1
|
Hedayati M, Nezhadali M, Karimi H, Daneshpour MS, Najd-Hassan-Bonab L, Sayyar N. Association of resistin rs1862513, rs10401670 and rs3745367 polymorphisms with resistin level and insulin resistance in an Iranian type 2 diabetic population. J Diabetes Metab Disord 2025; 24:38. [PMID: 39801688 PMCID: PMC11711605 DOI: 10.1007/s40200-024-01509-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025]
Abstract
Objectives The study investigates the association of single nucleotide polymorphisms (SNP) in resistin gene (RETN) with resistin level, insulin resistance, and the risk of type 2 diabetes in an early diagnosed type 2 diabetic population of Iran. Methods The total of 80 healthy subjects and 80 individuals diagnosed with type 2 diabetes. To ascertain the genotypes of rs1862513 and rs3745367, we performed the polymerase chain reaction with restriction fragment length polymorphism (PCR-RFLP) technique. The genotyping of resistin rs10401670 was conducted a Tetra-arms amplification system. Resistin and insulin levels were also measured by the ELISA method. Statistical analyses were performed by SPSS software. Results Resistin level was increased significantly in patients with type 2 diabetes; a significant difference was seen in biochemical parameters between diabetic and non-diabetic group except high-density lipoprotein cholesterol (HDL-C), low density lipoprotein (LDL-C), and insulin. We did not find statistically a significant association between type 2 diabetes mellitus [T2DM] and resistin gene at SNP. However, rs3745367 exhibit a significant association with resistin level among individuals with diabetes. The serum resistin level exhibited a positive association level with body mass index, FPG and insulin resistance. Additionally, anegative correlation between resistin levels and age, as well as HDL-C was also revealed (P-value < 0.05). Conclusions No significant association was observed between the rs1862513, rs10401670, and rs3745367 polymorphisms, with the susceptibility to type 2 diabetes. The serum resistin levels was positively correlated body with mass index, FPG and insulin resistance, but negatively correlated with HDL-C.
Collapse
Affiliation(s)
- Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Science, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Masoumeh Nezhadali
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Tehran, Iran
| | - Helma Karimi
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Tehran, Iran
| | - Maryam Sadat Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Science, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Leila Najd-Hassan-Bonab
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Science, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Nilofar Sayyar
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Tehran, Iran
| |
Collapse
|
2
|
Vieira-Potter VJ. Effects of Sex Hormones and Exercise on Adipose Tissue. SEX HORMONES, EXERCISE AND WOMEN 2023:55-85. [DOI: 10.1007/978-3-031-21881-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Natural products and analogs as preventive agents for metabolic syndrome via peroxisome proliferator-activated receptors: An overview. Eur J Med Chem 2021; 221:113535. [PMID: 33992930 DOI: 10.1016/j.ejmech.2021.113535] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022]
Abstract
Natural products and synthetic analogs have drawn much attention as potential therapeutical drugs to treat metabolic syndrome. We reviewed the underlying mechanisms of 32 natural products and analogs with potential pharmacological effects in vitro, and especially in rodent models and/or patients, that usually act on the PPAR pathway, along with other molecular targets. Recent outstanding total syntheses or semisyntheses of these lead compounds are stated. In general, they can activate the transcriptional activity of PPARα, PPARγ, PPARα/γ, PPARβ/δ, PPARα/δ, PPARγ/δ and panPPAR as weak, partial agonists or selective PPARγ modulators (SPPARγM), which may be useful for managing obesity, type 2 diabetes (T2D), dyslipidemia and non-fatty liver disease (NAFLD). Terpenoids is the largest group of compounds that act as potential modulators on PPARs and are comprised from small lipophilic cannabinoids to lipophilic pentacyclic triterpenes and polar saponins. Shikimates-phenylpropanoids include polar heterocyclic flavonoids and phenolic compounds containing at least one C3-C6 unit and usually a double bond on the propyl chain. Quercetin (19), resveratrol (24) and curcumin (27), stand out from this group for exhibiting beneficial effects on patients. Alkaloids, the minor group of potential modulators on PPARs, include berberine (30), which has been widely explored in preclinical and clinical studies for its potential beneficial effects on T2D and dyslipidemia. However, large-scale clinical trials may be warranted for the promising compounds.
Collapse
|
4
|
Tiwari R, Singh RD, Binwal M, Srivastav AK, Singh N, Khan H, Gangopadhyay S, Argaria N, Saxena PN, Roy SK, Kumar M, Sharma V, Srivastava V. Perinatal exposure to silver nanoparticles reprograms immunometabolism and promotes pancreatic beta-cell death and kidney damage in mice. Nanotoxicology 2021; 15:636-660. [PMID: 33876704 DOI: 10.1080/17435390.2021.1909767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Silver nanoparticles (AgNPs) are extensively utilized in food, cosmetics, and healthcare products. Though the effects of AgNPs exposure on adults are well documented, the long-term effects of gestational/perinatal exposure upon the health of offspring have not been addressed. Herein, we show that only perinatal exposure to AgNPs through the mother could lead to chronic inflammation in offspring which persists till adulthood. Further, AgNPs exposure altered offspring's immune responses against environmental stresses. AgNPs exposed offspring showed an altered response in splenocyte proliferation assay when challenged to lipopolysaccharide, concanavalin-A, AgNPs, or silver ions. Perinatal AgNPs exposure affected metabolic parameters (resistin, glucagon-like peptide-1, leptin, insulin) and upregulated JNK/P38/ERK signaling in the pancreas. We observed pancreatic damage, reduced insulin level, and increased blood glucose levels. Further, we observed renal damage, particularly to tubular and glomerular regions as indicated by histopathology and electron microscopy. Our study thus shows that only perinatal exposure to AgNPs could induce persistent inflammation, alter immune responses against foreign antigens and metabolism which may contribute to pancreatic and renal damage later in life.
Collapse
Affiliation(s)
- Ratnakar Tiwari
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, Lucknow, India.,Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, Lucknow, India
| | - Radha Dutt Singh
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, Lucknow, India.,Academy of Scientific Innovation and Research (AcSIR), Ghaziabad, India
| | - Monika Binwal
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, Lucknow, India
| | - Anurag Kumar Srivastav
- Animal House Facility, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, Lucknow, India
| | - Neha Singh
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, Lucknow, India.,Academy of Scientific Innovation and Research (AcSIR), Ghaziabad, India
| | - Hafizurrahman Khan
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, Lucknow, India.,Academy of Scientific Innovation and Research (AcSIR), Ghaziabad, India
| | - Siddhartha Gangopadhyay
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, Lucknow, India.,Academy of Scientific Innovation and Research (AcSIR), Ghaziabad, India
| | - Nidhi Argaria
- Advanced Imaging Facility, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, Lucknow, India
| | - Prem Narain Saxena
- Advanced Imaging Facility, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, Lucknow, India
| | - Somendu Kumar Roy
- Academy of Scientific Innovation and Research (AcSIR), Ghaziabad, India.,Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, Lucknow, India
| | - Mahadeo Kumar
- Animal House Facility, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, Lucknow, India
| | - Vineeta Sharma
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, Lucknow, India
| | - Vikas Srivastava
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, Lucknow, India.,Academy of Scientific Innovation and Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Mohammad S, Aziz R, Al Mahri S, Malik SS, Haji E, Khan AH, Khatlani TS, Bouchama A. Obesity and COVID-19: what makes obese host so vulnerable? IMMUNITY & AGEING 2021; 18:1. [PMID: 33390183 PMCID: PMC7779330 DOI: 10.1186/s12979-020-00212-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
The disease (COVID-19) novel coronavirus pandemic has so far infected millions resulting in the death of over a million people as of Oct 2020. More than 90% of those infected with COVID-19 show mild or no symptoms but the rest of the infected cases show severe symptoms resulting in significant mortality. Age has emerged as a major factor to predict the severity of the disease and mortality rates are significantly higher in elderly patients. Besides, patients with underlying conditions like Type 2 diabetes, cardiovascular diseases, hypertension, and cancer have an increased risk of severe disease and death due to COVID-19 infection. Obesity has emerged as a novel risk factor for hospitalization and death due to COVID-19. Several independent studies have observed that people with obesity are at a greater risk of severe disease and death due to COVID-19. Here we review the published data related to obesity and overweight to assess the possible risk and outcome in Covid-19 patients based on their body weight. Besides, we explore how the obese host provides a unique microenvironment for disease pathogenesis, resulting in increased severity of the disease and poor outcome.
Collapse
Affiliation(s)
- Sameer Mohammad
- Experimental Medicine Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences-MNGHA, Riyadh, 11426, Saudi Arabia.
| | - Rafia Aziz
- Government Medical College Baramulla, Baramulla, Kashmir, India
| | - Saeed Al Mahri
- Experimental Medicine Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences-MNGHA, Riyadh, 11426, Saudi Arabia
| | - Shuja Shafi Malik
- Experimental Medicine Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences-MNGHA, Riyadh, 11426, Saudi Arabia
| | - Esraa Haji
- Experimental Medicine Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences-MNGHA, Riyadh, 11426, Saudi Arabia
| | - Altaf Husain Khan
- Biostatistics and Bioinformatics Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences-MNGHA, Riyadh, 11426, Saudi Arabia
| | - Tanvir Saleem Khatlani
- Department of Cellular Therapy, Stem Cells Unit, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences--MNGHA, Riyadh, 11426, Saudi Arabia
| | - Abderrezak Bouchama
- Experimental Medicine Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences-MNGHA, Riyadh, 11426, Saudi Arabia
| |
Collapse
|
6
|
Lin J, Jiang Y, Wang G, Meng M, Zhu Q, Mei H, Liu S, Jiang F. Associations of short sleep duration with appetite-regulating hormones and adipokines: A systematic review and meta-analysis. Obes Rev 2020; 21:e13051. [PMID: 32537891 DOI: 10.1111/obr.13051] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022]
Abstract
In the current study, a systematic review and meta-analysis were conducted to summarize and assess whether short sleep duration is associated with appetite-regulating hormones and adipokine levels. Reference databases were searched for studies related to sleep and appetite-regulating hormones and adipokines. Qualitative and quantitative syntheses were conducted to evaluate the relationship between sleep duration and the level of appetite-regulating hormones and adipokines, including leptin, ghrelin, adiponectin, resistin, and orexin. Twenty-one of 3536 studies, covering a total of 2250 participants, met the inclusion criteria. Leptin, ghrelin, and adiponectin were included in the meta-analysis. Ghrelin levels were higher in the short sleep group (standard mean difference [SMD] = 0.14, 95% CI [0.03, 0.25], p = 0.01). Significant differences between the short sleep group and recommended sleep group were also noted in leptin level experimental subgroup studies (SMD = 0.19, 95% CI [0.03, 0.35], p = 0.02) and ghrelin level cross-sectional subgroup studies (SMD = 0.14, 95% CI [0.02, 0.27], p = 0.03). A rise in leptin and ghrelin levels were also observed in sleep deprivation groups (SMD = 0.24, 95% CI [0.10, 0.39], p = 0.001 and SMD = 0.18, 95% CI [0.04, 0.33], p = 0.01, respectively). In conclusion, short sleep duration is associated with an increased ghrelin level, while sleep deprivation had a significant effect on the levels of both leptin and ghrelin.
Collapse
Affiliation(s)
- Jianfei Lin
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Children Health Advocacy Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanrui Jiang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Children Health Advocacy Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanghai Wang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Children Health Advocacy Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Meng
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Children Health Advocacy Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Zhu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Children Health Advocacy Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Mei
- Children Health Advocacy Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Data Science, School of Population Health, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Shijian Liu
- Children Health Advocacy Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Jiang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Children Health Advocacy Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Forbes-Hernández TY, Cianciosi D, Ansary J, Mezzetti B, Bompadre S, Quiles JL, Giampieri F, Battino M. Strawberry (Fragaria × ananassa cv. Romina) methanolic extract promotes browning in 3T3-L1 cells. Food Funct 2020; 11:297-304. [PMID: 31915782 DOI: 10.1039/c9fo02285f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In recent years, the conversion of white adipocytes to brown-like adipocytes by pharmacological and dietary compounds has gained attention as an effective strategy to fight obesity. Strawberry bioactive compounds present several biological activities including antioxidant, anti-inflammatory, anti-cancer, anti-atherosclerotic and antiadipogenic properties. However, to the best of our knowledge, the possible role of strawberry bioactive compounds in white adipose tissue (WAT) browning has never been explored. Our results demonstrated that a strawberry methanolic extract (SE) significantly reduced 3T3-L1 pre-adipocytes differentiation, and down-regulated the mRNA expression of the adipogenic transcription factors CCAAT/enhancer-binding protein (C/REB- α) and peroxisome proliferation-activated receptor (PPAR-γ). It also down-regulated the mRNA expression of resistin and angiotensinogen, two genes considered as markers of white adipocytes, while increased the mRNA expression of pyruvate dehydrogenase lipoamide kinase isozyme 4 (PDK4) and uncoupling protein 1 (UCP1) which, conversely, are brown adipocyte-specific markers. Likewise, SE stimulated AMP-activated protein kinase (AMPKα), sirtuin 1 (Sirt1) and the peroxisome proliferator activated receptor gamma coactivator 1-alpha (PGC-1α), suggesting a possible increase in mitochondrial biogenesis. It also stimulated oxygen consumption rate and uncoupled respiration. Taken together, all these results suggest that SE induces brown fat-like phenotype in 3T3-L1 cells and may have potential therapeutic implications for treatment and/or prevention of obesity.
Collapse
Affiliation(s)
- Tamara Y Forbes-Hernández
- Nutrition and Food Science Group, department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, 32004 Ourense, Spain
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Obstructive sleep apnea (OSA), characterized by recurrent episodes of apnea during sleep and daytime sleepiness, seriously affects human health and may lead to systemic organ dysfunction. The pathogenesis of OSA is complex and still uncertain, but multiple surveys have shown that obesity is an important factor, and the incidence of OSA in people with obesity is as high as 30%. Adipokines are a group of proteins secreted from adipocytes, which are dysregulated in obesity and may contribute to OSA. Here, we review the most important and representative research results regarding the correlation between obesity-related adipokines including leptin, adiponectin, omentin-1, chemerin, and resistin and OSA in the past 5 years, provide an overview of these key adipokines, and analyze possible intrinsic mechanisms and influencing factors. The existing research shows that OSA is associated with an increase in the serum levels of leptin, chemerin, and resistin and a decrease in the levels of adiponectin and omentin-1; the findings presented here can be used to monitor the development of OSA and obesity, prevent future comorbidities, and identify risk factors for cardiovascular and other diseases, while different adipokines can be linked to OSA through different pathways such as insulin resistance, intermittent hypoxia, and inflammation, among others. We hope our review leads to a deeper and more comprehensive understanding of OSA based on the relevant literature, which will also provide directions for future clinical research.
Collapse
Affiliation(s)
- Xiongye Xu
- The First Clinical Medical College of Nanchang University, Nanchang, People's Republic of China
| | - Jixiong Xu
- The First Clinical Medical College of Nanchang University, Nanchang, People's Republic of China
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
9
|
Mafra FFP, Macedo MM, Lopes AV, do Nascimento Orphão J, Teixeira CDB, Gattai PP, Boim MA, Torres da Silva R, do Nascimento FD, Bjordal JM, Lopes-Martins RÁB. 904 nm Low-Level Laser Irradiation Decreases Expression of Catabolism-Related Genes in White Adipose Tissue of Wistar Rats: Possible Roles of Laser on Metabolism. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 38:11-18. [PMID: 31846390 DOI: 10.1089/photob.2018.4609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Adipose tissue is the main energy storage tissue in the body. Its catabolic and anabolic responses depend on several factors, such as nutritional status, metabolic profile, and hormonal signaling. There are few studies addressing the effects of laser photobiomodulation (PBM) on adipose tissue and results are controversial. Objective: Our purpose was to investigate the metabolic effects of PBM on adipose tissue from Wistar rats supplemented or not with caffeine. Materials and methods: Wistar rats were divided into four groups: control (CTL), laser-treated [CTL (L)], caffeine (CAF), and caffeine+PBM [CAF (L)]. Blood was extracted for quantification of triglyceride and cholesterol levels and white adipose tissues were collected for analysis. We evaluated gene expression in the adipose tissue for the leptin receptor, lipase-sensitive hormone, tumor necrosis factor alpha, and beta adrenergic receptor. Results: We demonstrated that the low-level laser irradiation was able to increase the feed intake of the animals and the relative mass of the adipose tissue in the CTL (L) group compared with CTL. Laser treatment also increases serum triglycerides [CTL = 46.99 ± 5.87; CTL (L) = 57.46 ± 14.38; CAF = 43.98 ± 5.17; and CAF (L) = 56.9 ± 6.12; p = 0.007] and total cholesterol (CTL = 70.62 ± 6.80; CTL (L) = 79.41 ± 13.07; CAF = 71.01 ± 5.52; and CAF (L) = 79.23 ± 6.881; p = 0.003). Conclusions: Laser PBM decreased gene expression of the studied genes in the adipose tissue, indicating that PBM is able to block the catabolic responses of this tissue. Interestingly, the CAF (L) and CAF animals presented the same CLT (L) phenotype, however, without increasing the feed intake and the relative weight of the adipose tissue. The description of these phenomena opens a new perspective for the study of the action of low-level laser in adipose tissue.
Collapse
Affiliation(s)
- Fernando F P Mafra
- Technology Research Center, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| | - Michel M Macedo
- Technology Research Center, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| | - Arthur Vecchi Lopes
- Technology Research Center, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| | | | | | - Pedro P Gattai
- Renal Division, Molecular Biology Laboratory, Medicine Department, Federal University of São Paulo, UNIFESP, São Paulo, Brazil
| | - Mirian A Boim
- Renal Division, Molecular Biology Laboratory, Medicine Department, Federal University of São Paulo, UNIFESP, São Paulo, Brazil
| | | | | | - Jan Magnus Bjordal
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Rodrigo Álvaro Brandão Lopes-Martins
- Laboratory of Biophotonics and Experimental Therapeutics, Institute of Research and Development, University of Vale do Paraíba-UNIVAP, São José dos Campos, São Paulo, Brazil.,Post-Graduate Program in Pharmacology, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
10
|
Miggitsch C, Meryk A, Naismith E, Pangrazzi L, Ejaz A, Jenewein B, Wagner S, Nägele F, Fenkart G, Trieb K, Zwerschke W, Grubeck-Loebenstein B. Human bone marrow adipocytes display distinct immune regulatory properties. EBioMedicine 2019; 46:387-398. [PMID: 31327694 PMCID: PMC6711052 DOI: 10.1016/j.ebiom.2019.07.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 01/14/2023] Open
Abstract
Background The bone marrow (BM) is a major reservoir of resting memory T cells and long-lived plasma cells, capable of providing protection against recurrent infections. Whether the age-related accumulation of adipose tissue in the BM affects the functionality and maintenance of memory cells is not well understood. Methods For the first time, we compare human femur marrow adipose tissue (fMAT) and subcutaneous white adipose tissue of the thigh (tsWAT) obtained from the same donors. Therefore, we used microarrays for comparative global gene expression analysis, and employed assays to analyse parameters of adipocyte biology, inflammation and oxidative stress. Findings We show that fMAT adipocytes differ significantly from tsWAT adipocytes regarding specific gene expression profiles including inflammatory responses and adipogenesis/adipocyte phenotype. Concomitant with considerably lower levels of CD36, a membrane-associated protein important for long-chain fatty acid uptake that is used as maturation marker, fMAT adipocytes are smaller and contain less triglycerides. fMAT adipocytes secrete similar levels of adiponectin and leptin as tsWAT adipocytes, and express increased levels of pro-inflammatory molecules concomitant with an elevated generation of reactive oxygen species (ROS) and impaired function of plasma cells in the BM. Interpretation Our findings suggest that fMAT is a unique type of adipose tissue containing small adipocytes with lower CD36 protein and triglyceride levels than tsWAT but high adipokine secretion. Moreover, fMAT adipocytes secrete high levels of pro-inflammatory cytokines, contributing to inflammation and impairment of plasma cell function in the BM, suggesting that fMAT has more immune regulatory functions than tsWAT.
Collapse
Affiliation(s)
- Carina Miggitsch
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| | - Andreas Meryk
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria.
| | - Erin Naismith
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| | - Luca Pangrazzi
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| | - Asim Ejaz
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria; Department of Plastic Surgery, University of Pittsburgh, 3550 Terrace Street 6B Scaife Hall, Pittsburgh, PA 15261, United States
| | - Brigitte Jenewein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| | - Sonja Wagner
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria; Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| | - Fabiana Nägele
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| | - Gabriella Fenkart
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria; Department for Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology, University of Innsbruck, Technikerstraße 25, Innsbruck, Tyrol 6020, Austria
| | - Klemens Trieb
- Department of Orthopedic Surgery, Klinikum Wels, Grieskirchner Str. 42, Wels, Upper Austria 4600, Austria; Computed Tomography Research Group, University of Applied Sciences Upper Austria, Stelzhamerstr. 23, 4600 Wels, Austria
| | - Werner Zwerschke
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| | - Beatrix Grubeck-Loebenstein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| |
Collapse
|
11
|
Emamalipour M, Seidi K, Jahanban‐Esfahlan A, Jahanban‐Esfahlan R. Implications of resistin in type 2 diabetes mellitus and coronary artery disease: Impairing insulin function and inducing pro‐inflammatory cytokines. J Cell Physiol 2019; 234:21758-21769. [DOI: 10.1002/jcp.28913] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Melissa Emamalipour
- Department of Medical Biotechnology Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Khaled Seidi
- Department of Medical Biotechnology Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Jahanban‐Esfahlan
- Department of Medical Biotechnology Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Rana Jahanban‐Esfahlan
- Department of Medical Biotechnology Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
12
|
Circulating biomarkers to identify cardiometabolic complications in patients with Obstructive Sleep Apnea: A systematic review. Sleep Med Rev 2019; 44:48-57. [DOI: 10.1016/j.smrv.2018.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022]
|
13
|
Yaribeygi H, Simental-Mendía LE, Barreto GE, Sahebkar A. Metabolic effects of antidiabetic drugs on adipocytes and adipokine expression. J Cell Physiol 2019; 234:16987-16997. [PMID: 30825205 DOI: 10.1002/jcp.28420] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Abstract
Several classes of antidiabetic agents have been developed that achieve their hypoglycemic outcomes via various molecular mechanisms. Adipose tissue is a major metabolic and energy-storing tissue and plays an important role in many metabolic pathways, including insulin signaling and insulin sensitivity. Adipose tissue monitors and regulates whole body homeostasis via production and release of potent proteins, such as adipokine and adiponectin, into the circulation. Therefore, any agent that can modulate adipocyte metabolism can, in turn, affect metabolic and glucose homeostatic pathways. Antidiabetic drugs are not only recognized primarily as hypoglycemic agents but may also alter adipose tissue itself, as well as adipocyte-derived adipokine expression and secretion. In the current review, we present the major evidence concerning routinely used antidiabetic agents on adipocyte metabolism and adipokine expression.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Luis E Simental-Mendía
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, México, México
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Banihani SA, Abu-Alia KF, Khabour OF, Alzoubi KH. Association between Resistin Gene Polymorphisms and Atopic Dermatitis. Biomolecules 2018; 8:biom8020017. [PMID: 29584687 PMCID: PMC6023010 DOI: 10.3390/biom8020017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 11/22/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic, relapsing, and inflammatory skin disorder. It is characterized by an inappropriate skin barrier function, allergen sensitization, and recurrent skin infections. Resistin is an adipokine expressed mainly in macrophages and monocytes; it has a role in the inflammatory process and is associated with multiple inflammatory human diseases; however, only few studies linked resistin to atopic dermatitis. This study tested the association between G>A (rs3745367) and C>T (rs3219177) single nucleotide polymorphisms (SNPs) of the RETN gene with atopic dermatitis. In addition, it explored the relationship between serum resistin protein and atopic dermatitis. To achieve objectives of this study, 162 atopic dermatitis patients and 161 healthy participants were recruited in the study. A significant association was detected between rs3745367 and atopic dermatitis with age and gender specificity (p < 0.05), while no significant association between rs3219177 and atopic dermatitis was found (p > 0.05). For the serum resistin levels, a significant decrease was indicated in atopic dermatitis patients compared to healthy subjects (p < 0.05). In conclusion, rs3745367 may play a gender and age-specific role in atopic dermatitis. In addition, the significant decrease in the resistin protein level confirmed this association.
Collapse
Affiliation(s)
- Saleem A Banihani
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Khawla F Abu-Alia
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| |
Collapse
|
15
|
van 't Erve TJ, Kadiiska MB, London SJ, Mason RP. Classifying oxidative stress by F 2-isoprostane levels across human diseases: A meta-analysis. Redox Biol 2017; 12:582-599. [PMID: 28391180 PMCID: PMC5384299 DOI: 10.1016/j.redox.2017.03.024] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 02/07/2023] Open
Abstract
The notion that oxidative stress plays a role in virtually every human disease and environmental exposure has become ingrained in everyday knowledge. However, mounting evidence regarding the lack of specificity of biomarkers traditionally used as indicators of oxidative stress in human disease and exposures now necessitates re-evaluation. To prioritize these re-evaluations, published literature was comprehensively analyzed in a meta-analysis to quantitatively classify the levels of systemic oxidative damage across human disease and in response to environmental exposures. In this meta-analysis, the F2-isoprostane, 8-iso-PGF2α, was specifically chosen as the representative marker of oxidative damage. To combine published values across measurement methods and specimens, the standardized mean differences (Hedges’ g) in 8-iso-PGF2α levels between affected and control populations were calculated. The meta-analysis resulted in a classification of oxidative damage levels as measured by 8-iso-PGF2α across 50 human health outcomes and exposures from 242 distinct publications. Relatively small increases in 8-iso-PGF2α levels (g<0.8) were found in the following conditions: hypertension (g=0.4), metabolic syndrome (g=0.5), asthma (g=0.4), and tobacco smoking (g=0.7). In contrast, large increases in 8-iso-PGF2α levels were observed in pathologies of the kidney, e.g., chronic renal insufficiency (g=1.9), obstructive sleep apnoea (g=1.1), and pre-eclampsia (g=1.1), as well as respiratory tract disorders, e.g., cystic fibrosis (g=2.3). In conclusion, we have established a quantitative classification for the level of 8-iso-PGF2α generation in different human pathologies and exposures based on a comprehensive meta-analysis of published data. This analysis provides knowledge on the true involvement of oxidative damage across human health outcomes as well as utilizes past research to prioritize those conditions requiring further scrutiny on the mechanisms of biomarker generation. Oxidative damage is highly variable in human conditions as measured by F2-isoprostanes. Respiratory tract and urogenital diseases have the highest F2-isoprostanes. Cancer and cardiovascular diseases have surprisingly low F2-isoprostanes.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| | - Maria B Kadiiska
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Stephanie J London
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| |
Collapse
|
16
|
Vieira-Potter VJ. Effects of Sex Hormones and Exercise on Adipose Tissue. SEX HORMONES, EXERCISE AND WOMEN 2017:257-284. [DOI: 10.1007/978-3-319-44558-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Huang X, Yang Z. Resistin's, obesity and insulin resistance: the continuing disconnect between rodents and humans. J Endocrinol Invest 2016; 39:607-15. [PMID: 26662574 DOI: 10.1007/s40618-015-0408-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/24/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE This review aimed to discuss the conflicting findings from resistin research in rodents and humans as well as recent advances in our understanding of resistin's role in obesity and insulin resistance. METHODS A comprehensive review and synthesis of resistin's role in obesity and insulin resistance as well as conflicting findings from resistin research in rodents and humans. RESULTS In rodents, resistin is increased in high-fat/high-carbohydrate-fed, obese states characterized by impaired glucose uptake and insulin sensitivity. Resistin plays a causative role in the development of insulin resistance in rodents via 5' AMP-activated protein kinase (AMPK)-dependent and AMPK-independent suppressor of cytokine signaling-3 (SOCS-3) signaling. In contrast to rodents, human resistin is primarily secreted by peripheral-blood mononuclear cells (PBMCs) as opposed to white adipocytes. Circulating resistin levels have been positively associated with central/visceral obesity (but not BMI) as well as insulin resistance, while other studies show no such association. Human resistin has a role in pro-inflammatory processes that have been conclusively associated with obesity and insulin resistance. PBMCs, as well as vascular cells, have been identified as the primary targets of resistin's pro-inflammatory activity via nuclear factor-κB (NF-κB, p50/p65) and other signaling pathways. CONCLUSION Mounting evidence reveals a continuing disconnect between resistin's role in rodents and humans due to significant differences between these two species with respect to resistin's gene and protein structure, differential gene regulation, tissue-specific distribution, and insulin resistance induction as well as a paucity of evidence regarding the resistin receptor and downstream signaling mechanisms of action.
Collapse
Affiliation(s)
- X Huang
- Department of Radiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Department of Internal Medicine, Hechuan Hospital of First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Z Yang
- Department of Internal Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
18
|
Xu T, Lin Y, Sun S, Zhang Q. Changes in four plasma adipokines before and after sleep in OSAS patients. CLINICAL RESPIRATORY JOURNAL 2016; 11:968-974. [PMID: 26780194 DOI: 10.1111/crj.12449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 12/19/2015] [Accepted: 01/04/2016] [Indexed: 01/10/2023]
Abstract
OBJECTIVES This study aimed to investigate whether plasma levels of four adipokines (chemerin, macrophage migratory inhibitory factor [MIF], visceral adipose tissue-derived serine protease inhibitor [vaspin] and chemokine CXCL5) are associated with the presence of obstructive sleep apnea syndrome (OSAS) in patients. METHODS A total of 58 male patients with OSAS and 16 healthy male subjects were enrolled in this study. RESULTS Four plasma adipokines (chemerin, MIF, vaspin and chemokine CXCL5) were significantly higher (P < 0.05) in severe OSAS patients than in the control group after polysomnography. Plasma levels of these four adipokines were higher (P < 0.05) after sleep than before sleep. These levels were also associated with anthropometric measurements for BMI, neck circumference, body fat percentage, sleep parameters including the apnea/hypopnea index (AHI) and minimum SaO2 %. Multiple regression analyses showed that BMI, AHI and mean SaO2 % were major factors affecting the four plasma adipokine levels in OSAS patients. CONCLUSIONS Plasma chemerin, MIF, vaspin and chemokine CXCL5 levels were severely elevated with OSAS, and were also connected with obesity.
Collapse
Affiliation(s)
- Ting Xu
- Respiratory Department, Nanjing Chest Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yong Lin
- Respiratory Department, Nanjing Chest Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Siqing Sun
- Respiratory Department, Nanjing Chest Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Qiang Zhang
- Respiratory Department, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
19
|
De Luca Canto G, Pachêco-Pereira C, Aydinoz S, Major PW, Flores-Mir C, Gozal D. Biomarkers associated with obstructive sleep apnea and morbidities: a scoping review. Sleep Med 2015; 16:347-57. [PMID: 25747333 DOI: 10.1016/j.sleep.2014.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/16/2014] [Accepted: 12/27/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To map potential biomarkers of obstructive sleep apnea (OSA)-associated morbidities in both adults and children, to identify gaps in current evidence, and to determine the value of conducting a full systematic review. METHODS A scoping review was undertaken of studies in patients with OSA that evaluated the potential value of biological markers in identifying OSA-associated morbidities. Retained articles were only those studies whose main objective was to identify morbidity biomarkers in subjects with OSA, the latter being confirmed with a full overnight polysomnography (PSG) in a laboratory or at-home settings. The methodology of the selected studies was classified using an adaptation of the evidence quality criteria recommended by the American Academy of Pediatrics. Additionally the biomarkers were categorized according to their potential clinical applicability. RESULTS 572 citations were identified of which 48 met inclusion criteria. Thirty-four studies were conducted in adults and 14 involved children. Most of the studies evaluated blood biomarkers, and presented 31 potential diagnostic biomarkers. CONCLUSION The majority of studies that performed explored blood-based biomarkers, with most not identifying definitive morbidity biomarkers. Of the potentially promising morbidity biomarkers, plasma IL-6 and high sensitivity C-reactive protein appear to exhibit a favorable profile, and may discriminate OSA patients with and without morbidities in both adults and children. MRP 8/14 was retained in children as well as cardiovascular morbidity-associated biomarker. Urinary neurotransmitters may also provide a good tool for screening OSA cognitive morbidity in children.
Collapse
Affiliation(s)
- Graziela De Luca Canto
- Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil; School of Dentistry, Faculty of Medicine and Dentistry, Edmonton Clinic Health Academy, University of Alberta, 11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - Camila Pachêco-Pereira
- School of Dentistry, Faculty of Medicine and Dentistry, Edmonton Clinic Health Academy, University of Alberta, 11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - Secil Aydinoz
- GATA Haydarpasa Teaching Hospital, Istanbul, Turkey; Section of Pediatric Sleep Medicine, Department of Pediatrics, The University of Chicago, USA
| | - Paul W Major
- School of Dentistry, Faculty of Medicine and Dentistry, Edmonton Clinic Health Academy, University of Alberta, 11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - Carlos Flores-Mir
- School of Dentistry, Faculty of Medicine and Dentistry, Edmonton Clinic Health Academy, University of Alberta, 11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - David Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, 5721 S. Maryland Avenue, MC 8000, Suite K-160, Chicago, IL 60637, USA.
| |
Collapse
|
20
|
|
21
|
What can blood biomarkers tell us about cardiovascular risk in obstructive sleep apnea? Sleep Breath 2015; 19:755-68. [DOI: 10.1007/s11325-015-1143-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/01/2015] [Accepted: 02/08/2015] [Indexed: 12/31/2022]
|
22
|
Lam DCL, Lam KSL, Ip MSM. Obstructive sleep apnoea, insulin resistance and adipocytokines. Clin Endocrinol (Oxf) 2015; 82:165-77. [PMID: 25154902 DOI: 10.1111/cen.12597] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/24/2014] [Accepted: 08/18/2014] [Indexed: 12/17/2022]
Abstract
Obstructive sleep apnoea (OSA) is associated with multiple cardiometabolic abnormalities. Obesity is considered a major risk factor for the development of OSA, and it is also an established risk factor for insulin resistance and other cardiometabolic disorders. The enigma remains whether OSA has any causal role in the adverse metabolic profile, independent of or beyond that due to obesity. Sleep apnoeas and hypopnoeas result directly in intermittent hypoxaemia and cerebral arousals, both of which may evoke a cascade of downstream biologic responses in various body tissues and cells. Adipose tissue is a major source of adipocytokines many of which play important roles in the regulation of various metabolic functions. It is hypothesized that OSA may, through its unique pathophysiology, affect metabolic function through modulation of production or action of adipocytokines. This review focuses on insulin resistance, glucose metabolism and relevant adipocytokines in the context of OSA.
Collapse
Affiliation(s)
- David C L Lam
- Department of Medicine, University of Hong Kong, Hong Kong SAR, China
| | | | | |
Collapse
|
23
|
Vieira-Potter VJ. Inflammation and macrophage modulation in adipose tissues. Cell Microbiol 2014; 16:1484-92. [PMID: 25073615 DOI: 10.1111/cmi.12336] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022]
Abstract
The adipose tissue is an active endocrine organ that harbours not only mature and developing adipocytes but also a wide array of immune cells, including macrophages, a key immune cell in determining metabolic functionality. With adipose tissue expansion, M1 pro-inflammatory macrophage infiltration increases, activates other immune cells, and affects lipid trafficking and metabolism, in part via inhibiting mitochondrial function and increasing reactive oxygen species (ROS). The pro-inflammatory cytokines produced and released interfere with insulin signalling, while inhibiting M1 macrophage activation improves systemic insulin sensitivity. In healthy adipose tissue, M2 alternative macrophages predominate and associate with enhanced lipid handling and mitochondrial function, anti-inflammatory cytokine production, and inhibition of ROS. The sequence of events leading to macrophage infiltration and activation in adipose tissue remains incompletely understood but lipid handling of both macrophages and adipocytes appears to play a major role.
Collapse
Affiliation(s)
- Victoria J Vieira-Potter
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
24
|
Martínez Cerón E, Casitas Mateos R, García-Río F. Sleep apnea-hypopnea syndrome and type 2 diabetes. A reciprocal relationship? Arch Bronconeumol 2014; 51:128-39. [PMID: 25145320 DOI: 10.1016/j.arbres.2014.06.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/15/2014] [Accepted: 06/16/2014] [Indexed: 01/03/2023]
Abstract
Epidemiological data suggest that sleep apnea-hypopnea syndrome (SAHS) is independently associated with the development of insulin resistance and glucose intolerance. Moreover, despite significant methodological limitations, some studies report a high prevalence of SAHS in patients with type 2 diabetes mellitus (DM2). A recent meta-analysis shows that moderate-severe SAHS is associated with an increased risk of DM2 (relative risk=1.63 [1.09 to 2.45]), compared to the absence of apneas and hypopneas. Common alterations in various pathogenic pathways add biological plausibility to this relationship. Intermittent hypoxia and sleep fragmentation, caused by successive apnea-hypopnea episodes, induce several intermediate disorders, such as activation of the sympathetic nervous system, oxidative stress, systemic inflammation, alterations in appetite-regulating hormones and activation of the hypothalamic-pituitary-adrenal axis which, in turn, favor the development of insulin resistance, its progression to glucose intolerance and, ultimately, to DM2. Concomitant SAHS seems to increase DM2 severity, since it worsens glycemic control and enhances the effects of atherosclerosis on the development of macrovascular complications. Furthermore, SAHS may be associated with the development of microvascular complications: retinopathy, nephropathy or diabetic neuropathy in particular. Data are still scant, but it seems that DM2 may also worsen SAHS progression, by increasing the collapsibility of the upper airway and the development of central apneas and hypopneas.
Collapse
Affiliation(s)
| | | | - Francisco García-Río
- Servicio de Neumología, Hospital Universitario La Paz, IdiPAZ, Madrid, España; Universidad Autónoma de Madrid, Madrid, España; CIBER de enfermedades respiratorias (CIBERES), Madrid, España.
| |
Collapse
|
25
|
Badran M, Ayas N, Laher I. Insights into obstructive sleep apnea research. Sleep Med 2014; 15:485-95. [PMID: 24824769 DOI: 10.1016/j.sleep.2014.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/03/2014] [Accepted: 01/08/2014] [Indexed: 01/11/2023]
Abstract
Moderate to severe obstructive sleep apnea (OSA) occurs in 10-17% of middle aged men and 3-9% of middle-aged women with a higher prevalence among obese subjects. This condition is an independent risk factor for many cardiovascular diseases. Intermittent hypoxia is a major pathophysiologic character of OSA; it can lead to oxidative stress and inflammation, which in their turn cause endothelial dysfunction, a hallmark of atherosclerosis. Many animal models have been designed to mimic OSA in human patients to allow more in-depth investigation of biological and cellular mechanisms of this condition. This review discusses the cardiovascular outcomes of OSA and some of the animal models that are being used to investigate it.
Collapse
Affiliation(s)
- Mohammad Badran
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Najib Ayas
- Divisions of Critical Care and Respiratory Medicine, Department of Medicine, University of British Columbia, Sleep Disorders Program, UBC Hospital, Division of Critical Care Medicine, Providence Health Care, Vancouver, BC, Canada
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|