1
|
Kershaw M, Li X, Amada H, Lu Y, Sawlani J, Bose S, Sawlani V, Hughes S. Improvement of FDG PET/CT and MRI concordance in temporal lobe epilepsy pre-surgical assessment using statistical parametric mapping Z-scores. Clin Radiol 2025; 83:106838. [PMID: 40015181 DOI: 10.1016/j.crad.2025.106838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/22/2024] [Accepted: 01/29/2025] [Indexed: 03/01/2025]
Abstract
AIM This retrospective study evaluates the diagnostic performance of statistical parametric mapping (SPM) analysis of interictal F18-fluoro-deoxy-D-glucose positron emission tomography computed tomography (FDG PET/CT) in temporal lobe epilepsy (TLE) patients, aiming to enhance image reporting consistency and correlation between magnetic resonance imaging (MRI) and FDG PET/CT findings and boost confidence in the surgical decision-making. MATERIALS AND METHODS Forty-nine TLE patients undergoing MRI and FDG PET/CT imaging at a tertiary epilepsy service were included. Images were visually interpreted by an experienced radiologist and nuclear medicine physician. SPM-based quantitative analysis for FDG PET/CT including Z score asymmetric index (ZAI) was performed. Statistical analyses include receiver operating characteristic curve and Cohen's k statistics. RESULTS Significant differences in the standardised uptake value (SUV) ratio and ZAI were observed among left TLE, nonepilepsy, and right TLE (p < 0.01). The areas under the curves for left/nonleft and right/nonright groups were 0.838 and 0.780, respectively. The cutoff value to separate left TLE from nonepilepsy and right TLE was 0.305 with 89.7% sensitivity, 80.0% specificity, 94.6% positive predictive value (PPV), 66.7% negative predictive value (NPV), and a 0.697 Youden index for diagnosis. It was 0.190 to separate right TLE from the other 2 with 87.5% sensitivity, 75.6% specificity, 41.2% PPV, 96.9% NPV, and a 0.631 Youden index for diagnosis. The intermethod agreement between MRI and SUV ratio was moderate (k = 0.48; 95% CI, 0.32-0.65) and that between FDG PET/CT qualitative assessment and ZAI was moderate (k = 0.43; 95% CI, 0.10-0.76). CONCLUSION FDG PET/CT-based SUV ratios and ZAI show promising diagnostic value in TLE patients, facilitating the integration of FDG PET/CT practice into presurgical assessment for medically refractory epilepsy.
Collapse
Affiliation(s)
- M Kershaw
- Imaging Department, Queen Elizabeth Hospital, University Hospitals Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB, United Kingdom
| | - X Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - H Amada
- Imaging Department, Queen Elizabeth Hospital, University Hospitals Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB, United Kingdom
| | - Y Lu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - J Sawlani
- Imaging Department, Queen Elizabeth Hospital, University Hospitals Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB, United Kingdom
| | - S Bose
- Imaging Department, Queen Elizabeth Hospital, University Hospitals Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB, United Kingdom
| | - V Sawlani
- Imaging Department, Queen Elizabeth Hospital, University Hospitals Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB, United Kingdom.
| | - S Hughes
- Imaging Department, Queen Elizabeth Hospital, University Hospitals Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB, United Kingdom
| |
Collapse
|
2
|
Flaus A, Guedj E, Horowitz T, Semah F, Verger A, Hammers A. Brain PET Imaging in the Presurgical Evaluation of Drug-Resistant Focal Epilepsy. PET Clin 2025; 20:57-66. [PMID: 39426849 DOI: 10.1016/j.cpet.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Presurgical evaluation aims to localize the seizure onset zone (SOZ) for a tailored resection. Interictal [18F]fluorodeoxyglucose PET is now an established test to lateralize and/or localize the SOZ, particularly if MR imaging is negative or if the noninvasive assessment shows discrepancies. PET can show hypometabolic areas associated with SOZ and the potential altered metabolic brain networks. It is very sensitive, and this is increased if images are read coregistered to the patient's MR imaging. PET hypometabolic intensity and pattern show prognostic value.
Collapse
Affiliation(s)
- Anthime Flaus
- Nuclear Medicine Department, Hospices Civils de Lyon, Medical Faculty of Lyon Est, University Claude Bernard Lyon 1, Lyon, France; Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR5292, Lyon, France.
| | - Eric Guedj
- Biophysics and Nuclear Medicine, Aix Marseille University; APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, Service de Médecine Nucléaire, CHU Timone, 264 Rue Sainte Pierre, Marseille 13005, France; CERIMED, Nuclear Medicine Department, Marseille, France
| | - Tatiana Horowitz
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, Service de Médecine Nucléaire, CHU Timone, 264 Rue Sainte Pierre, Marseille 13005, France; CERIMED, Nuclear Medicine Department, Marseille, France; Aix Marseille University
| | - Franck Semah
- Nuclear Medicine Department, University Hospital, Inserm, Service de Médecine Nucléaire, Hôpital Salengro, CHU de Lille, Lille Cedex 59037, France
| | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, rue du morvan, 54511 Vandoeuvre-les-Nancy, Nancy, France; Université de Lorraine, IADI, INSERM U1254, Nancy, France; Nuclear Medecine Department, Hôpitaux de Brabois, CHRU de Nancy, Rue du Morvan, Vandoeuvre les Nancy 54500, France
| | - Alexander Hammers
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, Office Suite 6, 4th Floor Lambeth Wing, London, UK; St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| |
Collapse
|
3
|
Wang Y, Mo J, Sun Y, Yu H, Liu C, Liu Q, Fan Y, Wang S, Liu X, Jiang Y, Cai L. Establishment of a normal control model of children's brain 18-fluorodeoxyglucose positron emission tomography and analysis of the changing pattern in patients aged 0-14 years. Quant Imaging Med Surg 2024; 14:4703-4713. [PMID: 39022258 PMCID: PMC11250353 DOI: 10.21037/qims-23-1809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/23/2024] [Indexed: 07/20/2024]
Abstract
Background It is difficult to obtain 18-fluorodeoxyglucose positron emission tomography (18FDG-PET) data from normal children, and changes in brain metabolism in children due to growth and development are poorly understood. For the first time, we established a normal control model of brain 18FDG-PET in children and evaluated its feasibility. The association of PET with age in children aged 0-14 years was analyzed. This study aimed to establish a normal control model of brain 18FDG-PET in children for the first time and to verify its feasibility, and to analyze the trend of PET with age in children aged 0-14 years. Methods In this retrospective cohort study, the 18FDG-PET imaging data of patients with no epileptiform discharge involvement contralateral to the epileptogenic zone were consecutively collected from January 2015 to June 2022 according to strictly defined screening criteria. For the normal control data, the hemisphere contralateral to the epileptogenic zone was mirrored and spliced to form an intact brain. The cohort of children aged 0-14 years was divided into 14 groups according age by year. Subsequently, patients who underwent lesionectomy with clear hypometabolism that roughly coincided with the extent of surgical resection were examined. The PET scan was compared with the control model, and the ratio of overlapping parts (hypometabolic areas ∩ surgical resection area) to hypometabolic parts (ROH) was calculated. Multiple regression analysis was performed on the normal control model for every 3- to 4-year age interval. Results A total of 159 normal control models were established. Five patients were randomly selected to verify the reliability of each yearly model. The average ROH was 0.968. Metabolism increasing with age in the different brain regions was observed at ages 0-2~, 3-5~, and 6-10 years. No age-related metabolic increase or decrease was found in the 10- to 14-year-old group. The metabolism in the 7- to 8-year-old group was higher than that in the 13- to 14-year-old group. Conclusions With strict screening criteria, the method of mirroring the contralateral hemisphere of the epileptic zone and splicing it into a complete brain as a means of creating a normal control group is feasible. The method offers convenience to the studies that lack healthy pediatric controls. Children under 10 years of age (especially 0-6 years old) experience considerable metabolic changes year on year. After the age of 10 years, the changes in metabolism gradually decrease, and metabolism also slowly decreases. Our findings provide guidance the clinical interpretation of areas with hypometabolism and emphasize the importance of establishing a normal control model of the child's brain, which should not be replaced by an adult model.
Collapse
Affiliation(s)
- Yao Wang
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Sun
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Hao Yu
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Chang Liu
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Qingzhu Liu
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yan Fan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Shuang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoyan Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Lixin Cai
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| |
Collapse
|
4
|
Traub-Weidinger T, Arbizu J, Barthel H, Boellaard R, Borgwardt L, Brendel M, Cecchin D, Chassoux F, Fraioli F, Garibotto V, Guedj E, Hammers A, Law I, Morbelli S, Tolboom N, Van Weehaeghe D, Verger A, Van Paesschen W, von Oertzen TJ, Zucchetta P, Semah F. EANM practice guidelines for an appropriate use of PET and SPECT for patients with epilepsy. Eur J Nucl Med Mol Imaging 2024; 51:1891-1908. [PMID: 38393374 PMCID: PMC11139752 DOI: 10.1007/s00259-024-06656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Epilepsy is one of the most frequent neurological conditions with an estimated prevalence of more than 50 million people worldwide and an annual incidence of two million. Although pharmacotherapy with anti-seizure medication (ASM) is the treatment of choice, ~30% of patients with epilepsy do not respond to ASM and become drug resistant. Focal epilepsy is the most frequent form of epilepsy. In patients with drug-resistant focal epilepsy, epilepsy surgery is a treatment option depending on the localisation of the seizure focus for seizure relief or seizure freedom with consecutive improvement in quality of life. Beside examinations such as scalp video/electroencephalography (EEG) telemetry, structural, and functional magnetic resonance imaging (MRI), which are primary standard tools for the diagnostic work-up and therapy management of epilepsy patients, molecular neuroimaging using different radiopharmaceuticals with single-photon emission computed tomography (SPECT) and positron emission tomography (PET) influences and impacts on therapy decisions. To date, there are no literature-based praxis recommendations for the use of Nuclear Medicine (NM) imaging procedures in epilepsy. The aims of these guidelines are to assist in understanding the role and challenges of radiotracer imaging for epilepsy; to provide practical information for performing different molecular imaging procedures for epilepsy; and to provide an algorithm for selecting the most appropriate imaging procedures in specific clinical situations based on current literature. These guidelines are written and authorized by the European Association of Nuclear Medicine (EANM) to promote optimal epilepsy imaging, especially in the presurgical setting in children, adolescents, and adults with focal epilepsy. They will assist NM healthcare professionals and also specialists such as Neurologists, Neurophysiologists, Neurosurgeons, Psychiatrists, Psychologists, and others involved in epilepsy management in the detection and interpretation of epileptic seizure onset zone (SOZ) for further treatment decision. The information provided should be applied according to local laws and regulations as well as the availability of various radiopharmaceuticals and imaging modalities.
Collapse
Affiliation(s)
- Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Javier Arbizu
- Department of Nuclear Medicine, University of Navarra Clinic, Pamplona, Spain
| | - Henryk Barthel
- Department of Nuclear Medicine, Leipzig University Medical Centre, Leipzig, Germany
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Lise Borgwardt
- Department of Clinical Physiology and Nuclear Medicine, University of Copenhagen, Blegdamsvej 9, DK-2100, RigshospitaletCopenhagen, Denmark
| | - Matthias Brendel
- Department of Nuclear Medicine, Ludwig Maximilian-University of Munich, Munich, Germany
- DZNE-German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine-DIMED, University-Hospital of Padova, Padova, Italy
| | - Francine Chassoux
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, 91401, Orsay, France
| | - Francesco Fraioli
- Institute of Nuclear Medicine, University College London (UCL), London, UK
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
- NIMTLab, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Geneva, Switzerland
| | - Eric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix Marseille Univ, Marseille, France
| | - Alexander Hammers
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London & Guy's and St Thomas' PET Centre, King's College London, London, UK
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Silvia Morbelli
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, Université de Lorraine, IADI, INSERM U1254, Nancy, France
| | - Wim Van Paesschen
- Laboratory for Epilepsy Research, KU Leuven and Department of Neurology, University Hospitals, Leuven, Belgium
| | - Tim J von Oertzen
- Depts of Neurology 1&2, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Pietro Zucchetta
- Nuclear Medicine Unit, Department of Medicine-DIMED, University-Hospital of Padova, Padova, Italy
| | - Franck Semah
- Nuclear Medicine Department, University Hospital, Inserm, CHU Lille, U1172-LilNCog-Lille, F-59000, Lille, France.
| |
Collapse
|
5
|
Rodrigo S, Costi S, Ellul P, Aubart M, Boddaert N, Auvin S, Elmaleh M, Ntorkou A, Bader-Meunier B, Lebon V, Melki I, Chiron C. Brain 18 F-FDG PET reveals cortico-subcortical hypermetabolic dysfunction in juvenile neuropsychiatric systemic lupus erythematosus. EJNMMI Res 2024; 14:34. [PMID: 38564068 PMCID: PMC10987444 DOI: 10.1186/s13550-024-01088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND In juvenile systemic lupus erythematosus (j-SLE) with neuropsychiatric (NP) symptoms, there is a lack of diagnostic biomarkers. Thus, we study whether PET-FDG may identify any metabolic dysfunction in j-NPSLE. METHODS A total of 19 18FDG-PET exams were consecutively performed using PET-MRI system in 11 non-sedated patients presenting with j-NPSLE (11-18y) for less than 18 months (m) and without any significant lesion at MRI. Psychiatric symptoms were scored from 0 (none) to 3 (severe) at PET time. PET images were visually analyzed and voxel-based analyses of cerebral glucose metabolism were performed using statistical parametric mapping (spm) with an age-matched control group, at threshold set > 50 voxels using both p < 0.001 uncorrected (unc.) and p < 0.05 corrected family wise error (FWE). RESULTS Patients exhibited mainly psychiatric symptoms, with diffuse inflammatory j-NPSLE. First PET (n = 11) was performed at a mean of 15y of age, second/third PET (n = 7/n = 1) 6 to 19 m later. PET individual analysis detected focal bilateral anomalies in 13/19 exams visually but 19/19 using spm (unc.), mostly hypermetabolic areas (18/19). A total of 15% of hypermetabolic areas identified by spm had been missed visually. PET group analysis (n = 19) did not identify any hypometabolic area, but a large bilateral cortico-subcortical hypermetabolic pattern including, by statistical decreasing order (unc.), thalamus, subthalamic brainstem, cerebellum (vermis and cortex), basal ganglia, visual, temporal and frontal cortices. Mostly the subcortical hypermetabolism survived to FWE analysis, being most intense and extensive (51% of total volume) in thalamus and subthalamus brainstem. Hypermetabolism was strictly subcortical in the most severe NP subgroup (n = 8, scores 2-3) whereas it also extended to cerebral cortex, mostly visual, in the less severe subgroup (n = 11, scores 0-1), but difference was not significant. Longitudinal visual analysis was inconclusive due to clinical heterogeneity. CONCLUSIONS j-NPSLE patients showed a robust bilateral cortico-subcortical hypermetabolic network, focused subcortically, particularly in thalamus, proportionally to psychiatric features severity. Further studies with larger, but homogeneous, cohorts are needed to determine the sensitivity and specificity of this dysfunctional pattern as a potential biomarker in diffuse inflammatory j-NPSLE with normal brain MRI.
Collapse
Affiliation(s)
- Sebastian Rodrigo
- CEA, SHFJ (Frederic Joliot Hospital), Orsay, France
- Biomedical Multimodal Imaging (BioMaps) Laboratory, CEA, INSERM, CNRS, and Paris-Saclay University, Orsay, France
| | - Stefania Costi
- Pediatric Rheumatology Unit, ASST-PINI-CTO (Regional Health Care and Social Agency Gaetano Pini), Milan, Italy
| | - Pierre Ellul
- Child and Adolescent Psychiatry, APHP, Robert Debré Hospital, Paris-Cité University, Paris, France
- Immunology-Immunopathology-Immunotherapy (i3) Laboratory, INSERM UMR-S 959 and Sorbonne University, Paris, France
| | - Melodie Aubart
- Pediatric Neurology, APHP, Hospital Necker for Sick Children, Paris-Cité University, Paris, France
- INSERM U1163, Imagine Institute, Paris, France
| | - Nathalie Boddaert
- INSERM U1163, Imagine Institute, Paris, France
- Pediatric Radiology, APHP, Hospital Necker for Sick Children, Paris-Cité University, Paris, France
| | - Stephane Auvin
- Pediatric Neurology, APHP, Robert Debré Hospital, Paris-Cité University, Institut Universitaire de France (IUF), Paris, France
| | - Monique Elmaleh
- Pediatric Radiology, APHP, Robert Debré Hospital, Paris-Cité University, Paris, France
- INSERM U1141 Neurodiderot and Neurospin Institute, Paris, France
| | - Alexandra Ntorkou
- Pediatric Radiology, APHP, Robert Debré Hospital, Paris-Cité University, Paris, France
| | - Brigitte Bader-Meunier
- INSERM U1163, Imagine Institute, Paris, France
- Pediatric Immunology and Rhumatology, APHP, Hospital Necker for Sick Children, Paris, France
| | - Vincent Lebon
- CEA, SHFJ (Frederic Joliot Hospital), Orsay, France
- Biomedical Multimodal Imaging (BioMaps) Laboratory, CEA, INSERM, CNRS, and Paris-Saclay University, Orsay, France
| | - Isabelle Melki
- INSERM U1163, Imagine Institute, Paris, France
- Robert Debré Hospital, General Pediatrics, Infectious Disease and Internal Medicine Department, Reference center for Rheumatic, APHP, AutoImmune and Systemic diseases in children (RAISE), Paris, France
- Paediatrics, Rheumatology and Paediatric Internal Medicine, Children's Hospital, Bordeaux, France
| | - Catherine Chiron
- CEA, SHFJ (Frederic Joliot Hospital), Orsay, France.
- Pediatric Neurology, APHP, Hospital Necker for Sick Children, Paris-Cité University, Paris, France.
- INSERM U1141 Neurodiderot and Neurospin Institute, Paris, France.
- Service Hospitalier Frederic Joliot (INSERM U1141), 4 Place du General Leclerc, Orsay, 91400, France.
| |
Collapse
|
6
|
Flaus A, Jung J, Ostrowky‐Coste K, Rheims S, Guénot M, Bouvard S, Janier M, Yaakub SN, Lartizien C, Costes N, Hammers A. Deep-learning predicted PET can be subtracted from the true clinical fluorodeoxyglucose PET co-registered to MRI to identify the epileptogenic zone in focal epilepsy. Epilepsia Open 2023; 8:1440-1451. [PMID: 37602538 PMCID: PMC10690662 DOI: 10.1002/epi4.12820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023] Open
Abstract
OBJECTIVE Normal interictal [18 F]FDG-PET can be predicted from the corresponding T1w MRI with Generative Adversarial Networks (GANs). A technique we call SIPCOM (Subtraction Interictal PET Co-registered to MRI) can then be used to compare epilepsy patients' predicted and clinical PET. We assessed the ability of SIPCOM to identify the Resection Zone (RZ) in patients with drug-resistant epilepsy (DRE) with reference to visual and statistical parametric mapping (SPM) analysis. METHODS Patients with complete presurgical work-up and subsequent SEEG and cortectomy were included. RZ localisation, the reference region, was assigned to one of eighteen anatomical brain regions. SIPCOM was implemented using healthy controls to train a GAN. To compare, the clinical PET coregistered to MRI was visually assessed by two trained readers, and a standard SPM analysis was performed. RESULTS Twenty patients aged 17-50 (32 ± 7.8) years were included, 14 (70%) with temporal lobe epilepsy (TLE). Eight (40%) were MRI-negative. After surgery, 14 patients (70%) had a good outcome (Engel I-II). RZ localisation rate was 60% with SIPCOM vs 35% using SPM (P = 0.015) and vs 85% using visual analysis (P = 0.54). Results were similar for Engel I-II patients, the RZ localisation rate was 64% with SIPCOM vs 36% with SPM. With SIPCOM localisation was correct in 67% in MRI-positive vs 50% in MRI-negative patients, and 64% in TLE vs 43% in extra-TLE. The average number of false-positive clusters was 2.2 ± 1.3 using SIPCOM vs 2.3 ± 3.1 using SPM. All RZs localized with SPM were correctly localized with SIPCOM. In one case, PET and MRI were visually reported as negative, but both SIPCOM and SPM localized the RZ. SIGNIFICANCE SIPCOM performed better than the reference computer-assisted method (SPM) for RZ detection in a group of operated DRE patients. SIPCOM's impact on epilepsy management needs to be prospectively validated.
Collapse
Affiliation(s)
- Anthime Flaus
- Department of Nuclear MedicineHospices Civils de LyonLyonFrance
- Medical Faculty of Lyon EstUniversity Claude Bernard Lyon 1LyonFrance
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Lyon Neuroscience Research CenterINSERM U1028/CNRS UMR5292LyonFrance
| | - Julien Jung
- Lyon Neuroscience Research CenterINSERM U1028/CNRS UMR5292LyonFrance
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Member of the ERN EpiCARELyon 1 UniversityLyonFrance
| | - Karine Ostrowky‐Coste
- Lyon Neuroscience Research CenterINSERM U1028/CNRS UMR5292LyonFrance
- Department of Pediatric Clinical Epileptology, Sleep Disorders, and Functional NeurologyHospices Civils de Lyon, Member of the ERN EpiCARELyonFrance
| | - Sylvain Rheims
- Lyon Neuroscience Research CenterINSERM U1028/CNRS UMR5292LyonFrance
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Member of the ERN EpiCARELyon 1 UniversityLyonFrance
| | - Marc Guénot
- Lyon Neuroscience Research CenterINSERM U1028/CNRS UMR5292LyonFrance
- Department of Functional Neurosurgery, Hospices Civils de Lyon, Member of the ERN EpiCARELyon 1 UniversityLyonFrance
| | - Sandrine Bouvard
- Lyon Neuroscience Research CenterINSERM U1028/CNRS UMR5292LyonFrance
| | - Marc Janier
- Department of Nuclear MedicineHospices Civils de LyonLyonFrance
- Medical Faculty of Lyon EstUniversity Claude Bernard Lyon 1LyonFrance
| | - Siti N. Yaakub
- Brain Research & Imaging CentreUniversity of PlymouthPlymouthUK
| | - Carole Lartizien
- INSA‐Lyon, CNRS, Inserm, CREATIS UMR 5220, U1294University Claude Bernard Lyon 1LyonFrance
| | - Nicolas Costes
- Lyon Neuroscience Research CenterINSERM U1028/CNRS UMR5292LyonFrance
- CERMEP‐Life ImagingLyonFrance
| | - Alexander Hammers
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| |
Collapse
|
7
|
Jin SO, Mérida I, Stavropoulos I, Elwes RDC, Lam T, Guedj E, Girard N, Costes N, Hammers A. Characterisation of a novel [ 18F]FDG brain PET database and combination with a second database for optimising detection of focal abnormalities, using focal cortical dysplasia as an example. EJNMMI Res 2023; 13:98. [PMID: 37964137 PMCID: PMC10645721 DOI: 10.1186/s13550-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/26/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Brain [18F]FDG PET is used clinically mainly in the presurgical evaluation for epilepsy surgery and in the differential diagnosis of neurodegenerative disorders. While scans are usually interpreted visually on an individual basis, comparison against normative cohorts allows statistical assessment of abnormalities and potentially higher sensitivity for detecting abnormalities. Little work has been done on out-of-sample databases (acquired differently to the patient data). Combination of different databases would potentially allow better power and discrimination. We fully characterised an unpublished healthy control brain [18F]FDG PET database (Marseille, n = 60, ages 21-78 years) and compared it to another publicly available database (MRXFDG, n = 37, ages 23-65 years). We measured and then harmonised spatial resolution and global values. A collection of patient scans (n = 34, 13-48 years) with histologically confirmed focal cortical dysplasias (FCDs) obtained on three generations of scanners was used to estimate abnormality detection rates using standard software (statistical parametric mapping, SPM12). RESULTS Regional SUVs showed similar patterns, but global values and resolutions were different as expected. Detection rates for the FCDs were 50% for comparison with the Marseille database and 53% for MRXFDG. Simply combining both databases worsened the detection rate to 41%. After harmonisation of spatial resolution, using a full factorial design matrix to accommodate global differences, and leaving out controls older than 60 years, we achieved detection rates of up to 71% for both databases combined. Detection rates were similar across the three scanner types used for patients, and high for patients whose MRI had been normal (n = 10/11). CONCLUSIONS As expected, global and regional data characteristics are database specific. However, our work shows the value of increasing database size and suggests ways in which database differences can be overcome. This may inform analysis via traditional statistics or machine learning, and clinical implementation.
Collapse
Affiliation(s)
- Sameer Omer Jin
- Faculty of Life Sciences and Medicine, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- King's College London & Guy's and St Thomas' PET Centre, London, UK
| | - Inés Mérida
- Centre d'Etude et de Recherche Multimodale et Pluridisciplinaire en Imagerie du Vivant (CERMEP), Lyon, France
| | - Ioannis Stavropoulos
- Department of Clinical Neurophysiology, King's College Hospital, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Robert D C Elwes
- Department of Clinical Neurophysiology, King's College Hospital, London, UK
| | - Tanya Lam
- Children's Neuroscience Centre, Evelina London Children's Hospital, Guy's and St Thomas' NHS Trust, London, UK
| | - Eric Guedj
- Nuclear Medicine Department, APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Aix Marseille University, Marseille, France
| | - Nadine Girard
- Department of Neuroradiology, APHM, CRMBM, UMR CNRS 7339, Timone Hospital, Aix Marseille University, Marseille, France
| | - Nicolas Costes
- Centre d'Etude et de Recherche Multimodale et Pluridisciplinaire en Imagerie du Vivant (CERMEP), Lyon, France
| | - Alexander Hammers
- Faculty of Life Sciences and Medicine, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
- King's College London & Guy's and St Thomas' PET Centre, London, UK.
| |
Collapse
|
8
|
Tsagkaris S, Yau EKC, McClelland V, Papandreou A, Siddiqui A, Lumsden DE, Kaminska M, Guedj E, Hammers A, Lin JP. Metabolic patterns in brain 18F-fluorodeoxyglucose PET relate to aetiology in paediatric dystonia. Brain 2023; 146:2512-2523. [PMID: 36445406 PMCID: PMC10232264 DOI: 10.1093/brain/awac439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/24/2022] [Accepted: 11/08/2022] [Indexed: 12/09/2023] Open
Abstract
There is a lack of imaging markers revealing the functional characteristics of different brain regions in paediatric dystonia. In this observational study, we assessed the utility of [18F]2-fluoro-2-deoxy-D-glucose (FDG)-PET in understanding dystonia pathophysiology by revealing specific resting awake brain glucose metabolism patterns in different childhood dystonia subgroups. PET scans from 267 children with dystonia being evaluated for possible deep brain stimulation surgery between September 2007 and February 2018 at Evelina London Children's Hospital (ELCH), UK, were examined. Scans without gross anatomical abnormality (e.g. large cysts, significant ventriculomegaly; n = 240) were analysed with Statistical Parametric Mapping (SPM12). Glucose metabolism patterns were examined in the 144/240 (60%) cases with the 10 commonest childhood-onset dystonias, focusing on nine anatomical regions. A group of 39 adult controls was used for comparisons. The genetic dystonias were associated with the following genes: TOR1A, THAP1, SGCE, KMT2B, HPRT1 (Lesch Nyhan disease), PANK2 and GCDH (Glutaric Aciduria type 1). The acquired cerebral palsy (CP) cases were divided into those related to prematurity (CP-Preterm), neonatal jaundice/kernicterus (CP-Kernicterus) and hypoxic-ischaemic encephalopathy (CP-Term). Each dystonia subgroup had distinct patterns of altered FDG-PET uptake. Focal glucose hypometabolism of the pallidi, putamina or both, was the commonest finding, except in PANK2, where basal ganglia metabolism appeared normal. HPRT1 uniquely showed glucose hypometabolism across all nine cerebral regions. Temporal lobe glucose hypometabolism was found in KMT2B, HPRT1 and CP-Kernicterus. Frontal lobe hypometabolism was found in SGCE, HPRT1 and PANK2. Thalamic and brainstem hypometabolism were seen only in HPRT1, CP-Preterm and CP-term dystonia cases. The combination of frontal and parietal lobe hypermetabolism was uniquely found in CP-term cases. PANK2 cases showed a distinct combination of parietal hypermetabolism with cerebellar hypometabolism but intact putaminal-pallidal glucose metabolism. HPRT1, PANK2, CP-kernicterus and CP-preterm cases had cerebellar and insula glucose hypometabolism as well as parietal glucose hypermetabolism. The study findings offer insights into the pathophysiology of dystonia and support the network theory for dystonia pathogenesis. 'Signature' patterns for each dystonia subgroup could be a useful biomarker to guide differential diagnosis and inform personalized management strategies.
Collapse
Affiliation(s)
- Stavros Tsagkaris
- Children’s Neurosciences, Complex Motor Disorders Service (CMDS), Evelina London Children's Hospital, Guy's and St Thomas’ NHS Foundation Trust (GSTT), London SE1 7EH, UK
- King’s College London & Guy’s and St Thomas’ PET Centre, Division of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Eric K C Yau
- Department of Paediatrics & Adolescent Medicine, Princess Margaret Hospital, Kowloon, Hong Kong
| | - Verity McClelland
- Children’s Neurosciences, Complex Motor Disorders Service (CMDS), Evelina London Children's Hospital, Guy's and St Thomas’ NHS Foundation Trust (GSTT), London SE1 7EH, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Apostolos Papandreou
- Children’s Neurosciences, Complex Motor Disorders Service (CMDS), Evelina London Children's Hospital, Guy's and St Thomas’ NHS Foundation Trust (GSTT), London SE1 7EH, UK
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London Great Ormond Street Institute of Child Health, London WC1N 1DZ, UK
| | - Ata Siddiqui
- Neuroradiology Department, Evelina London Children's Hospital, Guy's and St Thomas’ NHS Foundation Trust (GSTT), London SE1 7EH, UK
| | - Daniel E Lumsden
- Children’s Neurosciences, Complex Motor Disorders Service (CMDS), Evelina London Children's Hospital, Guy's and St Thomas’ NHS Foundation Trust (GSTT), London SE1 7EH, UK
- Perinatal Imaging, Division of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Margaret Kaminska
- Children’s Neurosciences, Complex Motor Disorders Service (CMDS), Evelina London Children's Hospital, Guy's and St Thomas’ NHS Foundation Trust (GSTT), London SE1 7EH, UK
| | - Eric Guedj
- CERIMED, Nuclear Medicine Department, Aix Marseille Universite, APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, 13397 Marseille, France
| | - Alexander Hammers
- King’s College London & Guy’s and St Thomas’ PET Centre, Division of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Jean-Pierre Lin
- Children’s Neurosciences, Complex Motor Disorders Service (CMDS), Evelina London Children's Hospital, Guy's and St Thomas’ NHS Foundation Trust (GSTT), London SE1 7EH, UK
- Women and Children’s Health Institute Faculty of Life Sciences & Medicine, Kings Health Partners, King’s College London, London SE1 7EH, UK
| |
Collapse
|
9
|
Balfroid T, Warren AE, Dalic LJ, Aeby A, Berlangieri SU, Archer JS. Frontoparietal 18F-FDG-PET hypo-metabolism in Lennox-Gastaut syndrome: further evidence highlighting the key network. Epilepsy Res 2023; 192:107131. [PMID: 37054522 DOI: 10.1016/j.eplepsyres.2023.107131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Lennox Gastaut syndrome (LGS) can be conceptualised as a "secondary network epilepsy", in which the shared electroclinical manifestations reflect epileptic recruitment of a common brain network, despite a range of underlying aetiologies. We aimed to identify the key networks recruited by the epileptic process of LGS using interictal 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography (18F-FDG-PET). METHODS Group analysis of cerebral 18F-FDG-PET, comparing 21 patients with LGS (mean age = 15 years) and 18 pseudo-controls (mean age = 19 years), studied at Austin Health Melbourne, between 2004 and 2015. To minimise the influence of individual patient lesions in the LGS group, we only studied brain hemispheres without structural MRI abnormalities. The pseudo-control group consisted of age- and sex-matched patients with unilateral temporal lobe epilepsy, using only the hemispheres contralateral to the side of epilepsy. Voxel-wise permutation testing compared 18F-FDG-PET uptake between groups. Associations were explored between areas of altered metabolism and clinical variables (age of seizure onset, proportion of life with epilepsy, and verbal/nonverbal ability). Penetrance maps were calculated to explore spatial consistency of altered metabolic patterns across individual patients with LGS. RESULTS Although not always readily apparent on visual inspection of individual patient scans, group analysis revealed hypometabolism in a network of regions including prefrontal and premotor cortex, anterior and posterior cingulate, inferior parietal lobule, and precuneus (p < 0.05, corrected for family-wise error). These brain regions tended to show a greater reduction in metabolism in non-verbal compared to verbal LGS patients, although this difference was not statistically significant. No areas of hypermetabolism were detected on group analysis, although ∼25 % of individual patients showed increased metabolism (relative to pseudo-controls) in the brainstem, putamen, thalamus, cerebellum, and pericentral cortex. DISCUSSION Interictal hypometabolism in frontoparietal cortex in LGS is compatible with our previous EEG-fMRI and SPECT studies showing that interictal bursts of generalised paroxysmal fast activity and tonic seizures recruit similar cortical regions. This study provides further evidence that these regions are central to the electroclinical expression of LGS.
Collapse
|
10
|
Sukprakun C, Tepmongkol S. Nuclear imaging for localization and surgical outcome prediction in epilepsy: A review of latest discoveries and future perspectives. Front Neurol 2022; 13:1083775. [PMID: 36588897 PMCID: PMC9800996 DOI: 10.3389/fneur.2022.1083775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Background Epilepsy is one of the most common neurological disorders. Approximately, one-third of patients with epilepsy have seizures refractory to antiepileptic drugs and further require surgical removal of the epileptogenic region. In the last decade, there have been many recent developments in radiopharmaceuticals, novel image analysis techniques, and new software for an epileptogenic zone (EZ) localization. Objectives Recently, we provided the latest discoveries, current challenges, and future perspectives in the field of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) in epilepsy. Methods We searched for relevant articles published in MEDLINE and CENTRAL from July 2012 to July 2022. A systematic literature review based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis was conducted using the keywords "Epilepsy" and "PET or SPECT." We included both prospective and retrospective studies. Studies with preclinical subjects or not focusing on EZ localization or surgical outcome prediction using recently developed PET radiopharmaceuticals, novel image analysis techniques, and new software were excluded from the review. The remaining 162 articles were reviewed. Results We first present recent findings and developments in PET radiopharmaceuticals. Second, we present novel image analysis techniques and new software in the last decade for EZ localization. Finally, we summarize the overall findings and discuss future perspectives in the field of PET and SPECT in epilepsy. Conclusion Combining new radiopharmaceutical development, new indications, new techniques, and software improves EZ localization and provides a better understanding of epilepsy. These have proven not to only predict prognosis but also to improve the outcome of epilepsy surgery.
Collapse
Affiliation(s)
- Chanan Sukprakun
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supatporn Tepmongkol
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,Chulalongkorn University Biomedical Imaging Group (CUBIG), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand,Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,*Correspondence: Supatporn Tepmongkol ✉
| |
Collapse
|
11
|
Zhu Y, Ruan G, Zou S, Liu L, Zhu X. Age-matched control or age-specific template, which is essential for voxel-wise analysis of cerebral metabolism abnormality in pediatric patients with epilepsy? Hum Brain Mapp 2022; 44:472-483. [PMID: 36069128 PMCID: PMC9842903 DOI: 10.1002/hbm.26063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 01/25/2023] Open
Abstract
The aim of this study was to explore the influences of age-matched control and/or age-specific template on voxel-wise analysis of brain 18 F-fluorodeoxyglucose positron emission tomography (18 F-FDG PET) data in pediatric epilepsy patients. We, retrospectively, included 538 pediatric (196 females; age range of 12 months to 18 years) and 35 adult subjects (18 females; age range of 20-50 years) without any cerebral pathology as pediatric and adult control group, respectively, as well as 109 pediatric patients with drug-resistant epilepsy (38 females; age range of 13 months to 18 years) as epilepsy group. Statistical parametric mapping (SPM) analysis for 18 F-FDG PET data of each epilepsy patients was performed in four types of procedures, by using age-matched controls with age-specific template, age-matched controls with adult template, adult controls with age-specific template or adult controls with adult template. The numbers of brain regions affected by artifacts among these four types of SPM analysis procedures were further compared. Any template being adopted, the artifacts were significantly less in SPM analysis procedures using age-matched controls than those using adult controls in each age range (p < .001 in each comparison), except in the age range of 15-18 (p > .05 in each comparison). No significant difference was found in artifacts, when compared procedures using the identical control group with different templates (p = 1.000 in each comparison). In conclusion, the age stratification for age-matched control should be divided as many layers as possible for the SPM analysis of brain 18 F-FDG PET images, especially in pediatric patients ≤14-year-old, while age-specific template is not mandatory.
Collapse
Affiliation(s)
- Yuankai Zhu
- Department of Nuclear Medicine and PET CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Ge Ruan
- Department of RadiologyHospital, Hubei UniversityWuhanChina
| | - Sijuan Zou
- Department of Nuclear Medicine and PET CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Luoxia Liu
- Department of Nuclear Medicine and PET CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xiaohua Zhu
- Department of Nuclear Medicine and PET CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
12
|
Spatial normalization and quantification approaches of PET imaging for neurological disorders. Eur J Nucl Med Mol Imaging 2022; 49:3809-3829. [PMID: 35624219 DOI: 10.1007/s00259-022-05809-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022]
Abstract
Quantification approaches of positron emission tomography (PET) imaging provide user-independent evaluation of pathophysiological processes in living brains, which have been strongly recommended in clinical diagnosis of neurological disorders. Most PET quantification approaches depend on spatial normalization of PET images to brain template; however, the spatial normalization and quantification approaches have not been comprehensively reviewed. In this review, we introduced and compared PET template-based and magnetic resonance imaging (MRI)-aided spatial normalization approaches. Tracer-specific and age-specific PET brain templates were surveyed between 1999 and 2021 for 18F-FDG, 11C-PIB, 18F-Florbetapir, 18F-THK5317, and etc., as well as adaptive PET template methods. Spatial normalization-based PET quantification approaches were reviewed, including region-of-interest (ROI)-based and voxel-wise quantitative methods. Spatial normalization-based ROI segmentation approaches were introduced, including manual delineation on template, atlas-based segmentation, and multi-atlas approach. Voxel-wise quantification approaches were reviewed, including voxel-wise statistics and principal component analysis. Certain concerns and representative examples of clinical applications were provided for both ROI-based and voxel-wise quantification approaches. At last, a recipe for PET spatial normalization and quantification approaches was concluded to improve diagnosis accuracy of neurological disorders in clinical practice.
Collapse
|
13
|
Zhou H, Zhang W, Tan Z, Zhou Z, Li Y, Zhang S, Zhang L, Gan J, Wu H, Tang Y, Cheng Y, Ling X, Guo Q, Xu H. Localizing Epileptic Foci Before Surgery in Patients With MRI-Negative Refractory Epilepsy Using Statistical Parameter Mapping and Three-Dimensional Stereotactic Surface Projection Based on 18F-FDG PET. Front Bioeng Biotechnol 2022; 9:810890. [PMID: 35071215 PMCID: PMC8766976 DOI: 10.3389/fbioe.2021.810890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Patients with refractory epilepsy are not only free of seizures after resecting epileptic foci, but also experience significantly improved quality of life. Fluorine-18-fluorodeoxyglucose positron-emission tomography (18F-FDG PET) is a promising avenue for detecting epileptic foci in patients with magnetic resonance imaging (MRI)-negative refractory epilepsy. However, the detection of epileptic foci by visual assessment based on 18F-FDG PET is often complicated by a variety of factors in clinical practice. Easy imaging methods based on 18F-FDG PET images, such as statistical parameter mapping (SPM) and three-dimensional stereotactic surface projection (3D-SSP), can objectively detect epileptic foci. In this study, the regions of surgical resection of patients with over 1 year follow-up and no seizures were defined as standard epileptic foci. We retrospectively analyzed the sensitivity of visual assessment, SPM and 3D-SSP based on 18F-FDG PET to detect epileptic foci in MRI-negative refractory epilepsy patients and obtained the sensitivities of visual assessment, SPM and 3D-SSP are 57, 70 and 60% respectively. Visual assessment combined with SPM or 3D-SSP can improve the sensitivity of detecting epileptic foci. The sensitivity was highest when the three methods were combined, but decreased consistency, in localizing epileptic foci. We conclude that SPM and 3D-SSP can be used as objective methods to detect epileptic foci before surgery in patients with MRI-negative refractory epilepsy. Visual assessment is the preferred method for PET image analysis in MRI-negative refractory epilepsy. When the visual assessment is inconsistent with the patient's electroclinical information, SPM or 3D-SSP was further selected to assess the epileptic foci. If the combination of the two methods still fails to accurately locate the epileptic foci, comprehensive evaluation can be performed by combining the three methods.
Collapse
Affiliation(s)
- Hailing Zhou
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wei Zhang
- Epilepsy Center, Guangdong 999 Brain Hospital, Affiliated Brain Hospital of Jinan University, Guangzhou, China
| | - Zhiqiang Tan
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ziqing Zhou
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ying Li
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shaojuan Zhang
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lingling Zhang
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiefeng Gan
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huanhua Wu
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yongjin Tang
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yong Cheng
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xueying Ling
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiang Guo
- Epilepsy Center, Guangdong 999 Brain Hospital, Affiliated Brain Hospital of Jinan University, Guangzhou, China
| | - Hao Xu
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Zhang T, Li Y, Zhao S, Xu Y, Zhang X, Wu S, Dou X, Yu C, Feng J, Ding Y, Zhu J, Chen Z, Zhang H, Tian M. High-resolution pediatric age-specific 18F-FDG PET template: a pilot study in epileptogenic focus localization. Eur J Nucl Med Mol Imaging 2021; 49:1560-1573. [PMID: 34746970 PMCID: PMC8940757 DOI: 10.1007/s00259-021-05611-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/28/2021] [Indexed: 12/16/2022]
Abstract
Background PET imaging has been widely used in diagnosis of neurological disorders; however, its application to pediatric population is limited due to lacking pediatric age–specific PET template. This study aims to develop a pediatric age–specific PET template (PAPT) and conduct a pilot study of epileptogenic focus localization in pediatric epilepsy. Methods We recruited 130 pediatric patients with epilepsy and 102 age-matched controls who underwent 18F-FDG PET examination. High-resolution PAPT was developed by an iterative nonlinear registration-averaging optimization approach for two age ranges: 6–10 years (n = 17) and 11–18 years (n = 50), respectively. Spatial normalization to the PAPT was evaluated by registration similarities of 35 validation controls, followed by estimation of potential registration biases. In a pilot study, epileptogenic focus was localized by PAPT-based voxel-wise statistical analysis, compared with multi-disciplinary team (MDT) diagnosis, and validated by follow-up of patients who underwent epilepsy surgery. Furthermore, epileptogenic focus localization results were compared among three templates (PAPT, conventional adult template, and a previously reported pediatric linear template). Results Spatial normalization to the PAPT significantly improved registration similarities (P < 0.001), and nearly eliminated regions of potential biases (< 2% of whole brain volume). The PAPT-based epileptogenic focus localization achieved a substantial agreement with MDT diagnosis (Kappa = 0.757), significantly outperforming localization based on the adult template (Kappa = 0.496) and linear template (Kappa = 0.569) (P < 0.05). The PAPT-based localization achieved the highest detection rate (89.2%) and accuracy (80.0%). In postsurgical seizure-free patients (n = 40), the PAPT-based localization also achieved a substantial agreement with resection areas (Kappa = 0.743), and the highest detection rate (95%) and accuracy (80.0%). Conclusion The PAPT can significantly improve spatial normalization and epileptogenic focus localization in pediatric epilepsy. Future pediatric neuroimaging studies can also benefit from the unbiased spatial normalization by PAPT. Trial registration. NCT04725162: https://clinicaltrials.gov/ct2/show/NCT04725162 Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05611-w.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Yuting Li
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Shuilin Zhao
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Yuanfan Xu
- Hangzhou Universal Medical Imaging Diagnostic Center, Hangzhou, China
| | - Xiaohui Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Shuang Wu
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
| | - Xiaofeng Dou
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
| | - Congcong Yu
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
| | - Jianhua Feng
- Department of Pediatrics, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Ding
- Department of Neurology, Epilepsy Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Junming Zhu
- Department of Neurosurgery, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zexin Chen
- Center of Clinical Epidemiology & Biostatistics, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China. .,The College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.
| | - Mei Tian
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Bacon EJ, Jin C, He D, Hu S, Wang L, Li H, Qi S. Epileptogenic Zone Localization in Refractory Epilepsy by FDG-PET: The Comparison of SPM and SPM-CAT With Different Parameter Settings. Front Neurol 2021; 12:724680. [PMID: 34690915 PMCID: PMC8529991 DOI: 10.3389/fneur.2021.724680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
Refractory epilepsy is a complex case of epileptic disease. The quantitative analysis of fluorodeoxyglucose positron emission tomography (FDG-PET) images complements visual assessment and helps localize the epileptogenic zone (EZ) for better curative treatment. Statistical parametric mapping (SPM) and its computational anatomy toolbox (SPM-CAT) are two commonly applied tools in neuroimaging analysis. This study compares SPM and SPM-CAT with different parameters to find the optimal approach for localizing EZ in refractory epilepsy. The current study enrolled 45 subjects, including 25 refractory epilepsy patients and 20 healthy controls. All of the 25 patients underwent surgical operations. Pathological results and the postoperative outcome evaluation by the Engel scale were likewise presented. SPM and SPM-CAT were used to assess FDG-PET images with three different uncorrected p-values and the corresponding cluster sizes (k), as in voxels in the cluster, namely p < 0.0002, k > 25; p < 0.001, k > 100; p < 0.005, and k > 200. When combining three settings, SPM and SPM-CAT yielded overall positive finding scores of 96.0% (24/25) and 100.0% (25/25) respectively. However, for the individual setting, SPM-CAT achieved the diverse positive finding scores of 96.0% (24/25), 96.0% (24/25), and 88.0% (22/24), which are higher than those of SPM [88.0% (22/25), 76.0% (19/25), and 72.0% (18/25)]. SPM and SPM-CAT localized EZ correctly with 28.0% (7/25) and 64.0% (16/25), respectively. SPM-CAT with parameter settings p < 0.0002 and k > 25 yielded a correct localization at 56.0% (14/25), which is slightly higher than that for the other two settings (48.0 and 20.0%). Moderate concordance was found between the confirmed and pre-surgical EZs, identified by SPM-CAT (kappa value = 0.5). Hence, SPM-CAT is more efficient than SPM in localizing EZ for refractory epilepsy by quantitative analysis of FDG-PET images. SPM-CAT with the setting of p < 0.0002 and k > 25 might perform as an objective complementary tool to the visual assessment for EZ localization.
Collapse
Affiliation(s)
- Eric Jacob Bacon
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.,Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Chaoyang Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Dianning He
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shuaishuai Hu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lanbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Han Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.,Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| |
Collapse
|
16
|
Starnes K, Depositario-Cabacar D, Wong-Kisiel L. Presurgical Evaluation Strategies for Intractable Epilepsy of Childhood. Semin Pediatr Neurol 2021; 39:100915. [PMID: 34620457 DOI: 10.1016/j.spen.2021.100915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
For children who continue to experience seizures despite treatment with antiseizure medications, epilepsy surgery can be considered. The goals of the presurgical evaluation are to determine the best surgical approach to render a good outcome. In patients with drug resistant focal epilepsy, the epileptogenic zone defines the minimal brain volume which must be resected for surgical success and to delineate the relationship of this region with functional cortex. A number of noninvasive tools for these tasks have emerged over the past decade, and existing technologies have been revised and improved. In this review, we examine the recent published evidence for these techniques, specifically as applied to the pediatric population. Discussed herein are the diagnostic value of methods such as video electroencephalography, magnetic resonance imaging, and supportive neuroimaging techniques including single photon emission tomography, photon emission tomography, and magnetoencephalography. Functional testing including functional magnetic resonance imaging, electrical stimulation mapping, and transcranial magnetic stimulation are considered in the context of pediatric epilepsy. The application of emerging techniques to preoperative testing such as source localization, image post-processing, and artificial intelligence is covered. We summarize the relative value of presurgical testing based on patient characteristics, including lesional or nonlesional MRI, temporal or extratemporal epilepsy, and other factors relevant in pediatric epilepsy such as pathological substrate and age.
Collapse
Affiliation(s)
| | | | - Lily Wong-Kisiel
- Department of Neurology and Pediatrics, Mayo Clinic, Rochester, MN.
| |
Collapse
|
17
|
Mérida I, Jung J, Bouvard S, Le Bars D, Lancelot S, Lavenne F, Bouillot C, Redouté J, Hammers A, Costes N. CERMEP-IDB-MRXFDG: a database of 37 normal adult human brain [ 18F]FDG PET, T1 and FLAIR MRI, and CT images available for research. EJNMMI Res 2021; 11:91. [PMID: 34529159 PMCID: PMC8446124 DOI: 10.1186/s13550-021-00830-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/15/2021] [Indexed: 01/05/2023] Open
Abstract
We present a database of cerebral PET FDG and anatomical MRI for 37 normal adult human subjects (CERMEP-IDB-MRXFDG). Thirty-nine participants underwent static [18F]FDG PET/CT and MRI, resulting in [18F]FDG PET, T1 MPRAGE MRI, FLAIR MRI, and CT images. Two participants were excluded after visual quality control. We describe the acquisition parameters, the image processing pipeline and provide participants' individual demographics (mean age 38 ± 11.5 years, range 23-65, 20 women). Volumetric analysis of the 37 T1 MRIs showed results in line with the literature. A leave-one-out assessment of the 37 FDG images using Statistical Parametric Mapping (SPM) yielded a low number of false positives after exclusion of artefacts. The database is stored in three different formats, following the BIDS common specification: (1) DICOM (data not processed), (2) NIFTI (multimodal images coregistered to PET subject space), (3) NIFTI normalized (images normalized to MNI space). Bona fide researchers can request access to the database via a short form.
Collapse
Affiliation(s)
- Inés Mérida
- CERMEP-Imagerie du Vivant, Lyon, France.
- CHU de Lyon HCL - GH Est, 59 Boulevard Pinel., 69677, Bron Cedex, France.
| | - Julien Jung
- INSERM U1028/CNRS UMR5292, Lyon Neuroscience Research Center, Lyon, France
- Hospices Civils de Lyon, University Hospitals, Lyon, France
| | - Sandrine Bouvard
- Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, INSERM, CNRS, Lyon, France
| | - Didier Le Bars
- CERMEP-Imagerie du Vivant, Lyon, France
- Hospices Civils de Lyon, University Hospitals, Lyon, France
| | - Sophie Lancelot
- CERMEP-Imagerie du Vivant, Lyon, France
- INSERM U1028/CNRS UMR5292, Lyon Neuroscience Research Center, Lyon, France
- Hospices Civils de Lyon, University Hospitals, Lyon, France
| | | | | | | | - Alexander Hammers
- School of Biomedical Engineering and Imaging Sciences, Kings' College London, King's College London and Guy's and St Thomas' PET Centre, London, UK
- Neurodis Foundation, Lyon, France
| | | |
Collapse
|
18
|
Tian M, Watanabe Y, Kang KW, Murakami K, Chiti A, Carrio I, Civelek AC, Feng J, Zhu Y, Zhou R, Wu S, Zhu J, Ding Y, Zhang K, Zhang H. International consensus on the use of [ 18F]-FDG PET/CT in pediatric patients affected by epilepsy. Eur J Nucl Med Mol Imaging 2021; 48:3827-3834. [PMID: 34453559 DOI: 10.1007/s00259-021-05524-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/04/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Positron emission tomography (PET) with 18F-fluorodeoxyglucose ([18F]-FDG) has been increasingly applied in precise localization of epileptogenic focus in epilepsy patients, including pediatric patients. The aim of this international consensus is to provide the guideline and specific considerations for [18F]-FDG PET in pediatric patients affected by epilepsy. METHODS An international, multidisciplinary task group is formed, and the guideline for brain [18F]-FDG PET/CT in pediatric epilepsy patients has been discussed and approved, which include but not limited to the clinical indications, patient preparation, radiopharmaceuticals and administered activities, image acquisition, image processing, image interpretation, documentation and reporting, etc. CONCLUSION: This is the first international consensus and practice guideline for brain [18F]-FDG PET/CT in pediatric epilepsy patients. It will be an international standard for this purpose in clinical practice.
Collapse
Affiliation(s)
- Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, 03080, Korea
| | - Koji Murakami
- Department of Radiology, Juntendo University Hospital, Tokyo, 113-8431, Japan
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Ignasi Carrio
- Department of Nuclear Medicine, Hospital Sant Pau, Autonomous University of Barcelona, 08025, Barcelona, Spain
| | - A Cahid Civelek
- Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, MD, 21287, USA
| | - Jianhua Feng
- Department of Pediatrics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuankai Zhu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Shuang Wu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Junming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yao Ding
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Kai Zhang
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China. .,The College of Biomedical Engineering and Instrument Science of Zhejiang University, Hangzhou, 310007, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310007, China.
| | | |
Collapse
|
19
|
Zhang Q, Liao Y, Wang X, Zhang T, Feng J, Deng J, Shi K, Chen L, Feng L, Ma M, Xue L, Hou H, Dou X, Yu C, Ren L, Ding Y, Chen Y, Wu S, Chen Z, Zhang H, Zhuo C, Tian M. A deep learning framework for 18F-FDG PET imaging diagnosis in pediatric patients with temporal lobe epilepsy. Eur J Nucl Med Mol Imaging 2021; 48:2476-2485. [PMID: 33420912 PMCID: PMC8241642 DOI: 10.1007/s00259-020-05108-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/08/2020] [Indexed: 01/10/2023]
Abstract
PURPOSE Epilepsy is one of the most disabling neurological disorders, which affects all age groups and often results in severe consequences. Since misdiagnoses are common, many pediatric patients fail to receive the correct treatment. Recently, 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) imaging has been used for the evaluation of pediatric epilepsy. However, the epileptic focus is very difficult to be identified by visual assessment since it may present either hypo- or hyper-metabolic abnormality with unclear boundary. This study aimed to develop a novel symmetricity-driven deep learning framework of PET imaging for the identification of epileptic foci in pediatric patients with temporal lobe epilepsy (TLE). METHODS We retrospectively included 201 pediatric patients with TLE and 24 age-matched controls who underwent 18F-FDG PET-CT studies. 18F-FDG PET images were quantitatively investigated using 386 symmetricity features, and a pair-of-cube (PoC)-based Siamese convolutional neural network (CNN) was proposed for precise localization of epileptic focus, and then metabolic abnormality level of the predicted focus was calculated automatically by asymmetric index (AI). Performances of the proposed framework were compared with visual assessment, statistical parametric mapping (SPM) software, and Jensen-Shannon divergence-based logistic regression (JS-LR) analysis. RESULTS The proposed deep learning framework could detect the epileptic foci accurately with the dice coefficient of 0.51, which was significantly higher than that of SPM (0.24, P < 0.01) and significantly (or marginally) higher than that of visual assessment (0.31-0.44, P = 0.005-0.27). The area under the curve (AUC) of the PoC classification was higher than that of the JS-LR (0.93 vs. 0.72). The metabolic level detection accuracy of the proposed method was significantly higher than that of visual assessment blinded or unblinded to clinical information (90% vs. 56% or 68%, P < 0.01). CONCLUSION The proposed deep learning framework for 18F-FDG PET imaging could identify epileptic foci accurately and efficiently, which might be applied as a computer-assisted approach for the future diagnosis of epilepsy patients. TRIAL REGISTRATION NCT04169581. Registered November 13, 2019 Public site: https://clinicaltrials.gov/ct2/show/NCT04169581.
Collapse
Affiliation(s)
- Qinming Zhang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Liao
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiawan Wang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Teng Zhang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianhua Feng
- Department of Pediatrics, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianing Deng
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kexin Shi
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Chen
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liu Feng
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mindi Ma
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Le Xue
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haifeng Hou
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofeng Dou
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Congcong Yu
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lei Ren
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yao Ding
- Department of Neurology, Epilepsy Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yufei Chen
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuang Wu
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zexin Chen
- Center of Clinical Epidemiology & Biostatistics, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China. .,College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Cheng Zhuo
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Mei Tian
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
20
|
Guo K, Yuan M, Wei L, Lu J. Epileptogenic zone localization using a new automatic quantitative analysis based on normal brain glucose metabolism database. Int J Neurosci 2020; 131:128-134. [PMID: 32098541 DOI: 10.1080/00207454.2020.1733561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES To assess the clinical value of voxel-based automatic quantitative analysis using a normal brain glucose metabolism database in the preoperative localization of focal intractable temporal lobe epilepsy patients. METHODS Patients with refractory temporal lobe epilepsy who underwent 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) imaging were retrospectively enrolled from January to June 2017. Visual analysis was performed by two nuclear medicine radiologists, and the automatic quantitative analysis was carried out using MIMneuro software based the age- and gender-stratified normal brain glucose metabolism database. Setting postoperative outcomes as reference, the consistency between visual analysis and automatic quantitative analysis was tested by Cohen's kappa coefficient, and differences in localization of epileptic foci of the two methods were compared by Chi-square test. RESULTS A total of 32 patients intractable temporal lobe epilepsy were included in this study. There was a moderate agreement between the automatic quantitative analysis based on MIMneuro software and visual analysis (kappa coefficient = 0.472, p = 0.002). In terms of the efficiency of focus localization, the voxel-based automatic quantitative analysis was higher than that of visual analysis (Chi-square value = 6.969, p = 0.008). CONCLUSIONS The voxel-based automatic quantitative analysis combined with normal brain glucose metabolism database had a certain clinical application value for detection temporal lobe epilepsy.
Collapse
Affiliation(s)
- Kun Guo
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Menghui Yuan
- Department of Nuclear Medicine, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shanxi, China
| | - Longxiao Wei
- Department of Nuclear Medicine, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shanxi, China
| | - Jie Lu
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| |
Collapse
|
21
|
The predictive value of hypometabolism in focal epilepsy: a prospective study in surgical candidates. Eur J Nucl Med Mol Imaging 2019; 46:1806-1816. [PMID: 31144060 DOI: 10.1007/s00259-019-04356-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/01/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE FDG PET is an established tool in presurgical epilepsy evaluation, but it is most often used selectively in patients with discordant MRI and EEG results. Interpretation is complicated by the presence of remote or multiple areas of hypometabolism, which leads to doubt as to the true location of the seizure onset zone (SOZ) and might have implications for predicting the surgical outcome. In the current study, we determined the sensitivity and specificity of PET localization prospectively in a consecutive unselected cohort of patients with focal epilepsy undergoing in-depth presurgical evaluation. METHODS A total of 130 patients who underwent PET imaging between 2006 and 2015 matched our inclusion criteria, and of these, 86 were operated on (72% with a favourable surgical outcome, Engel class I). Areas of focal hypometabolism were identified using statistical parametric mapping and concordance with MRI, EEG and intracranial EEG was evaluated. In the surgically treated patients, postsurgical outcome was used as the gold standard for correctness of localization (minimum follow-up 12 months). RESULTS PET sensitivity and specificity were both 95% in 86 patients with temporal lobe epilepsy (TLE) and 80% and 95%, respectively, in 44 patients with extratemporal epilepsy (ETLE). Significant extratemporal hypometabolism was observed in 17 TLE patients (20%). Temporal hypometabolism was observed in eight ETLE patients (18%). Among the 86 surgically treated patients, 26 (30%) had hypometabolism extending beyond the SOZ. The presence of unilobar hypometabolism, included in the resection, was predictive of complete seizure control (p = 0.007), with an odds ratio of 5.4. CONCLUSION Additional hypometabolic areas were found in one of five of this group of nonselected patients with focal epilepsy, including patients with "simple" lesional epilepsy, and this finding should prompt further in-depth evaluation of the correlation between EEG findings, semiology and PET. Hypometabolism confined to the epileptogenic zone as defined by EEG and MRI is associated with a favourable postoperative outcome in both TLE and ETLE patients.
Collapse
|
22
|
Juhász C, John F. Utility of MRI, PET, and ictal SPECT in presurgical evaluation of non-lesional pediatric epilepsy. Seizure 2019; 77:15-28. [PMID: 31122814 DOI: 10.1016/j.seizure.2019.05.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/12/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Abstract
Children with epilepsy and normal structural MRI pose a particular challenge in localization of epileptic foci for surgical resection. Many of these patients have subtle structural lesions such as mild cortical dysplasia that can be missed by conventional MRI but may become detectable by optimized and advanced MRI acquisitions and post-processing. Specificity of objective analytic techniques such as voxel-based morphometry remains an issue. Combination of MRI with functional imaging approaches can improve the accuracy of detecting epileptogenic brain regions. Analysis of glucose positron emission tomography (PET) combined with high-resolution MRI can optimize detection of hypometabolic cortex associated with subtle cortical malformations and can also enhance presurgical evaluation in children with epileptic spasms. Additional PET tracers may detect subtle epileptogenic lesions and cortex with enhanced specificity in carefully selected subgroups with various etiologies; e.g., increased tryptophan uptake can identify epileptogenic cortical dysplasia in the interictal state. Subtraction ictal SPECT can be also useful to delineate ictal foci in those with non-localizing PET or after failed surgical resection. Presurgical delineation of language and motor cortex and the corresponding white matter tracts is increasingly reliable by functional MRI and DTI techniques; with careful preparation, these can be useful even in young and sedated children. While evidence-based pediatric guidelines are still lacking, the data accumulated in the last decade strongly indicate that multimodal imaging with combined analysis of MRI, PET, and/or ictal SPECT data can optimize the detection of subtle epileptogenic lesions and facilitate seizure-free outcome while minimizing the postsurgical functional deficit in children with normal conventional MRI.
Collapse
Affiliation(s)
- Csaba Juhász
- Department of Pediatrics, Wayne State University, PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, 3901 Beaubien St., Detroit, Michigan, 48201, USA; Departments of Neurology and Neurosurgery, Wayne State University, 4201 St. Antoine St., Detroit, Michigan, 48201, USA.
| | - Flóra John
- Department of Pediatrics, Wayne State University, PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, 3901 Beaubien St., Detroit, Michigan, 48201, USA; Department of Neurology, University of Pécs, H-7623, Rét u. 2., Pécs, Hungary.
| |
Collapse
|
23
|
Mayoral M, Niñerola-Baizán A, Marti-Fuster B, Donaire A, Perissinotti A, Rumià J, Bargalló N, Sala-Llonch R, Pavia J, Ros D, Carreño M, Pons F, Setoain X. Epileptogenic Zone Localization With 18FDG PET Using a New Dynamic Parametric Analysis. Front Neurol 2019; 10:380. [PMID: 31057476 PMCID: PMC6478660 DOI: 10.3389/fneur.2019.00380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/28/2019] [Indexed: 11/13/2022] Open
Abstract
Introduction: [18F]fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) is part of the regular preoperative work-up in medically refractory epilepsy. As a complement to visual evaluation of PET, statistical parametric maps can help in the detection of the epileptogenic zone (EZ). However, software packages currently available are time-consuming and little intuitive for physicians. We develop a user-friendly software (referred as PET-analysis) for EZ localization in PET studies that allows dynamic real-time statistical parametric analysis. To evaluate its performance, the outcome of PET-analysis was compared with the results obtained by visual assessment and Statistical Parametric Mapping (SPM). Methods: Thirty patients with medically refractory epilepsy who underwent presurgical 18F-FDG PET with good post-operative outcomes were included. The 18F-FDG PET studies were evaluated by visual assessment, with SPM8 and PET-analysis. In SPM, parametric T-maps were thresholded at corrected p < 0.05 and cluster size k = 50 and at uncorrected p < 0.001 and k = 100 (the most used parameters in the literature). Since PET-analysis rapidly processes different threshold combinations, T-maps were thresholded with multiple p-value and different clusters sizes. The presurgical EZ identified by visual assessment, SPM and PET-analysis was compared to the confirmed EZ according to post-surgical follow-up. Results: PET-analysis obtained 66.7% (20/30) of correctly localizing studies, comparable to the 70.0% (21/30) achieved by visual assessment and significantly higher (p < 0.05) than that obtained with the SPM threshold p < 0.001/k = 100, of 36.7% (11/30). Only one study was positive, albeit non-localizing, with the SPM threshold corrected p < 0.05/k = 50. Concordance was substantial for PET-analysis (κ = 0.643) and visual interpretation (κ = 0.622), being fair for SPM (κ = 0.242). Conclusion: Compared to SPM with the fixed standard parameters, PET-analysis may be superior in EZ localization with its easy and rapid processing of different threshold combinations. The results of this initial proof-of-concept study validate the clinical use of PET-analysis as a robust objective complementary tool to visual assessment for EZ localization.
Collapse
Affiliation(s)
- Maria Mayoral
- Nuclear Medicine Department, Hospital Clínic, Barcelona, Spain
| | - Aida Niñerola-Baizán
- Biomedical Imaging Group, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.,Biophysics and Bioengineering Unit, Biomedicine Department, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Berta Marti-Fuster
- Biomedical Imaging Group, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.,Biophysics and Bioengineering Unit, Biomedicine Department, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Antonio Donaire
- Neurology Department, Hospital Clínic, Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | | | - Jordi Rumià
- Neurosurgery Department, Hospital Clínic, Barcelona, Spain
| | - Núria Bargalló
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,Radiology Department, Hospital Clínic, Barcelona, Spain
| | - Roser Sala-Llonch
- Biophysics and Bioengineering Unit, Biomedicine Department, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Javier Pavia
- Nuclear Medicine Department, Hospital Clínic, Barcelona, Spain.,Biomedical Imaging Group, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Domènec Ros
- Biomedical Imaging Group, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.,Biophysics and Bioengineering Unit, Biomedicine Department, School of Medicine, University of Barcelona, Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Mar Carreño
- Neurology Department, Hospital Clínic, Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Francesca Pons
- Nuclear Medicine Department, Hospital Clínic, Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Xavier Setoain
- Nuclear Medicine Department, Hospital Clínic, Barcelona, Spain.,Biomedical Imaging Group, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
24
|
Tang Y, Liow JS, Zhang Z, Li J, Long T, Li Y, Tang B, Hu S. The Evaluation of Dynamic FDG-PET for Detecting Epileptic Foci and Analyzing Reduced Glucose Phosphorylation in Refractory Epilepsy. Front Neurosci 2019; 12:993. [PMID: 30686968 PMCID: PMC6333859 DOI: 10.3389/fnins.2018.00993] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
Aims: Static fluorodeoxyglucose (FDG)-positron emission tomographic (PET) imaging plays an important role in the localization of epileptic foci. Dynamic FDG PET allows calculation of kinetic parameters. The aim of this study was to investigate whether kinetic parameters have potential for identifying epileptic foci, and to assess the correlation of parameters asymmetry indexes (ASYM) between dynamic and static FDG PET for understanding the pathophysiology of hypometabolism within intractable epilepsy. Methods: Seventeen patients who had refractory epilepsy correctly localized by static FDG PET with good outcome after foci resection were included. Eight controls were also studied. We performed dynamic and static FDG PET scan before operation. Images of both scans were coregistered to the montreal neurological institute space, regional time activity curves and activity concentration (AC) were obtained by applying the automated anatomical labeling template to the two spatially normalized images, respectively. Kinetic parameters were obtained using a two-tissue non-reversible compartmental model with an image-derived input function. AC from the static scan was used. Side-to-side ASYM of both static AC and kinetic parameters were calculated and analyzed in the hypometabolic epileptogenic regions and non-epileptogenic regions. Results: Higher values of ASYM from both kinetic parameters and static AC were found in the patients compared to the controls from epileptogenic regions. In the non-epileptogenic regions, no ASYM differences were seen between patients and controls for all parameters. In patients, static AC showed larger ASYM than influx (K1) and efflux (k2) of capillaries, but there were no statistical differences of ASYM between net metabolic flux (Ki) or the phosphorylation (k3) and static AC. ASYM of static AC positively correlated with ASYM of k3. Conclusion: Dynamic FDG PET can provide equally effective in detecting the epileptic foci compared to static FDG PET in this small cohort. In addition, compared to capillary influx, the hypometabolism of epileptic foci may be related to reduced glucose phosphorylation.
Collapse
Affiliation(s)
- Yongxiang Tang
- Department of PET Center, Xiangya Hospital Central South University, Changsha, China
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Zhimin Zhang
- Department of Blood Transfusion, Xiangya Hospital Central South University, Changsha, China
| | - Jian Li
- Department of PET Center, Xiangya Hospital Central South University, Changsha, China
| | - Tingting Long
- Department of PET Center, Xiangya Hospital Central South University, Changsha, China
| | - Yulai Li
- Department of PET Center, Xiangya Hospital Central South University, Changsha, China
| | - Beisha Tang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Shuo Hu
- Department of PET Center, Xiangya Hospital Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
25
|
Kumar A, Juhász C, Luat A, Govil-Dalela T, Behen ME, Hicks MA, Chugani HT. Evolution of Brain Glucose Metabolic Abnormalities in Children With Epilepsy and SCN1A Gene Variants. J Child Neurol 2018; 33:832-836. [PMID: 30182801 DOI: 10.1177/0883073818796373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Three children with drug-refractory epilepsy, normal magnetic resonance image (MRI), and a heterozygous SCN1A variant underwent 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography (FDG-PET) scanning between age 6 months and 1 year and then at age 3 years 6 months to 5 years 5 months. Regional FDG uptake values were compared to those measured in age- and gender-matched pseudo-controls. At baseline, the brain glucose metabolic pattern in the SCN1A group was similar to that of the pseudo-controls. At follow-up, robust decreases of normalized FDG uptake was found in bilateral frontal, parietal and temporal cortex, with milder decreases in occipital cortex. Children with epilepsy and an SCN1A variant have a normal pattern of cerebral glucose metabolism at around 1 year of age but develop bilateral cortical glucose hypometabolism by age 4 years, with maximal decreases in frontal, parietal, and temporal cortex. This metabolic pattern may be characteristic of epilepsy associated with SCN1A variants and may serve as a biomarker to monitor disease progression and response to treatments.
Collapse
Affiliation(s)
- Ananyaa Kumar
- 1 PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, MI, USA
| | - Csaba Juhász
- 1 PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, MI, USA.,2 Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,3 Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA.,4 Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Aimee Luat
- 2 Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,3 Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tuhina Govil-Dalela
- 2 Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,3 Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael E Behen
- 1 PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, MI, USA.,2 Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,3 Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Melissa A Hicks
- 5 DMC University Laboratories, Detroit Medical Center, Detroit, MI, USA.,6 Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Harry T Chugani
- 1 PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, MI, USA.,2 Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,3 Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA.,7 Division of Pediatric Neurology, Nemours A.I. DuPont Hospital for Children, Wilmington, DE, USA.,8 Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
26
|
Shang K, Wang J, Fan X, Cui B, Ma J, Yang H, Zhou Y, Zhao G, Lu J. Clinical Value of Hybrid TOF-PET/MR Imaging-Based Multiparametric Imaging in Localizing Seizure Focus in Patients with MRI-Negative Temporal Lobe Epilepsy. AJNR Am J Neuroradiol 2018; 39:1791-1798. [PMID: 30237304 DOI: 10.3174/ajnr.a5814] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/18/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE Temporal lobe epilepsy is the most common type of epilepsy. Early surgical treatment is superior to prolonged medical therapy in refractory temporal lobe epilepsy. Successful surgical operations depend on the correct localization of the epileptogenic zone. This study aimed to evaluate the clinical value of hybrid TOF-PET/MR imaging-based multiparametric imaging in localizing the epileptogenic zone in patients with MR imaging-negative for temporal lobe epilepsy. MATERIALS AND METHODS Twenty patients with MR imaging-negative temporal lobe epilepsy who underwent preoperative evaluation and 10 healthy controls were scanned using PET/MR imaging with simultaneous acquisition of PET and arterial spin-labeling. On the basis of the standardized uptake value and cerebral blood flow, receiver operating characteristic analysis and a logistic regression model were used to evaluate the predictive value for the localization. Statistical analyses were performed using statistical parametric mapping. The values of the standardized uptake value and cerebral blood flow, as well as the asymmetries of metabolism and perfusion, were compared between the 2 groups. Histopathologic findings were used as the criterion standard. RESULTS Complete concordance was noted in lateralization and localization among the PET, arterial spin-labeling, and histopathologic findings in 12/20 patients based on visual assessment. Concordance with histopathologic findings was also obtained for the remaining 8 patients based on the complementary PET and arterial spin-labeling information. Receiver operating characteristic analysis showed that the sensitivity and specificity of PET, arterial spin-labeling, and combined PET and arterial spin-labeling were 100% and 81.8%, 83.3% and 54.5%, and 100% and 90.9%, respectively. When we compared the metabolic abnormalities in patients with those in healthy controls, hypometabolism was detected in the middle temporal gyrus (P < .001). Metabolism and perfusion asymmetries were also located in the temporal lobe (P < .001). CONCLUSIONS PET/MR imaging-based multiparametric imaging involving arterial spin-labeling may increase the clinical value of localizing the epileptogenic zone by providing concordant and complementary information in patients with MR imaging-negative temporal lobe epilepsy.
Collapse
Affiliation(s)
- K Shang
- From the Departments of Nuclear Medicine (K.S., J.W., B.C., J.M., H.Y., J.L.)
| | - J Wang
- From the Departments of Nuclear Medicine (K.S., J.W., B.C., J.M., H.Y., J.L.)
| | - X Fan
- Neurosurgery (X.F., G.Z.)
| | - B Cui
- From the Departments of Nuclear Medicine (K.S., J.W., B.C., J.M., H.Y., J.L.)
| | - J Ma
- From the Departments of Nuclear Medicine (K.S., J.W., B.C., J.M., H.Y., J.L.)
| | - H Yang
- From the Departments of Nuclear Medicine (K.S., J.W., B.C., J.M., H.Y., J.L.)
| | - Y Zhou
- Department of Radiology (Y.Z.), Johns Hopkins University, Baltimore, Maryland
| | - G Zhao
- Neurosurgery (X.F., G.Z.)
| | - J Lu
- From the Departments of Nuclear Medicine (K.S., J.W., B.C., J.M., H.Y., J.L.) .,Radiology (J.L.), Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Challenges in managing epilepsy associated with focal cortical dysplasia in children. Epilepsy Res 2018; 145:1-17. [DOI: 10.1016/j.eplepsyres.2018.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 04/30/2018] [Accepted: 05/12/2018] [Indexed: 12/15/2022]
|
28
|
Pilli VK, Jeong JW, Konka P, Kumar A, Chugani HT, Juhász C. Objective PET study of glucose metabolism asymmetries in children with epilepsy: Implications for normal brain development. Hum Brain Mapp 2018; 40:53-64. [PMID: 30136325 DOI: 10.1002/hbm.24354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/09/2018] [Accepted: 08/03/2018] [Indexed: 11/09/2022] Open
Abstract
Clinical interpretation of cerebral positron emission tomography with 2-deoxy-2[F-18]fluoro-d-glucose (FDG-PET) images often relies on evaluation of regional asymmetries. This study was designed to establish age-related variations in regional cortical glucose metabolism asymmetries in the developing human brain. FDG-PET scans of 58 children (age: 1-18 years) were selected from a large single-center pediatric PET database. All children had a history of epilepsy, normal MRI, and normal pattern of glucose metabolism on visual evaluation. PET images were analyzed objectively by statistical parametric mapping with the use of age-specific FDG-PET templates. Regional FDG uptake was measured in 35 cortical regions in both hemispheres using an automated anatomical labeling atlas, and left/right ratios were correlated with age, gender, and epilepsy variables. Cortical glucose metabolism was mostly symmetric in young children and became increasingly asymmetric in older subjects. Specifically, several frontal cortical regions showed an age-related increase of left > right asymmetries (mean: up to 10%), while right > left asymmetries emerged in posterior cortex (including portions of the occipital, parietal, and temporal lobe) in older children (up to 9%). Similar trends were seen in a subgroup of 39 children with known right-handedness. Age-related correlations of regional metabolic asymmetries showed no robust gender differences and were not affected by epilepsy variables. These data demonstrate a region-specific emergence of cortical metabolic asymmetries between age 1-18 years, with left > right asymmetry in frontal and right > left asymmetry in posterior regions. The findings can facilitate correct interpretation of cortical regional asymmetries on pediatric FDG-PET images across a wide age range.
Collapse
Affiliation(s)
- Vinod K Pilli
- The Carman and Ann Adams Department of Pediatrics, Wayne State University, Detroit, Michigan.,PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, Michigan
| | - Jeong-Won Jeong
- The Carman and Ann Adams Department of Pediatrics, Wayne State University, Detroit, Michigan.,Department of Neurology, Wayne State University, Detroit, Michigan.,PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, Michigan
| | - Praneetha Konka
- The Carman and Ann Adams Department of Pediatrics, Wayne State University, Detroit, Michigan.,PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, Michigan
| | - Ajay Kumar
- The Carman and Ann Adams Department of Pediatrics, Wayne State University, Detroit, Michigan.,Department of Neurology, Wayne State University, Detroit, Michigan.,PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, Michigan
| | - Harry T Chugani
- The Carman and Ann Adams Department of Pediatrics, Wayne State University, Detroit, Michigan.,Department of Neurology, Wayne State University, Detroit, Michigan.,PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, Michigan
| | - Csaba Juhász
- The Carman and Ann Adams Department of Pediatrics, Wayne State University, Detroit, Michigan.,Department of Neurology, Wayne State University, Detroit, Michigan.,PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, Michigan
| |
Collapse
|
29
|
Lin Y, Fang YHD, Wu G, Jones SE, Prayson RA, Moosa ANV, Overmyer M, Bena J, Larvie M, Bingaman W, Gonzalez-Martinez JA, Najm IM, Alexopoulos AV, Wang ZI. Quantitative positron emission tomography-guided magnetic resonance imaging postprocessing in magnetic resonance imaging-negative epilepsies. Epilepsia 2018; 59:1583-1594. [PMID: 29953586 DOI: 10.1111/epi.14474] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Detection of focal cortical dysplasia (FCD) is of paramount importance in epilepsy presurgical evaluation. Our study aims at utilizing quantitative positron emission tomography (QPET) analysis to complement magnetic resonance imaging (MRI) postprocessing by a morphometric analysis program (MAP) to facilitate automated identification of subtle FCD. METHODS We retrospectively included a consecutive cohort of surgical patients who had a negative preoperative MRI by radiology report. MAP was performed on T1-weighted volumetric sequence and QPET was performed on PET/computed tomographic data, both with comparison to scanner-specific normal databases. Concordance between MAP and QPET was assessed at a lobar level, and the significance of concordant QPET-MAP+ abnormalities was confirmed by postresective seizure outcome and histopathology. QPET thresholds of standard deviations (SDs) of -1, -2, -3, and -4 were evaluated to identify the optimal threshold for QPET-MAP analysis. RESULTS A total of 104 patients were included. When QPET thresholds of SD = -1, -2, and -3 were used, complete resection of the QPET-MAP+ region was significantly associated with seizure-free outcome when compared with the partial resection group (P = 0.023, P < 0.001, P = 0.006) or the no resection group (P = 0.002, P < 0.001, P = 0.001). The SD threshold of -2 showed the best combination of positive rate (55%), sensitivity (0.68), specificity (0.88), positive predictive value (0.88), and negative predictive value (0.69). Surgical pathology of the resected QPET-MAP+ areas revealed mainly FCD type I. Multiple QPET-MAP+ regions were present in 12% of the patients at SD = -2. SIGNIFICANCE Our study demonstrates a practical and effective approach to combine quantitative analyses of functional (QPET) and structural (MAP) imaging data to improve identification of subtle epileptic abnormalities. This approach can be readily adopted by epilepsy centers to improve postresective seizure outcomes for patients without apparent lesions on MRI.
Collapse
Affiliation(s)
- Yicong Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Yu-Hua Dean Fang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Guiyun Wu
- Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | - Margit Overmyer
- Department of Pediatric Neurology, Helsinki University Hospital, Helsinki, Finland
| | - James Bena
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Mykol Larvie
- Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH, USA.,Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - William Bingaman
- Department of Neurosurgery, Cleveland Clinic, Cleveland, OH, USA
| | | | - Imad M Najm
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | | | - Z Irene Wang
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
30
|
Hu WH, Wang X, Liu LN, Shao XQ, Zhang K, Ma YS, Ai L, Li JJ, Zhang JG. Multimodality Image Post-processing in Detection of Extratemporal MRI-Negative Cortical Dysplasia. Front Neurol 2018; 9:450. [PMID: 29963006 PMCID: PMC6010529 DOI: 10.3389/fneur.2018.00450] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/28/2018] [Indexed: 11/13/2022] Open
Abstract
Purpose: To determine the diagnostic value of individual image post-processing techniques in a series of patients who underwent extratemporal operations for histologically proven, MRI-negative focal cortical dysplasia (FCD). Methods: The morphometric analysis program (MAP), PET/MRI co-registration and statistical parametric mapping (SPM) analysis of PET (SPM-PET) techniques were analyzed in 33 consecutive patients. The epileptogenic zone (EZ) assumed by MAP, PET/MRI, and SPM-PET was compared with the location of the FCD lesions determined by stereoelectroencephalography (SEEG) and histopathological study. The detection rate of each modality was statistically compared. Results: Three lesions were simultaneously detected by the three post-processing methods, while two lesions were only MAP positive, and 8 were only PET/MRI positive. The detection rate of MAP, PET/MRI, SPM-PET and the combination of the three modalities was 24.2, 90.9, 57.6, and 97.0%, respectively. Taking the pathological subtype into account, no type I lesions were detected by MAP, and PET/MRI was the most sensitive method for detecting FCD types II and IIA. During a mean follow-up period of 22.94 months, seizure freedom was attained in 26/33 patients (78.8%) after focal corticectomy. Conclusions: MAP, PET/MRI, and SPM-PET provide complementary information for FCD detection, intracranial electrode design, and lesion resection. PET/MRI was particularly useful, with the highest detection rate of extratemporal MRI-negative FCD.
Collapse
Affiliation(s)
- Wen-Han Hu
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li-Na Liu
- Department of Pathology, Peking University First Hospital Fengtai Hospital, Beijing, China
| | - Xiao-Qiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kai Zhang
- Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan-Shan Ma
- Department of Epilepsy Center, Peking University First Hospital Fengtai Hospital, Beijing, China
| | - Lin Ai
- Department of Neuroimage, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun-Ju Li
- Department of Neurosurgery, Hainan General Hospital, Haikou, China
| | - Jian-Guo Zhang
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
De Blasi B, Barnes A, Galazzo IB, Hua CH, Shulkin B, Koepp M, Tisdall M. Age-Specific 18F-FDG Image Processing Pipelines and Analysis Are Essential for Individual Mapping of Seizure Foci in Pediatric Patients with Intractable Epilepsy. J Nucl Med 2018; 59:1590-1596. [PMID: 29626122 PMCID: PMC6167536 DOI: 10.2967/jnumed.117.203950] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/03/2018] [Indexed: 12/05/2022] Open
Abstract
18F-FDG PET is an important tool for the presurgical assessment of children with drug-resistant epilepsy. Standard assessment is performed visually and is often subjective and highly user-dependent. Voxelwise statistics can be used to remove user-dependent biases by automatically identifying areas of significant hypo- or hypermetabolism associated with the epileptogenic area. In the clinical setting, this analysis is performed using commercially available software. These software packages suffer from two main limitations when applied to pediatric PET data: pediatric scans are spatially normalized to an adult standard template, and statistical comparisons use an adult control dataset. The aim of this work was to provide a reliable observer-independent pipeline for the analysis of pediatric 18F-FDG PET scans, as part of presurgical planning in epilepsy. Methods: A pseudocontrol dataset (19 subjects 6–9 y old, and 93 subjects 10–20 y old) was used to create two age-specific 18F-FDG PET pediatric templates in standard pediatric space. The 18F-FDG PET scans of 46 epilepsy patients (16 patients 6–9 y old, and 30 patients 10–17 y old) were retrospectively collated and analyzed using voxelwise statistics. This procedure was implemented with the standard pipeline available in the commercial software Scenium and an in-house Statistical Parametric Mapping, version 8 (SPM8), pipeline (including age-specific pediatric templates and reference database). A κ-test was used to assess the level of agreement between the findings of voxelwise analyses and the clinical diagnosis of each patient. The SPM8 pipeline was further validated using postsurgical seizure-free patients. Results: Improved agreement with the clinical diagnosis was reported using SPM8, in terms of focus localization, especially for the younger patient group: κ = 0.489 for Scenium versus 0.826 for SPM. The proposed pipeline also showed a sensitivity of about 70% in both age ranges for the localization of hypometabolic areas on pediatric 18F-FDG PET scans in postsurgical seizure-free patients. Conclusion: We showed that by creating age-specific templates and using pediatric control databases, our pipeline provides an accurate and sensitive semiquantitative method for assessing the 18F-FDG PET scans of patients under 18 y old.
Collapse
Affiliation(s)
- Bianca De Blasi
- Department of Medical Physics, University College London, London, United Kingdom
| | - Anna Barnes
- Institute of Nuclear Medicine, University College London Hospitals, London, United Kingdom
| | | | - Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Barry Shulkin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Matthias Koepp
- Institute of Neurology, University College London, London, United Kingdom; and
| | | |
Collapse
|
32
|
18F-FDG PET in drug-resistant epilepsy due to focal cortical dysplasia type 2: additional value of electroclinical data and coregistration with MRI. Eur J Nucl Med Mol Imaging 2018; 45:1449-1460. [DOI: 10.1007/s00259-018-3994-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
|
33
|
Turpin S, Martineau P, Levasseur MA, Lambert R. Modeling the Effects of Age and Sex on Normal Pediatric Brain Metabolism Using 18F-FDG PET/CT. J Nucl Med 2017; 59:1118-1124. [PMID: 29284674 DOI: 10.2967/jnumed.117.201889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/30/2017] [Indexed: 11/16/2022] Open
Abstract
Reference databases of pediatric brain metabolism are uncommon, because local brain metabolism evolves significantly with age throughout childhood, limiting their clinical applicability. The aim of this study was to develop mathematic models of regional relative brain metabolism using pediatric 18F-FDG PET with CT data of normal pediatric brains, accounting for sex and age. Methods: PET/CT brain acquisitions were obtained from 88 neurologically normal subjects, aged 6 mo to 18 y. Subjects were assigned to either a development group (n = 59) or a validation group (n = 29). For each subject, commercially available software was used to quantify the relative metabolism of 47 separate brain regions using whole-brain-normalized (WBN) and pons-normalized (PN) activity. The effects of age on regional relative brain metabolism were modeled using multiple linear and nonlinear mathematic equations, and the significance of sex was assessed using the Student t test. Optimal models were selected using the Akaike information criterion. Mean predicted values and 95% prediction intervals were derived for all regions. Model predictions were compared with the validation dataset, and mean predicted error was calculated for all regions using both WBN and PN models. Results: As a function of age, optimal models of regional relative brain metabolism were linear for 9 regions, quadratic for 13, cubic for 6, logarithmic for 12, power law for 7, and modified power law for 2 using WBN data and were linear for 9, quadratic for 25, cubic for 2, logarithmic for 6, and power law for 4 using PN data. Sex differences were found to be statistically significant only in the posterior cingulate cortex for the WBN data. Comparing our models with the validation group resulted in 94.3% of regions falling within the 95% prediction interval for WBN and 94.1% for PN. For all brain regions in the validation group, the error in prediction was 3% ± 0.96% using WBN data and 4.72% ± 1.25% when compared with the PN data (P < 0.0001). Conclusion: Pediatric brain metabolism is a complex function of age and sex. We have developed mathematic models of brain activity that allow for accurate prediction of regional pediatric brain metabolism.
Collapse
Affiliation(s)
- Sophie Turpin
- Division of Nuclear Medicine, Department of Medical Imaging, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
| | - Patrick Martineau
- Division of Nuclear Medicine, Department of Medicine, University of Ottawa and Ottawa Hospital, Ottawa, Ontario, Canada; and
| | - Marc-André Levasseur
- Department of Nuclear Medicine, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Raymond Lambert
- Division of Nuclear Medicine, Department of Medical Imaging, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
| |
Collapse
|
34
|
Kim JA, Jeong JW, Behen ME, Pilli VK, Luat A, Chugani HT, Juhász C. Metabolic correlates of cognitive function in children with unilateral Sturge-Weber syndrome: Evidence for regional functional reorganization and crowding. Hum Brain Mapp 2017; 39:1596-1606. [PMID: 29274110 DOI: 10.1002/hbm.23937] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/21/2017] [Accepted: 12/14/2017] [Indexed: 01/01/2023] Open
Abstract
To evaluate metabolic changes in the ipsi- and contralateral hemisphere in children showing a cognitive profile consistent with early reorganization of cognitive function, we evaluated the regional glucose uptake, interhemispheric metabolic connectivity, and cognitive function in children with unilateral SWS. Interictal 2-deoxy-2[18 F]fluoro-D-glucose (FDG)-PET scans of 27 children with unilateral SWS and mild epilepsy and 27 age-matched control (non-SWS children with epilepsy and normal FDG-PET) were compared using statistical parametric mapping (SPM). Regional FDG-PET abnormalities calculated as SPM(t) scores in the SWS group were correlated with cognitive function (IQ) in left- and right-hemispheric subgroups. Interhemispheric metabolic connectivity between homotopic cortical regions was also calculated. Verbal IQ was substantially (≥10 points difference) higher than non-verbal IQ in 61% of the right- and 71% of the left-hemispheric SWS group. FDG SPM(t) scores in the affected hemisphere showed strong positive correlations with IQ in the left-hemispheric, but not in right-hemispheric SWS group in several frontal, parietal, and temporal cortical regions. Significant positive interhemispheric metabolic connectivity, present in controls, was diminished in the SWS group. In addition, the left-hemispheric SWS group showed inverse metabolic interhemispheric correlations in specific parietal, temporal, and occipital regions. FDG SPM(t) scores in the same regions of the right (unaffected) hemisphere showed inverse correlations with IQ. These findings suggest that left-hemispheric lesions in SWS often result in early reorganization of verbal functions while interfering with ("crowding") their non-verbal cognitive abilities. These cognitive changes are associated with specific metabolic abnormalities in the contralateral hemisphere not directly affected by SWS.
Collapse
Affiliation(s)
- Jeong-A Kim
- PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, Michigan, USA.,The Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jeong-Won Jeong
- PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, Michigan, USA.,The Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Michael E Behen
- PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, Michigan, USA.,The Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Vinod K Pilli
- PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, Michigan, USA.,The Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Aimee Luat
- The Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Harry T Chugani
- PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, Michigan, USA.,The Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Neurology, Nemours DuPont Hospital for Children, Wilmington, Delaware, USA.,Department of Neurology, School of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Csaba Juhász
- PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, Michigan, USA.,The Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
35
|
Jeong JW, Asano E, Kumar Pilli V, Nakai Y, Chugani HT, Juhász C. Objective 3D surface evaluation of intracranial electrophysiologic correlates of cerebral glucose metabolic abnormalities in children with focal epilepsy. Hum Brain Mapp 2017; 38:3098-3112. [PMID: 28322026 DOI: 10.1002/hbm.23577] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/01/2017] [Accepted: 03/09/2017] [Indexed: 12/27/2022] Open
Abstract
To determine the spatial relationship between 2-deoxy-2[18 F]fluoro-D-glucose (FDG) metabolic and intracranial electrophysiological abnormalities in children undergoing two-stage epilepsy surgery, statistical parametric mapping (SPM) was used to correlate hypo- and hypermetabolic cortical regions with ictal and interictal electrocorticography (ECoG) changes mapped onto the brain surface. Preoperative FDG-PET scans of 37 children with intractable epilepsy (31 with non-localizing MRI) were compared with age-matched pseudo-normal pediatric control PET data. Hypo-/hypermetabolic maps were transformed to 3D-MRI brain surface to compare the locations of metabolic changes with electrode coordinates of the ECoG-defined seizure onset zone (SOZ) and interictal spiking. While hypometabolic clusters showed a good agreement with the SOZ on the lobar level (sensitivity/specificity = 0.74/0.64), detailed surface-distance analysis demonstrated that large portions of ECoG-defined SOZ and interictal spiking area were located at least 3 cm beyond hypometabolic regions with the same statistical threshold (sensitivity/specificity = 0.18-0.25/0.94-0.90 for overlap 3-cm distance); for a lower threshold, sensitivity for SOZ at 3 cm increased to 0.39 with a modest compromise of specificity. Performance of FDG-PET SPM was slightly better in children with smaller as compared with widespread SOZ. The results demonstrate that SPM utilizing age-matched pseudocontrols can reliably detect the lobe of seizure onset. However, the spatial mismatch between metabolic and EEG epileptiform abnormalities indicates that a more complete SOZ detection could be achieved by extending intracranial electrode coverage at least 3 cm beyond the metabolic abnormality. Considering that the extent of feasible electrode coverage is limited, localization information from other modalities is particularly important to optimize grid coverage in cases of large hypometabolic cortex. Hum Brain Mapp 38:3098-3112, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jeong-Won Jeong
- Departments of Pediatrics and Neurology, School of Medicine, Wayne State University, Detroit, Michigan.,Translational Imaging Laboratory, PET Center, Children's Hospital of Michigan, Detroit, Michigan
| | - Eishi Asano
- Departments of Pediatrics and Neurology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Vinod Kumar Pilli
- Departments of Pediatrics and Neurology, School of Medicine, Wayne State University, Detroit, Michigan.,Translational Imaging Laboratory, PET Center, Children's Hospital of Michigan, Detroit, Michigan
| | - Yasuo Nakai
- Departments of Pediatrics and Neurology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Harry T Chugani
- Department of Neurology, Nemours DuPont Hospital for Children, Wilmington, Delaware.,Thomas Jefferson University School of Medicine, Philadelphia, Pennysylvania
| | - Csaba Juhász
- Departments of Pediatrics and Neurology, School of Medicine, Wayne State University, Detroit, Michigan.,Translational Imaging Laboratory, PET Center, Children's Hospital of Michigan, Detroit, Michigan
| |
Collapse
|
36
|
Zhu Y, Feng J, Wu S, Hou H, Ji J, Zhang K, Chen Q, Chen L, Cheng H, Gao L, Chen Z, Zhang H, Tian M. Glucose Metabolic Profile by Visual Assessment Combined with Statistical Parametric Mapping Analysis in Pediatric Patients with Epilepsy. J Nucl Med 2017; 58:1293-1299. [PMID: 28104740 DOI: 10.2967/jnumed.116.187492] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/15/2016] [Indexed: 11/16/2022] Open
Abstract
PET with 18F-FDG has been used for presurgical localization of epileptogenic foci; however, in nonsurgical patients, the correlation between cerebral glucose metabolism and clinical severity has not been fully understood. The aim of this study was to evaluate the glucose metabolic profile using 18F-FDG PET/CT imaging in patients with epilepsy. Methods: One hundred pediatric epilepsy patients who underwent 18F-FDG PET/CT, MRI, and electroencephalography examinations were included. Fifteen age-matched controls were also included. 18F-FDG PET images were analyzed by visual assessment combined with statistical parametric mapping (SPM) analysis. The absolute asymmetry index (|AI|) was calculated in patients with regional abnormal glucose metabolism. Results: Visual assessment combined with SPM analysis of 18F-FDG PET images detected more patients with abnormal glucose metabolism than visual assessment only. The |AI| significantly positively correlated with seizure frequency (P < 0.01) but negatively correlated with the time since last seizure (P < 0.01) in patients with abnormal glucose metabolism. The only significant contributing variable to the |AI| was the time since last seizure, in patients both with hypometabolism (P = 0.001) and with hypermetabolism (P = 0.005). For patients with either hypometabolism (P < 0.01) or hypermetabolism (P = 0.209), higher |AI| values were found in those with drug resistance than with seizure remission. In the post-1-y follow-up PET studies, a significant change of |AI| (%) was found in patients with clinical improvement compared with those with persistence or progression (P < 0.01). Conclusion:18F-FDG PET imaging with visual assessment combined with SPM analysis could provide cerebral glucose metabolic profiles in nonsurgical epilepsy patients. |AI| might be used for evaluation of clinical severity and progress in these patients. Patients with a prolonged period of seizure freedom may have more subtle (or no) metabolic abnormalities on PET. The clinical value of PET might be enhanced by timing the scan closer to clinical seizures.
Collapse
Affiliation(s)
- Yuankai Zhu
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Center, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Jianhua Feng
- Department of Pediatrics, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China; and
| | - Shuang Wu
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Center, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Haifeng Hou
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Center, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Jianfeng Ji
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Center, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Kai Zhang
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Center, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Qing Chen
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Center, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Lin Chen
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Center, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Haiying Cheng
- Department of Pediatrics, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China; and
| | - Liuyan Gao
- Department of Pediatrics, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China; and
| | - Zexin Chen
- Department of Clinical Epidemiology & Biostatistics, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Zhang
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Center, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Mei Tian
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China .,Zhejiang University Medical PET Center, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| |
Collapse
|
37
|
Mayoral M, Marti-Fuster B, Carreño M, Carrasco JL, Bargalló N, Donaire A, Rumià J, Perissinotti A, Lomeña F, Pintor L, Boget T, Setoain X. Seizure-onset zone localization by statistical parametric mapping in visually normal18F-FDG PET studies. Epilepsia 2016; 57:1236-44. [DOI: 10.1111/epi.13427] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Maria Mayoral
- Nuclear Medicine Department; Hospital Clinic; Barcelona Spain
| | - Berta Marti-Fuster
- Biomedical Imaging Group; Biomedical Research Networking Center in Bioengineering; Biomaterials and Nanomedicine (CIBER-BBN); Barcelona Spain
- Biophysics and Bioengineering Unit; Physiological Sciences Department I; School of Medicine; University of Barcelona; Spain
| | - Mar Carreño
- Neurology Department; Hospital Clinic; Barcelona Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
| | - Josep L. Carrasco
- Biostatistics; Public Health Department; School of Medicine; University of Barcelona; Barcelona Spain
| | - Núria Bargalló
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
- Radiology Department; Hospital Clinic; Barcelona Spain
| | - Antonio Donaire
- Neurology Department; Hospital Clinic; Barcelona Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
| | - Jordi Rumià
- Neurosurgery Department; Hospital Clinic; Barcelona Spain
| | | | - Francisco Lomeña
- Nuclear Medicine Department; Hospital Clinic; Barcelona Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
| | - Luis Pintor
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
- Psychiatry and Psychology Department; Hospital Clinic; Barcelona Spain
| | - Teresa Boget
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
- Psychiatry and Psychology Department; Hospital Clinic; Barcelona Spain
| | - Xavier Setoain
- Nuclear Medicine Department; Hospital Clinic; Barcelona Spain
- Biomedical Imaging Group; Biomedical Research Networking Center in Bioengineering; Biomaterials and Nanomedicine (CIBER-BBN); Barcelona Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
| |
Collapse
|
38
|
Trotta N, Ligot N, Archambaud F, Goldman S, Van Bogaert P, Chiron C, De Tiège X. No evidence of thalamic metabolic abnormality associated with continuous spike-and-wave during sleep. Epilepsia 2016; 57:1007-8. [PMID: 27286753 DOI: 10.1111/epi.13382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Nicola Trotta
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Noémie Ligot
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Frédérique Archambaud
- Inserm U1129, Université Paris Descartes, Paris, France.,CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Serge Goldman
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Patrick Van Bogaert
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Catherine Chiron
- Inserm U1129, Université Paris Descartes, Paris, France.,CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Xavier De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
39
|
Aparicio J, Carreño M, Bargalló N, Setoain X, Rubí S, Rumià J, Falcón C, Calvo A, Martí-Fuster B, Padilla N, Boget T, Pintor L, Donaire A. Combined 18F-FDG-PET and diffusion tensor imaging in mesial temporal lobe epilepsy with hippocampal sclerosis. NEUROIMAGE-CLINICAL 2016; 12:976-989. [PMID: 27995064 PMCID: PMC5153605 DOI: 10.1016/j.nicl.2016.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/29/2016] [Accepted: 05/05/2016] [Indexed: 11/23/2022]
Abstract
Objectives Several studies using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) or diffusion tensor imaging (DTI) have found both temporal and extratemporal abnormalities in patients with mesial temporal lobe epilepsy with ipsilateral hippocampal sclerosis (MTLE-HS), but data are lacking about the findings of both techniques in the same patients. We aimed to determine whether the extent of 18F-FDG-PET hypometabolism is related to DTI abnormalities. Methods Twenty-one patients with MTLE-HS underwent comprehensive preoperative evaluation; 18 (86%) of these underwent epilepsy surgery. We analyzed and compared the pattern of white matter (WM) alterations on DTI and cortical hypometabolism on 18F-FDG-PET. Results We found widespread temporal and extratemporal 18F-FDG-PET and DTI abnormalities. Patterns of WM abnormalities and cortical glucose hypometabolism involved similar brain regions, being more extensive in the left than the right MTLE-HS. We classified patients into three groups according to temporal 18F-FDG-PET patterns: hypometabolism restricted to the anterior third (n = 7), hypometabolism extending to the middle third (n = 7), and hypometabolism extending to the posterior third (n = 7). Patients with anterior temporal hypometabolism showed DTI abnormalities in anterior association and commissural tracts while patients with posterior hypometabolism showed WM alterations in anterior and posterior tracts. Conclusions Patients with MTLE-HS have widespread metabolic and microstructural abnormalities that involve similar regions. The distribution patterns of these gray and white matter abnormalities differ between patients with left or right MTLE, but also with the extent of the 18F-FDG-PET hypometabolism along the epileptogenic temporal lobe. These findings suggest a variable network involvement among patients with MTLE-HS. There are widespread metabolic and microstructural abnormalities in MTLE-HS. Diffusion tensor imaging alterations differ with pattern of temporal hypometabolism. This study suggests a variable network involvement among patients with MTLE-HS. (MTLE-HS: mesial temporal lobe epilepsy with ipsilateral hippocampal sclerosis)
Collapse
Affiliation(s)
- Javier Aparicio
- Hospital Clínic, Epilepsy Program, Department of Neurology, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Mar Carreño
- Hospital Clínic, Epilepsy Program, Department of Neurology, Neuroscience Institute, CP 08036, Barcelona, Spain; Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CP 08036, Barcelona, Spain
| | - Núria Bargalló
- Hospital Clínic, Epilepsy Program, Department of Radiology, CDIC, CP 08036, Barcelona, Spain; Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CP 08036, Barcelona, Spain
| | - Xavier Setoain
- Hospital Clínic, Epilepsy Program, Department of Nuclear Medicine, CDIC, CP 08036, Barcelona, Spain; Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CP 08036, Barcelona, Spain
| | - Sebastià Rubí
- Nuclear Medicine Department, Hospital Universitari Son Espases, Instituto de Investigación Sanitaria de Palma, CP 07010, Palma, Spain
| | - Jordi Rumià
- Hospital Clínic, Epilepsy Program, Department of Neurosurgery, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Carles Falcón
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, CP 08003, Barcelona, Spain
| | - Anna Calvo
- Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CP 08036, Barcelona, Spain
| | - Berta Martí-Fuster
- Grupo de Imagen Biomédica de la Universidad de Barcelona (GIB-UB), Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), CP 08036, Barcelona, Spain; Department of Physiological Sciences I - Biophysics and Bioengineering Unit, University of Barcelona, CP, O8036, Barcelona, Spain
| | - Nelly Padilla
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Teresa Boget
- Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CP 08036, Barcelona, Spain; Hospital Clínic, Epilepsy Program, Department of Neuropsychology, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Luís Pintor
- Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CP 08036, Barcelona, Spain; Hospital Clínic, Epilepsy Program, Department of Psychiatry, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Antonio Donaire
- Hospital Clínic, Epilepsy Program, Department of Neurology, Neuroscience Institute, CP 08036, Barcelona, Spain; Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CP 08036, Barcelona, Spain
| |
Collapse
|
40
|
Trotta N, Archambaud F, Goldman S, Baete K, Van Laere K, Wens V, Van Bogaert P, Chiron C, De Tiège X. Functional integration changes in regional brain glucose metabolism from childhood to adulthood. Hum Brain Mapp 2016; 37:3017-30. [PMID: 27133021 DOI: 10.1002/hbm.23223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/31/2016] [Accepted: 04/10/2016] [Indexed: 02/03/2023] Open
Abstract
The aim of this study was to investigate the age-related changes in resting-state neurometabolic connectivity from childhood to adulthood (6-50 years old). Fifty-four healthy adult subjects and twenty-three pseudo-healthy children underwent [(18) F]-fluorodeoxyglucose positron emission tomography at rest. Using statistical parametric mapping (SPM8), age and age squared were first used as covariate of interest to identify linear and non-linear age effects on the regional distribution of glucose metabolism throughout the brain. Then, by selecting voxels of interest (VOI) within the regions showing significant age-related metabolic changes, a psychophysiological interaction (PPI) analysis was used to search for age-induced changes in the contribution of VOIs to the metabolic activity in other brain areas. Significant linear or non-linear age-related changes in regional glucose metabolism were found in prefrontal cortices (DMPFC/ACC), cerebellar lobules, and thalamo-hippocampal areas bilaterally. Decreases were found in the contribution of thalamic, hippocampal, and cerebellar regions to DMPFC/ACC metabolic activity as well as in the contribution of hippocampi to preSMA and right IFG metabolic activities. Increases were found in the contribution of the right hippocampus to insular cortex and of the cerebellar lobule IX to superior parietal cortex metabolic activities. This study evidences significant linear or non-linear age-related changes in regional glucose metabolism of mesial prefrontal, thalamic, mesiotemporal, and cerebellar areas, associated with significant modifications in neurometabolic connectivity involving fronto-thalamic, fronto-hippocampal, and fronto-cerebellar networks. These changes in functional brain integration likely represent a metabolic correlate of age-dependent effects on sensory, motor, and high-level cognitive functional networks. Hum Brain Mapp 37:3017-3030, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicola Trotta
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC) - ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium.,Department of Nuclear Medicine, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Serge Goldman
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC) - ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium.,Department of Nuclear Medicine, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Kristof Baete
- Department of Nuclear Medicine, UZ Leuven, Leuven, Belgium
| | - Koen Van Laere
- Department of Nuclear Medicine, UZ Leuven, Leuven, Belgium
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC) - ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Patrick Van Bogaert
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC) - ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Xavier De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC) - ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
41
|
Cerebral metabolism and perfusion in MR-negative individuals with refractory focal epilepsy assessed by simultaneous acquisition of (18)F-FDG PET and arterial spin labeling. NEUROIMAGE-CLINICAL 2016; 11:648-657. [PMID: 27222796 PMCID: PMC4872676 DOI: 10.1016/j.nicl.2016.04.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/24/2016] [Accepted: 04/08/2016] [Indexed: 01/18/2023]
Abstract
The major challenge in pre-surgical epileptic patient evaluation is the correct identification of the seizure onset area, especially in MR-negative patients. In this study, we aimed to: (1) assess the concordance between perfusion, from ASL, and metabolism, from 18F-FDG, acquired simultaneously on PET/MR; (2) verify the utility of a statistical approach as supportive diagnostic tool for clinical readers. Secondarily, we compared 18F-FDG PET data from the hybrid PET/MR system with those acquired with PET/CT, with the purpose of validate the reliability of 18F-FDG PET/MR data. Twenty patients with refractory focal epilepsy, negative MR and a defined electro-clinical diagnosis underwent PET/MR, immediately followed by PET/CT. Standardized uptake value ratio (SUVr) and cerebral blood flow (CBF) maps were calculated for PET/CT-PET/MR and ASL, respectively. For all techniques, z-score of the asymmetry index (zAI) was applied for depicting significant Right/Left differences. SUVr and CBF images were firstly visually assessed by two neuroimaging readers, who then re-assessed them considering zAI for reaching a final diagnosis. High agreement between 18F-FDG PET/MR and ASL was found, showing hypometabolism and hypoperfusion in the same hemisphere in 18/20 patients, while the remaining were normal. They were completely concordant in 14/18, concordant in at least one lobe in the remaining. zAI maps improved readers' confidence in 12/20 and 15/20 patients for 18F-FDG PET/MR and ASL, respectively. 18F-FDG PET/CT-PET/MR showed high agreement, especially when zAI was considered. The simultaneous metabolism-perfusion acquisition provides excellent concordance on focus lateralisation and good concordance on localisation, determining useful complementary information. Simultaneous PET/MR to evaluate cerebral perfusion and glucose metabolism in MR-negative refractory focal epilepsy patients. ASL and 18F-FDG PET/MR showed excellent concordance on lateralisation and good concordance on localisation of focus. ASL and 18F-FDG PET/MR can provide complementary information for focus localisation. An individually-tailored z-score approach can allow a better identification of the epileptic focus.
Collapse
|
42
|
Sutoko S, Sato H, Maki A, Kiguchi M, Hirabayashi Y, Atsumori H, Obata A, Funane T, Katura T. Tutorial on platform for optical topography analysis tools. NEUROPHOTONICS 2016; 3:010801. [PMID: 26788547 PMCID: PMC4707558 DOI: 10.1117/1.nph.3.1.010801] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/02/2015] [Indexed: 05/15/2023]
Abstract
Optical topography/functional near-infrared spectroscopy (OT/fNIRS) is a functional imaging technique that noninvasively measures cerebral hemoglobin concentration changes caused by neural activities. The fNIRS method has been extensively implemented to understand the brain activity in many applications, such as neurodisorder diagnosis and treatment, cognitive psychology, and psychiatric status evaluation. To assist users in analyzing fNIRS data with various application purposes, we developed a software called platform for optical topography analysis tools (POTATo). We explain how to handle and analyze fNIRS data in the POTATo package and systematically describe domain preparation, temporal preprocessing, functional signal extraction, statistical analysis, and data/result visualization for a practical example of working memory tasks. This example is expected to give clear insight in analyzing data using POTATo. The results specifically show the activated dorsolateral prefrontal cortex is consistent with previous studies. This emphasizes analysis robustness, which is required for validating decent preprocessing and functional signal interpretation. POTATo also provides a self-developed plug-in feature allowing users to create their own functions and incorporate them with established POTATo functions. With this feature, we continuously encourage users to improve fNIRS analysis methods. We also address the complications and resolving opportunities in signal analysis.
Collapse
Affiliation(s)
- Stephanie Sutoko
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Hiroki Sato
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Atsushi Maki
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Masashi Kiguchi
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Yukiko Hirabayashi
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Hirokazu Atsumori
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Akiko Obata
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Tsukasa Funane
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Takusige Katura
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
- Address all correspondence to: Takusige Katura, E-mail:
| |
Collapse
|
43
|
Blauwblomme T, Boddaert N, Chémaly N, Chiron C, Pages M, Varlet P, Bourgeois M, Bahi-Buisson N, Kaminska A, Grevent D, Brunelle F, Sainte-Rose C, Archambaud F, Nabbout R. Arterial Spin Labeling MRI: A step forward in non-invasive delineation of focal cortical dysplasia in children. Epilepsy Res 2014; 108:1932-9. [DOI: 10.1016/j.eplepsyres.2014.09.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 09/20/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
|
44
|
Tenney JR, Rozhkov L, Horn P, Miles L, Miles MV. Cerebral glucose hypometabolism is associated with mitochondrial dysfunction in patients with intractable epilepsy and cortical dysplasia. Epilepsia 2014; 55:1415-22. [PMID: 25053176 DOI: 10.1111/epi.12731] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Metabolic imaging studies, such as positron emission tomography (PET), allow for an assessment of physiologic functioning of the brain, and [(18)F]fluoro-2-deoxyglucose (FDG)-PET is now a commonly used technique in presurgical epilepsy evaluations. Focal interictal decreases in glucose consumption are often but inconsistently concordant with the ictal onset area, and the underlying mechanisms are poorly understood. The current study tests the hypothesis that areas of glucose hypometabolism, determined by FDG-PET, are associated with mitochondrial dysfunction in patients with medically intractable epilepsy associated with isolated focal cortical dysplasia (FCD). METHODS Measures of electron transport chain (ETC) functioning and mitochondrial abnormalities (ETC complex biochemistry, protein kinase B subtype 1 (Akt1), glial fibrillary acidic protein (GFAP)) were assessed in surgical resection specimens that had hypometabolic abnormalities and those that were normal on FDG-PET. Determination of FDG-PET abnormalities was based on coregistration of statistical parametric mapping (SPM) results with postsurgical images. RESULTS Twenty-two patients (11 male, 11 female; mean age at the time of surgery 10.5 ± 4.4 years), with pathologically confirmed FCD, were included in this retrospective review. Complex IV function was found to be significantly reduced in areas of hypometabolism (p = 0.014), whereas there was a trend toward a significant reduction in complex II and III function in areas of hypometabolism (p = 0.08, p = 0.059, respectively). These decreases were independent of cortical dysplasia severity (p = 0.321) and other clinical epilepsy measures. SIGNIFICANCE This study suggests an association between glucose hypometabolism and reduced mitochondrial complex IV functioning, which is independent of the degree of cortical dysplasia. This supports the role of cellular energy failure as a potential mechanism for intractable epilepsy.
Collapse
Affiliation(s)
- Jeffrey R Tenney
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | | | | | | | | |
Collapse
|
45
|
Default mode network hypometabolism in epileptic encephalopathies with CSWS. Epilepsy Res 2014; 108:861-71. [PMID: 24746674 DOI: 10.1016/j.eplepsyres.2014.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/12/2014] [Accepted: 03/16/2014] [Indexed: 11/20/2022]
Abstract
Previous studies investigating cerebral metabolic changes associated with continuous spike-waves during sleep (CSWS) compared the metabolism of children with CSWS with that of healthy adults, precluding any assessment in brain areas showing physiologic age-related metabolic changes. Here, we investigated the metabolic and connectivity changes characterizing the acute phase of CSWS activity by comparing awake brain metabolism of children with CSWS with that of pediatric pseudo-controls. Positron emission tomography using [18F]-fluorodeoxyglucose (FDG-PET) was performed in 17 awake children with cryptogenic CSWS (5 girls, age: 5-11 years). Voxel-based analyses identified significant metabolic changes in CSWS patients compared with 18 pediatric pseudo-controls (12 girls, age: 6-11 years, non-CSWS focal cryptogenic epilepsy with normal FDG-PET). CSWS-induced changes in the contribution of brain areas displaying metabolic changes to the level of metabolic activity in other brain areas were investigated using pathophysiological interaction. Hypermetabolism in perisylvian regions bilaterally and hypometabolism in lateral and mesial prefrontal cortex, precuneus, posterior cingulate cortex and parahippocampal gyri characterized the acute phase of CSWS (p<0.05 FWE). No change in thalamic metabolism was disclosed. Altered functional connectivity was found between hyper- and hypometabolic regions in CSWS patients compared with pediatric pseudo-controls. This study demonstrates hypometabolism in key nodes of the default mode network (DMN) in awake patients with CSWS, in relation with a possible phenomenon of sustained remote inhibition from the epileptic foci. This hypometabolism might account for some of the acquired cognitive or behavioral features of CSWS epileptic encephalopathies. This study failed to find any evidence of thalamic metabolic changes, which supports the primary involvement of the cortex in CSWS genesis.
Collapse
|
46
|
Rheims S, Jung J, Ryvlin P. Combination of PET and Magnetoencephalography in the Presurgical Assessment of MRI-Negative Epilepsy. Front Neurol 2013; 4:188. [PMID: 24312076 PMCID: PMC3836027 DOI: 10.3389/fneur.2013.00188] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/04/2013] [Indexed: 11/13/2022] Open
Abstract
Despite major advances in neuroimaging, no lesion is visualized on MRI in up to a quarter of patients with drug-resistant focal epilepsy presenting for presurgical evaluation. These patients demonstrate poorer surgical outcomes than those with lesion seen on MRI. Accurate localization of the seizure onset zone (SOZ) is more difficult in MRI-negative patients and often requires invasive EEG recordings. Positron emission tomography (PET) and magnetoencephalography (MEG) have been proposed as clinically relevant tools to localize the SOZ prior to intracranial EEG recordings. However, there is no consensus regarding the optimal gold standard that should be used for assessing the performance of these presurgical investigations. Here, we review the current knowledge concerning the usefulness of PET and MEG for presurgical assessment of MRI-negative epilepsy. Beyond the individual diagnostic performance of MEG and of different PET tracers, including [(18)F]-fluorodeoxyglucose, [(11)C]flumazenil, and markers of 5-HT1A receptors, recent data suggest that the combination of PET and MEG might provide greater sensitivity and specificity than that of each of the two individual tests in patients with normal MRI.
Collapse
Affiliation(s)
- Sylvain Rheims
- Department of Functional Neurology and Epileptology, Institute of Epilepsies (IDEE), Hospices Civils de Lyon , Lyon , France ; INSERM U1028/CNRS UMR5292, Lyon Neuroscience Research Center , Lyon , France
| | | | | |
Collapse
|