1
|
Moxon SR, McMurran Z, Kibble MJ, Domingos M, Gough JE, Richardson SM. 3D bioprinting of an intervertebral disc tissue analogue with a highly aligned annulus fibrosus via suspended layer additive manufacture. Biofabrication 2024; 17:015005. [PMID: 39366424 PMCID: PMC11499629 DOI: 10.1088/1758-5090/ad8379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
Intervertebral disc (IVD) function is achieved through integration of its two component regions: the nucleus pulposus (NP) and the annulus fibrosus (AF). The NP is soft (0.3-5 kPa), gelatinous and populated by spherical NP cells in a polysaccharide-rich extracellular matrix (ECM). The AF is much stiffer (∼100 kPa) and contains layers of elongated AF cells in an aligned, fibrous ECM. Degeneration of the disc is a common problem with age being a major risk factor. Progression of IVD degeneration leads to chronic pain and can result in permanent disability. The development of therapeutic solutions for IVD degeneration is impaired by a lack ofin vitromodels of the disc that are capable of replicating the fundamental structure and biology of the tissue. This study aims to investigate if a newly developed suspended hydrogel bioprinting system (termed SLAM) could be employed to fabricate IVD analogues with integrated structural and compositional features similar to native tissue. Bioprinted IVD analogues were fabricated to recapitulate structural, morphological and biological components present in the native tissue. The constructs replicated key structural components of native tissue with the presence of a central, polysaccharide-rich NP surrounded by organised, aligned collagen fibres in the AF. Cell tracking, actin and matrix staining demonstrated that embedded NP and AF cells exhibited morphologies and phenotypes analogous to what is observedin vivowith elongated, aligned AF cells and spherical NP cells that deposited HA into the surrounding environment. Critically, it was also observed that the NP and AF regions contained a defined cellular and material interface and segregated regions of the two cell types, thus mimicking the highly regulated structure of the IVD.
Collapse
Affiliation(s)
- S R Moxon
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- Henry Royce Institute, University of Manchester, Manchester, United Kingdom
| | - Z McMurran
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - M J Kibble
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- Henry Royce Institute, University of Manchester, Manchester, United Kingdom
| | - M Domingos
- Henry Royce Institute, University of Manchester, Manchester, United Kingdom
- Department of Mechanical and Aerospace Engineering, School of Engineering, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - J E Gough
- Henry Royce Institute, University of Manchester, Manchester, United Kingdom
- Department of Materials, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
| | - S M Richardson
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Ferreira JR, Caldeira J, Sousa M, Barbosa MA, Lamghari M, Almeida-Porada G, Gonçalves RM. Dynamics of CD44 + bovine nucleus pulposus cells with inflammation. Sci Rep 2024; 14:9156. [PMID: 38644369 PMCID: PMC11033282 DOI: 10.1038/s41598-024-59504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/11/2024] [Indexed: 04/23/2024] Open
Abstract
Intervertebral Disc (IVD) degeneration has been associated with a chronic inflammatory response, but knowledge on the contribution of distinct IVD cells, namely CD44, to the progression of IVD degeneration remains elusive. Here, bovine nucleus pulposus (NP) CD44 cells were sorted and compared by gene expression and proteomics with the negative counterpart. NP cells were then stimulated with IL-1b (10 ng/ml) and dynamics of CD44 gene and protein expression was analyzed upon pro-inflammatory treatment. The results emphasize that CD44 has a multidimensional functional role in IVD metabolism, ECM synthesis and production of neuropermissive factors. CD44 widespread expression in NP was partially associated with CD14 and CD45, resulting in the identification of distinct cell subsets. In conclusion, this study points out CD44 and CD44-based cell subsets as relevant targets in the modulation of the IVD pro-inflammatory/degenerative cascade.
Collapse
Affiliation(s)
- J R Ferreira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Porto, Portugal
- Cell & Gene Therapy Safety, Clinical Pharmacology & Safety Science, R&D, AstraZeneca, Molndal, Sweden
| | - J Caldeira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
| | - M Sousa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
| | - M A Barbosa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Porto, Portugal
| | - M Lamghari
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Porto, Portugal
| | - G Almeida-Porada
- WFIRM-Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | - R M Gonçalves
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Porto, Portugal.
| |
Collapse
|
3
|
Dudek M, Pathiranage DRJ, Bano-Otalora B, Paszek A, Rogers N, Gonçalves CF, Lawless C, Wang D, Luo Z, Yang L, Guilak F, Hoyland JA, Meng QJ. Mechanical loading and hyperosmolarity as a daily resetting cue for skeletal circadian clocks. Nat Commun 2023; 14:7237. [PMID: 37963878 PMCID: PMC10646113 DOI: 10.1038/s41467-023-42056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/28/2023] [Indexed: 11/16/2023] Open
Abstract
Daily rhythms in mammalian behaviour and physiology are generated by a multi-oscillator circadian system entrained through environmental cues (e.g. light and feeding). The presence of tissue niche-dependent physiological time cues has been proposed, allowing tissues the ability of circadian phase adjustment based on local signals. However, to date, such stimuli have remained elusive. Here we show that daily patterns of mechanical loading and associated osmotic challenge within physiological ranges reset circadian clock phase and amplitude in cartilage and intervertebral disc tissues in vivo and in tissue explant cultures. Hyperosmolarity (but not hypo-osmolarity) resets clocks in young and ageing skeletal tissues and induce genome-wide expression of rhythmic genes in cells. Mechanistically, RNAseq and biochemical analysis revealed the PLD2-mTORC2-AKT-GSK3β axis as a convergent pathway for both in vivo loading and hyperosmolarity-induced clock changes. These results reveal diurnal patterns of mechanical loading and consequent daily oscillations in osmolarity as a bona fide tissue niche-specific time cue to maintain skeletal circadian rhythms in sync.
Collapse
Affiliation(s)
- Michal Dudek
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Dharshika R J Pathiranage
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Beatriz Bano-Otalora
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - Anna Paszek
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Natalie Rogers
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Cátia F Gonçalves
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Craig Lawless
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Dong Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhuojing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Farshid Guilak
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Center of Regenerative Medicine, Washington University, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children - St. Louis, St. Louis, MO, 63110, USA
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
- NIHR Manchester Biomedical Research Centre, Central Manchester Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Qing-Jun Meng
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK.
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK.
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
4
|
Importance of Matrix Cues on Intervertebral Disc Development, Degeneration, and Regeneration. Int J Mol Sci 2022; 23:ijms23136915. [PMID: 35805921 PMCID: PMC9266338 DOI: 10.3390/ijms23136915] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Back pain is one of the leading causes of disability worldwide and is frequently caused by degeneration of the intervertebral discs. The discs’ development, homeostasis, and degeneration are driven by a complex series of biochemical and physical extracellular matrix cues produced by and transmitted to native cells. Thus, understanding the roles of different cues is essential for designing effective cellular and regenerative therapies. Omics technologies have helped identify many new matrix cues; however, comparatively few matrix molecules have thus far been incorporated into tissue engineered models. These include collagen type I and type II, laminins, glycosaminoglycans, and their biomimetic analogues. Modern biofabrication techniques, such as 3D bioprinting, are also enabling the spatial patterning of matrix molecules and growth factors to direct regional effects. These techniques should now be applied to biochemically, physically, and structurally relevant disc models incorporating disc and stem cells to investigate the drivers of healthy cell phenotype and differentiation. Such research will inform the development of efficacious regenerative therapies and improved clinical outcomes.
Collapse
|
5
|
Oxidative Stress Aggravates Apoptosis of Nucleus Pulposus Cells through m 6A Modification of MAT2A Pre-mRNA by METTL16. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4036274. [PMID: 35069973 PMCID: PMC8767407 DOI: 10.1155/2022/4036274] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022]
Abstract
The process of intervertebral disc degeneration (IVDD) is complex, and its mechanism is considered multifactorial. Apoptosis of oxidative stressed nucleus pulposus cells (NPCs) should be a fundamental element in the pathogenesis of IVDD. In our pilot study, we found that the expression of MAT2A decreased, and METTL16 increased in the degenerative nucleus pulposus tissues. Previous studies have shown that the balance of splicing, maturation, and degradation of MAT2A pre-mRNA is regulated by METTL16 m6A modification. In the current study, we aimed to figure out whether this mechanism was involved in the aberrant apoptosis of NPCs and IVDD. Human NPCs were isolated and cultured under oxidative stress. An IVDD animal model was established. It showed that significantly higher METTL16 expression and lower MAT2A expression were seen in either the NPCs under oxidative stress or the degenerative discs of the animal model. MAT2A was inhibited with siRNA in vitro or cycloleucine in vivo. METTL16 was overexpressed with lentivirus in vitro or in vivo. Downregulation of MAT2A or upregulation of METTL16 aggravated nucleus pulposus cell apoptosis and disc disorganization. The balance of splicing, maturation, and degradation of MAT2A pre-mRNA was significantly inclined to degradation in the NPCs with the overexpression of METTL16. Increased apoptosis of NPCs under oxidative stress could be rescued by reducing the expression of METTL16 using siRNA with more maturation of MAT2A pre-mRNA. Collectively, oxidative stress aggravates apoptosis of NPCs through disrupting the balance of splicing, maturation, and degradation of MAT2A pre-mRNA, which is m6A modified by METTL16.
Collapse
|
6
|
Yang S, Liao W. Hydroxysafflor yellow A attenuates oxidative stress injury-induced apoptosis in the nucleus pulposus cell line and regulates extracellular matrix balance via CA XII. Exp Ther Med 2022; 23:182. [PMID: 35069863 PMCID: PMC8764902 DOI: 10.3892/etm.2021.11105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is the main cause of lower back pain. Oxidative stress injury and degradation of the extracellular matrix (ECM) are important factors causing IVDD, while hydroxysafflor yellow A (HSYA) has significant anti-oxidative stress and anti-apoptotic effects. The present study aimed to investigate the protective role of HSYA in IVDD using nucleus pulposus (NP) cells. A Cell Counting Kit-8 assay was used to detect cell viability following HSYA and tert-Butyl hydroperoxide (TBHP) treatment. Cellular reactive oxygen species levels and the level of apoptosis were measured using flow cytometry. The concentration of superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT) and glutathione peroxidase GSH-Px were detected using ELISA. DAPI staining was performed for nuclear morphology analysis, while western blot analysis was used to detect apoptotic- and ECM-related protein expression levels. Bioinformatics analysis was used to predict the binding site between HSYA and carbonic anhydrase 12 (CA12; CA XII). NP cells were transfected withsmall interference RNA (siRNA) for CA XII downregulation. Following TBHP treatment, the level of ROS increased significantly, and the concentrations of SOD, CAT and GSH-Px were decreased. In addition, the apoptosis level of the NP cell line significantly increased following TBHP treatment. Furthermore, the expression levels of ECM-related proteins, collagen II and aggrecan were significantly decreased, and the protein expression level of MMP-13 was significantly increased. HSYA (10 µM) could effectively alleviate the effects of TBHP on NP cell apoptosis, oxidative stress damage and the expression level of ECM-related proteins. A binding site was found between HSYA and CA XII. In addition, CA XII-siRNA significantly reduced the increase in the expression level of collagen II and aggrecan proteins and decrease in the expression level of MMP-13 induced by HSYA in the NP cell line. In conclusion, HSYA could attenuate oxidative stress injury and apoptosis induced by TBHP in the NP cell line, and could improve the regulation of ECM balance.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
7
|
Panebianco CJ, Dave A, Charytonowicz D, Sebra R, Iatridis JC. Single-cell RNA-sequencing atlas of bovine caudal intervertebral discs: Discovery of heterogeneous cell populations with distinct roles in homeostasis. FASEB J 2021; 35:e21919. [PMID: 34591994 PMCID: PMC8496998 DOI: 10.1096/fj.202101149r] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022]
Abstract
Back and neck pain are significant healthcare burdens that are commonly associated with pathologies of the intervertebral disc (IVD). The poor understanding of the cellular heterogeneity within the IVD makes it difficult to develop regenerative IVD therapies. To address this gap, we developed an atlas of bovine (Bos taurus) caudal IVDs using single-cell RNA-sequencing (scRNA-seq). Unsupervised clustering resolved 15 unique clusters, which we grouped into the following annotated partitions: nucleus pulposus (NP), outer annulus fibrosus (oAF), inner AF (iAF), notochord, muscle, endothelial, and immune cells. Analyzing the pooled gene expression profiles of the NP, oAF, and iAF partitions allowed us to identify novel markers for NP (CP, S100B, H2AC18, SNORC, CRELD2, PDIA4, DNAJC3, CHCHD7, and RCN2), oAF (IGFBP6, CTSK, LGALS1, and CCN3), and iAF (MGP, COMP, SPP1, GSN, SOD2, DCN, FN1, TIMP3, WDR73, and GAL) cells. Network analysis on subpopulations of NP and oAF cells determined that clusters NP1, NP2, NP4, and oAF1 displayed gene expression profiles consistent with cell survival, suggesting these clusters may uniquely support viability under the physiological stresses of the IVD. Clusters NP3, NP5, oAF2, and oAF3 expressed various extracellular matrix (ECM)-associated genes, suggesting their role in maintaining IVD structure. Lastly, transcriptional entropy and pseudotime analyses found that clusters NP3 and NP1 had the most stem-like gene expression signatures of the NP partition, implying these clusters may contain IVD progenitor cells. Overall, results highlight cell type diversity within the IVD, and these novel cell phenotypes may enhance our understanding of IVD development, homeostasis, degeneration, and regeneration.
Collapse
Affiliation(s)
- Christopher J. Panebianco
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Arpit Dave
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daniel Charytonowicz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Icahn Institute for Data Science and Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Sema4, a Mount Sinai venture, Stamford, CT
| | - James C. Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
8
|
Ye F, Xu Y, Lin F, Zheng Z. TNF-α suppresses SHOX2 expression via NF-κB signaling pathway and promotes intervertebral disc degeneration and related pain in a rat model. J Orthop Res 2021; 39:1745-1754. [PMID: 32816304 DOI: 10.1002/jor.24832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/13/2020] [Accepted: 08/18/2020] [Indexed: 02/04/2023]
Abstract
This study was conducted to verify the relative expression patterns of SHOX2 and its regulation by tumor necrosis factor alpha (TNF-α) during the development of intervertebral disc degeneration (IVDD). A rat disc-degeneration model was subjected to disc puncture (DP) and intradiscal injections with TNF-α to determine the roles of TNF-α and SHOX2 expression in IVDD in vivo. TNF-α and SHOX2 expression patterns in different degenerative rat nucleus pulposus (NP) tissues were measured by immunohistochemistry (IHC). The effects of TNF-α on IVDD were determined by magnetic resonance imaging (MRI) and pain development of wet-dog shakes (WDS) were blinded assessment by pain-behavior testing, respectively. Changes in TNF-α on SHOX2 expression were measured by Western blot analysis and real-time reverse transcription polymerase chain reaction (RT-PCR). The roles of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) in TNF-α-mediated SHOX2 activation were studied using viral transfection, Western blot analysis, and real-time RT-PCR. In vivo, TNF-α accelerated the process of IVDD and suppressed SHOX2 expression; compared to the DP group, WDS was significantly increased in TNF-α intradiscal injection group at 2 to 6 weeks after puncture (P < .05); In NP cells, TNF-α negatively affected the IVDD-associated SHOX2 suppression. While TNF-α promotes IVDD through activation of both MAPK and NF-κB signaling, it seemed that only NF-κB signaling controlled the TNF-α-mediated SHOX2 suppression that is associated with IVDD. The results of this study indicated that TNF-α inhibits SHOX2 expression and has promoted effects on IVDD in the rat model, and these effects might be associated with through NF-κB signaling pathway and promotes IVDD and related pain in a rat model.
Collapse
Affiliation(s)
- Fubiao Ye
- Department of Orthopedic, Fujian Provincial Hospital, Shengli Clinical Medical College Affiliated to Fujian Medical University, Fuzhou, Fujian, China
| | - Yang Xu
- Department of Orthopedic, Fujian Provincial Hospital, Shengli Clinical Medical College Affiliated to Fujian Medical University, Fuzhou, Fujian, China
| | - Feiyue Lin
- Department of Orthopedic, Fujian Provincial Hospital, Shengli Clinical Medical College Affiliated to Fujian Medical University, Fuzhou, Fujian, China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Itsuji T, Tonomura H, Ishibashi H, Mikami Y, Nagae M, Takatori R, Tanida T, Matsuda KI, Tanaka M, Kubo T. Hepatocyte growth factor regulates HIF-1α-induced nucleus pulposus cell proliferation through MAPK-, PI3K/Akt-, and STAT3-mediated signaling. J Orthop Res 2021; 39:1184-1191. [PMID: 32242977 DOI: 10.1002/jor.24679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/27/2020] [Accepted: 03/25/2020] [Indexed: 02/04/2023]
Abstract
Intervertebral discs are important for maintaining mobility and offer support to the body trunk. If these discs lose their biomechanical features, lower back pain can occur. We previously reported that hepatocyte growth factor (HGF) promotes cell proliferation and suppresses apoptosis, inflammation, and matrix degradation in nucleus pulposus (NP) cells. In the present study, we investigated the molecular mechanisms of how HGF promotes the proliferation of NP cells in hypoxic conditions. Hypoxic stimulation promoted modest cell proliferation, which was further upregulated by HGF. Expression of hypoxia-inducible factor (HIF-1α) protein, which contributes to the maintenance of homeostasis in NP cells, was also upregulated in hypoxia-treated cell groups; HGF further increased HIF-1α expression in NP cells. Additionally, knockdown of HIF-1α expression significantly reduced the proliferation of NP cells. An MAPK inhibitor inhibited the expression of HIF-1α and pERK, as well as cell proliferation in a dose-dependent manner. Similarly, inhibiting the PI3K/Akt and STAT3 pathways also decreased the expression of HIF-1α and cell proliferation. These results show that under hypoxic conditions, HGF promotes NP cell proliferation via HIF-1α-, MAPK-, PI3K/Akt-, and STAT3-mediated signaling which is involved in this pathway. The control of these signaling pathways may be a target for potential therapeutic strategies for the treatment of disc degeneration in hypoxic conditions.
Collapse
Affiliation(s)
- Tomonori Itsuji
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Tonomura
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hidenobu Ishibashi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuo Mikami
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masateru Nagae
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryota Takatori
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takashi Tanida
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken-Ichi Matsuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Tanaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshikazu Kubo
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
10
|
Smith K, Mercuri J. Microgravity and Radiation Effects on Astronaut Intervertebral Disc Health. Aerosp Med Hum Perform 2021; 92:342-352. [PMID: 33875067 DOI: 10.3357/amhp.5713.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION: The effects of spaceflight on the intervertebral disc (IVD) have not been thoroughly studied, despite the knowledge that spaceflight increases the risk of herniation of IVDs in astronauts upon return to Earth. However, as long duration missions become more common, fully characterizing the mechanisms behind space-induced IVD degeneration becomes increasingly imperative for mission success. This review therefore surveys current literature to outline the results of human, animal, and cell-level studies investigating the effect of microgravity and radiation exposure on IVD health. Overall, recurring study findings include increases in IVD height in microgravity conditions, upregulation of catabolic proteases leading to a weakening extracellular matrix (ECM), and both nucleus pulposus (NP) swelling and loss of annulus fibrosus (AF) fiber alignment which are hypothesized to contribute to the increased risk of herniation when reloading is experienced. However, the limitations of current studies are also discussed. For example, human studies do not allow for invasive measures of the underpinning biochemical mechanisms, correlating animal model results to the human condition may be difficult, and cellular studies lack incorporation of ECM and other complexities that mimic the native IVD microarchitecture and environment. Moving forward, the use of three-dimensional organoid culture models that incorporate IVD-specific human cells, ECM, and signals as well as the development of cell- and ECM-level computational models may further improve our understanding of the impacts that spaceflight has on astronaut IVD health.Smith K, Mercuri J. Microgravity and radiation effects on astronaut intervertebral disc health. Aerosp Med Hum Perform. 2021; 92(5):342352.
Collapse
|
11
|
van den Akker GGH, Cremers A, Surtel DAM, Voncken W, Welting TJM. Isolation of Nucleus Pulposus and Annulus Fibrosus Cells from the Intervertebral Disc. Methods Mol Biol 2021; 2221:41-52. [PMID: 32979197 DOI: 10.1007/978-1-0716-0989-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells isolated from the intervertebral disc are often used for in vitro experimentation. Correctly separating the intervertebral disc tissue in annulus fibrosus and nucleus pulposus is particularly challenging when working with surplus material from surgery or specimens from donors with an advanced age. Moreover, lineage controls are only sparsely reported to verify tissue of origin. Here we describe an approach to intervertebral disc cell isolation from human and bovine origin.
Collapse
Affiliation(s)
- Guus G H van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Andy Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Donatus A M Surtel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Willem Voncken
- Department of Molecular Genetics, Maastricht University, Maastricht, The Netherlands
| | - Tim J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
12
|
van den Akker GGH, Eijssen LMT, Richardson SM, Rhijn LWV, Hoyland JA, Welting TJM, Voncken JW. A Membranome-Centered Approach Defines Novel Biomarkers for Cellular Subtypes in the Intervertebral Disc. Cartilage 2020; 11:203-220. [PMID: 29629573 PMCID: PMC7097986 DOI: 10.1177/1947603518764260] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Lack of specific marker-sets prohibits definition and functional distinction of cellular subtypes in the intervertebral disc (IVD), such as those from the annulus fibrosus (AF) and the nucleus pulposus (NP). DESIGN We recently generated immortalized cell lines from human NP and AF tissues; these comprise a set of functionally distinct clonal subtypes. Whole transcriptome analyses were performed of 12 phenotypically distinct clonal cell lines (4× NP-Responder, 4× NP-nonResponder, 2× AF-Sheet forming, and 2× AF-nonSheet forming). Data sets were filtered for membrane-associated marker genes and compared to literature. RESULTS Comparison of our immortal cell lines to published primary NP, AF, and articular chondrocytes (AC) transcriptome datasets revealed preservation of AF and NP phenotypes. NP-specific membrane-associated genes were defined by comparison to AF cells in both the primary dataset (46 genes) and immortal cell-lines (161 genes). Definition of AF-specific membrane-associated genes yielded 125 primary AF cell and 92 immortal cell-line markers. Overlap between primary and immortal NP cells yielded high-confidence NP-specific marker genes for NP-R (CLDN11, TMEFF2, CA12, ANXA2, CD44) and NP-nR (EFNA1, NETO2, SLC2A1). Overlap between AF and immortal AF subtypes yielded specific markers for AF-S (COLEC12, LPAR1) and AF-nS (CHIC1). CONCLUSIONS The current study provides a reference platform for preclinical evaluation of novel membrane-associated cell type-specific markers in the IVD. Future research will focus on their biological relevance for IVD function in development, homeostasis, and degenerate conditions.
Collapse
Affiliation(s)
- Guus G. H. van den Akker
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Lars M. T. Eijssen
- Department of Bioinformatics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Stephen M. Richardson
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Lodewijk W. van Rhijn
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Judith A. Hoyland
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Tim J. M. Welting
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
13
|
Abstract
Intervertebral disc (IVD) degeneration is associated with low back pain. In IVDs, a high mechanical load, high osmotic pressure and hypoxic conditions create a hostile microenvironment for resident cells. How IVD homeostasis and function are maintained under stress remains to be understood; however, several research groups have reported isolating native endogenous progenitor-like or otherwise proliferative cells from the IVD. The isolation of such cells implies that the IVD might contain a quiescent progenitor-like population that could be activated for IVD repair and regeneration. Increased understanding of endogenous disc progenitor cells will improve our knowledge of IVD homeostasis and, when combined with tissue engineering techniques, might hold promise for future therapeutic applications. In this Review, the characteristics of progenitor cells in different IVD compartments are discussed, as well as the potency of different cell populations within the IVD. The stem cell characteristics of these cells are also compared with those of mesenchymal stromal cells. On the basis of existing evidence, whether and how IVD degeneration and the hostile microenvironment might affect endogenous progenitor cell function are considered, and ways to channel the potential of these cells for IVD repair are suggested.
Collapse
|
14
|
Yang SH, Hu MH, Wu CC, Chen CW, Sun YH, Yang KC. CD24 expression indicates healthier phenotype and less tendency of cellular senescence in human nucleus pulposus cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3021-3028. [PMID: 31334674 DOI: 10.1080/21691401.2019.1642205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Identification of specific cell markers is crucial for recognizing functionally healthy nucleus pulposus (NP) cells. The objective of this study was to investigate the role of CD24 expression in adult human NP cells. Cells were retrieved from NP tissues of 20 patients (aged 17-44) operated on for lumbar disc herniation. Based on CD24 expression, NP cells were separated by sorting and then used to examine phenotypic behavior, the effects of culture conditions and cellular senescence pathway related proteins. CD24 expression was positive in 35.5 ± 3.7% (range 9.1-65.2%) of NP cells. Consistently, normoxic expansion and serial passages in monolayers decreased percentage positivity for CD24 in NP cells. CD24- NP cells showed a markedly decreased GSK-3β activity and increased mitogen-activated protein kinase phosphorylation accompanying by an increased β-catenin expression. Higher levels of matrix metalloproteinases, as well as lower levels of ACAN and COL2 in CD24- cells, indicated the breakdown and reduced the formation of key extracellular matrix components. CD24+ NP cells presented a more favorable phenotype while CD24- cells showed a more prominent cellular senescence fate. CD24 in NP cells may be a surrogate marker of healthy cells, in the cell-based therapeutic treatment of degenerative disc disorders.
Collapse
Affiliation(s)
- Shu-Hua Yang
- a Department of Orthopedics, National Taiwan University College of Medicine and National Taiwan University Hospital , Taipei , Taiwan
| | - Ming-Hsiao Hu
- a Department of Orthopedics, National Taiwan University College of Medicine and National Taiwan University Hospital , Taipei , Taiwan
| | - Chang-Chin Wu
- a Department of Orthopedics, National Taiwan University College of Medicine and National Taiwan University Hospital , Taipei , Taiwan
| | - Chih-Wei Chen
- a Department of Orthopedics, National Taiwan University College of Medicine and National Taiwan University Hospital , Taipei , Taiwan
| | - Yuan-Hui Sun
- a Department of Orthopedics, National Taiwan University College of Medicine and National Taiwan University Hospital , Taipei , Taiwan
| | - Kai-Chiang Yang
- b Department of Dental Technology, College of Oral Medicine, Taipei Medical University , Taipei , Taiwan
| |
Collapse
|
15
|
Quantitative Single-Cell Transcript Assessment of Biomarkers Supports Cellular Heterogeneity in the Bovine IVD. Vet Sci 2019; 6:vetsci6020042. [PMID: 31083612 PMCID: PMC6631975 DOI: 10.3390/vetsci6020042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Severe and chronic low back pain is often associated with intervertebral disc (IVD) degeneration. While imposing a considerable socio-economic burden worldwide, IVD degeneration is also severely impacting on the quality of life of affected individuals. Cell-based regenerative medicine approaches have moved into clinical trials, yet IVD cell identities in the mature disc remain to be fully elucidated and tissue heterogeneity exists, requiring a better characterization of IVD cells. The bovine coccygeal IVD is an accepted research model to study IVD mechano-biology and disc homeostasis. Recently, we identified novel IVD biomarkers in the outer annulus fibrosus (AF) and nucleus pulposus (NP) of the mature bovine coccygeal IVD through RNA in situ hybridization (AP-RISH) and z-proportion test. Here we follow up on Lam1, Thy1, Gli1, Gli3, Noto, Ptprc, Scx, Sox2 and Zscan10 with fluorescent RNA in situ hybridization (FL-RISH) and confocal microscopy. This permits sub-cellular transcript localization and the addition of quantitative single-cell derived values of mRNA expression levels to our previous analysis. Lastly, we used a Gaussian mixture modeling approach for the exploratory analysis of IVD cells. This work complements our earlier cell population proportion-based study, confirms the previously proposed biomarkers and indicates even further heterogeneity of cells in the outer AF and NP of a mature IVD.
Collapse
|
16
|
Abstract
Development of the axial skeleton is a complex, stepwise process that relies on intricate signaling and coordinated cellular differentiation. Disruptions to this process can result in a myriad of skeletal malformations that range in severity. The notochord and the sclerotome are embryonic tissues that give rise to the major components of the intervertebral discs and the vertebral bodies of the spinal column. Through a number of mouse models and characterization of congenital abnormalities in human patients, various growth factors, transcription factors, and other signaling proteins have been demonstrated to have critical roles in the development of the axial skeleton. Balance between opposing growth factors as well as other environmental cues allows for cell fate specification and divergence of tissue types during development. Furthermore, characterization of progenitor cells for specific cell lineages has furthered the understanding of specific spatiotemporal cues that cells need in order to initiate and complete development of distinct tissues. Identifying specific marker genes that can distinguish between the various embryonic and mature cell types is also of importance. Clinically, understanding developmental clues can aid in the generation of therapeutics for musculoskeletal disease through the process of developmental engineering. Studies into potential stem cell therapies are based on knowledge of the normal processes that occur in the embryo, which can then be applied to stepwise tissue engineering strategies.
Collapse
Affiliation(s)
| | | | - Rosa Serra
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
17
|
Karaarslan N, Yilmaz I, Ozbek H, Yasar Sirin D, Kaplan N, Caliskan T, Ozdemir C, Akyuva Y, Ates O. Are radio-contrast agents commonly used in discography toxic to the intact intervertebral disc tissue cells? Basic Clin Pharmacol Toxicol 2018; 124:181-189. [PMID: 30120906 DOI: 10.1111/bcpt.13112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/13/2018] [Indexed: 11/26/2022]
Abstract
In the literature, there have been no studies showing clear results on how radio-contrast pharmaceuticals would affect intact disc tissue cells. In this context, it was aimed to evaluate the effects of iopromide and gadoxetic acid, frequently used in the discography, on intact lumbar disc tissue in pharmaco-molecular and histopathological level. Primary cell cultures were prepared from the healthy disc tissue of the patients operated in the neurosurgery clinic. Except for the control group, the cultures were incubated with the indicated radio-contrast agents. Cell viability, toxicity and proliferation indices were tested at specific time intervals. The cell viability was quantitatively analysed. It was also visually rechecked under a fluorescence microscope with acridine orange/propidium iodide staining. Simultaneously, cell surface morphology was analysed with an inverted light microscope, while haematoxylin and eosin (H&E) staining methodology was used in the histopathological evaluations. The obtained data were evaluated statistically. Unlike the literature, iopromide or gadoxetic acid did not have any adverse effects on the cell viability, proliferation and toxicity (P < 0.05). Although this study reveals that radio-contrast pharmaceuticals used in the discography, often used in neurosurgical practice, can be safely used, it should be remembered that this study was performed in an in vitro environment.
Collapse
Affiliation(s)
- Numan Karaarslan
- Department of Neurosurgery, Namik Kemal University School of Medicine, Tekirdag, Turkey
| | - Ibrahim Yilmaz
- Department of Medical Pharmacology, Istanbul Medipol University School of Medicine, Istanbul, Turkey
| | - Hanefi Ozbek
- Department of Medical Pharmacology, Istanbul Medipol University School of Medicine, Istanbul, Turkey
| | - Duygu Yasar Sirin
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Namik Kemal University, Tekirdag, Turkey
| | - Necati Kaplan
- Department of Neurosurgery, Corlu Reyap Hospital, Istanbul Rumeli University, Tekirdag, Turkey
| | - Tezcan Caliskan
- Department of Neurosurgery, Namik Kemal University School of Medicine, Tekirdag, Turkey
| | - Cigdem Ozdemir
- Department of Pathology, School of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Yener Akyuva
- Department of Neurosurgery, Gaziosmanpasa Taksim Training and Research Hospital, Istanbul, Turkey
| | - Ozkan Ates
- Department of Neurosurgery, Esencan Hospital, Istanbul Esenyurt University, Istanbul, Turkey
| |
Collapse
|
18
|
Schubert AK, Smink JJ, Pumberger M, Putzier M, Sittinger M, Ringe J. Standardisation of basal medium for reproducible culture of human annulus fibrosus and nucleus pulposus cells. J Orthop Surg Res 2018; 13:209. [PMID: 30134986 PMCID: PMC6106880 DOI: 10.1186/s13018-018-0914-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/15/2018] [Indexed: 11/24/2022] Open
Abstract
Background The lifetime prevalence of degenerative disc disease is dramatically high. Numerous investigations on disc degeneration have been performed on cells from annulus fibrosus (AF) and nucleus pulposus (NP) of the intervertebral disc (IVD) in cell culture experiments utilising a broad variety of basal culture media. Although the basal media differ in nutrient formulation, it is not known whether the choice of the basal media itself has an impact on the cell’s behaviour in vitro. In this study, we evaluated the most common media used for monolayer expansion of AF and NP cells to set standards for disc cell culture. Methods Human AF and NP cells were isolated from cervical discs. Cells were expanded in monolayer until passage P2 using six different common culture media containing alpha-Minimal Essential Medium (alpha-MEM), Dulbecco’s Modified Eagle’s Medium (DMEM) or Ham’s F-12 medium (Ham’s F-12) as single medium or in a mixture of two media (alpha/F-12, DMEM/alpha, DMEM/F-12). Cell morphology, cell growth, glycosaminoglycan production and quantitative gene expression of cartilage- and IVD-related markers aggrecan, collagen type II, forkhead box F1 and keratin 18 were analysed. Statistical analysis was performed with two-way ANOVA testing and Bonferroni compensation. Results AF and NP cells were expandable in all tested media. Both cell types showed similar cell morphology and characteristics of dedifferentiation known for cultured disc cells independently from the media. However, proceeding culture in Ham’s F-12 impeded cell growth of both AF and NP cells. Furthermore, the keratin 18 gene expression profile of NP cells was changed in alpha-MEM and Ham’s F-12. Conclusion The impact of the different media itself on disc cell’s behaviour in vitro was low. However, AF and NP cells were only robust, when DMEM was used as single medium or in a mixture (DMEM/alpha, DMEM/F-12). Therefore, we recommend using these media as standard medium for disc cell culture. Our findings are valuable for the harmonisation of preclinical study results and thereby push the development of cell therapies for clinical treatment of disc degeneration.
Collapse
Affiliation(s)
- Ann-Kathrin Schubert
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Südstraße 2, 13353, Berlin, Germany. .,CO.DON AG, Teltow, Germany.
| | | | - Matthias Pumberger
- Center for Musculoskeletal Surgery, Department of Orthopaedics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Michael Putzier
- Center for Musculoskeletal Surgery, Department of Orthopaedics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Michael Sittinger
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Südstraße 2, 13353, Berlin, Germany
| | - Jochen Ringe
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Südstraße 2, 13353, Berlin, Germany
| |
Collapse
|
19
|
Elabd C, Ichim TE, Miller K, Anneling A, Grinstein V, Vargas V, Silva FJ. Comparing atmospheric and hypoxic cultured mesenchymal stem cell transcriptome: implication for stem cell therapies targeting intervertebral discs. J Transl Med 2018; 16:222. [PMID: 30097061 PMCID: PMC6086019 DOI: 10.1186/s12967-018-1601-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/04/2018] [Indexed: 02/07/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) represent an attractive avenue for cellular therapies targeting degenerative diseases. MSC in vitro expansion is required in order to obtain therapeutic numbers during the manufacturing process. It is known that culture conditions impact cellular properties and behavior after in vivo transplantation. In this study, we aimed at evaluating the benefit of hypoxic culturing of human bone marrow derived mesenchymal stem cells on cell fitness and whole genome expression and discussed its implication on cellular therapies targeting orthopedic diseases such as chronic lower back pain. Methods Human bone marrow mesenchymal stem cells (hBMMSCs) were isolated from fresh human anticoagulated whole bone marrow and were cultured side by side in atmospheric (20% O2) and hypoxic (5% O2) oxygen partial pressure for up to 3 passages. Stem cell fitness was assessed by clonogenic assay, cell surface marker expression and differentiation potential. Whole genome expression was performed by mRNA sequencing. Data from clonogenic assays, cell surface marker by flow cytometry and gene expression by quantitative PCR were analyzed by two-tailed paired Student’s t-test. Data from mRNA sequencing were aligned to hg19 using Tophat-2.0.13 and analyzed using Cufflinks-2.1.1. Results Hypoxic culturing of hBMMSCs had positive effects on cell fitness, as evidenced by an increased clonogenicity and improved differentiation potential towards adipocyte and chondrocyte lineages. No difference in osteoblast differentiation or in cell surface markers were observed. Only a small subset of genes (34) were identified by mRNA sequencing to be significantly dysregulated by hypoxia. When clustered by biological function, these genes were associated with chondrogenesis and cartilage metabolism, inflammation and immunomodulation, cellular survival, migration and proliferation, vasculogenesis and angiogenesis. Conclusions Hypoxic culturing positively impacted hBMMSCs fitness and transcriptome, potentially improving inherent properties of these cells that are critical for the development of successful cellular therapies. Hypoxic culturing should be considered for the in vitro expansion of hBMMSCs during manufacturing of cellular therapies targeting orthopedic disorders such as lower back pain.
Collapse
Affiliation(s)
- C Elabd
- BioRestorative Therapies, Inc., 40 Marcus Drive, Suite 1, Melville, NY, 11747, USA
| | - T E Ichim
- Immune Advisors, LLC, La Jolla, CA, 92037, USA
| | - K Miller
- BioRestorative Therapies, Inc., 40 Marcus Drive, Suite 1, Melville, NY, 11747, USA
| | - A Anneling
- BioRestorative Therapies, Inc., 40 Marcus Drive, Suite 1, Melville, NY, 11747, USA
| | - V Grinstein
- BioRestorative Therapies, Inc., 40 Marcus Drive, Suite 1, Melville, NY, 11747, USA
| | - V Vargas
- BioRestorative Therapies, Inc., 40 Marcus Drive, Suite 1, Melville, NY, 11747, USA
| | - F J Silva
- BioRestorative Therapies, Inc., 40 Marcus Drive, Suite 1, Melville, NY, 11747, USA.
| |
Collapse
|
20
|
Karaarslan N, Yilmaz I, Sirin DY, Ozbek H, Kaplan N, Kaya YE, Akyuva Y, Gurbuz MS, Oznam K, Ates O. Pregabalin treatment for neuropathic pain may damage intervertebral disc tissue. Exp Ther Med 2018; 16:1259-1265. [PMID: 30112057 PMCID: PMC6090477 DOI: 10.3892/etm.2018.6289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/23/2018] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to determine whether pharmaceutical preparations with pregabalin (PGB) as an active ingredient, which are widely prescribed by clinicians, exert toxic effects on human primary nucleus pulposus (NP) and annulus fibrosis (AF). Primary human cell cultures were obtained from intact (n=6) and degenerated (n=6) tissues resected from the two groups of patients. Different doses of PGB were applied to these cultures and cells were subjected to molecular analyses at 0, 24 and 48 h. Cell vitality, toxicity and proliferation were assessed using a spectrophotometer. The expression of chondroadherin (CHAD), a (member of the NP-specific protein family), hypoxia-inducible factor-1α (HIF-1α) and type II collagen (COL2A1) was measured using reverse transcription-quantitative polymerase chain reaction. The results revealed that cell intensity increased in a time-dependent manner and cell vitality continued in the cultures without pharmaceuticals. Cell proliferation was suppressed in the PGB-treated cultures independent from the dose and duration of application. PGB was demonstrated to suppress the expression of CHAD and HIF-1α. In contrast, COL2A1 gene expression was not revealed in any experimental group. The present study utilized an in vitro model and the PGB active ingredient used herein may not be representative of clinical applications; however, the results demonstrated that PGB has a toxic effect on NP/AF cell cultures containing primary human intervertebral disc tissue. In summary, the use of pharmacological agents containing PGB may suppress the proliferation and differentiation of NP/AF cells and/or tissues, which should be considered when deciding on an appropriate treatment regime.
Collapse
Affiliation(s)
- Numan Karaarslan
- Department of Neurosurgery, Namik Kemal University School of Medicine, Tekirdag 59100, Turkey
| | - Ibrahim Yilmaz
- Department of Medical Pharmacology, Istanbul Medipol University School of Medicine, Istanbul 34810, Turkey
| | - Duygu Yasar Sirin
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Namik Kemal University, Tekirdag 59030, Turkey
| | - Hanefi Ozbek
- Department of Medical Pharmacology, Istanbul Medipol University School of Medicine, Istanbul 34810, Turkey
| | - Necati Kaplan
- Department of Neurosurgery, Istanbul Rumeli University, Corlu Reyap Hospital, Tekirdag 59860, Turkey
| | - Yasin Emre Kaya
- Department of Orthopedic and Traumatology, Abant Izzet Basal University School of Medicine, Bolu 14000, Turkey
| | - Yener Akyuva
- Department of Neurosurgery, Gaziosmanpasa Taksim Training and Research Hospital, Istanbul 34433, Turkey
| | - Mehmet Sabri Gurbuz
- Department of Neurosurgery, Istanbul Medeniyet University School of Medicine, Istanbul 34730, Turkey
| | - Kadir Oznam
- Department of Orthopedic and Traumatology, Istanbul Medipol University School of Medicine, Istanbul 34214, Turkey
| | - Ozkan Ates
- Department of Neurosurgery, Istanbul Esenyurt University, Esencan Hospital, Istanbul 34517, Turkey
| |
Collapse
|
21
|
Aker L, Ghannam M, Alzuabi MA, Jumah F, Alkhdour SM, Mansour S, Samara A, Cronk K, Massengale J, Holsapple J, Adeeb N, Oskouian RJ, Tubbs RS. Molecular Biology and Interactions in Intervertebral Disc Development, Homeostasis, and Degeneration, with Emphasis on Future Therapies: A Systematic Review. ACTA ACUST UNITED AC 2017. [DOI: 10.26632/ss.3.2017.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Li XC, Tang Y, Wu JH, Yang PS, Wang DL, Ruan DK. Characteristics and potentials of stem cells derived from human degenerated nucleus pulposus: potential for regeneration of the intervertebral disc. BMC Musculoskelet Disord 2017; 18:242. [PMID: 28583105 PMCID: PMC5460486 DOI: 10.1186/s12891-017-1567-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/09/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Eliminating the symptoms during treatment of intervertebral disc degeneration (IVDD) is only a temporary solution that does not cure the underlying cause. A biological method to treat this disorder may be possible by the newly discovered nucleus pulposus derived stem cells (NPDCs). However, the uncertain characteristics and potential of NPDCs calls for a comprehensive study. METHODS In the present study, nucleus pulposus samples were obtained from 5 patients with IVDD undergoing discectomy procedure and NPDCs were harvested using fluorescence activated cell sorting (FACS) by the co-expression of GD2+ and Tie2+. After in vitro expansion, the properties of NPDCs were compared with those of bone marrow mesenchyme stem cells (BMSCs) from the same subjects. RESULTS NPDCs performed similar properties in cell colony-forming ability, cell proliferation rate, cell cycle and stem cell gene expression similar to those of BMSCs. In addition, NPDCs could be differentiated into osteoblasts, adipocytes, and chondrocytes, and are found to be superior in chondrogenesis but inferior in adipocyte differentiation. CONCLUSIONS NPDCs derived from the degenerated intervertebral disc still keep the regeneration ability similar to BMSCs. Besides, the superior capacity in chondrogenesis may provide a promising cell candidate for cell-based regenerative medicine and tissue engineering in IVDD.
Collapse
Affiliation(s)
- Xiao-Chuan Li
- Department of Orthopaedic Surgery, Navy General Hospital, Beijing, 100048 China
- Department of Orthopedic Surgery, Gaozhou people’s Hospital, No 89, Xi-Guan Road, Guangdong Guangzhou, 525200 China
| | - Yong Tang
- Department of Orthopaedic Surgery, Navy General Hospital, Beijing, 100048 China
| | - Jian-Hong Wu
- Department of Orthopaedic Surgery, Navy General Hospital, Beijing, 100048 China
| | - Pu-Shan Yang
- Department of Orthopaedic Surgery, Navy General Hospital, Beijing, 100048 China
| | - De-Li Wang
- Department of Orthopaedic Surgery, Navy General Hospital, Beijing, 100048 China
| | - Di-Ke Ruan
- Department of Orthopaedic Surgery, Navy General Hospital, Beijing, 100048 China
| |
Collapse
|
23
|
van den Akker GGH, Koenders MI, van de Loo FAJ, van Lent PLEM, Blaney Davidson E, van der Kraan PM. Transcriptional profiling distinguishes inner and outer annulus fibrosus from nucleus pulposus in the bovine intervertebral disc. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 26:2053-2062. [PMID: 28567592 DOI: 10.1007/s00586-017-5150-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 05/11/2017] [Accepted: 05/18/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cells in the intervertebral disc have unique phenotypes and marker genes that separate the nucleus pulposus (NP), annulus fibrosus (AF) and articular cartilage (AC) have been identified. Recently, it was shown that phenotypic marker genes exhibit variable expression in humans. In this study, the bovine tail was used to determine the ability of marker genes to distinguish the outer and inner AF from NP tissue and isolated cells. METHODS Bovine tail intervertebral discs from 13 donors were dissected and correct isolation of tissue was confirmed. mRNA was isolated directly from tissue or passage 0 monolayer cells and used for gene expression measurements (qPCR). Conventional marker genes (bAcan, bCol1a1, bCol2a1) and novel marker genes (bAdamts17, bBrachyury/T, bCD24, bCol5a1, bCol12a1, bFoxf1, bKrt19, bPax1, bSfrp2) were evaluated. RESULTS As expected bAcan, bCol2a1 and bCol1a1 distinguished outer AF from NP tissue, while inner AF and NP could not be discriminated. The NP markers bT, bCd24 and bKrt19 were significantly higher expressed in NP than inner and outer AF tissue. bFoxF1 and bPax1 only distinguished IVD tissues from AC. The AF markers bAdamts17, bCol5a1, bCol12a1 and bSfrp2 were higher expressed in the outer AF compared with inner AF and NP tissue. Monolayer culturing strongly decreased bAcan, bCol2a1, bCD24 and bCol5a1 expression, while bCol1a1, bT, bKrt19 and bSfrp2 were not affected. CONCLUSION The IVD phenotypic marker genes bT, bKrt19, bSfrp2 and bCol12a1 convincingly distinguished NP from outer AF in situ and in vitro.
Collapse
Affiliation(s)
- Guus G H van den Akker
- Department of Rheumatology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marije I Koenders
- Department of Rheumatology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Fons A J van de Loo
- Department of Rheumatology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Peter L E M van Lent
- Department of Rheumatology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Esmeralda Blaney Davidson
- Department of Rheumatology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Department of Rheumatology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Notochordal and nucleus pulposus marker expression is maintained by sub-populations of adult human nucleus pulposus cells through aging and degeneration. Sci Rep 2017; 7:1501. [PMID: 28473691 PMCID: PMC5431421 DOI: 10.1038/s41598-017-01567-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/28/2017] [Indexed: 01/07/2023] Open
Abstract
The nucleus pulposus (NP) of the intervertebral disc (IVD) demonstrates substantial changes in cell and matrix composition with both ageing and degeneration. While recent transcriptomic profiling studies have helped define human NP cell phenotype, it remains unclear how expression of these markers is influenced by ageing or degeneration. Furthermore, cells of the NP are thought to derive from the notochord, although adult NP lacks identifiable notochordal (NC) cells. This study aimed to confirm expression of previously identified NP and NC marker genes in adult human NP cells from a range of ages and degenerate states. Importantly, using gene expression analysis (N = 60) and immunohistochemistry (N = 56) the study demonstrates expression of NP markers FoxF1, Pax-1, keratin-8/18, carbonic anhydrase-12, and NC markers brachyury, galectin-3 and CD24 in cells of the NP irrespective of age or degeneration. Our immunohistochemical data, combined with flow cytometry (N = 5) which identified a small number of CA12+Gal3+T+CD24+ cells, suggests the possible presence of a sub-population of cells with an NC-like phenotype in adult NP tissue. These findings suggest that the NP contains a heterogeneous population of cells, which may possess varied phenotypic and functional profiles and thus warrant further investigation to improve our understanding of IVD homeostasis and repair.
Collapse
|
25
|
Kraus P, Lufkin T. Implications for a Stem Cell Regenerative Medicine Based Approach to Human Intervertebral Disk Degeneration. Front Cell Dev Biol 2017; 5:17. [PMID: 28326305 PMCID: PMC5339228 DOI: 10.3389/fcell.2017.00017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/20/2017] [Indexed: 12/11/2022] Open
Abstract
The human body develops from a single cell, the zygote, the product of the maternal oocyte and the paternal spermatozoon. That 1-cell zygote embryo will divide and eventually grow into an adult human which is comprised of ~3.7 × 1013 cells. The tens of trillions of cells in the adult human can be classified into approximately 200 different highly specialized cell types that make up all of the different tissues and organs of the human body. Regenerative medicine aims to replace or restore dysfunctional cells, tissues and organs with fully functional ones. One area receiving attention is regeneration of the intervertebral discs (IVDs), which are located between the vertebrae and function to give flexibility and support load to the spine. Degenerated discs are a major cause of lower back pain. Different stem cell based regenerative medicine approaches to cure disc degeneration are now available, including using autologous mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs) and even attempts at direct transdifferentiation of somatic cells. Here we discuss some of the recent advances, successes, drawbacks, and the failures of the above-mentioned approaches.
Collapse
Affiliation(s)
- Petra Kraus
- Department of Biology, Clarkson University Potsdam, NY, USA
| | - Thomas Lufkin
- Department of Biology, Clarkson University Potsdam, NY, USA
| |
Collapse
|
26
|
RNA in situ hybridization characterization of non-enzymatic derived bovine intervertebral disc cell lineages suggests progenitor cell potential. Acta Histochem 2017; 119:150-160. [PMID: 28063600 DOI: 10.1016/j.acthis.2016.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022]
Abstract
Degeneration of the intervertebral disc (IVD) is a meritorious target for therapeutic cell based regenerative medicine approaches, however, controversy over what defines the precise identity of mature IVD cells and lack of single cell based quality control measures is of concern. Bos taurus and human IVDs are histologically more similar than is Mus musculus. The mature bovine IVD is well suited as model system for technology development to be translated into therapeutic cell based regenerative medicine applications. We present a reproducible non-enzymatic protocol to isolate cell progenitor populations of three distinct areas of the mature bovine IVD. Bovine specific RNA probes were validated in situ and employed to assess fate changes, heterogeneity, stem cell characteristics and differentiation potential of the cultures. Quality control measures with single cell resolution like RNA in situ hybridization to assess culture heterogeneity (PISH) followed by optimization of culture conditions could be translated to human IVD cell culture to increase the safety of cell based regenerative medicine.
Collapse
|
27
|
Ghannam M, Jumah F, Mansour S, Samara A, Alkhdour S, Alzuabi MA, Aker L, Adeeb N, Massengale J, Oskouian RJ, Tubbs RS. Surgical anatomy, radiological features, and molecular biology of the lumbar intervertebral discs. Clin Anat 2017; 30:251-266. [PMID: 27997062 DOI: 10.1002/ca.22822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/04/2016] [Indexed: 01/07/2023]
Abstract
The intervertebral disc (IVD) is a joint unique in structure and functions. Lying between adjacent vertebrae, it provides both the primary support and the elasticity required for the spine to move stably. Various aspects of the IVD have long been studied by researchers seeking a better understanding of its dynamics, aging, and subsequent disorders. In this article, we review the surgical anatomy, imaging modalities, and molecular biology of the lumbar IVD. Clin. Anat. 30:251-266, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Malik Ghannam
- An-Najah National University Hospital, Nablus, Palestine
| | - Fareed Jumah
- An-Najah National University Hospital, Nablus, Palestine
| | - Shaden Mansour
- An-Najah National University Hospital, Nablus, Palestine
| | - Amjad Samara
- An-Najah National University Hospital, Nablus, Palestine
| | - Saja Alkhdour
- An-Najah National University Hospital, Nablus, Palestine
| | | | - Loai Aker
- An-Najah National University Hospital, Nablus, Palestine
| | - Nimer Adeeb
- Department of Neurosurgery, Boston Medical Center, Boston University, Massachusetts
| | - Justin Massengale
- Department of Neurosurgery, Boston Medical Center, Boston University, Massachusetts
| | | | - R Shane Tubbs
- Department of Anatomical Sciences, St. George's University, Grenada.,Seattle Science Foundation, Seattle, Washington
| |
Collapse
|
28
|
Xiong Y, Zhang Y, Yao J, Yan G, Lu H. Direct digestion of living cells via a gel-based strategy for mass spectrometric analysis. Chem Commun (Camb) 2017; 53:1421-1424. [PMID: 28079212 DOI: 10.1039/c6cc08316a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A novel sample preparation method was established for proteomic analysis, during which living cells were absorbed into vacuum-dried polyacrylamide gel and directly digested into peptides for subsequent LC-MS/MS assays. As a consequence, both of the steps for cell lysis and protein extraction involved in a conventional digestion method were skipped.
Collapse
Affiliation(s)
- Yun Xiong
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China. and Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Ying Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China.
| | - Jun Yao
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China.
| | - Guoquan Yan
- Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Haojie Lu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China. and Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
29
|
Zhang Y, Zhao Y, Li J, Wang S, Liu Y, Nie L, Cheng L. Interleukin-9 Promotes TNF-α and PGE2 Release in Human Degenerated Intervertebral Disc Tissues. Spine (Phila Pa 1976) 2016; 41:1631-1640. [PMID: 27802252 DOI: 10.1097/brs.0000000000001621] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Based on human disc surgical samples and isolated cells in vitro, we undertook a descriptive and mechanistic investigation of proinflammatory effects of interleukin (IL)-9 in intervertebral disc (IVD) degeneration. OBJECTIVE To investigate the proinflammatory role of IL-9 in the pathological process of IVD degeneration. SUMMARY OF BACKGROUND DATA IL-9 is known as a pleiotropic cytokine that regulates the human pathogenesis of inflammatory and autoimmune diseases. However, whether IL-9 cytokine is involved in the immuno-inflammatory pathogenesis of IVD degeneration is unclear. METHODS The IVD samples were obtained from 45 patients. Immunohistochemistry, western blot, and real-time Polymerase Chain Reaction (PCR) were performed to detect the expression of IL-9 and tumor necrosis factor alpha (TNF-α) in the degenerated IVDs. Moreover, nucleus pulposus (NP) cells were treated with 0, 1, 10, and 100 ng/mL IL-9 cytokine and stimulated with IL-9 alone at 100 ng/mL for 0, 12, 24, and 48 hours. TNF-α expression was determined by immunofluorescence staining, western blot, and real-time PCR, respectively. The amounts of TNF-α and prostaglandin E2 (PGE2) in the supernatant were quantified by enzyme-linked immunosorbent assay. Additionally, Spearman correlation analyses were performed to analyze the correlation between Pfirrmann grading score of the involved degenerated IVDs and serum levels of IL-9. RESULTS The expressions of IL-9 and TNF-α in degenerated IVD tissues were dramatically elevated in comparison with the control. IL-9 significantly up-regulated the TNF-α and PGE2 secretion of NP cells in dose- and time-dependent manner. Moreover, there is a positive correlation between IL-9 serum level and severity of involved IVD degeneration. CONCLUSION Our findings suggest that IL-9 may play a potential role in the inflammatory processes of IVD degeneration. IL-9 may be involved in the IVD degeneration, at least in part, though stimulating the release of TNF-α and PGE2 in NP cells. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Yuanqiang Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Melrose J. Strategies in regenerative medicine for intervertebral disc repair using mesenchymal stem cells and bioscaffolds. Regen Med 2016; 11:705-24. [DOI: 10.2217/rme-2016-0069] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The intervertebral disc (IVD) is a major weight bearing structure that undergoes degenerative changes with aging limiting its ability to dissipate axial spinal loading in an efficient manner resulting in the generation of low back pain. Low back pain is a number one global musculoskeletal disorder with massive socioeconomic impact. The WHO has nominated development of mesenchymal stem cells and bioscaffolds to promote IVD repair as primary research objectives. There is a clear imperative for the development of strategies to effectively treat IVD defects. Early preclinical studies with mesenchymal stem cells in canine and ovine models have yielded impressive results in IVD repair. Combinatorial therapeutic approaches encompassing biomaterial and cell-based therapies promise significant breakthroughs in IVD repair in the near future.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone & Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
31
|
Rodrigues‐Pinto R, Berry A, Piper‐Hanley K, Hanley N, Richardson SM, Hoyland JA. Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochord-specific markers during early human intervertebral disc development. J Orthop Res 2016; 34:1327-40. [PMID: 26910849 PMCID: PMC5021113 DOI: 10.1002/jor.23205] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/17/2016] [Indexed: 02/04/2023]
Abstract
In humans, the nucleus pulposus (NP) is composed of large vacuolated notochordal cells in the fetus but, soon after birth, becomes populated by smaller, chondrocyte-like cells. Although animal studies indicate that notochord-derived cells persist in the adult NP, the ontogeny of the adult human NP cell population is still unclear. As such, identification of unique notochordal markers is required. This study was conducted to determine the spatiotemporal expression of putative human notochordal markers to aid in the elucidation of the ontogeny of adult human NP cells. Human embryos and fetuses (3.5-18 weeks post-conception (WPC)) were microdissected to isolate the spine anlagens (notochord and somites/sclerotome). Morphology of the developing IVD was assessed using hematoxylin and eosin. Expression of keratin (KRT) 8, KRT18, KRT19, CD24, GAL3, CD55, BASP1, CTGF, T, CD90, Tie2, and E-cadherin was assessed using immunohistochemistry. KRT8, KRT18, KRT19 were uniquely expressed by notochordal cells at all spine levels at all stages studied; CD24 was expressed at all stages except 3.5 WPC. While GAL3, CD55, BASP1, CTGF, and T were expressed by notochordal cells at specific stages, they were also co-expressed by sclerotomal cells. CD90, Tie2, and E-cadherin expression was not detectable in developing human spine cells at any stage. This study has identified, for the first time, the consistent expression of KRT8, KRT18, KRT19, and CD24 as human notochord-specific markers during early IVD development. Thus, we propose that these markers can be used to help ascertain the ontogeny of adult human NP cells. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 34:1327-1340, 2016.
Collapse
Affiliation(s)
- Ricardo Rodrigues‐Pinto
- Centre For Tissue Injury and Repair, Institute of Inflammation and Repair, Faculty of Medical and Human SciencesUniversity of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUnited Kingdom
- Department of OrthopaedicsCentro Hospitalar do Porto—Hospital de Santo AntónioLargo Prof. Abel SalazarPorto4099‐001Portugal
| | - Andrew Berry
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human SciencesUniversity of ManchesterAV Hill Building—3rd Floor, Oxford RoadManchesterM13 9PTUnited Kingdom
| | - Karen Piper‐Hanley
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human SciencesUniversity of ManchesterAV Hill Building—3rd Floor, Oxford RoadManchesterM13 9PTUnited Kingdom
| | - Neil Hanley
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human SciencesUniversity of ManchesterAV Hill Building—3rd Floor, Oxford RoadManchesterM13 9PTUnited Kingdom
| | - Stephen M. Richardson
- Centre For Tissue Injury and Repair, Institute of Inflammation and Repair, Faculty of Medical and Human SciencesUniversity of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUnited Kingdom
| | - Judith A. Hoyland
- Centre For Tissue Injury and Repair, Institute of Inflammation and Repair, Faculty of Medical and Human SciencesUniversity of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUnited Kingdom
- NIHR Manchester Musculoskeletal Biomedical Research UnitManchester Academic Health Science CentreManchesterUnited Kingdom
| |
Collapse
|
32
|
Fujita N, Suzuki S, Watanabe K, Ishii K, Watanabe R, Shimoda M, Takubo K, Tsuji T, Toyama Y, Miyamoto T, Horiuchi K, Nakamura M, Matsumoto M. Chordoma-derived cell line U-CH1-N recapitulates the biological properties of notochordal nucleus pulposus cells. J Orthop Res 2016; 34:1341-50. [PMID: 27248133 PMCID: PMC5108487 DOI: 10.1002/jor.23320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/25/2016] [Indexed: 02/04/2023]
Abstract
Intervertebral disc degeneration proceeds with age and is one of the major causes of lumbar pain and degenerative lumbar spine diseases. However, studies in the field of intervertebral disc biology have been hampered by the lack of reliable cell lines that can be used for in vitro assays. In this study, we show that a chordoma-derived cell line U-CH1-N cells highly express the nucleus pulposus (NP) marker genes, including T (encodes T brachyury transcription factor), KRT19, and CD24. These observations were further confirmed by immunocytochemistry and flow cytometry. Reporter analyses showed that transcriptional activity of T was enhanced in U-CH1-N cells. Chondrogenic capacity of U-CH1-N cells was verified by evaluating the expression of extracellular matrix (ECM) genes and Alcian blue staining. Of note, we found that proliferation and synthesis of chondrogenic ECM proteins were largely dependent on T in U-CH1-N cells. In accordance, knockdown of the T transcripts suppressed the expression of PCNA, a gene essential for DNA replication, and SOX5 and SOX6, the master regulators of chondrogenesis. On the other hand, the CD24-silenced cells showed no reduction in the mRNA expression level of the chondrogenic ECM genes. These results suggest that U-CH1-N shares important biological properties with notochordal NP cells and that T plays crucial roles in maintaining the notochordal NP cell-like phenotype in this cell line. Taken together, our data indicate that U-CH1-N may serve as a useful tool in studying the biology of intervertebral disc. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 34:1341-1350, 2016.
Collapse
Affiliation(s)
- Nobuyuki Fujita
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Satoshi Suzuki
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Kota Watanabe
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Ken Ishii
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Ryuichi Watanabe
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Masayuki Shimoda
- Departments of PathologyKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Keiyo Takubo
- Department of Stem Cell BiologyResearch Institute, National Center for Global Health and Medicine1‐21‐1 ToyamaShinjuku‐kuTokyo160‐8582Japan
| | - Takashi Tsuji
- Kitasato Institute Hospital5‐9‐1 ShiroganeMinato‐kuTokyo108‐8642Japan
| | - Yoshiaki Toyama
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Takeshi Miyamoto
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Keisuke Horiuchi
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Masaya Nakamura
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Morio Matsumoto
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| |
Collapse
|
33
|
PHD/HIF-1 upregulates CA12 to protect against degenerative disc disease: a human sample, in vitro and ex vivo study. J Transl Med 2016; 96:561-9. [PMID: 26901836 DOI: 10.1038/labinvest.2016.32] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 12/01/2015] [Accepted: 01/12/2016] [Indexed: 12/15/2022] Open
Abstract
Intervertebral disc degeneration is a major cause of low back pain. The nucleus pulposus (NP) is an important intervertebral disc component. Recent studies have shown that carbonic anhydrase 12 (CA12) is a novel NP marker. However, the mechanism by which CA12 is regulated and its physiological function are unclear. In our study, CA12, hypoxia-inducible factor 1α (HIF-1α) and HIF-2α expression levels were examined in 81 human degenerated NP samples using real-time RT-PCR, immunohistochemistry and western blot. Rat NP cells were cultured in a hypoxic environment, and hypoxia-induced CA12 expression was examined. Rat NP cells were treated with HIF-1α siRNA or the prolyl hydroxylase (PHD) inhibitor dimethyloxalylglycine (DMOG) to evaluate the role of PHD/HIF-1 in regulating CA12 expression. Rat NP cells were treated with CA12 siRNA to determine the function of CA12. A rat ex vivo model was established to confirm that PHD, HIF-1, and CA12 have important roles in disc degeneration. We found that CA12 was significantly downregulated in degenerated human NP samples at the mRNA and protein levels. CA12 expression sharply increased by ~30-fold in response to hypoxia. The expression of HIF-1α, but not HIF-2α, also decreased in degenerated human NP samples and was positively correlated with CA12 expression. HIF-1α knockdown under hypoxia reduced the CA12 mRNA and protein expression levels. DMOG treatment increased HIF-1α and CA12 expression. CA12 knockdown significantly inhibited anabolic protein expression, whereas catabolic enzymes remained unchanged. The ex vivo experiments supported our in vitro studies of the role of PHD/HIF-1/CA12. In conclusion, CA12 is downregulated in degenerated NPs, and its expression may be regulated by the PHD/HIF-1 axis. Decreased CA12 expression may lead to decreased extracellular matrix synthesis, which contributes to degenerative disc disease progression.
Collapse
|
34
|
Thorpe AA, Boyes VL, Sammon C, Le Maitre CL. Thermally triggered injectable hydrogel, which induces mesenchymal stem cell differentiation to nucleus pulposus cells: Potential for regeneration of the intervertebral disc. Acta Biomater 2016; 36:99-111. [PMID: 26996377 DOI: 10.1016/j.actbio.2016.03.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/19/2016] [Accepted: 03/17/2016] [Indexed: 12/11/2022]
Abstract
There is an urgent need for new therapeutic options for low back pain, which target degeneration of the intervertebral disc (IVD). Here, we investigated a pNIPAM hydrogel system, which is liquid at 39°C ex vivo, where following injection into the IVD, body temperature triggers gelation. The combined effects of hypoxia (5% O2) and the structural environment of the hydrogel delivery system on the differentiation of human mesenchymal stem cells (hMSCs), towards an NP cell phenotype was investigated. hMSCs were incorporated into the liquid hydrogel, the mixture solidified and cultured for up to 6weeks under 21% O2 or 5% O2 where viability was maintained. Immunohistochemistry revealed significant increases in NP matrix components: aggrecan; collagen type II and chondroitin sulphate after culture for 1week in 5% O2, accompanied by increased matrix staining for proteoglycans and collagen, observed histologically. NP markers HIF1α, PAX1 and FOXF1 were also significantly increased where hMSC were incorporated into hydrogels with accelerated expression observed when cultured in 5% O2. hMSCs cultured under hypoxic conditions, which mimic the native disc microenvironment, accelerate differentiation of hMSCs within the hydrogel system, towards the NP phenotype without the need for chondrogenic inducing medium or additional growth factors, thus simplifying the treatment strategy for the repair of IVD degeneration.
Collapse
Affiliation(s)
- A A Thorpe
- Biomolecular Sciences Research Centre, Sheffield Hallam University, S1 1WB, UK.
| | - V L Boyes
- Materials and Engineering Research Institute, Sheffield Hallam University, S1 1WB, UK.
| | - C Sammon
- Materials and Engineering Research Institute, Sheffield Hallam University, S1 1WB, UK.
| | - C L Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, S1 1WB, UK.
| |
Collapse
|
35
|
van den Akker GGH, Surtel DAM, Cremers A, Hoes MFGA, Caron MM, Richardson SM, Rodrigues-Pinto R, van Rhijn LW, Hoyland JA, Welting TJM, Voncken JW. EGR1 controls divergent cellular responses of distinctive nucleus pulposus cell types. BMC Musculoskelet Disord 2016; 17:124. [PMID: 26975996 PMCID: PMC4791893 DOI: 10.1186/s12891-016-0979-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 03/09/2016] [Indexed: 01/07/2023] Open
Abstract
Background Immediate early genes (IEGs) encode transcription factors which serve as first line response modules to altered conditions and mediate appropriate cell responses. The immediate early response gene EGR1 is involved in physiological adaptation of numerous different cell types. We have previously shown a role for EGR1 in controlling processes supporting chondrogenic differentiation. We recently established a unique set of phenotypically distinct cell lines from the human nucleus pulposus (NP). Extensive characterization showed that these NP cellular subtypes represented progenitor-like cell types and more functionally mature cells. Methods To further understanding of cellular heterogeneity in the NP, we analyzed the response of these cell subtypes to anabolic and catabolic factors. Here, we test the hypothesis that physiological responses of distinct NP cell types are mediated by EGR1 and reflect specification of cell function using an RNA interference-based experimental approach. Results We show that distinct NP cell types rapidly induce EGR1 exposure to either growth factors or inflammatory cytokines. In addition, we show that mRNA profiles induced in response to anabolic or catabolic conditions are cell type specific: the more mature NP cell type produced a strong and more specialized transcriptional response to IL-1β than the NP progenitor cells and aspects of this response were controlled by EGR1. Conclusions Our current findings provide important substantiation of differential functionality among NP cellular subtypes. Additionally, the data shows that early transcriptional programming initiated by EGR1 is essentially restrained by the cells’ epigenome as it was determined during development and differentiation. These studies begin to define functional distinctions among cells of the NP and will ultimately contribute to defining functional phenotypes within the adult intervertebral disc. Electronic supplementary material The online version of this article (doi:10.1186/s12891-016-0979-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guus G H van den Akker
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands.,Current Address: Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Don A M Surtel
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Andy Cremers
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Martijn F G A Hoes
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marjolein M Caron
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Stephen M Richardson
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, The University of Manchester, Manchester, UK
| | - Ricardo Rodrigues-Pinto
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, The University of Manchester, Manchester, UK.,Current Address: Department of Orthopaedics, Centro Hospitalar do Porto - Hospital de Santo António, Porto, Portugal
| | - Lodewijk W van Rhijn
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Judith A Hoyland
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, The University of Manchester, Manchester, UK.,NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester Academic Health Science Centre, Manchester, UK
| | - Tim J M Welting
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
36
|
van den Akker GGH, Surtel DAM, Cremers A, Richardson SM, Hoyland JA, van Rhijn LW, Voncken JW, Welting TJM. Novel Immortal Cell Lines Support Cellular Heterogeneity in the Human Annulus Fibrosus. PLoS One 2016; 11:e0144497. [PMID: 26794306 PMCID: PMC4721917 DOI: 10.1371/journal.pone.0144497] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/19/2015] [Indexed: 12/11/2022] Open
Abstract
Introduction Loss of annulus fibrosus (AF) integrity predisposes to disc herniation and is associated with IVD degeneration. Successful implementation of biomedical intervention therapy requires in-depth knowledge of IVD cell biology. We recently generated unique clonal human nucleus pulposus (NP) cell lines. Recurring functional cellular phenotypes from independent donors provided pivotal evidence for cell heterogeneity in the mature human NP. In this study we aimed to generate and characterize immortal cell lines for the human AF from matched donors. Methods Non-degenerate healthy disc material was obtained as surplus surgical material. AF cells were immortalized by simian virus Large T antigen (SV40LTAg) and human telomerase (hTERT) expression. Early passage cells and immortalized cell clones were characterized based on marker gene expression under standardized culturing and in the presence of Transforming Growth factor β (TGFβ). Results The AF-specific expression signature included COL1A1, COL5A1, COL12A1, SFRP2 and was largely maintained in immortal AF cell lines. Remarkably, TGFβ induced rapid 3D sheet formation in a subgroup of AF clones. This phenotype was associated with inherent differences in Procollagen type I processing and maturation, and correlated with differential mRNA expression of Prolyl 4-hydroxylase alpha polypeptide 1 and 3 (P4HA1,3) and Lysyl oxidase (LOX) between clones and differential P4HA3 protein expression between AF cells in histological sections. Conclusion We report for the first time the generation of representative human AF cell lines. Gene expression profile analysis and functional comparison of AF clones revealed variation between immortalized cells and suggests phenotypic heterogeneity in the human AF. Future characterization of AF cellular (sub-)populations aims to combine identification of additional specific AF marker genes and their biological relevance. Ultimately this knowledge will contribute to clinical application of cell-based technology in IVD repair.
Collapse
Affiliation(s)
- Guus G. H. van den Akker
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Don A. M. Surtel
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Andy Cremers
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Stephen M. Richardson
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, The University of Manchester, Manchester, United Kingdom
| | - Judith A. Hoyland
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, The University of Manchester, Manchester, United Kingdom
| | - Lodewijk W. van Rhijn
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
- * E-mail: (JWV); (TJMW)
| | - Tim J. M. Welting
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
- * E-mail: (JWV); (TJMW)
| |
Collapse
|
37
|
Thorpe AA, Binch AL, Creemers LB, Sammon C, Le Maitre CL. Nucleus pulposus phenotypic markers to determine stem cell differentiation: fact or fiction? Oncotarget 2016; 7:2189-200. [PMID: 26735178 PMCID: PMC4823028 DOI: 10.18632/oncotarget.6782] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/22/2015] [Indexed: 01/07/2023] Open
Abstract
Progress in mesenchymal stem cell (MSC) based therapies for nucleus pulposus (NP) regeneration are hampered by a lack of understanding and consensus of the normal NP cell phenotype. Despite the recent consensus paper on NP markers, there is still a need to further validate proposed markers. This study aimed to determine whether an NP phenotypic profile could be identified within a large population of mature NP samples.qRT-PCR was conducted to assess mRNA expression of 13 genes within human non-degenerate articular chondrocytes (AC) (n=10) and NP cells extracted from patients across a spectrum of histological degeneration grades (n=71). qRT-PCR results were used to select NP marker candidates for protein expression analysis.Differential expression at mRNA between AC and non-degenerate NP cells was only observed for Paired Box Protein 1 (PAX1) and Forkhead box F1 (FOXF1). In contrast no other previously suggested markers displayed differential expression between non-degenerate NP and AC at mRNA level. PAX1 and FOXF1 protein expression was significantly higher in the NP compared to annulus fibrosus (AF), cartilaginous endplate (CEP) and AC. In contrast Laminin-5 (LAM-332), Keratin-19 (KRT-19) and Hypoxia Inducible Factor 1 alpha (HIF1α) showed no differential expression in NP cells compared with AC cells.A marker which exclusively differentiates NP cells from AF and AC cells remains to be identified, raising the question: is the NP a heterogeneous population of cells? Or does the natural biological variation during IVD development, degeneration state and even the life cycle of cells make finding one definitive marker impossible?
Collapse
Affiliation(s)
- Abbey A. Thorpe
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Abbie L.A. Binch
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | | | - Christopher Sammon
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | | |
Collapse
|
38
|
Molinos M, Almeida CR, Gonçalves RM, Barbosa MA. Improvement of Bovine Nucleus Pulposus Cells Isolation Leads to Identification of Three Phenotypically Distinct Cell Subpopulations. Tissue Eng Part A 2015; 21:2216-27. [DOI: 10.1089/ten.tea.2014.0461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Maria Molinos
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Catarina R. Almeida
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Raquel M. Gonçalves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Mário A. Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
39
|
Mechanics and biology in intervertebral disc degeneration: a vicious circle. Osteoarthritis Cartilage 2015; 23:1057-70. [PMID: 25827971 DOI: 10.1016/j.joca.2015.03.028] [Citation(s) in RCA: 569] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/20/2015] [Accepted: 03/20/2015] [Indexed: 02/02/2023]
Abstract
Intervertebral disc degeneration is a major cause of low back pain. Despite its long history and large socio-economical impact in western societies, the initiation and progress of disc degeneration is not well understood and a generic disease model is lacking. In literature, mechanics and biology have both been implicated as the predominant inductive cause; here we argue that they are interconnected and amplify each other. This view is supported by the growing awareness that cellular physiology is strongly affected by mechanical loading. We propose a vicious circle of mechanical overloading, catabolic cell response, and degeneration of the water-binding extracellular matrix. Rather than simplifying the disease, the model illustrates the complexity of disc degeneration, because all factors are interrelated. It may however solve some of the controversy in the field, because the vicious circle can be entered at any point, eventually leading to the same pathology. The proposed disease model explains the comparable efficacy of very different animal models of disc degeneration, but also helps to consider the consequences of therapeutic interventions, either at the cellular, material or mechanical level.
Collapse
|
40
|
Risbud MV, Schoepflin ZR, Mwale F, Kandel RA, Grad S, Iatridis JC, Sakai D, Hoyland JA. Defining the phenotype of young healthy nucleus pulposus cells: recommendations of the Spine Research Interest Group at the 2014 annual ORS meeting. J Orthop Res 2015; 33:283-93. [PMID: 25411088 PMCID: PMC4399824 DOI: 10.1002/jor.22789] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/06/2014] [Indexed: 02/04/2023]
Abstract
Low back pain is a major physical and socioeconomic problem. Degeneration of the intervertebral disc and especially that of nucleus pulposus (NP) has been linked to low back pain. In spite of much research focusing on the NP, consensus among the research community is lacking in defining the NP cell phenotype. A consensus agreement will allow easier distinguishing of NP cells from annulus fibrosus (AF) cells and endplate chondrocytes, a better gauge of therapeutic success, and a better guidance of tissue-engineering-based regenerative strategies that attempt to replace lost NP tissue. Most importantly, a clear definition will further the understanding of physiology and function of NP cells, ultimately driving development of novel cell-based therapeutic modalities. The Spine Research Interest Group at the 2014 Annual ORS Meeting in New Orleans convened with the task of compiling a working definition of the NP cell phenotype with hope that a consensus statement will propel disc research forward into the future. Based on evaluation of recent studies describing characteristic NP markers and their physiologic relevance, we make the recommendation of the following healthy NP phenotypic markers: stabilized expression of HIF-1α, GLUT-1, aggrecan/collagen II ratio >20, Shh, Brachyury, KRT18/19, CA12, and CD24.
Collapse
Affiliation(s)
- Makarand V. Risbud
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia PA
| | - Zachary R. Schoepflin
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia PA
| | - Fackson Mwale
- Division of Orthopaedic Surgery, McGill University, Lady Davis Institute for Medical Research, Montreal, Quebec H3T 1E2, Canada
| | - Rita A. Kandel
- Department of Pathology and Laboratory Medicine, Lunenfeld Tannenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | - James C. Iatridis
- Department of Orthopaedics and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Judith A. Hoyland
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|