany.,Institute of Neuroradiology, Goethe University, Frankfurt am Main, Germany
| | - Katharina Filipski
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurological Institute (Edinger Institute), University Hospital, Frankfurt am Main, Germany
| | - Tatjana Starzetz
- Neurological Institute (Edinger Institute), University Hospital, Frankfurt am Main, Germany
| | | | - Michael W Ronellenfitsch
- Dr Senckenberg Institute of Neurooncology, University Hospital, Frankfurt am Main, Germany.,Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joachim P Steinbach
- Dr Senckenberg Institute of Neurooncology, University Hospital, Frankfurt am Main, Germany.,Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michel Mittelbronn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Strassen, Luxembourg.,Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Laboratoire national de santé (LNS), Dudelange, Luxembourg.,Luxembourg Centre of Neuropathology (LCNP), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marlies Wagner
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Neuroradiology, Goethe University, Frankfurt am Main, Germany
| | - Patrick N Harter
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurological Institute (Edinger Institute), University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
31
|
An observational study of T2-weighted white matter hyperintensities on magnetic resonance imaging of the internal auditory meatus and brain: ignore or not? J Laryngol Otol 2021; 135:964-969. [PMID: 34558395 DOI: 10.1017/s0022215121001845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Magnetic resonance imaging of the internal auditory meatus frequently detects incidental white matter hyperintensities. This study investigated the association between these and the risk of stroke and transient ischaemic attack, or myocardial infarction. METHODS The records of patients with incidental white matter hyperintensities were reviewed, and data were collected on: age, sex, cardiovascular risk factors, and incidence of stroke and transient ischaemic attack, or myocardial infarction, five years later. The risk factors associated with vascular events were explored. RESULTS Of 6978 patients, 309 (4.4 per cent) had incidental white matter hyperintensities. Of these, 20 (6.5 per cent) had a stroke or transient ischaemic attack within five years, and 5 (1.7 per cent) had a myocardial infarction. The number of cardiovascular risk factors was significantly associated with the incidence of stroke and transient ischaemic attack (p = 0.004), and myocardial infarction (p = 0.023). CONCLUSION The number of cardiovascular risk factors predicts the likelihood of vascular events; appropriate risk factor management is recommended for patients with incidental white matter hyperintensities of presumed vascular origin.
Collapse
|
32
|
Barciszewska AM. Elucidating of oxidative distress in COVID-19 and methods of its prevention. Chem Biol Interact 2021; 344:109501. [PMID: 33974898 PMCID: PMC8106523 DOI: 10.1016/j.cbi.2021.109501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022]
Abstract
The pandemic of SARS-CoV-2 stimulates significant efforts and approaches to understand its global spread. Although the recent introduction of the vaccine is a crucial prophylactic step, the effective treatment for SARS-CoV-2 is still undiscovered. An in-depth analysis of symptoms and clinical parameters, as well as molecular changes, is necessary to comprehend COVID-19 and propose a remedy for affected people to fight that disease. The analysis of available clinical data and SARS-CoV-2 infection markers underlined the main pathogenic process in COVID-19 is cytokine storm and inflammation. That led us to suggest that the most important pathogenic feature of SARS-CoV-2 leading to COVID-19 is oxidative stress and cellular damage stimulated by iron, a source of Fenton reaction and its product hydroxyl radical (•OH), the most reactive ROS with t1/2–10−9s. Therefore we suggest some scavenging agents are a reasonable choice for overcoming its toxic effect and can be regarded as a treatment for the disease on the molecular level.
Collapse
Affiliation(s)
- Anna-Maria Barciszewska
- Intraoperative Imaging Unit, Chair and Department of Neurosurgery and Neurotraumatology, Karol Marcinkowski University of Medical Sciences, Przybyszewskiego 49, 60-355, Poznan, Poland; Department of Neurosurgery and Neurotraumatology, Heliodor Swiecicki Clinical Hospital, Przybyszewskiego 49, 60-355, Poznan, Poland.
| |
Collapse
|
33
|
Min ZG, Shan HR, Xu L, Yuan DH, Sheng XX, Xie WC, Zhang M, Niu C, Shakir TM, Cao ZH. Diffusion tensor imaging revealed different pathological processes of white matter hyperintensities. BMC Neurol 2021; 21:128. [PMID: 33740898 PMCID: PMC7977583 DOI: 10.1186/s12883-021-02140-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Background Although increasing evidence showed the correlations between white matter hyperintensities (WMHs) and cognitive impairment, the relationship between them is still modest. Many researchers began to focus on the variation caused by the heterogeneity of WMH. We tried to explore the pathological heterogeneity in WMH by using diffusion tensor imaging (DTI), so as to provide a new insight into the future research. Methods Diffusion weighted images (DWIs) of the brain were acquired from 73 patients with WMH and 18 healthy controls, which were then modeled by DTI. We measured fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) of white matter of the periventricular frontal lobe (pFL), periventricular occipital lobe (pOL), periventricular parietal lobe (pPL) and deep centrum ovales (dCO), and grouped these measures according to the Fazekas scale. Then we compared the DTI metrics of different regions with the same Fazekas scale grade. Results Significantly lower FA values (all p < 0.001), and higher MD (all p < 0.001) and RD values (all p < 0.001) were associated with WMH observed in the periventricular frontal lobe (pFL) compared to all other regions with the same Fazekas grades. The AD of WMH in the pFL was higher than that of pPL and dCO, but the differences between groups was not as high as of MD and RD, as indicated by the effect size. In the normal control group, DTI metrics between pFL and other regions were not significantly different or less significant different. The difference of DTI metrics of WMH between pPL, pOL and dCO was lower than that of normal white matter, as indicated by the effect size. Conclusion Distinct pathological processes can be revealed by DTI between frontal periventricular WMH and other regions. These processes may represent the effects of severe demyelination within the frontal periventricular WMH. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02140-9.
Collapse
Affiliation(s)
- Zhi-Gang Min
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, NO.75 Tongzhenguan Road, Yixing, Jiangsu Province, 214200, P.R. China
| | - Hai-Rong Shan
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, NO.75 Tongzhenguan Road, Yixing, Jiangsu Province, 214200, P.R. China
| | - Long Xu
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, NO.75 Tongzhenguan Road, Yixing, Jiangsu Province, 214200, P.R. China
| | - Dai-Hai Yuan
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, NO.75 Tongzhenguan Road, Yixing, Jiangsu Province, 214200, P.R. China
| | - Xue-Xia Sheng
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, NO.75 Tongzhenguan Road, Yixing, Jiangsu Province, 214200, P.R. China
| | - Wen-Chao Xie
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, NO.75 Tongzhenguan Road, Yixing, Jiangsu Province, 214200, P.R. China
| | - Ming Zhang
- Department of Radiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Chen Niu
- Department of Radiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Tahir Mehmood Shakir
- Department of Radiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zhi-Hong Cao
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, NO.75 Tongzhenguan Road, Yixing, Jiangsu Province, 214200, P.R. China.
| |
Collapse
|
34
|
Zhang R, Yu W, Wu X, Jiaerken Y, Wang S, Hong H, Li K, Zeng Q, Luo X, Yu X, Xu X, Zhang M, Huang P. Disentangling the pathologies linking white matter hyperintensity and geriatric depressive symptoms in subjects with different degrees of vascular impairment. J Affect Disord 2021; 282:1005-1010. [PMID: 33601672 DOI: 10.1016/j.jad.2020.12.171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/27/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND White matter hyperintensity (WMH) is closely associated with geriatric depressive symptoms, but its underlying neural mechanism is unclear. We aim to disentangle the contribution of vascular degeneration and fiber disruption to depressive symptoms in elderly subjects at different clinical status. METHODS One hundred and thirty-three normal elderly subjects, as well as 43 patients with cerebral small vessel disease (CSVD) were included. The Hamilton Depression Rating Scale (HAMD) was used to measure depressive symptoms. Based on the diffusion tensor imaging data, a free water elimination analytical model was adopted to reflect fiber tract disruption (measure: tissue fractional anisotropy, tFA) and increased white matter water content (measure: free water fraction, FW). RESULTS We found that WMH severity was significantly correlated with decreased tFA and increased FW in all subjects. In normal elderly subjects, the HAMD score was correlated with mean tFA, but not FW. Compared to the traditional fractional anisotropy measure, tFA showed stronger correlation with clinical symptoms. In CSVD subjects, the correlation was only significant for FW, and marginally significant for tFA. LIMITATIONS Most subjects had only mild to moderate depressive symptoms. Further validation in patients with major depressive disorder is needed to confirm these findings. CONCLUSIONS The neural mechanisms of depressive symptoms may be different in elderly people with or without severe vascular damage. The free water elimination model may disentangle the effects of fiber disruption and increased free water, providing sensitive imaging markers that could potentially be used on monitoring disease treatment.
Collapse
Affiliation(s)
- Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Wenke Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Xiao Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Xinfeng Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China.
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China.
| |
Collapse
|
35
|
Badji A, Westman E. Cerebrovascular pathology in Alzheimer's disease: Hopes and gaps. Psychiatry Res Neuroimaging 2020; 306:111184. [PMID: 32950333 DOI: 10.1016/j.pscychresns.2020.111184] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/27/2020] [Accepted: 09/03/2020] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is recognized as multifactorial and heterogeneous disease with multiple contributors to its pathophysiology, including vascular dysfunction. Given that a revision of the AT(N) classification is expected in the near future, the present work supports the importance to add an additional vascular (V) category to the framework. In particular, we attempt to shed light on the vascular markers and risk factors that are currently ready-to-be-added to the framework: i) lacunes, ii) white matter hyperintensities and iii) microbleeds seen in Flair, T2* weighted imaging and susceptibility images (SWI). Next, we discuss the added value of other types of imaging, such as diffusion-based metrics and advanced perfusion sequences to encompass more subtle vascular dysfunction. Finally, we highlight the importance to add information about the following cardiovascular risk factors to the framework: history of hypertension, obesity, and diabetes. We believe that adding a V category to the AT(N) framework will improve AD classification and foster efforts to apply the right drug(s) at the right time in the right AD subgroups. Brief communication The present work supports the importance to add an additional vascular (V) category to the AT(N) framework and shed light on the vascular MRI markers and risk factors that are currently ready-to-be-added to the framework.
Collapse
Affiliation(s)
- Atef Badji
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montréal, QC, Canada; Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Pati S, Verma R, Akbari H, Bilello M, Hill VB, Sako C, Correa R, Beig N, Venet L, Thakur S, Serai P, Ha SM, Blake GD, Shinohara RT, Tiwari P, Bakas S. Reproducibility analysis of multi-institutional paired expert annotations and radiomic features of the Ivy Glioblastoma Atlas Project (Ivy GAP) dataset. Med Phys 2020; 47:6039-6052. [PMID: 33118182 DOI: 10.1002/mp.14556] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/26/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The availability of radiographic magnetic resonance imaging (MRI) scans for the Ivy Glioblastoma Atlas Project (Ivy GAP) has opened up opportunities for development of radiomic markers for prognostic/predictive applications in glioblastoma (GBM). In this work, we address two critical challenges with regard to developing robust radiomic approaches: (a) the lack of availability of reliable segmentation labels for glioblastoma tumor sub-compartments (i.e., enhancing tumor, non-enhancing tumor core, peritumoral edematous/infiltrated tissue) and (b) identifying "reproducible" radiomic features that are robust to segmentation variability across readers/sites. ACQUISITION AND VALIDATION METHODS From TCIA's Ivy GAP cohort, we obtained a paired set (n = 31) of expert annotations approved by two board-certified neuroradiologists at the Hospital of the University of Pennsylvania (UPenn) and at Case Western Reserve University (CWRU). For these studies, we performed a reproducibility study that assessed the variability in (a) segmentation labels and (b) radiomic features, between these paired annotations. The radiomic variability was assessed on a comprehensive panel of 11 700 radiomic features including intensity, volumetric, morphologic, histogram-based, and textural parameters, extracted for each of the paired sets of annotations. Our results demonstrated (a) a high level of inter-rater agreement (median value of DICE ≥0.8 for all sub-compartments), and (b) ≈24% of the extracted radiomic features being highly correlated (based on Spearman's rank correlation coefficient) to annotation variations. These robust features largely belonged to morphology (describing shape characteristics), intensity (capturing intensity profile statistics), and COLLAGE (capturing heterogeneity in gradient orientations) feature families. DATA FORMAT AND USAGE NOTES We make publicly available on TCIA's Analysis Results Directory (https://doi.org/10.7937/9j41-7d44), the complete set of (a) multi-institutional expert annotations for the tumor sub-compartments, (b) 11 700 radiomic features, and (c) the associated reproducibility meta-analysis. POTENTIAL APPLICATIONS The annotations and the associated meta-data for Ivy GAP are released with the purpose of enabling researchers toward developing image-based biomarkers for prognostic/predictive applications in GBM.
Collapse
Affiliation(s)
- Sarthak Pati
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ruchika Verma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hamed Akbari
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michel Bilello
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Virginia B Hill
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Chiharu Sako
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ramon Correa
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Niha Beig
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ludovic Venet
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Siddhesh Thakur
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Prashant Serai
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Computer Science and Engineering, The Ohio State University, OH, 43210, USA
| | - Sung Min Ha
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Geri D Blake
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Russell Taki Shinohara
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA.,Penn Statistical Imaging and Visualization Endeavor (PennSIVE), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pallavi Tiwari
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
37
|
Foxley S, Wildenberg G, Sampathkumar V, Karczmar GS, Brugarolas P, Kasthuri N. Sensitivity to myelin using model-free analysis of the water resonance line-shape in postmortem mouse brain. Magn Reson Med 2020; 85:667-677. [PMID: 32783262 DOI: 10.1002/mrm.28440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Dysmyelinating diseases are characterized by abnormal myelin formation and function. Such microstructural abnormalities in myelin have been demonstrated to produce measurable effects on the MR signal. This work examines these effects on measurements of voxel-wise, high-resolution water spectra acquired using a 3D echo-planar spectroscopic imaging (EPSI) pulse sequence from both postmortem fixed control mouse brains and a dysmyelination mouse brain model. METHODS Perfusion fixed, resected control (n = 5) and shiverer (n = 4) mouse brains were imaged using 3D-EPSI with 100 µm isotropic resolution. The free induction decay (FID) was sampled every 2.74 ms over 192 echoes, for a total sampling duration of 526.08 ms. Voxel-wise FIDs were Fourier transformed to produce water spectra with 1.9 Hz resolution. Spectral asymmetry was computed and compared between the two tissue types. RESULTS The water resonance is more asymmetrically broadened in the white matter of control mouse brain compared with dysmyelinated white matter. In control brain, this is modulated by and consistent with previously reported orientationally dependent effects of white matter relative to B0 . Similar sensitivity to orientation is observed in dysmyelinated white matter as well; however, the magnitude of the resonance asymmetry is much lower across all directions. CONCLUSION Results demonstrate that components of the spectra are specifically differentially affected by myelin concentration. This suggests that water proton spectra may be sensitive to the presence of myelin, and as such, could serve as a MRI-based biomarker of dysmyelinating disease, free of mathematical models.
Collapse
Affiliation(s)
- Sean Foxley
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Gregg Wildenberg
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| | | | | | - Pedro Brugarolas
- Department of Radiology, Harvard Medical School, Boston, Maryland, USA.,Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Maryland, USA
| | - Narayanan Kasthuri
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
38
|
Kaczmarz S, Göttler J, Zimmer C, Hyder F, Preibisch C. Characterizing white matter fiber orientation effects on multi-parametric quantitative BOLD assessment of oxygen extraction fraction. J Cereb Blood Flow Metab 2020; 40:760-774. [PMID: 30952200 PMCID: PMC7168796 DOI: 10.1177/0271678x19839502] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 01/23/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022]
Abstract
Relative oxygen extraction fraction (rOEF) is a fundamental indicator of cerebral metabolic function. An easily applicable method for magnetic resonance imaging (MRI) based rOEF mapping is the multi-parametric quantitative blood oxygenation level dependent (mq-BOLD) approach with separate acquisitions of transverse relaxation times T 2 * and T2 and dynamic susceptibility contrast (DSC) based relative cerebral blood volume (rCBV). Given that transverse relaxation and rCBV in white matter (WM) strongly depend on nerve fiber orientation, mq-BOLD derived rOEF is expected to be affected as well. To investigate fiber orientation related rOEF artefacts, we present a methodological study characterizing anisotropy effects of WM as measured by diffusion tensor imaging (DTI) on mq-BOLD in 30 healthy volunteers. Using a 3T clinical MRI-scanner, we performed a comprehensive correlation of all parameters ( T 2 * , T2, R 2 ' , rCBV, rOEF, where R 2 ' =1/ T 2 * -1/T2) with DTI-derived fiber orientation towards the main magnetic field (B0). Our results confirm strong dependencies of transverse relaxation and rCBV on the nerve fiber orientation towards B0, with anisotropy-driven variations up to 37%. Comparably weak orientation-dependent variations of mq-BOLD derived rOEF (3.8%) demonstrate partially counteracting influences of R 2 ' and rCBV effects, possibly suggesting applicability of rOEF as an oxygenation sensitive biomarker. However, unresolved issues warrant caution when applying mq-BOLD to WM.
Collapse
Affiliation(s)
- Stephan Kaczmarz
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Departments of Radiology & Biomedical Imaging and of Biomedical Engineering, Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Jens Göttler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Departments of Radiology & Biomedical Imaging and of Biomedical Engineering, Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Fahmeed Hyder
- Departments of Radiology & Biomedical Imaging and of Biomedical Engineering, Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Christine Preibisch
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Clinic for Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
39
|
Markousis-Mavrogenis G, Mitsikostas DD, Koutsogeorgopoulou L, Dimitroulas T, Katsifis G, Argyriou P, Apostolou D, Velitsista S, Vartela V, Manolopoulou D, Tektonidou MG, Kolovou G, Kitas GD, Sfikakis PP, Mavrogeni SI. Combined Brain-Heart Magnetic Resonance Imaging in Autoimmune Rheumatic Disease Patients with Cardiac Symptoms: Hypothesis Generating Insights from a Cross-sectional Study. J Clin Med 2020; 9:jcm9020447. [PMID: 32041234 PMCID: PMC7074384 DOI: 10.3390/jcm9020447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Autoimmune rheumatic diseases (ARDs) may affect both the heart and the brain. However, little is known about the interaction between these organs in ARD patients. We asked whether brain lesions are more frequent in ARD patients with cardiac symptoms compared with non-ARD patients with cardiovascular disease (CVD). METHODS 57 ARD patients with mean age of 48 ± 13 years presenting with shortness of breath, chest pain, and/or palpitations, and 30 age-matched disease-controls with non-autoimmune CVD, were evaluated using combined brain-heart magnetic resonance imaging (MRI) in a 1.5T system. RESULTS 52 (91%) ARD patients and 16 (53%) controls had white matter hyperintensities (p < 0.001) in at least one brain area (subcortical/deep/periventricular white matter, basal ganglia, pons, brainstem, or mesial temporal lobe). Only the frequency and number of subcortical and deep white matter lesions were significantly greater in ARD patients (p < 0.001 and 0.014, respectively). ARD vs. control status was the only independent predictor of having any brain lesion. Specifically for deep white matter lesions, each increase in ECV independently predicted a higher number of lesions [odds ratio (95% confidence interval): 1.16 (1.01-1.33), p = 0.031] in ordered logistic regression. Penalized logistic regression selected only ARD vs. control status as the most important feature for predicting whether brain lesions were present on brain MRI (odds ratio: 5.46, marginal false discovery rate = 0.011). CONCLUSIONS Subclinical brain involvement was highly prevalent in this cohort of ARD patients and was mostly independent of the severity of cardiac involvement. However, further research is required to determine the clinical relevance of these findings.
Collapse
Affiliation(s)
| | - Dimos D. Mitsikostas
- First Neurology Department, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| | | | - Theodoros Dimitroulas
- Department of Rheumatology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Gikas Katsifis
- Rheumatology Department, Naval Hospital, 11521 Athens, Greece;
| | - Panayiotis Argyriou
- MRI Unit, Mediterraneo Hospital, 16675 Athens, Greece; (P.A.); (D.A.); (S.V.)
| | - Dimitrios Apostolou
- MRI Unit, Mediterraneo Hospital, 16675 Athens, Greece; (P.A.); (D.A.); (S.V.)
| | - Stella Velitsista
- MRI Unit, Mediterraneo Hospital, 16675 Athens, Greece; (P.A.); (D.A.); (S.V.)
| | - Vasiliki Vartela
- Onassis Cardiac Surgery Center, 17674 Athens, Greece; (G.M.-M.); (V.V.); (D.M.); (G.K.)
| | - Dionysia Manolopoulou
- Onassis Cardiac Surgery Center, 17674 Athens, Greece; (G.M.-M.); (V.V.); (D.M.); (G.K.)
| | - Maria G. Tektonidou
- First Department of Propaedeutic and Internal Medicine, Laikon Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.G.T.); (P.P.S.)
| | - Genovefa Kolovou
- Onassis Cardiac Surgery Center, 17674 Athens, Greece; (G.M.-M.); (V.V.); (D.M.); (G.K.)
| | - George D. Kitas
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PT, UK;
| | - Petros P. Sfikakis
- First Department of Propaedeutic and Internal Medicine, Laikon Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.G.T.); (P.P.S.)
| | - Sophie I. Mavrogeni
- Onassis Cardiac Surgery Center, 17674 Athens, Greece; (G.M.-M.); (V.V.); (D.M.); (G.K.)
- Correspondence: ; Tel./Fax: +30-210-98-82-797
| |
Collapse
|
40
|
Tubi MA, Feingold FW, Kothapalli D, Hare ET, King KS, Thompson PM, Braskie MN. White matter hyperintensities and their relationship to cognition: Effects of segmentation algorithm. Neuroimage 2020; 206:116327. [PMID: 31682983 PMCID: PMC6981030 DOI: 10.1016/j.neuroimage.2019.116327] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022] Open
Abstract
White matter hyperintensities (WMHs) are brain white matter lesions that are hyperintense on fluid attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) scans. Larger WMH volumes have been associated with Alzheimer's disease (AD) and with cognitive decline. However, the relationship between WMH volumes and cross-sectional cognitive measures has been inconsistent. We hypothesize that this inconsistency may arise from 1) the presence of AD-specific neuropathology that may obscure any WMH effects on cognition, and 2) varying criteria for creating a WMH segmentation. Manual and automated programs are typically used to determine segmentation boundaries, but criteria for those boundaries can differ. It remains unclear whether WMH volumes are associated with cognitive deficits, and which segmentation criteria influence the relationships between WMH volumes and clinical outcomes. In a sample of 260 non-demented participants (ages 55-90, 141 males, 119 females) from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we compared the performance of five WMH segmentation methods, by relating the WMH volumes derived using each method to both clinical diagnosis and composite measures of executive function and memory. To separate WMH effects on cognition from effects related to AD-specific processes, we performed analyses separately in people with and without abnormal cerebrospinal fluid amyloid levels. WMH volume estimates that excluded more diffuse, lower-intensity lesions were more strongly correlated with clinical diagnosis and cognitive performance, and only in those without abnormal amyloid levels. These findings may inform best practices for WMH segmentation, and suggest that AD neuropathology may mask WMH effects on clinical diagnosis and cognition.
Collapse
Affiliation(s)
- Meral A Tubi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Franklin W Feingold
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA; Stanford University, Stanford, CA, 94305, USA
| | - Deydeep Kothapalli
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Evan T Hare
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Kevin S King
- Huntington Medical Research Institute, Imaging Division, Pasadena, CA, 91105, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA.
| |
Collapse
|
41
|
Ter Telgte A, van Leijsen EMC, Wiegertjes K, Klijn CJM, Tuladhar AM, de Leeuw FE. Cerebral small vessel disease: from a focal to a global perspective. Nat Rev Neurol 2019; 14:387-398. [PMID: 29802354 DOI: 10.1038/s41582-018-0014-y] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cerebral small vessel disease (SVD) is commonly observed on neuroimaging among elderly individuals and is recognized as a major vascular contributor to dementia, cognitive decline, gait impairment, mood disturbance and stroke. However, clinical symptoms are often highly inconsistent in nature and severity among patients with similar degrees of SVD on brain imaging. Here, we provide a new framework based on new advances in structural and functional neuroimaging that aims to explain the remarkable clinical variation in SVD. First, we discuss the heterogeneous pathology present in SVD lesions despite an identical appearance on imaging and the perilesional and remote effects of these lesions. We review effects of SVD on structural and functional connectivity in the brain, and we discuss how network disruption by SVD can lead to clinical deficits. We address reserve and compensatory mechanisms in SVD and discuss the part played by other age-related pathologies. Finally, we conclude that SVD should be considered a global rather than a focal disease, as the classically recognized focal lesions affect remote brain structures and structural and functional network connections. The large variability in clinical symptoms among patients with SVD can probably be understood by taking into account the heterogeneity of SVD lesions, the effects of SVD beyond the focal lesions, the contribution of neurodegenerative pathologies other than SVD, and the interaction with reserve mechanisms and compensatory mechanisms.
Collapse
Affiliation(s)
- Annemieke Ter Telgte
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Esther M C van Leijsen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kim Wiegertjes
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anil M Tuladhar
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands.
| |
Collapse
|
42
|
Badji A, Sabra D, Bherer L, Cohen-Adad J, Girouard H, Gauthier CJ. Arterial stiffness and brain integrity: A review of MRI findings. Ageing Res Rev 2019; 53:100907. [PMID: 31063866 DOI: 10.1016/j.arr.2019.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/30/2019] [Accepted: 05/02/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Given the increasing incidence of vascular diseases and dementia, a better understanding of the cerebrovascular changes induced by arterial stiffness is important for early identification of white and gray matter abnormalities that might antedate the appearance of clinical cognitive symptoms. Here, we review the evidence from neuroimaging demonstrating the impact of arterial stiffness on the aging brain. METHOD This review presents findings from recent studies examining the association between arterial stiffness, cognitive function, cerebral hypoperfusion, and markers of neuronal fiber integrity using a variety of MRI techniques. RESULTS Overall, changes associated with arterial stiffness indicates that the corpus callosum, the internal capsule and the corona radiata may be the most vulnerable regions to microvascular damage. In addition, the microstructural integrity of these regions appears to be associated with cognitive performance. Changes in gray matter structure have also been found to be associated with arterial stiffness and are present as early as the 5th decade. Moreover, low cerebral perfusion has been associated with arterial stiffness as well as lower cognitive performance in age-sensitive tasks such as executive function. CONCLUSION Considering the established relationship between arterial stiffness, brain and cognition, this review highlights the need for future studies of brain structure and function in aging to implement measurements of arterial stiffness in parallel with quantitative imaging.
Collapse
Affiliation(s)
- Atef Badji
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montréal, QC, Canada; Neuroimaging Functional Unit (UNF), Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Dalia Sabra
- Neuroimaging Functional Unit (UNF), Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada; Department of Biomedical Science, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Louis Bherer
- Neuroimaging Functional Unit (UNF), Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada; Research Center, Montreal Heart Institute, Montréal, QC, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montréal, QC, Canada; Neuroimaging Functional Unit (UNF), Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Hélène Girouard
- Neuroimaging Functional Unit (UNF), Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada; Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Claudine J Gauthier
- Physics Department, Concordia University, Montréal, QC, Canada; PERFORM Centre, Concordia University, Montréal, QC, Canada; Research Center, Montreal Heart Institute, Montréal, QC, Canada.
| |
Collapse
|
43
|
Cooper G, Finke C, Chien C, Brandt AU, Asseyer S, Ruprecht K, Bellmann-Strobl J, Paul F, Scheel M. Standardization of T1w/T2w Ratio Improves Detection of Tissue Damage in Multiple Sclerosis. Front Neurol 2019; 10:334. [PMID: 31024428 PMCID: PMC6465519 DOI: 10.3389/fneur.2019.00334] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/19/2019] [Indexed: 01/24/2023] Open
Abstract
Normal appearing white matter (NAWM) damage develops early in multiple sclerosis (MS) and continues in the absence of new lesions. The ratio of T1w and T2w (T1w/T2w ratio), a measure of white matter integrity, has previously shown reduced intensity values in MS NAWM. We evaluate the validity of a standardized T1w/T2w ratio (sT1w/T2w ratio) in MS and whether this method is sensitive in detecting MS-related differences in NAWM. T1w and T2w scans were acquired at 3 Tesla in 47 patients with relapsing-remitting MS and 47 matched controls (HC). T1w/T2w and sT1w/T2w ratios were then calculated. We compared between-group variability between T1w/T2w and sT1w/T2w ratio in HC and MS and assessed for group differences. We also evaluated the relationship between the T1w/T2w and sT1w/T2w ratios and clinically relevant variables. Compared to the classic T1w/T2w ratio, the between-subject variability in sT1w/T2w ratio showed a significant reduction in MS patients (p < 0.001) and HC (p < 0.001). However, only sT1w/T2w ratio values were reduced in patients compared to HC (p < 0.001). The sT1w/T2w ratio intensity values were significantly influenced by age, T2 lesion volume and group status (MS vs. HC) (adjusted R2 = 0.30, p < 0.001). We demonstrate the validity of the sT1w/T2w ratio in MS and that it is more sensitive to MS-related differences in NAWM compared to T1w/T2w ratio. The sT1w/T2w ratio shows promise as an easily-implemented measure of NAWM in MS using readily available scans and simple post-processing methods.
Collapse
Affiliation(s)
- Graham Cooper
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Einstein Center for Neurosciences, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Carsten Finke
- Einstein Center for Neurosciences, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Chien
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Alexander U Brandt
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, University of California, Irvine, Irvine, CA, United States
| | - Susanna Asseyer
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Judith Bellmann-Strobl
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Einstein Center for Neurosciences, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Michael Scheel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
44
|
Prevalence of fascicular hyperintensities in peripheral nerves of healthy individuals with regard to cerebral white matter lesions. Eur Radiol 2019; 29:3480-3487. [DOI: 10.1007/s00330-019-06145-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/21/2019] [Accepted: 03/08/2019] [Indexed: 12/12/2022]
|
45
|
Selvaganesan K, Whitehead E, DeAlwis PM, Schindler MK, Inati S, Saad ZS, Ohayon JE, Cortese ICM, Smith B, Steven Jacobson, Nath A, Reich DS, Inati S, Nair G. Robust, atlas-free, automatic segmentation of brain MRI in health and disease. Heliyon 2019; 5:e01226. [PMID: 30828660 PMCID: PMC6383003 DOI: 10.1016/j.heliyon.2019.e01226] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/11/2019] [Accepted: 02/07/2019] [Indexed: 12/20/2022] Open
Abstract
Background Brain- and lesion-volumes derived from magnetic resonance images (MRI) serve as important imaging markers of disease progression in neurodegenerative diseases and aging. While manual segmentation of these volumes is both tedious and impractical in large cohorts of subjects, automated segmentation methods often fail in accurate segmentation of brains with severe atrophy or high lesion loads. The purpose of this study was to develop an atlas-free brain Classification using DErivative-based Features (C-DEF), which utilizes all scans that may be acquired during the course of a routine MRI study at any center. Methods Proton-density, T2-weighted, T1-weighted, brain-free water, 3D FLAIR, 3D T2-weighted, and 3D T2*-weighted images, collected routinely on patients with neuroinflammatory diseases at the NIH, were used to optimize the C-DEF algorithm on healthy volunteers and HIV + subjects (cohort 1). First, manually marked lesions and eroded FreeSurfer brain segmentation masks (compiled into gray and white matter, globus pallidus, CSF labels) were used in training. Next, the optimized C-DEF was applied on a separate cohort of HIV + subjects (cohort two), and the results were compared with that of FreeSurfer and Lesion-TOADS. Finally, C-DEF segmentation was evaluated on subjects clinically diagnosed with various other neurological diseases (cohort three). Results C-DEF algorithm was optimized using leave-one-out cross validation on five healthy subjects (age 36 ± 11 years), and five subjects infected with HIV (age 57 ± 2.6 years) in cohort one. The optimized C-DEF algorithm outperformed FreeSurfer and Lesion-TOADS segmentation in 49 other subjects infected with HIV (cohort two, age 54 ± 6 years) in qualitative and quantitative comparisons. Although trained only on HIV brains, sensitivity to detect lesions using C-DEF increased by 45% in HTLV-I-associated myelopathy/tropical spastic paraparesis (n = 5; age 58 ± 7 years), 33% in multiple sclerosis (n = 5; 42 ± 9 years old), and 4% in subjects with polymorphism of the cytotoxic T-lymphocyte-associated protein 4 gene (n = 5; age 24 ± 12 years) compared to Lesion-TOADS. Conclusion C-DEF outperformed other segmentation algorithms in the various neurological diseases explored herein, especially in lesion segmentation. While the results reported are from routine images acquired at the NIH, the algorithm can be easily trained and optimized for any set of contrasts and protocols for wider application. We are currently exploring various technical aspects of optimal implementation of CDEF in a clinical setting and evaluating a larger cohort of patients with other neurological diseases. Improving the accuracy of brain segmentation methodology will help better understand the relationship of imaging abnormalities to clinical and neuropsychological markers in disease.
Collapse
Affiliation(s)
- Kartiga Selvaganesan
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, 20893, USA
| | - Emily Whitehead
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, 20893, USA
| | - Paba M DeAlwis
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, 20893, USA
| | - Matthew K Schindler
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, 20893, USA
| | | | - Ziad S Saad
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20893, USA
| | - Joan E Ohayon
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, 20893, USA
| | - Irene C M Cortese
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, 20893, USA
| | - Bryan Smith
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, 20893, USA
| | - Steven Jacobson
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, 20893, USA
| | - Avindra Nath
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, 20893, USA
| | - Daniel S Reich
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, 20893, USA
| | - Sara Inati
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, 20893, USA
| | - Govind Nair
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, 20893, USA
| |
Collapse
|
46
|
Qiu J, Cheng HD, Dong T, Xiang L, Wang M, Xia L, Wang K. Prospective memory impairment in patients with white matter lesions. Int J Neurosci 2019; 129:438-446. [PMID: 30616434 DOI: 10.1080/00207454.2018.1538988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE A vast majority of the episodic memory literature in white matter lesions (WML) had focused on "retrospective memory (RM)", little was known about prospective memory (PM) in WML patients. The aim of our study was to investigate the effect of WML patients on event-based prospective memory (EBPM) and time-based prospective memory (TBPM). In addition, our study attempted to understand the possible mechanisms of PM damage in WML patients. METHODS A total of 42 WML patients and 40 age and education level matched healthy controls were included. EBPM (an action whenever particular words were presented) and TBPM (an action at certain times) were performed to test the involvement of PM in WML. The extent of WML within cholinergic pathways were assessed using the cholinergic pathways hyperintensities scale (CHIPS). RESULTS A significant difference was found in the performance of Montreal Cognitive Assessment (MOCA) (21.8 ± 3.9 vs. 26.6 ± 1.7, p < 0.05) and TBPM (2.88 ± 1.21 vs. 4.27 ± 0.78, p < 0.05), but not Mini-Mental State Examination (MMSE) (26.9 ± 2.8 vs. 27.3 ± 1.2, p > 0.05) and EBPM (3.62 ± 1.25 vs.4.47 ± 1.11, p > 0.05) in WML patients compared with the healthy controls. Moreover, TBPM and MOCA scores were negatively correlated with CHIPS scores. CONCLUSIONS WML patients were impaired in TBPM but not in EBPM, supporting that EBPM and TBPM have different neural mechanisms. Our results demonstrated that WML are involved in the TBPM probably by affecting the central cholinergic pathway.
Collapse
Affiliation(s)
- Ju Qiu
- a Department of Neurology , The First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China.,b Anhui Province Key Laboratory of Cognition and Neuropsychiatry Disorder , Hefei , Anhui Province , China.,c Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health , Hefei , Anhui Province , China.,d Department of Medical Psychology , Anhui Psychologic Medicine Center, Anhui Medical University , Hefei , Anhui Province , China.,e Department of Neurology , The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Huai-Dong Cheng
- f Department of Oncology , The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Ting Dong
- g Department of Neurology , The First Affiliated Hospital of Anhui University of Chinese Medicine , Hefei , Anhui , China
| | - Li Xiang
- h Department of Radiology , The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Min Wang
- e Department of Neurology , The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Lan Xia
- e Department of Neurology , The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Kai Wang
- a Department of Neurology , The First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China.,b Anhui Province Key Laboratory of Cognition and Neuropsychiatry Disorder , Hefei , Anhui Province , China.,c Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health , Hefei , Anhui Province , China.,d Department of Medical Psychology , Anhui Psychologic Medicine Center, Anhui Medical University , Hefei , Anhui Province , China
| |
Collapse
|
47
|
Diniz PHB, Valente TLA, Diniz JOB, Silva AC, Gattass M, Ventura N, Muniz BC, Gasparetto EL. Detection of white matter lesion regions in MRI using SLIC0 and convolutional neural network. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 167:49-63. [PMID: 29706405 DOI: 10.1016/j.cmpb.2018.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 02/12/2018] [Accepted: 04/17/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND OBJECTIVE White matter lesions are non-static brain lesions that have a prevalence rate up to 98% in the elderly population. Because they may be associated with several brain diseases, it is important that they are detected as soon as possible. Magnetic Resonance Imaging (MRI) provides three-dimensional data with the possibility to detect and emphasize contrast differences in soft tissues, providing rich information about the human soft tissue anatomy. However, the amount of data provided for these images is far too much for manual analysis/interpretation, representing a difficult and time-consuming task for specialists. This work presents a computational methodology capable of detecting regions of white matter lesions of the brain in MRI of FLAIR modality. The techniques highlighted in this methodology are SLIC0 clustering for candidate segmentation and convolutional neural networks for candidate classification. METHODS The methodology proposed here consists of four steps: (1) images acquisition, (2) images preprocessing, (3) candidates segmentation and (4) candidates classification. RESULTS The methodology was applied on 91 magnetic resonance images provided by DASA, and achieved an accuracy of 98.73%, specificity of 98.77% and sensitivity of 78.79% with 0.005 of false positives, without any false positives reduction technique, in detection of white matter lesion regions. CONCLUSIONS It is demonstrated the feasibility of the analysis of brain MRI using SLIC0 and convolutional neural network techniques to achieve success in detection of white matter lesions regions.
Collapse
Affiliation(s)
- Pedro Henrique Bandeira Diniz
- Pontifical Catholic University of Rio de Janeiro - PUC - RioR. São Vicente, 225, Gávea, RJ, Rio de Janeiro, 22453-900, Brazil.
| | - Thales Levi Azevedo Valente
- Pontifical Catholic University of Rio de Janeiro - PUC - RioR. São Vicente, 225, Gávea, RJ, Rio de Janeiro, 22453-900, Brazil.
| | - João Otávio Bandeira Diniz
- Federal University of Maranhão - UFMA Applied Computing Group - NCA Av. dos Portugueses, SN, Bacanga, MA, São Luís, 65085-580, Brazil.
| | - Aristófanes Corrêa Silva
- Federal University of Maranhão - UFMA Applied Computing Group - NCA Av. dos Portugueses, SN, Bacanga, MA, São Luís, 65085-580, Brazil.
| | - Marcelo Gattass
- Pontifical Catholic University of Rio de Janeiro - PUC - RioR. São Vicente, 225, Gávea, RJ, Rio de Janeiro, 22453-900, Brazil.
| | - Nina Ventura
- Paulo Niemeyer State Brain Institute - IECR. Lobo Júnior, 2293, Penha -RJ, 21070-060, Brazil.
| | - Bernardo Carvalho Muniz
- Paulo Niemeyer State Brain Institute - IECR. Lobo Júnior, 2293, Penha -RJ, 21070-060, Brazil.
| | | |
Collapse
|
48
|
Opposite development of short- and long-range anterior cingulate pathways in autism. Acta Neuropathol 2018; 136:759-778. [PMID: 30191402 PMCID: PMC6208731 DOI: 10.1007/s00401-018-1904-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022]
Abstract
Autism has been linked with the changes in brain connectivity that disrupt neural communication, especially involving frontal networks. Pathological changes in white matter are evident in adults with autism, particularly affecting axons below the anterior cingulate cortices (ACC). It is still unknown whether axon pathology appears early or late in development and whether it changes or not from childhood through adulthood. To address these questions, we examined typical and pathological development of about 1 million axons in post-mortem brains of children, adolescents, and adults with and without autism (ages 3-67 years). We used high-resolution microscopy to systematically sample and study quantitatively the fine structure of myelinated axons in the white matter below ACC. We provide novel evidence of changes in the density, size and trajectories of ACC axons in typical postnatal development from childhood through adulthood. Against the normal profile of axon development, our data revealed lower density of myelinated axons that connect ACC with neighboring cortices in children with autism. In the course of development the proportion of thin axons, which form short-range pathways, increased significantly in individuals with autism, but remained flat in controls. In contrast, the relative proportion of thick axons, which form long-range pathways, increased from childhood to adulthood in the control group, but decreased in autism. Our findings provide a timeline for profound changes in axon density and thickness below ACC that affect axon physiology in a direction suggesting bias in short over distant neural communication in autism. Importantly, measures of axon density, myelination, and orientation provide white matter anisotropy/diffusivity estimates at the level of single axons. The structural template established can be used to compare with measures obtained from imaging in living subjects, and guide analysis of functional and structural imaging data from humans for comparison with pathological states.
Collapse
|
49
|
Reactive gliosis mimicking tumor recurrence - a case series documenting MRI abnormalities and neuropathological correlates. Clin Neuropathol 2018; 37:97-104. [PMID: 29424334 PMCID: PMC6104493 DOI: 10.5414/np301084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2018] [Indexed: 11/18/2022] Open
Abstract
Abstract. The aim of this study is to identify, in our center, all cases of foreign-body reactions to hemostatic agents or other prostheses resulting in a radiological suspicion of tumor recurrence. We interrogated our internal database to identify all such cases and systematically evaluated the MRI brain scans of patients: (i) at the time of initial tumor diagnosis, (ii) postoperatively, (iii) and at the time of suspected tumor recurrence. In addition, we reviewed each patient’s operative notes and reviewed the histology of all cases following a second surgical intervention. In total, we identified 8 patients, 7 of whom had a WHO grade II glioma at initial surgery. We did not identify any distinguishing radiological abnormalities from the initial diagnostic brain scan to the suspected recurrence, and histologically all cases were characterized by extensive gliosis; with both macrophages and reactive astrocytes present throughout. The cause of gliosis was identified as being relating to hemostatic agents in 4 cases; in the other 4 cases, the foreign-body reaction was presumed to be caused be materials used in a craniotomy or cranioplasty. This study highlights the difficulty in radiologically diagnosing a foreign-body reaction and also identifies that such a gliotic reaction may occur as a consequence of exogenous materials used in a craniotomy or cranioplasty.
Collapse
|
50
|
Uddin MN, Figley TD, Figley CR. Effect of echo time and T2-weighting on GRASE-based T1w/T2w ratio measurements at 3T. Magn Reson Imaging 2018; 51:35-43. [DOI: 10.1016/j.mri.2018.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/24/2022]
|