1
|
Zhou P, Huang M, Hang Y, Liu S, Yao G, Tang X, Xia N, Sun L. Artesunate alleviates Sjögren's Syndrome by inhibiting the interferon-α signaling in plasmacytoid dendritic cells via TLR-MyD88-IRF7. Biomed Pharmacother 2024; 177:116885. [PMID: 38878633 DOI: 10.1016/j.biopha.2024.116885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disease in which the salivary glands (SGs) and the lacrimal glands (LGs) are affected by lymphocytic infiltration and inflammation. It has been reported that interferon-α (IFN-α) released by plasmacytoid dendritic cells (pDCs) contribute to the pathology of SS, and ART has been shown to effectively ameliorates SS. Despite the current research endeavors, the mechanism of how ART works in the treatment of SS remains to be fully elucidated. Whether ART can treat SS by inhibiting IFN-α remains unclear. This hypothesis was tested both in vivo and in vitro settings during the study. The SS model mice, which were treated with ART, showed amelioration in symptoms related to dryness. RNA-seq analysis revealed strong anti-IFN-α signaling response upon ART treatment. Additional in vitro studies provided further confirmation that the application of ART inhibits the MyD88 protein expression and the nuclear translocation of IRF7. This suggests that the intervention of ART in the TLR-MyD88-IRF7 pathway plays a role in the therapeutic approach for SS. In summary, this study highlighted the therapeutic potential of ART in SS and ART inhibited the IFN-α signaling in pDCs via the TLR-MyD88-IRF7 pathway.
Collapse
Affiliation(s)
- Panpan Zhou
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Mengxi Huang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Yang Hang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Sha Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Genhong Yao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Nan Xia
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China; Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China.
| |
Collapse
|
2
|
Ma W, Huang G, Wang Z, Wang L, Gao Q. IRF7: role and regulation in immunity and autoimmunity. Front Immunol 2023; 14:1236923. [PMID: 37638030 PMCID: PMC10449649 DOI: 10.3389/fimmu.2023.1236923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Interferon regulatory factor (IRF) 7 was originally identified as master transcriptional factor that produced IFN-I and regulated innate immune response, subsequent studies have revealed that IRF7 performs a multifaceted and versatile functions in multiple biological processes. In this review, we provide a comprehensive overview on the current knowledge of the role of IRF7 in immunity and autoimmunity. We focus on the latest regulatory mechanisms of IRF7 in IFN-I, including signaling pathways, transcription, translation, and post-translational levels, the dimerization and nuclear translocation, and the role of IRF7 in IFN-III and COVID-19. In addition to antiviral immunity, we also discuss the role and mechanism of IRF7 in autoimmunity, and the further research will expand our understanding of IRF7.
Collapse
Affiliation(s)
- Wei Ma
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Gang Huang
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhi Wang
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Wang
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qiangguo Gao
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
3
|
Blockage of TRPV4 Downregulates the Nuclear Factor-Kappa B Signaling Pathway to Inhibit Inflammatory Responses and Neuronal Death in Mice with Pilocarpine-Induced Status Epilepticus. Cell Mol Neurobiol 2023; 43:1283-1300. [PMID: 35840809 DOI: 10.1007/s10571-022-01249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/25/2022] [Indexed: 11/03/2022]
Abstract
The blockage of transient receptor potential vanilloid 4 (TRPV4) inhibits inflammation and reduces hippocampal neuronal injury in a pilocarpine-induced mouse model of temporal lobe epilepsy. However, the underlying mechanisms remain largely unclear. NF-κB signaling pathway is responsible for the inflammation and neuronal injury during epilepsy. Here, we explored whether TRPV4 blockage could affect the NF-κB pathway in mice with pilocarpine-induced status epilepticus (PISE). Application of a TRPV4 antagonist markedly attenuated the PISE-induced increase in hippocampal HMGB1, TLR4, phospho (p)-IκK (p-IκK), and p-IκBα protein levels, as well as those of cytoplasmic p-NF-κB p65 (p-p65) and nuclear NF-κB p65 and p50; in contrast, the application of GSK1016790A, a TRPV4 agonist, showed similar changes to PISE mice. Administration of the TLR4 antagonist TAK-242 or the NF-κB pathway inhibitor BAY 11-7082 led to a noticeable reduction in the hippocampal protein levels of cleaved IL-1β, IL-6 and TNF, as well as those of cytoplasmic p-p65 and nuclear p65 and p50 in GSK1016790A-injected mice. Finally, administration of either TAK-242 or BAY 11-7082 greatly increased neuronal survival in hippocampal CA1 and CA2/3 regions in GSK1016790A-injected mice. Therefore, TRPV4 activation increases HMGB1 and TLR4 expression, leading to IκK and IκBα phosphorylation and, consequently, NF-κB activation and nuclear translocation. The resulting increase in pro-inflammatory cytokine production is responsible for TRPV4 activation-induced neuronal injury. We conclude that blocking TRPV4 can downregulate HMGB1/TLR4/IκK/κBα/NF-κB signaling following PISE onset, an effect that may underlie the anti-inflammatory response and neuroprotective ability of TRPV4 blockage in mice with PISE.
Collapse
|
4
|
Teng Y, Xu F, Zhang X, Mu J, Sayed M, Hu X, Lei C, Sriwastva M, Kumar A, Sundaram K, Zhang L, Park JW, Chen SY, Zhang S, Yan J, Merchant ML, Zhang X, McClain CJ, Wolfe JK, Adcock RS, Chung D, Palmer KE, Zhang HG. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Mol Ther 2021; 29:2424-2440. [PMID: 33984520 PMCID: PMC8110335 DOI: 10.1016/j.ymthe.2021.05.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/28/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022] Open
Abstract
Lung inflammation is a hallmark of coronavirus disease 2019 (COVID-19). In this study, we show that mice develop inflamed lung tissue after being administered exosomes released from the lung epithelial cells exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Nsp12 and Nsp13 (exosomesNsp12Nsp13). Mechanistically, we show that exosomesNsp12Nsp13 are taken up by lung macrophages, leading to activation of nuclear factor κB (NF-κB) and the subsequent induction of an array of inflammatory cytokines. Induction of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β from exosomesNsp12Nsp13-activated lung macrophages contributes to inducing apoptosis in lung epithelial cells. Induction of exosomesNsp12Nsp13-mediated lung inflammation was abolished with ginger exosome-like nanoparticle (GELN) microRNA (miRNA aly-miR396a-5p. The role of GELNs in inhibition of the SARS-CoV-2-induced cytopathic effect (CPE) was further demonstrated via GELN aly-miR396a-5p- and rlcv-miR-rL1-28-3p-mediated inhibition of expression of Nsp12 and spike genes, respectively. Taken together, our results reveal exosomesNsp12Nsp13 as potentially important contributors to the development of lung inflammation, and GELNs are a potential therapeutic agent to treat COVID-19.
Collapse
Affiliation(s)
- Yun Teng
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | - Fangyi Xu
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Xiangcheng Zhang
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; Department of ICU, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu 223300, China
| | - Jingyao Mu
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Mohammed Sayed
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40202, USA
| | - Xin Hu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Lei
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Mukesh Sriwastva
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Anil Kumar
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Kumaran Sundaram
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Lifeng Zhang
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Juw Won Park
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40202, USA; KBRIN Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Shuangqin Zhang
- Peeples Cancer Institute at Hamilton Medical Center, Dalton, GA 30720, USA
| | - Jun Yan
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY 40202, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Craig J McClain
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jennifer K Wolfe
- Center for Predictive Medicine for Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Robert S Adcock
- Center for Predictive Medicine for Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Donghoon Chung
- Department of Microbiology & Immunology, University of Louisville, Louisville, KY 40202, USA; Center for Predictive Medicine for Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Kenneth E Palmer
- Center for Predictive Medicine for Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Huang-Ge Zhang
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; Department of Microbiology & Immunology, University of Louisville, Louisville, KY 40202, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
5
|
Yan Y, Qian H, Cao Y, Zhu T. Nuclear factor-κB inhibitor Bay11-7082 inhibits gastric cancer cell proliferation by inhibiting Gli1 expression. Oncol Lett 2021; 21:301. [PMID: 33732377 PMCID: PMC7905653 DOI: 10.3892/ol.2021.12562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulated nuclear factor (NF)-κB signaling pathway is involved in gastric carcinogenesis. The present study aimed to investigate the antitumor effects of the NF-κB inhibitor, Bay11-7082, on gastric cancer (GC) and elucidate its underlying molecular mechanisms. The MTT assay was performed to assess the effects of Bay11-7082 on the proliferation of HGC27 and MKN45 gastric cancer cells. In addition, the Transwell and wound healing assays were performed to determine cell migration and invasion, respectively. Reverse transcription-quantitative PCR and western blot analyses were performed to detect the mRNA and protein expression levels of the target genes. The results demonstrated that the half-maximal inhibitory concentration (IC50) of Bay11-7082 in HGC27 cells was 24.88, 6.72 and 4.23 nM at 24, 48 and 72 h, respectively. Furthermore, the IC50 of Bay11-7082 in MKN45 cells was 29.11, 11.22 and 5.88 nM at 24, 48 and 72 h, respectively. Treatment with Bay11-7082 significantly suppressed the cell migratory and invasive abilities compared with the control group. Notably, Bay11-7082 suppressed GLI Family Zinc Finger 1 (Gli1) mRNA and protein expression levels. Taken together, the results of the present study demonstrated that Bay11-7082 inhibited GC cell proliferation, at least in part through inhibition of Gli1.
Collapse
Affiliation(s)
- Yan Yan
- Department of Pharmacology, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, Jiangsu 215600, P.R. China
| | - Heya Qian
- Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, Jiangsu 215600, P.R. China
| | - Ying Cao
- Department of Pharmacology, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, Jiangsu 215600, P.R. China
| | - Tao Zhu
- Department of Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, Jiangsu 215600, P.R. China
| |
Collapse
|
6
|
Zhou Y, Chen X, Cao Z, Li J, Long H, Wu Y, Zhang Z, Sun Y. R848 Is Involved in the Antibacterial Immune Response of Golden Pompano ( Trachinotus ovatus) Through TLR7/8-MyD88-NF-κB-Signaling Pathway. Front Immunol 2021; 11:617522. [PMID: 33537035 PMCID: PMC7848160 DOI: 10.3389/fimmu.2020.617522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/01/2020] [Indexed: 01/24/2023] Open
Abstract
R848 is an imidazoquinoline compound that is a specific activator of toll-like receptor (TLR) 7/8 and is often used in immunological research in mammals and teleosts. However, the immune responses initiated by R848 through the TLR7/8 pathway in response to bacterial infection remain largely unexplored in teleosts. In the current study, we investigated the antibacterial response and the participating signaling pathway initiated by R848 in golden pompano (Trachinotus ovatus). We found that R848 could stimulate the proliferation of head kidney lymphocytes (HKLs) in a dose-dependent manner, enhance the survival rate of HKLs, and inhibit the replication of bacteria in vivo. However, these effects induced by R848 were significantly reduced when chloroquine (CQ) was used to blocked endosomal acidification. Additionally, an in vivo study showed that R848 strengthened the antibacterial immunity of fish through a TLR7/8 and Myd88-dependent signaling pathway. A cellular experiment showed that Pepinh-MYD (a Myd88 inhibitor) significantly reduced the R848-mediated proliferation and survival of HKLs. Luciferase activity analysis showed that R848 enhanced the nuclear factor kappa B (NF-κB) activity, whereas this activity was reduced when CQ and Pepinh-MYD were present. Additionally, when an NF-κB inhibitor was present, the R848-mediated pro-proliferative and pro-survival effects on HKLs were significantly diminished. An in vivo study showed that knockdown of TLR7, TLR8, and Myd88 expression in golden pompano via siRNA following injection of R848 resulted in increased bacterial dissemination and colonization in fish tissues compared to that of fish injection of R848 alone, suggesting that R848-induced antibacterial immunity was significantly reduced. In conclusion, these results indicate that R848 plays an essential role in the antibacterial immunity of golden pompano via the TLR7/8-Myd88-NF-κB- signaling pathway.
Collapse
Affiliation(s)
- Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Xiaojuan Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Jianlong Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Ying Wu
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Zhengshi Zhang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| |
Collapse
|
7
|
Shigesaka M, Ito T, Inaba M, Imai K, Yamanaka H, Azuma Y, Tanaka A, Amuro H, Nishizawa T, Son Y, Satake A, Ozaki Y, Nomura S. Mycophenolic acid, the active form of mycophenolate mofetil, interferes with IRF7 nuclear translocation and type I IFN production by plasmacytoid dendritic cells. Arthritis Res Ther 2020; 22:264. [PMID: 33168076 PMCID: PMC7654586 DOI: 10.1186/s13075-020-02356-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/18/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Both humoral and cellular immune mechanisms are involved in the onset and progression of autoimmune responses in systemic lupus erythematosus (SLE). Plasmacytoid dendritic cells (pDCs) play a central role in the pathogenesis of SLE via the dysregulation of type I interferon (IFN) production; these cells act together with activated myeloid DCs (mDCs) to amplify the vicious pathogenic spiral of autoimmune disorders. Therefore, control of aberrant DC activation in SLE may provide an alternative treatment strategy against this disease. Mycophenolate mofetil (MMF), which has been used to treat lupus nephritis, specifically blocks the proliferation of B and T lymphocytes via inhibition of inosine-5-monophosphate dehydrogenase. Here, we focus on the effects of MMF in targeting DC functions, especially the IFN response of pDCs. METHODS We isolated human blood pDCs and mDCs by flow cytometry and examined the effect of mycophenolic acid (MPA), which is a metabolic product of MMF, on the toll-like receptor (TLR) ligand response of DC subsets. Additionally, we cultured pDCs with serum from SLE patients in the presence or absence of MPA and then examined the inhibitory function of MPA on SLE serum-induced IFN-α production. RESULTS We found that treatment with 1-10 μM of MPA (covering the clinical trough plasma concentration range) dose-dependently downregulated the expression of CD80 and CD86 on mDCs (but not pDCs) without inducing apoptosis, in response to R848 or CpG-ODN, respectively. Notably, in pDCs, MPA significantly suppressed IFN-α production with IRF7 nuclear translocation and repressed the AKT activity. In addition, MPA inhibited IL-12 production with STAT4 expression in mDCs. We further identified that MPA had an inhibitory effect on SLE serum-induced IFN-α production by pDCs. CONCLUSIONS Our data suggest that MPA can interrupt the vicious pathogenic spiral of autoimmune disorders by regulating the function of DC subsets. This work unveiled a novel mechanism for the therapeutic ability of MMF against SLE.
Collapse
Affiliation(s)
- Minoru Shigesaka
- First Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| | - Tomoki Ito
- First Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan.
| | - Muneo Inaba
- First Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| | - Kai Imai
- First Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| | - Hideki Yamanaka
- First Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| | - Yoshiko Azuma
- First Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| | - Akihiro Tanaka
- First Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| | - Hideki Amuro
- First Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| | - Tohru Nishizawa
- First Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| | - Yonsu Son
- First Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| | - Atsushi Satake
- First Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| | - Yoshio Ozaki
- First Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| | - Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| |
Collapse
|
8
|
BVDV-1 induces interferon-beta gene expression through a pathway involving IRF1, IRF7, and NF-κB activation. Mol Immunol 2020; 128:33-40. [PMID: 33053462 DOI: 10.1016/j.molimm.2020.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 01/06/2023]
Abstract
The bovine viral diarrhea virus (BVDV-1) is a pathogen with the capacity to modulate the interferon type I system. To further investigate the effects of BVDV-1 on the production of the immune response, the Madin-Darby bovine kidney cell line was infected with the cytopathic CH001 field isolate of BVDV-1, and the IFNbeta expression profiles were analyzed. The results showed that cpBVDV-1 was able to induce the production of IFNbeta in a way similar to polyinosinic-polycytidylic acid, but with less intensity. Interestingly, all cpBVDV-1 activities were blocked by pharmacological inhibitors of the IRF-1, IRF-7, and NF-κB signaling pathway, and the level of IFNbeta decreased at the level of transcript and protein. These results, together with in silico analyses showing the presence of several regulatory consensus target motifs, suggest that cpBVDV-1 regulates IFNbeta expression in bovines through the activation of several key transcription factors. Collectively, the results suggest that during cpBVDV-1 infection, cross talk is evident between various signaling pathways involved in transcriptional activation of IFNbeta in cattle.
Collapse
|
9
|
Kosukegawa I, Okazaki S, Yamamoto M, Nagoya S, Suzuki C, Shimizu J, Takahashi H, Yamashita T. The proton pump inhibitor, lansoprazole, prevents the development of non-traumatic osteonecrosis of the femoral head: an experimental and prospective clinical trial. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2020; 30:713-721. [PMID: 31938894 PMCID: PMC7181448 DOI: 10.1007/s00590-020-02622-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/08/2020] [Indexed: 12/02/2022]
Abstract
Background An effective prevention strategy for osteonecrosis of the femoral head (ONFH) has yet to be established. We previously reported that the innate immune system via the toll-like receptor (TLR) response induced by corticosteroids leads to the development of ONFH and that repression of IRF7 activity by an inhibitor could interfere with the development of ONFH while maintaining the therapeutic effect of the corticosteroids. Objective In the present study, we hypothesize that lansoprazole has the potential to suppress IRF7 activity and prevent corticosteroid-induced ONFH in rats. Furthermore, we conducted a preliminary clinical trial to prevent corticosteroid-induced ONFH in autoimmune disease patients. Methods Male Wistar rats were randomly divided into four groups. On Day 1, each rat was injected with TLR4 ligand (LPS) or TLR7 ligand (imiquimod), followed by methylprednisolone with or without lansoprazole on Day 2. They were killed at 1 or 14 days after the last injection.We prospectively recruited 30 patients requiring primary high-dose corticosteroid treatment for immune diseases. All patients were administered lansoprazole, starting the night before corticosteroid treatment began. MRI was performed before corticosteroid treatment, and at 4, 12 and 24 weeks afterward. Results In rats, co-treatment of lansoprazole with corticosteroids significantly repressed both IRF7 activity and the development of ONFH. Moreover, in the human patients, the incidence of ONFH was significantly decreased from 53.4 to 13.3%. Conclusions Although the present study is preliminary, the results show that co-treatment of lansoprazole with corticosteroids prevents ONFH development. Lansoprazole may be both safe and effective in preventing osteonecrosis of the femoral head in patients needing corticosteroid treatment.
Collapse
Affiliation(s)
- Ima Kosukegawa
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, S1 W16, Chuo-ku, Sapporo, 060-8543, Japan.
| | - Shunichiro Okazaki
- Department of Orthopedic Surgery, Hokkaido Ohno Memorial Hospital, Sapporo, Japan
| | - Motohisa Yamamoto
- Department of Rheumatology and Allergy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Nagoya
- Department of Musculoskeletal Biomechanics and Surgical Development, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Chisako Suzuki
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Junya Shimizu
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, S1 W16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Hiroki Takahashi
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Yamashita
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, S1 W16, Chuo-ku, Sapporo, 060-8543, Japan
| |
Collapse
|
10
|
Luo Y, Wu J, Wu Q, Li X, Wu J, Zhang J, Rong X, Rao J, Liao Y, Bin J, Huang N, Liao W. miR-577 Regulates TGF-β Induced Cancer Progression through a SDPR-Modulated Positive-Feedback Loop with ERK-NF-κB in Gastric Cancer. Mol Ther 2019; 27:1166-1182. [PMID: 30879950 PMCID: PMC6554531 DOI: 10.1016/j.ymthe.2019.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor β (TGF-β) drives epithelial-mesenchymal transition (EMT), playing vital roles in cancer metastasis. The crosstalk between microRNAs (miRNAs) and TGF-β are frequently observed and involved in TGF-β-induced EMT. Here, we determine that miR-577 is significantly upregulated in gastric cancer (GC). miR-577 expression is positively correlated with GC metastasis status and poor patient prognosis. Functional assays demonstrate that miR-577 promotes metastasis and chemoresistance by inducing EMT and stemness-like properties. Moreover, TGF-β promotes the expression of miR-577, and miR-577 participates TGF-β-mediated cancer metastasis. Mechanistically, TGF-β activates miR-577 via NF-κB-mediated transcription, and miR-577 enhances TGF-β signaling by targeting the serum deprivation protein response (SDPR), which directly interacts with ERK to inactivate the ERK-NF-κB pathway, hence forming a feedback loop to drive tumor metastasis. A plausible mechanism of EMT induction by the TGF-β network is elucidated. Our findings suggest that the TGF-β-miR-577-SDPR axis may be a potential prognostic marker and therapeutic target against cancer metastasis in GC.
Collapse
Affiliation(s)
- Yuhao Luo
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qianying Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyin Li
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiani Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jingwen Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoxiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jingjun Rao
- Key Laboratory of New Drug Screening of Guangdong Province, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
11
|
Nighot M, Rawat M, Al-Sadi R, Castillo EF, Nighot P, Ma TY. Lipopolysaccharide-Induced Increase in Intestinal Permeability Is Mediated by TAK-1 Activation of IKK and MLCK/MYLK Gene. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:797-812. [PMID: 30711488 DOI: 10.1016/j.ajpath.2018.12.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 01/13/2023]
Abstract
Lipopolysaccharides (LPSs) are a major component of Gram-negative bacterial cell wall and play an important role in promoting intestinal inflammatory responses. Recent studies have shown that physiologically relevant concentrations of LPS (0 to 2000 pg/mL) cause an increase in intestinal epithelial tight junction (TJ) permeability without causing cell death. However, the intracellular pathways and the mechanisms that mediate LPS-induced increase in intestinal TJ permeability remain unclear. The aim was to delineate the intracellular pathways that mediate the LPS-induced increase in intestinal permeability using in vitro and in vivo intestinal epithelial models. LPS-induced increase in intestinal epithelial TJ permeability was preceded by an activation of transforming growth factor-β-activating kinase-1 (TAK-1) and canonical NF-κB (p50/p65) pathways. The siRNA silencing of TAK-1 inhibited the activation of NF-κB p50/p65. The siRNA silencing of TAK-1 and p65/p50 subunit inhibited the LPS-induced increase in intestinal TJ permeability and the increase in myosin light chain kinase (MLCK) expression, confirming the regulatory role of TAK-1 and NF-κB p65/p50 in up-regulating MLCK expression and the subsequent increase in TJ permeability. The data also showed that toll-like receptor (TLR)-4/myeloid differentiation primary response (MyD)88 pathway was crucial upstream regulator of TAK-1 and NF-κB p50/p65 activation. In conclusion, activation of TAK-1 by the TLR-4/MyD88 signal transduction pathway and MLCK by NF-κB p65/p50 regulates the LPS-induced increase in intestinal epithelial TJ permeability.
Collapse
Affiliation(s)
- Meghali Nighot
- Department of Medicine, Pennsylvania State University, School of Medicine, Hershey, Pennsylvania
| | - Manmeet Rawat
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Rana Al-Sadi
- Department of Medicine, Pennsylvania State University, School of Medicine, Hershey, Pennsylvania
| | - Eliseo F Castillo
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Prashant Nighot
- Department of Medicine, Pennsylvania State University, School of Medicine, Hershey, Pennsylvania
| | - Thomas Y Ma
- Department of Medicine, Pennsylvania State University, School of Medicine, Hershey, Pennsylvania; Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico.
| |
Collapse
|
12
|
Bertinaria M, Gastaldi S, Marini E, Giorgis M. Development of covalent NLRP3 inflammasome inhibitors: Chemistry and biological activity. Arch Biochem Biophys 2018; 670:116-139. [PMID: 30448387 DOI: 10.1016/j.abb.2018.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022]
Abstract
The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome is the best recognized and most widely implicated regulator of caspase-1 activation. It is a key regulator of innate immune response and is involved in many pathophysiological processes. Recent evidences for its inappropriate activation in autoinflammatory, autoimmune, as well as in neurodegenerative diseases attract a growing interest toward the development of small molecules NLRP3 inhibitors. Based on the knowledge of biochemical and structural aspects of NLRP3 activation, one successful strategy in the identification of NLRP3 inhibitors relies on the development of covalent irreversible inhibitors. Covalent inhibitors are reactive electrophilic molecules able to alkylate nucleophiles in the target protein. These inhibitors could ensure good efficacy and prolonged duration of action both in vitro and in vivo. In spite of these advantages, effects on other signalling pathways, prone to alkylation, may occur. In this review, we will illustrate the chemistry and the biological action of the most studied covalent NLRP3 inhibitors developed so far. A description of what we know about their mechanism of action will address the reader toward a critical understanding of NLRP3 inhibition by electrophilic compounds.
Collapse
Affiliation(s)
- Massimo Bertinaria
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via P. Giuria 9, 10125, Torino, Italy.
| | - Simone Gastaldi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via P. Giuria 9, 10125, Torino, Italy
| | - Elisabetta Marini
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via P. Giuria 9, 10125, Torino, Italy
| | - Marta Giorgis
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via P. Giuria 9, 10125, Torino, Italy
| |
Collapse
|
13
|
The innate immune system in human systemic lupus erythematosus. Clin Sci (Lond) 2017; 131:625-634. [DOI: 10.1042/cs20160415] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/24/2016] [Accepted: 01/11/2017] [Indexed: 12/27/2022]
Abstract
Although the role of adaptive immune mechanisms, e.g. autoantibody formation and abnormal T-cell activation, has been long noted in the pathogenesis of human systemic lupus erythematosus (SLE), the role of innate immunity has been less well characterized. An intricate interplay between both innate and adaptive immune elements exists in protective anti-infective immunity as well as in detrimental autoimmunity. More recently, it has become clear that the innate immune system in this regard not only starts inflammation cascades in SLE leading to disease flares, but also continues to fuel adaptive immune responses throughout the course of the disease. This is why targeting the innate immune system offers an additional means of treating SLE. First trials assessing the efficacy of anti-type I interferon (IFN) therapy or modulators of pattern recognition receptor (PRR) signalling have been attempted. In this review, we summarize the available evidence on the role of several distinct innate immune elements, especially neutrophils and dendritic cells as well as the IFN system, as well as specific innate PRRs along with their signalling pathways. Finally, we highlight recent clinical trials in SLE addressing one or more of the aforementioned components of the innate immune system.
Collapse
|
14
|
Yu JJ, Zhu LX, Zhang J, Liu S, Lv FY, Cheng X, Liu GJ, Peng B. From the Cover: Activation of NF-κB-Autophagy Axis by 2-Hydroxyethyl Methacrylate Commits Dental Mesenchymal Cells to Apoptosis. Toxicol Sci 2017; 157:100-111. [DOI: 10.1093/toxsci/kfx023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
15
|
Zhou ZX, Sun L. Immune effects of R848: evidences that suggest an essential role of TLR7/8-induced, Myd88- and NF-κB-dependent signaling in the antiviral immunity of Japanese flounder (Paralichthys olivaceus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:113-20. [PMID: 25475963 DOI: 10.1016/j.dci.2014.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/26/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
The imidazoquinoline compound R848 is a specific agonist of toll-like receptor (TLR) 7/TLR8 that has been used as an immunostimulant in humans against viral diseases. Although R848-induced immune response has been reported in teleost fish, the relevant mechanism is not clear. In this study, we investigated the antiviral potential and the signaling pathway of R848 in a model of Japanese flounder (Paralichthys olivaceus). We found that R848 was able to inhibit the replication of megalocytivirus, stimulated the proliferation of peripheral blood leukocytes (PBL), enhanced the expression of immune genes, and reduced apoptosis of PBL. When endosomal acidification was blocked by chloroquine (CQ), R848-mediated antiviral activity and immune response were significantly reduced. Likewise, inhibition of Myd88 activation markedly impaired the pro-proliferation and anti-apoptosis effect of R848. Cellular study showed that cultured founder cells treated with R848 exhibited augmented NF-κB activity, which, however, was dramatically reduced in the presence of CQ and Myd88 inhibitor. Furthermore, when NF-κB was inactivated, the effect of R848 on cell proliferation and apoptosis was significantly decreased. Taken together, these results indicate that R848 is an immunostimulant with antiviral property in a teleost species, and that the immune response of R848 is mediated by, most likely, TLR7/TLR8 signaling pathway, in which Myd88 and NK-κB play an essential role.
Collapse
Affiliation(s)
- Zhi-Xia Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
16
|
Development of non-traumatic osteonecrosis of the femoral head requires toll-like receptor 7 and 9 stimulations and is boosted by repression on nuclear factor kappa B in rats. J Transl Med 2015; 95:92-9. [PMID: 25384124 PMCID: PMC7100527 DOI: 10.1038/labinvest.2014.134] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/21/2014] [Accepted: 09/09/2014] [Indexed: 12/03/2022] Open
Abstract
Non-traumatic osteonecrosis of the femoral head (ONFH) often occurs after corticosteroid therapy in patients with inflammatory diseases. Recent studies suggest that toll-like receptor (TLR) signaling may contribute to the pathogenesis of inflammatory diseases, and that the reason for corticosteroid therapy for inflammatory diseases is related to the anti-inflammatory activities of corticosteroids through the reduction of NF-κB. We hypothesized that the administration of TLR ligands in combination with corticosteroid causes ONFH and that transcription factors may contribute to the pathogenesis of ONFH. The aim of the study was to evaluate (1) the incidence of ONFH in rats after the administration of TLR7 or TLR9 ligands together with methylprednisolone (MPSL) and (2) whether transcription factors contribute to the development of ONFH. Male Wistar rats (n=148) were divided into five groups as follows: Group 1: Saline+MPSL, Group 2: Imiquimod+Saline, Group 3: Imiquimod+MPSL, Group 4: CpG-C+MPSL, Group 5: Imiquimod+BAY11-7082+MPSL. As a result, ONFH was observed in 0 of 12 rats in Group 1, in 1 of 10 in Group 2, in 6 of 12 in Group 3, in 4 of 12 in Group 4, in 0 of 9 in Group 5. MPSL treatment did not significantly affect IRF7 activity, whereas NF-κB activity was significantly repressed in Group 2 and Group 3. Furthermore, the repression in interferon regulatory factor 7 (IRF7) activity by BAY11-7082 interfered with the development of ONFH simultaneously with the MPSL treatment-induced repression in NF-κB activity. In conclusion, in the present study, corticosteroid treatment after the administration of TLR7 or TLR9 ligands caused ONFH. Repression in NF-κB activity by corticosteroid treatment boosted the development of ONFH.
Collapse
|
17
|
Elain G, Jeanneau K, Rutkowska A, Mir AK, Dev KK. The selective anti-IL17A monoclonal antibody secukinumab (AIN457) attenuates IL17A-induced levels of IL6 in human astrocytes. Glia 2014; 62:725-35. [PMID: 24677511 DOI: 10.1002/glia.22637] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 12/14/2022]
Abstract
The family of interleukin 17 receptors (IL17Rs), subtypes IL17RA-IL17RE, is targeted by the group of pro-inflammatory IL17 cytokines (IL17A-F) and moreover the newly developed anti-IL17A antibody secukinumab (AIN457) has shown promise in Phase II trials in multiple sclerosis. Here, we show that human astrocytes, isolated from a fetal cerebral cortex, express IL17RA and IL17RC and in vitro treatment with IL17A increases protein levels of IL6 in human astrocytes, which is enhanced in the presence of TNFα, as determined by homogeneous time resolved fluorescence. Studies on acutely isolated mouse astrocytes are comparable to human astrocytes although the protein levels of IL6 are lower in mouse astrocytes, which also show a lower response to IL17F and IL1β in promoting IL6 levels. In human astrocytes, IL17A and TNFα also induce mRNA expression of IL6, IL8 and the Th17 cytokines CXCL1, CXCL2, and CCL20, with little effect on Th1 cytokines CXCL9, CXCL10, and CXCL11. The effects of IL17A are associated with nuclear translocation of the NF-κB transcription factor, as determined by immunocytochemistry, where treatment of human astrocytes with the inhibitors of the NF-κB pathway and with secukinumab inhibits the IL17A and IL17A/TNFα-induced increase in nuclear translocation of NF-κB and levels of IL6. Taken together the data shows that IL17A signaling plays a key role in regulating the levels of cytokines, such as IL6, in human astrocytes via a mechanism that involves NF-κB signaling and that selective inhibition of IL17A signaling attenuates levels of pro-inflammatory molecules in astrocytes.
Collapse
|
18
|
BAY 11-7082, a nuclear factor-κB inhibitor, induces apoptosis and S phase arrest in gastric cancer cells. J Gastroenterol 2014; 49:864-74. [PMID: 23846545 DOI: 10.1007/s00535-013-0848-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/05/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Inhibitors of nuclear factor (NF)-κB pathway have shown potential anti-tumor activities. However, it is not fully elucidated in gastric cancer. METHODS Firstly, we screened the inhibitory effect of pharmacologic NF-κB inhibitors on cell viability of human gastric cancer cells via CCK-8 assay. Next, cell apoptosis, cell cycle distribution, and mitochondrial membrane potential after BAY 11-7082 treatment were detected by annexin V staining, propidium iodide staining, TUNEL, and JC-1 assays in human gastric cancer HGC-27 cells. Expression of regulatory factors for apoptosis and cell cycle were measured by western blot. Finally, human gastric cancer xenograft model was established to verify the anti-tumor effects of BAY 11-7082 in vivo. Cellular apoptosis and growth inhibition in subcutaneous tumor section were detected by TUNEL and immunohistochemistry assays. RESULTS BAY 11-7082 exhibited rapid and potent anti-tumor effects on gastric cancer cells in vitro within a panel of NF-κB inhibitors. BAY 11-7082 induced rapid apoptosis in HGC-27 cells through activating the mitochondrial pathway, as well as down-regulation of Bcl-2 and up-regulation of Bax. BAY 11-7082 also induced S phase arrest through suppressing Cyclin A and CDK-2 expression. Xenograft model confirmed the anti-tumor effects of BAY 11-7082 on apoptosis induction and growth inhibition in vivo. CONCLUSIONS Our results demonstrated that BAY 11-7082 presented the most rapid and potent anti-tumor effects within a panel of NF-κB inhibitors, and could induce cellular apoptosis and block cell cycle progression both in vitro and in vivo, thus providing basis for clinical application of BAY 11-7082 in gastric cancer cases.
Collapse
|
19
|
Sriram U, Xu J, Chain RW, Varghese L, Chakhtoura M, Bennett HL, Zoltick PW, Gallucci S. IL-4 suppresses the responses to TLR7 and TLR9 stimulation and increases the permissiveness to retroviral infection of murine conventional dendritic cells. PLoS One 2014; 9:e87668. [PMID: 24489947 PMCID: PMC3906189 DOI: 10.1371/journal.pone.0087668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/28/2013] [Indexed: 12/11/2022] Open
Abstract
Th2-inducing pathological conditions such as parasitic diseases increase susceptibility to viral infections through yet unclear mechanisms. We have previously reported that IL-4, a pivotal Th2 cytokine, suppresses the response of murine bone-marrow-derived conventional dendritic cells (cDCs) and splenic DCs to Type I interferons (IFNs). Here, we analyzed cDC responses to TLR7 and TLR9 ligands, R848 and CpGs, respectively. We found that IL-4 suppressed the gene expression of IFNβ and IFN-responsive genes (IRGs) upon TLR7 and TLR9 stimulation. IL-4 also inhibited IFN-dependent MHC Class I expression and amplification of IFN signaling pathways triggered upon TLR stimulation, as indicated by the suppression of IRF7 and STAT2. Moreover, IL-4 suppressed TLR7- and TLR9-induced cDC production of pro-inflammatory cytokines such as TNFα, IL-12p70 and IL-6 by inhibiting IFN-dependent and NFκB-dependent responses. IL-4 similarly suppressed TLR responses in splenic DCs. IL-4 inhibition of IRGs and pro-inflammatory cytokine production upon TLR7 and TLR9 stimulation was STAT6-dependent, since DCs from STAT6-KO mice were resistant to the IL-4 suppression. Analysis of SOCS molecules (SOCS1, −2 and −3) showed that IL-4 induces SOCS1 and SOCS2 in a STAT6 dependent manner and suggest that IL-4 suppression could be mediated by SOCS molecules, in particular SOCS2. IL-4 also decreased the IFN response and increased permissiveness to viral infection of cDCs exposed to a HIV-based lentivirus. Our results indicate that IL-4 modulates and counteracts pro-inflammatory stimulation induced by TLR7 and TLR9 and it may negatively affect responses against viruses and intracellular parasites.
Collapse
Affiliation(s)
- Uma Sriram
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Temple University, School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (US); (SG)
| | - Jun Xu
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Temple University, School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Robert W. Chain
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Temple University, School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Linda Varghese
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Temple University, School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Marita Chakhtoura
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Temple University, School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Heather L. Bennett
- Joseph Stokes, Jr. Research Institute, Division of Rheumatology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Philip W. Zoltick
- Department of Surgery, The Children's Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Temple University, School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (US); (SG)
| |
Collapse
|
20
|
Krishnan N, Bencze G, Cohen P, Tonks NK. The anti-inflammatory compound BAY-11-7082 is a potent inhibitor of protein tyrosine phosphatases. FEBS J 2013; 280:2830-41. [PMID: 23578302 DOI: 10.1111/febs.12283] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/06/2013] [Accepted: 04/08/2013] [Indexed: 02/07/2023]
Abstract
The families of protein tyrosine phosphatases (PTPs) and protein tyrosine kinases (PTKs) function in a coordinated manner to regulate signal transduction events that are critical for cellular homeostasis. Aberrant tyrosine phosphorylation, resulting from disruption of either PTP or PTK function, has been shown to be the cause of major human diseases, including cancer and diabetes. Consequently, the characterization of small-molecule inhibitors of these kinases and phosphatases may not only provide molecular probes with which to define the significance of particular signaling events, but also may have therapeutic implications. BAY-11-7082 is an anti-inflammatory compound that has been reported to inhibit IκB kinase activity. The compound has an α,β-unsaturated electrophilic center, which confers the property of being a Michael acceptor; this suggests that it may react with nucleophilic cysteine-containing proteins, such as PTPs. In this study, we demonstrated that BAY-11-7082 was a potent, irreversible inhibitor of PTPs. Using mass spectrometry, we have shown that BAY-11-7082 inactivated PTPs by forming a covalent adduct with the active-site cysteine. Administration of the compound caused an increase in protein tyrosine phosphorylation in RAW 264 macrophages, similar to the effects of the generic PTP inhibitor sodium orthovanadate. These data illustrate that BAY-11-7082 is an effective pan-PTP inhibitor with cell permeability, revealing its potential as a new probe for chemical biology approaches to the study of PTP function. Furthermore, the data suggest that inhibition of PTP function may contribute to the many biological effects of BAY-11-7082 that have been reported to date.
Collapse
Affiliation(s)
- Navasona Krishnan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724-2208, USA
| | | | | | | |
Collapse
|
21
|
Awe JP, Crespo AV, Li Y, Kiledjian M, Byrne JA. BAY11 enhances OCT4 synthetic mRNA expression in adult human skin cells. Stem Cell Res Ther 2013; 4:15. [PMID: 23388106 PMCID: PMC3706837 DOI: 10.1186/scrt163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 01/30/2013] [Indexed: 12/15/2022] Open
Abstract
Introduction The OCT4 transcription factor is involved in many cellular processes, including development, reprogramming, maintaining pluripotency and differentiation. Synthetic OCT4 mRNA was recently used (in conjunction with other reprogramming factors) to generate human induced pluripotent stem cells. Here, we discovered that BAY 11-7082 (BAY11), at least partially through an NF-κB-inhibition based mechanism, could significantly increase the expression of OCT4 following transfection of synthetic mRNA (synRNA) into adult human skin cells. Methods We tested various chemical and molecular small molecules on their ability to suppress the innate immune response seen upon synthetic mRNA transfection. Three molecules - B18R, BX795, and BAY11 - were used in immunocytochemical and proliferation-based assays. We also utilized global transcriptional meta-analysis coupled with quantitative PCR to identify relative gene expression downstream of OCT4. Results We found that human skin cells cultured in the presence of BAY11 resulted in reproducible increased expression of OCT4 that did not inhibit normal cell proliferation. The increased levels of OCT4 resulted in significantly increased expression of genes downstream of OCT4, including the previously identified SPP1, DUSP4 and GADD45G, suggesting the expressed OCT4 was functional. We also discovered a novel OCT4 putative downstream target gene SLC16A9 which demonstrated significantly increased expression following elevation of OCT4 levels. Conclusions For the first time we have shown that small molecule-based stabilization of synthetic mRNA expression can be achieved with use of BAY11. This small molecule-based inhibition of innate immune responses and subsequent robust expression of transfected synthetic mRNAs may have multiple applications for future cell-based research and therapeutics.
Collapse
|
22
|
Xu WD, Zhang YJ, Xu K, Zhai Y, Li BZ, Pan HF, Ye DQ. IRF7, a functional factor associates with systemic lupus erythematosus. Cytokine 2012; 58:317-20. [DOI: 10.1016/j.cyto.2012.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 02/20/2012] [Accepted: 03/03/2012] [Indexed: 10/28/2022]
|
23
|
|
24
|
Abstract
Plasmacytoid DC (pDC) are type-I IFN-producing cells known for their capacity to promote anti-viral innate and adaptive immune responses. Despite their potent anti-viral function, when compared with conventional DC, pDC exhibit poor immunostimulatory ability and their interaction with T cells often favors the generation of Treg. pDC are activated primarily in response to ssRNA and ssDNA through TLR7 and TLR9, respectively, but also through TLR-independent mechanisms. Non-lymphoid tissue pDC, such as those residing in the airways, gut, and liver, play a significant role in regulating mucosal immunity and are critical for the development of tolerance to inhaled or ingested antigens. Herein we discuss properties that define tolerogenic pDC and how their unique characteristics translate into an ability to regulate immunity and promote the development of tolerance. We cover the importance of pDC during intrathymic Treg development and the maintenance of peripheral tolerance, as well as their regulatory role in transplantation, autoimmunity, and cancer. We highlight recent findings regarding danger-associated molecular pattern and PAMP signaling in the regulation of pDC function, and how the ability of pDC to promote tolerance translates into the potential clinical applications of these cells as therapeutic targets to regulate immune reactivity.
Collapse
Affiliation(s)
- Benjamin M Matta
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|