1
|
Kinsey-Trotman S, Nguyen A, Edwards S, Swalling A, Dasari P, Walsh D, Ingman WV. Influence of tumour grade on disease survival in male breast cancer patients: a systematic review. Breast Cancer Res Treat 2024; 208:1-8. [PMID: 39095633 PMCID: PMC11452471 DOI: 10.1007/s10549-024-07446-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE Histological grading of tumours is a well-established biomarker used to guide treatment in female breast cancer. However, its significance in male breast cancer remains unclear. This systematic review investigates the prognostic significance of tumour grade in relation to breast cancer-specific survival (BCSS) in male breast cancer patients undergoing surgery. METHODS MEDLINE, PUBMED Central and EMBASE databases were searched to identify randomised trials and observational studies related to male breast neoplasms, tumour grading, recurrence, and survival. RESULTS A total of fifteen observational type studies were included in the review. A significant association between tumour grade and BCSS was reported in a majority of studies. This association was most evident with regard to high-grade (grade III) compared to low grade (grade I) tumours, with a significant relationship in 4 out of 4 studies. For intermediate-grade II tumours an association was demonstrated in a minority of studies. CONCLUSIONS This study confirms an association between high-grade male breast cancers and poorer disease-specific survival, however, the significance of intermediate-grade tumours remains unclear. Further research is required to investigate the biology of male breast cancer in relation to histological grade and optimally define intermediate-grade disease.
Collapse
Affiliation(s)
- Stephen Kinsey-Trotman
- Discipline of Surgical Specialties, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, 28 Woodville Road DX465702, Woodville South, SA, 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, 5006, Australia
- Lyell McEwin Hospital, Northern Adelaide Local Health Network, Haydown Rd, Elizabeth Vale, SA, 5112, Australia
| | - Alain Nguyen
- Lyell McEwin Hospital, Northern Adelaide Local Health Network, Haydown Rd, Elizabeth Vale, SA, 5112, Australia
| | - Suzanne Edwards
- School of Public Health, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Adam Swalling
- Central Adelaide Local Health Network, 28 Woodville Rd, Woodville South, SA, 5011, Australia
| | - Pallave Dasari
- Discipline of Surgical Specialties, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, 28 Woodville Road DX465702, Woodville South, SA, 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, 5006, Australia
| | - David Walsh
- Discipline of Surgical Specialties, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, 28 Woodville Road DX465702, Woodville South, SA, 5011, Australia
- Central Adelaide Local Health Network, 28 Woodville Rd, Woodville South, SA, 5011, Australia
| | - Wendy V Ingman
- Discipline of Surgical Specialties, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, 28 Woodville Road DX465702, Woodville South, SA, 5011, Australia.
- Robinson Research Institute, University of Adelaide, Adelaide, SA, 5006, Australia.
| |
Collapse
|
2
|
Valdivia-Silva J, Chinney-Herrera A. Chemokine receptors and their ligands in breast cancer: The key roles in progression and metastasis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:124-161. [PMID: 39260935 DOI: 10.1016/bs.ircmb.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chemokines and their receptors are a family of chemotactic cytokines with important functions in the immune response in both health and disease. Their known physiological roles such as the regulation of leukocyte trafficking and the development of immune organs generated great interest when it was found that they were also related to the control of early and late inflammatory stages in the tumor microenvironment. In fact, in breast cancer, an imbalance in the synthesis of chemokines and/or in the expression of their receptors was attributed to be involved in the regulation of disease progression, including invasion and metastasis. Research in this area is progressing rapidly and the development of new agents based on chemokine and chemokine receptor antagonists are emerging as attractive alternative strategies. This chapter provides a snapshot of the different functions reported for chemokines and their receptors with respect to the potential to regulate breast cancer progression.
Collapse
Affiliation(s)
- Julio Valdivia-Silva
- Centro de Investigación en Bioingenieria (BIO), Universidad de Ingenieria y Tecnologia-UTEC, Barranco, Lima, Peru.
| | - Alberto Chinney-Herrera
- Facultad de Medicina, Universidad Nacional Autonoma de Mexico-UNAM, Ciudad Universitaria, Coyoacan, Ciudad de Mexico, Mexico
| |
Collapse
|
3
|
Kakkat S, Suman P, Turbat- Herrera EA, Singh S, Chakroborty D, Sarkar C. Exploring the multifaceted role of obesity in breast cancer progression. Front Cell Dev Biol 2024; 12:1408844. [PMID: 39040042 PMCID: PMC11260727 DOI: 10.3389/fcell.2024.1408844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Obesity is a multifaceted metabolic disorder characterized by excessive accumulation of adipose tissue. It is a well-established risk factor for the development and progression of breast cancer. Adipose tissue, which was once regarded solely as a passive energy storage depot, is now acknowledged as an active endocrine organ producing a plethora of bioactive molecules known as adipokines that contribute to the elevation of proinflammatory cytokines and estrogen production due to enhanced aromatase activity. In the context of breast cancer, the crosstalk between adipocytes and cancer cells within the adipose microenvironment exerts profound effects on tumor initiation, progression, and therapeutic resistance. Moreover, adipocytes can engage in direct interactions with breast cancer cells through physical contact and paracrine signaling, thereby facilitating cancer cell survival and invasion. This review endeavors to summarize the current understanding of the intricate interplay between adipocyte-associated factors and breast cancer progression. Furthermore, by discussing the different aspects of breast cancer that can be adversely affected by obesity, this review aims to shed light on potential avenues for new and novel therapeutic interventions.
Collapse
Affiliation(s)
- Sooraj Kakkat
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Prabhat Suman
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Elba A. Turbat- Herrera
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Seema Singh
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| | - Debanjan Chakroborty
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| | - Chandrani Sarkar
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
4
|
Leblanc PO, Breton Y, Léveillé F, Tessier PA, Pelletier M. The impact of the herbicide glyphosate and its metabolites AMPA and MPA on the metabolism and functions of human blood neutrophils and their sex-dependent effects on reactive oxygen species and CXCL8/IL-8 production. ENVIRONMENTAL RESEARCH 2024; 252:118831. [PMID: 38580005 DOI: 10.1016/j.envres.2024.118831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Significant levels of glyphosate, the world's most widely used herbicide, and its primary metabolites, AMPA and MPA, are detected in various human organs and body fluids, including blood. Several studies have associated the presence of glyphosate in humans with health problems, and effects on immune cells and their functions have been reported. However, the impact of this molecule and its metabolites on neutrophils, the most abundant leukocytes in the human bloodstream, is still poorly documented. We isolated neutrophils from human donor blood and investigated the effects of exposure to glyphosate, AMPA, and MPA on viability, energy metabolism, and essential antimicrobial functions in vitro. We observed that neutrophil viability was unaffected at the blood-relevant average concentrations of the general population and exposed workers, as well as at higher intoxication concentrations. Neutrophil energy metabolism was also not altered following exposure to the chemicals. However, while phagocytosis was unaffected, reactive oxygen species generation and CXCL8/IL-8 production were altered by exposure to the molecules. Alterations in function following exposure to glyphosate and metabolites differed according to the sex of the donors, which could be linked to glyphosate's known role as an endocrine disruptor. While ROS generation was increased in both sexes, male neutrophils exposed to glyphosate had increased intracellular production of CXCL8/IL-8, with no effect on female neutrophils. Conversely, exposure to the metabolites AMPA and MPA decreased extracellular production of this chemokine only in female neutrophils, with MPA also increasing intracellular production in male cells exposed to the chemoattractant N-formyl-methionine-leucyl-phenylalanine. Our study highlights the effects of glyphosate and its metabolites on the antimicrobial functions of neutrophils, which could be associated with health problems as future studies provide a better understanding of the risks associated with glyphosate use. Advances in knowledge will enable better and potentially stricter regulations to protect the public.
Collapse
Affiliation(s)
- Pier-Olivier Leblanc
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada
| | - Yann Breton
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada
| | - Florence Léveillé
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada
| | - Philippe A Tessier
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec, G1V 0A6, Canada
| | - Martin Pelletier
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec, G1V 0A6, Canada.
| |
Collapse
|
5
|
Peta KT, Durandt C, van Heerden MB, Joubert AM, Pepper MS, Ambele MA. Effect of 2-methoxyestradiol on mammary tumor initiation and progression. Cancer Rep (Hoboken) 2024; 7:e2068. [PMID: 38600057 PMCID: PMC11006714 DOI: 10.1002/cnr2.2068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND The anti-cancer agent 2-methoxyestradiol (2-ME) has been shown to have anti-proliferative and anti-angiogenic properties. Previously, the effect of 2-ME on early- and late-stage breast cancer (BC) was investigated in vivo using a transgenic mouse model (FVB/N-Tg(MMTV-PyVT)) of spontaneous mammary carcinoma. Anti-tumor effects were observed in late-stage BC with no effect on early-stage BC. Given the contrasting results obtained from the different BC stages, we have now investigated the effect of 2-ME when administered before the appearance of palpable tumors. METHODS Each mouse received 100 mg/kg 2-ME on day 30 after birth, twice per week for 28 days, while control mice received vehicle only. Animals were terminated on day 59. Lung and mammary tissue were obtained for immunohistochemical analysis of CD163 and CD3 expression, and histological examination was performed to analyze tumor necrosis. Additionally, blood samples were collected to measure plasma cytokine levels. RESULTS 2-ME increased tumor mass when compared to the untreated animals (p = .0139). The pro-tumorigenic activity of 2-ME was accompanied by lower CD3+ T-cell numbers in the tumor microenvironment (TME) and high levels of the pro-inflammatory cytokine interleukin (IL)-1β. Conversely, 2-ME-treatment resulted in fewer CD163+ cells detectable in the TME, increased levels of tumor necrosis, increased IL-10 plasma levels, and low IL-6 and IL-27 plasma levels. CONCLUSION Taken together, these findings suggest that 2-ME promotes early-stage BC development.
Collapse
Affiliation(s)
- Kimberly T. Peta
- Department of Immunology, Institute for Cellular and Molecular Medicine, South African Medical Research Council, Extramural Unit for Stem Cell Research and Therapy, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Chrisna Durandt
- Department of Immunology, Institute for Cellular and Molecular Medicine, South African Medical Research Council, Extramural Unit for Stem Cell Research and Therapy, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Marlene B. van Heerden
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Anna M. Joubert
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Michael S. Pepper
- Department of Immunology, Institute for Cellular and Molecular Medicine, South African Medical Research Council, Extramural Unit for Stem Cell Research and Therapy, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Melvin A. Ambele
- Department of Immunology, Institute for Cellular and Molecular Medicine, South African Medical Research Council, Extramural Unit for Stem Cell Research and Therapy, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
6
|
Lujan DA, Ochoa JL, Beswick EJ, Howard TA, Hathaway HJ, Perrone-Bizzozero NI, Hartley RS. Cold-Inducible RNA Binding Protein Impedes Breast Tumor Growth in the PyMT Murine Model for Breast Cancer. Biomedicines 2024; 12:340. [PMID: 38397942 PMCID: PMC10886683 DOI: 10.3390/biomedicines12020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
RNA binding proteins (RBPs) post-transcriptionally regulate gene expression by associating with regulatory sequences in the untranslated regions of mRNAs. Cold-inducible RBP (CIRP) is a stress-induced RBP that was recently shown to modulate inflammation in response to cellular stress, where it increases or decreases pro-tumorigenic (proinflammatory) cytokines in different contexts. CIRP expression is altered in several cancers, including breast cancer, but the effects of CIRP on inflammation in breast cancer is not known. Here, we investigate if CIRP alters growth and the inflammatory profile of breast tumors. Transgenic mice overexpressing CIRP in the mammary epithelium were crossed with the PyMT mouse model of breast cancer, and the effects on both early and late tumorigenesis and inflammation were assessed. The effects of CIRP knockdown were also assessed in Py2T cell grafts. Overexpression of CIRP led to decreased tumorigenesis in the PyMT mouse model. Conversely, the knockdown of CIRP in Py2T cell grafts led to increased tumor growth. Luminex cytokine assays assessed the effects on the inflammatory environment. CIRP/PyMT mammary glands/mammary tumors and serum had decreased cytokines that promote inflammation, angiogenesis, and metastasis compared to PyMT mammary glands and serum, documenting a shift towards an environment less supportive of tumorigenesis. CIRP overexpression also decreased CD4+ helper T cells and increased CD8+ cytotoxic T cells in mammary tumors. Overall, these data support a role for CIRP as a potent antitumor molecule that suppresses both local and systemic pro-tumorigenic inflammation.
Collapse
Affiliation(s)
- Daniel A. Lujan
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| | - Joey L. Ochoa
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| | - Ellen J. Beswick
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40506, USA;
| | - Tamara A. Howard
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| | - Helen J. Hathaway
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| | - Nora I. Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA;
| | - Rebecca S. Hartley
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| |
Collapse
|
7
|
Cui Y, Cui S, Lu W, Wang Y, Zhuo Z, Wang R, Zhang D, Wu X, Chang L, Zuo X, Zhang W, Mei H, Zhang M. CRP, IL-1α, IL-1β, and IL-6 levels and the risk of breast cancer: a two-sample Mendelian randomization study. Sci Rep 2024; 14:1982. [PMID: 38263420 PMCID: PMC10805756 DOI: 10.1038/s41598-024-52080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024] Open
Abstract
Epidemiological studies have reported a positive association between chronic inflammation and cancer risk. However, the causal association between chronic inflammation and breast cancer (BC) risk remains unclear. Here, we performed a Mendelian randomization study to investigate the etiological role of chronic inflammation in BC risk. We acquired data regarding C-reactive protein (CRP), interleukin (IL)-1a, IL-1b, and IL-6 expression and BC related to single nucleotide polymorphisms (SNPs) from two larger consortia (the genome-wide association studies and the Breast Cancer Association Consortium). Next, we conducted the two-sample Mendelian randomization study to investigate the relationship of the abovementioned inflammatory factors with the incidence of BC. We found that genetically predicted CRP, IL-6, and IL-1a levels did not increase BC incidence (odds ratio (OR)CRP 1.06, 95% confidence interval (CI) 0.98-1.12, P = 0.2059, ORIL-6 1.05, 95% CI 0.95-1.16, P = 0.3297 and ORIL-1a 1.01, 95% CI 0.99-1.03, P = 0.2167). However, in subgroup analysis, genetically predicted IL-1b levels increased ER + BC incidence (OR 1.15, 95% CI 1.03-1.27, P = 0.0088). Our study suggested that genetically predicted IL-1b levels were found to increase ER + BC susceptibility. However, due to the support of only one SNP, heterogeneity and pleiotropy tests cannot be performed, which deserves further research.
Collapse
Affiliation(s)
- Yongjia Cui
- Guang An'men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Shasha Cui
- Guang An'men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Wenping Lu
- Guang An'men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Ya'nan Wang
- Guang An'men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhili Zhuo
- Guang An'men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ruipeng Wang
- Guang An'men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Dongni Zhang
- Guang An'men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xiaoqing Wu
- Guang An'men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Lei Chang
- Guang An'men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xi Zuo
- Guang An'men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Weixuan Zhang
- Guang An'men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Heting Mei
- Guang An'men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Mengfan Zhang
- Guang An'men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
8
|
Hurtado MD, Tama E, D'Andre S, Shufelt CL. The relation between excess adiposity and breast cancer in women: Clinical implications and management. Crit Rev Oncol Hematol 2024; 193:104213. [PMID: 38008197 PMCID: PMC10843740 DOI: 10.1016/j.critrevonc.2023.104213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer in women. While the combination of improved screening, earlier detection, and advances in therapeutics has resulted in lower BC mortality, BC survivors are now increasingly dying of cardiovascular disease. Cardiovascular disease in the leading cause of non-cancer related mortality among BC survivors. This situation underscores the critical need to research the role of modifiable cardiometabolic risk factors, such as excess adiposity, that will affect BC remission, long-term survivorship, and overall health and quality of life. PURPOSE First, this review summarizes the evidence on the connection between adipose tissue and BC. Then we review the data on weight trends after BC diagnosis with a focus on the effect of weight gain on BC recurrence and BC- and non-BC-related death. Finally, we provide a guide for weight management in BC survivors, considering the available data on the effect of weight loss interventions on BC.
Collapse
Affiliation(s)
- Maria D Hurtado
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Jacksonville, FL, USA; Precision Medicine for Obesity Program, Mayo Clinic, Rochester, MN, USA.
| | - Elif Tama
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Jacksonville, FL, USA; Precision Medicine for Obesity Program, Mayo Clinic, Rochester, MN, USA
| | - Stacey D'Andre
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Chrisandra L Shufelt
- Center for Women's Health, Division of General Internal Medicine, Jacksonville, FL, USA
| |
Collapse
|
9
|
Engin A. Obesity-Associated Breast Cancer: Analysis of Risk Factors and Current Clinical Evaluation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:767-819. [PMID: 39287872 DOI: 10.1007/978-3-031-63657-8_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Several studies show that a significantly stronger association is obvious between increased body mass index (BMI) and higher breast cancer incidence. Additionally, obese and postmenopausal women are at higher risk of all-cause and breast cancer-specific mortality compared with non-obese women with breast cancer. In this context, increased levels of estrogens, excessive aromatization activity of the adipose tissue, overexpression of pro-inflammatory cytokines, insulin resistance, adipocyte-derived adipokines, hypercholesterolemia, and excessive oxidative stress contribute to the development of breast cancer in obese women. Genetic evaluation is an integral part of diagnosis and treatment for patients with breast cancer. Despite trimodality therapy, the four-year cumulative incidence of regional recurrence is significantly higher. Axillary lymph nodes as well as primary lesions have diagnostic, prognostic, and therapeutic significance for the management of breast cancer. In clinical setting, because of the obese population primary lesions and enlarged lymph nodes could be less palpable, the diagnosis may be challenging due to misinterpretation of physical findings. Thereby, a nomogram has been created as the "Breast Imaging Reporting and Data System" (BI-RADS) to increase agreement and decision-making consistency between mammography and ultrasonography (USG) experts. Additionally, the "breast density classification system," "artificial intelligence risk scores," ligand-targeted receptor probes," "digital breast tomosynthesis," "diffusion-weighted imaging," "18F-fluoro-2-deoxy-D-glucose positron emission tomography," and "dynamic contrast-enhanced magnetic resonance imaging (MRI)" are important techniques for the earlier detection of breast cancers and to reduce false-positive results. A high concordance between estrogen receptor (ER) and progesterone receptor (PR) status evaluated in preoperative percutaneous core needle biopsy and surgical specimens is demonstrated. Breast cancer surgery has become increasingly conservative; however, mastectomy may be combined with any axillary procedures, such as sentinel lymph node biopsy (SLNB) and/or axillary lymph node dissection whenever is required. As a rule, SLNB-guided axillary dissection in breast cancer patients who have clinically axillary lymph node-positive to node-negative conversion following neoadjuvant chemotherapy is recommended, because lymphedema is the most debilitating complication after any axillary surgery. There is no clear consensus on the optimal treatment of occult breast cancer, which is much discussed today. Similarly, the current trend in metastatic breast cancer is that the main palliative treatment option is systemic therapy.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
10
|
Berger K, Persson E, Gregersson P, Ruiz-Martínez S, Jonasson E, Ståhlberg A, Rhost S, Landberg G. Interleukin-6 Induces Stem Cell Propagation through Liaison with the Sortilin-Progranulin Axis in Breast Cancer. Cancers (Basel) 2023; 15:5757. [PMID: 38136303 PMCID: PMC10741783 DOI: 10.3390/cancers15245757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Unraveling the complex network between cancer cells and their tumor microenvironment is of clinical importance, as it might allow for the identification of new targets for cancer treatment. Cytokines and growth factors secreted by various cell types present in the tumor microenvironment have the potential to affect the challenging subpopulation of cancer stem cells showing treatment-resistant properties as well as aggressive features. By using various model systems, we investigated how the breast cancer stem cell-initiating growth factor progranulin influenced the secretion of cancer-associated proteins. In monolayer cultures, progranulin induced secretion of several inflammatory-related cytokines, such as interleukin (IL)-6 and -8, in a sortilin-dependent manner. Further, IL-6 increased the cancer stem fraction similarly to progranulin in the breast cancer cell lines MCF7 and MDA-MB-231 monitored by the surrogate mammosphere-forming assay. In a cohort of 63 patient-derived scaffold cultures cultured with breast cancer cells, we observed significant correlations between IL-6 and progranulin secretion, clearly validating the association between IL-6 and progranulin also in human-based microenvironments. In conclusion, the interplay between progranulin and IL-6 highlights a dual breast cancer stem cell-promoting function via sortilin, further supporting sortilin as a highly relevant therapeutic target for aggressive breast cancer.
Collapse
Affiliation(s)
- Karoline Berger
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (K.B.); (E.P.); (P.G.); (S.R.-M.); (E.J.); (A.S.); (S.R.)
| | - Emma Persson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (K.B.); (E.P.); (P.G.); (S.R.-M.); (E.J.); (A.S.); (S.R.)
| | - Pernilla Gregersson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (K.B.); (E.P.); (P.G.); (S.R.-M.); (E.J.); (A.S.); (S.R.)
| | - Santiago Ruiz-Martínez
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (K.B.); (E.P.); (P.G.); (S.R.-M.); (E.J.); (A.S.); (S.R.)
| | - Emma Jonasson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (K.B.); (E.P.); (P.G.); (S.R.-M.); (E.J.); (A.S.); (S.R.)
| | - Anders Ståhlberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (K.B.); (E.P.); (P.G.); (S.R.-M.); (E.J.); (A.S.); (S.R.)
- Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, 41390 Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 41346 Gothenburg, Sweden
| | - Sara Rhost
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (K.B.); (E.P.); (P.G.); (S.R.-M.); (E.J.); (A.S.); (S.R.)
| | - Göran Landberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (K.B.); (E.P.); (P.G.); (S.R.-M.); (E.J.); (A.S.); (S.R.)
| |
Collapse
|
11
|
de Araújo RA, da Luz FAC, da Costa Marinho E, Nascimento CP, Mendes TR, Mosca ERT, de Andrade Marques L, Delfino PFR, Antonioli RM, da Silva ACAL, Dos Reis Monteiro MLG, Neto MB, Silva MJB. The elusive Luminal B breast cancer and the mysterious chemokines. J Cancer Res Clin Oncol 2023; 149:12807-12819. [PMID: 37458802 DOI: 10.1007/s00432-023-05094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 10/20/2023]
Abstract
PURPOSE Invasive ductal breast cancer (IDC) is heterogeneous. Staging and immunohistochemistry (IH) allow for effective therapy but are not yet ideal. Women with Luminal B tumors show an erratic response to treatment. This prospective study with 81 women with breast cancer aims to improve the prognostic stratification of Luminal B patients. METHODS This is a prospective translational study with 81 women with infiltrating ductal carcinoma, grouped by TNM staging and immunohistochemistry, for survival analysis, and their correlations with the chemokines. Serum measurements of 13 chemokines were performed, including 7 CC chemokines [CCL2(MCP1), CCL3(MIP1α), CCL4(MIP1β), CCL5(Rantes), CCL11(Eotaxin), CCL17(TARC), CCL20(MIP3α)], 6 CXC chemokines [CXCL1(GroAlpha), CXCL5(ENA78), CCXCL8(IL-8), CXCL9(MIG), CXCL10(IP10), CXCL11(ITAC)]. RESULTS Overall survival was significantly dependent on tumor staging and subtypes by immunohistochemistry, with a median follow-up time the 32.87 months (3.67-65.63 months). There were age correlations with IP10/CXCL10 chemokines (r = 0.4360; p = 0.0079) and TARC/CCL17 (Spearman + 0.2648; p = 0.0360). An inverse correlation was found between body weight and the chemokines Rantes/CCL5 (r = - 0.3098; p = 0.0169) and Eotaxin/CCL11 (r = - 0.2575; p = 0.0470). Smokers had a higher concentration of MIP3α/CCL20 (Spearman + 0.3344; p = 0.0267). Luminal B subtype patients who expressed lower concentrations of ENA78/CXCL5 (≤ 254.83 pg/ml) (Log-Rank p = 0.016) and higher expression of MIP1β/CCL4 (> 34.84 pg/ml) (Log-Rank p = 0.014) had a higher risk of metastases. CONCLUSION Patients with Luminal B breast tumors can be better stratified by serum chemokine expression, suggesting that prognosis is dependent on biomarkers other than TNM and IH.
Collapse
Affiliation(s)
- Rogério Agenor de Araújo
- Medical Faculty, Federal University of Uberlândia, Avenida Pará, Bloco 2U, 1720, Campus Umuarama, Uberlândia, MG, CEP 38400-902, Brazil.
- Cancer Research and Prevention Nucleus, Grupo Luta Pela Vida, Cancer Hospital in Uberlândia, Uberlândia, MG, CEP 38405-302, Brazil.
| | - Felipe Andrés Cordero da Luz
- Cancer Research and Prevention Nucleus, Grupo Luta Pela Vida, Cancer Hospital in Uberlândia, Uberlândia, MG, CEP 38405-302, Brazil
| | - Eduarda da Costa Marinho
- Cancer Research and Prevention Nucleus, Grupo Luta Pela Vida, Cancer Hospital in Uberlândia, Uberlândia, MG, CEP 38405-302, Brazil
| | - Camila Piqui Nascimento
- Cancer Research and Prevention Nucleus, Grupo Luta Pela Vida, Cancer Hospital in Uberlândia, Uberlândia, MG, CEP 38405-302, Brazil
| | - Thais Rezende Mendes
- Cancer Research and Prevention Nucleus, Grupo Luta Pela Vida, Cancer Hospital in Uberlândia, Uberlândia, MG, CEP 38405-302, Brazil
| | - Etelvina Rocha Tolentino Mosca
- Cancer Research and Prevention Nucleus, Grupo Luta Pela Vida, Cancer Hospital in Uberlândia, Uberlândia, MG, CEP 38405-302, Brazil
| | - Lara de Andrade Marques
- Cancer Research and Prevention Nucleus, Grupo Luta Pela Vida, Cancer Hospital in Uberlândia, Uberlândia, MG, CEP 38405-302, Brazil
| | | | - Rafael Mathias Antonioli
- Cancer Research and Prevention Nucleus, Grupo Luta Pela Vida, Cancer Hospital in Uberlândia, Uberlândia, MG, CEP 38405-302, Brazil
| | | | | | - Morun Bernardino Neto
- Department of Basic and Environmental Sciences, University of São Paulo, Lorena, SP, CEP 12602-810, Brazil
| | - Marcelo José Barbosa Silva
- Laboratory of Tumor Biomarkers and Osteoimmunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, CEP 38405-320, Brazil
| |
Collapse
|
12
|
Moisand A, Madéry M, Boyer T, Domblides C, Blaye C, Larmonier N. Hormone Receptor Signaling and Breast Cancer Resistance to Anti-Tumor Immunity. Int J Mol Sci 2023; 24:15048. [PMID: 37894728 PMCID: PMC10606577 DOI: 10.3390/ijms242015048] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancers regroup many heterogeneous diseases unevenly responding to currently available therapies. Approximately 70-80% of breast cancers express hormone (estrogen or progesterone) receptors. Patients with these hormone-dependent breast malignancies benefit from therapies targeting endocrine pathways. Nevertheless, metastatic disease remains a major challenge despite available treatments, and relapses frequently ensue. By improving patient survival and quality of life, cancer immunotherapies have sparked considerable enthusiasm and hope in the last decade but have led to only limited success in breast cancers. In addition, only patients with hormone-independent breast cancers seem to benefit from these immune-based approaches. The present review examines and discusses the current literature related to the role of hormone receptor signaling (specifically, an estrogen receptor) and the impact of its modulation on the sensitivity of breast cancer cells to the effector mechanisms of anti-tumor immune responses and on the capability of breast cancers to escape from protective anti-cancer immunity. Future research prospects related to the possibility of promoting the efficacy of immune-based interventions using hormone therapy agents are considered.
Collapse
Affiliation(s)
- Alexandra Moisand
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| | - Mathilde Madéry
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| | - Thomas Boyer
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| | - Charlotte Domblides
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Department of Medical Oncology, University Hospital of Bordeaux, 33000 Bordeaux, France
| | - Céline Blaye
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
| | - Nicolas Larmonier
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| |
Collapse
|
13
|
Sharifhoseini A, Heshmati M, Soltani A, Entezam M, Shirzad H, Sedehi M, Judd BA, Jami MS, Ghatrehsamani M. Effects of bromodomain and extra-terminal inhibitor JQ1 and interleukin-6 on breast cancer cells. Mol Biol Rep 2023; 50:8319-8328. [PMID: 37589934 DOI: 10.1007/s11033-023-08718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Bromodomain and extra-terminal (BET) proteins are recognized acetylated lysine of histone 4 and act as scaffolds to recruit many other proteins to promoters and enhancers of active genes, especially at the super-enhancers of key genes, driving the transcription process and have been identified as potential therapeutic targets in breast cancer. However, the efficacy of BET inhibitors such as JQ1 in breast cancer therapy is impeded by interleukin-6 (IL-6) through an as-yet-defined mechanism. METHODS AND RESULTS We investigated the interplay between IL-6 and JQ1 in MCF-7 and MDA-MB-231 human breast cancer cells. The results demonstrate that the efficacy of JQ1 on the inhibition of cell growth and apoptosis was stronger in MDA-MB-231 cells than in MCF-7 cells. Further, MCF-7 cells, but not MDA-MB-231 cells, exhibited increased expression of CXCR4 following IL-6 treatment. JQ1 significantly reduced CXCR4 surface expression in both cell lines and diminished the effects of IL-6 pre-treatment on MCF-7 cells. While IL-6 suppressed the extension of breast cancer stem cells in MCF-7 cells, JQ1 impeded its inhibitory effect. In MCF-7 cells JQ1 increased the number of senescent cells in a time-dependent manner. CONCLUSION Analysis of gene expression indicated that JQ1 and IL-6 synergistically increase SNAIL expression and decrease c-MYC expression in MCF-7 cells. So, the BET proteins are promising, novel therapeutic targets in late-stage breast cancers. BET inhibitors similar to JQ1 show promise as therapeutic candidates for breast cancers, especially when triple-negative breast cancer cells are increased and/or tumor-promoting factors like IL-6 exist in the tumor microenvironment.
Collapse
Affiliation(s)
- Atefeh Sharifhoseini
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, PO Box: 88155-571, Shahrekord, Iran
| | - Masoud Heshmati
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, PO Box: 88155-571, Shahrekord, Iran
| | - Amin Soltani
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, PO Box: 88155-571, Shahrekord, Iran
| | - Mahshad Entezam
- Department of Microbiology and Immunology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, PO Box: 88155-571, Shahrekord, Iran
| | - Morteza Sedehi
- Department of Epidemiology and Biostatistics, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Babri A Judd
- Immunology Science Editors, Eden Prairie, MN, USA
| | - Mohammad-Saeid Jami
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Mahdi Ghatrehsamani
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, PO Box: 88155-571, Shahrekord, Iran.
| |
Collapse
|
14
|
Chang CM, Chang CC, Lam HYP, Peng SY, Lai YH, Hsiang BD, Liao YY, Hsu HJ, Jiang SJ. Therapeutic Peptide RF16 Derived from CXCL8 Inhibits MDA-MB-231 Cell Invasion and Metastasis. Int J Mol Sci 2023; 24:14029. [PMID: 37762330 PMCID: PMC10531501 DOI: 10.3390/ijms241814029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Interleukin (IL)-8 plays a vital role in regulating inflammation and breast cancer formation by activating CXCR1/2. We previously designed an antagonist peptide, (RF16), to inhibits the activation of downstream signaling pathways by competing with IL-8 in binding to CXCR1/2, thereby inhibiting IL-8-induced chemoattractant monocyte binding. To evaluate the effect of the RF16 peptide on breast cancer progression, triple-negative MDA-MB-231 and ER-positive MCF-7 breast cancer cells were used to investigate whether RF16 can inhibit the IL-8-induced breast cancer metastasis. Using growth, proliferation, and invasiveness assays, the results revealed that RF16 reduced cell proliferation, migration, and invasiveness in MDA-MB-231 cells. The RF16 peptide also regulated the protein and mRNA expressions of epithelial-mesenchymal transition (EMT) markers in IL-8-stimulated MDA-MB-231 cells. It also inhibited downstream IL-8 signaling and the IL-8-induced inflammatory response via the mitogen-activated protein kinase (MAPK) and Phosphoinositide 3-kinase (PI3K) pathways. In the xenograft tumor mouse model, RF16 synergistically reinforces the antitumor efficacy of docetaxel by improving mouse survival and retarding tumor growth. Our results indicate that RF16 significantly inhibited IL-8-stimulated cell growth, migration, and invasion in MDA-MB-231 breast cancer cells by blocking the activation of p38 and AKT cascades. It indicated that the RF16 peptide may serve as a new supplementary drug for breast cancer.
Collapse
Affiliation(s)
- Chun-Ming Chang
- Department of General Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Chun-Chun Chang
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Hualien 97004, Taiwan;
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Ho Yin Pekkle Lam
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (H.Y.P.L.); (S.-Y.P.); (Y.-H.L.)
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Shih-Yi Peng
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (H.Y.P.L.); (S.-Y.P.); (Y.-H.L.)
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Yi-Hsuan Lai
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (H.Y.P.L.); (S.-Y.P.); (Y.-H.L.)
| | - Bi-Da Hsiang
- Department of Molecular Biology and Human Genetics, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Yu-Yi Liao
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Hao-Jen Hsu
- Department of Biomedical Sciences and Engineering, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Shinn-Jong Jiang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (H.Y.P.L.); (S.-Y.P.); (Y.-H.L.)
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| |
Collapse
|
15
|
Mulholland BS, Hofstee P, Millar EKA, Bliuc D, O'Toole S, Forwood MR, McDonald MM. MCP-1 expression in breast cancer and its association with distant relapse. Cancer Med 2023; 12:16221-16230. [PMID: 37341066 PMCID: PMC10469641 DOI: 10.1002/cam4.6284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Distant relapse of breast cancer complicates management of the disease and accounts for 90% of breast cancer-related deaths. Monocyte chemoattractant protein-1 (MCP-1) has critical roles in breast cancer progression and is widely accepted as a pro-metastatic chemokine. METHODS This study explored MCP-1 expression in the primary tumour of 251 breast cancer patients. A simplified 'histoscore' was used to determine if each tumour had high or low expression of MCP-1. Patient breast cancers were retrospectively staged based on available patient data. p < 0.05 was used to determine significance and changes in hazard ratios between models were considered. RESULTS Low MCP-1 expression in the primary tumour was associated with breast cancer-related death with distant relapse in ER- breast cancers (p < 0.01); however, this was likely a result of most low MCP-1-expressing ER- breast cancers being Stage III or Stage IV, with high MCP-1 expression in the primary tumour significantly correlated with Stage I breast cancers (p < 0.05). Expression of MCP-1 in the primary ER- tumours varied across Stage I, II, III and IV and we highlighted a switch in MCP-1 expression from high in Stage I ER- cancers to low in Stage IV ER- cancers. CONCLUSION This study has emphasised a critical need for further investigation into MCP-1's role in breast cancer progression and improved characterisation of MCP-1 in breast cancers, particularly in light of the development of anti-MCP-1, anti-metastatic therapies.
Collapse
Affiliation(s)
- Bridie S. Mulholland
- Graduate School of Medicine, Faculty of Science, Medicine and HealthUniversity of WollongongWollongongNew South WalesAustralia
- Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and HealthUniversity of SydneyCamperdownNew South WalesAustralia
| | - Pierre Hofstee
- Graduate School of Medicine, Faculty of Science, Medicine and HealthUniversity of WollongongWollongongNew South WalesAustralia
- The Tweed HospitalNorthern New South Wales Local Health DistrictTweed HeadsNew South WalesAustralia
| | - Ewan K. A. Millar
- St George and Sutherland Clinical Campuses, School of Clinical MedicineUNSW Medicine and Health, University of New South WalesSydneyNew South WalesAustralia
- Department of Anatomical Pathology, NSW Health PathologySt George HospitalKogarahAustralia
- Translational Breast Cancer Research Group, Cancer Ecosystems ProgramGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Dana Bliuc
- Bone Microenvironment Group, Skeletal Diseases ProgramGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Sandra O'Toole
- Translational Breast Cancer Research Group, Cancer Ecosystems ProgramGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
- Department of Tissue Pathology and Diagnostic PathologyRoyal Prince Alfred HospitalCamperdownNew South WalesAustralia
- Sydney Medical School, Faculty of Medicine and HealthUniversity of SydneyCamperdownNew South WalesAustralia
| | - Mark R. Forwood
- School of Pharmacy and Medical SciencesMenzies Health Institute Queensland, Griffith UniversityGold CoastQueenslandAustralia
| | - Michelle M. McDonald
- Bone Microenvironment Group, Skeletal Diseases ProgramGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneyCamperdownNew South WalesAustralia
| |
Collapse
|
16
|
Haidar Ahmad S, El Baba R, Herbein G. Polyploid giant cancer cells, cytokines and cytomegalovirus in breast cancer progression. Cancer Cell Int 2023; 23:119. [PMID: 37340387 DOI: 10.1186/s12935-023-02971-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Breast cancer is the most common cancer among women. Accumulated evidence over the past decades indicates a very high prevalence of human cytomegalovirus (HCMV) in breast cancer. High-risk HCMV strains possess a direct oncogenic effect displayed by cellular stress, polyploid giant cancer cells (PGCCs) generation, stemness, and epithelial-to-mesenchymal transition (EMT) leading to cancer of aggressive phenotype. Breast cancer development and progression have been regulated by several cytokines where the latter can promote cancer cell survival, help in tumor immune evasion, and initiate the EMT process, thereby resulting in invasion, angiogenesis, and breast cancer metastasis. In the present study, we screened cytokines expression in cytomegalovirus-transformed HMECs (CTH cells) cultures infected with HCMV high-risk strains namely, HCMV-DB and BL, as well as breast cancer biopsies, and analyzed the association between cytokines production, PGCCs count, and HCMV presence in vitro and in vivo. METHODS In CTH cultures and breast cancer biopsies, HCMV load was quantified by real-time qPCR. PGCCs count in CTH cultures and breast cancer biopsies was identified based on cell morphology and hematoxylin and eosin staining, respectively. CTH supernatants were evaluated for the production of TGF-β, IL-6, IL1-β, and IL-10 by ELISA assays. The above-mentioned cytokines expression was assessed in breast cancer biopsies using reverse transcription-qPCR. The correlation analyses were performed using Pearson correlation test. RESULTS The revealed PGCCs/cytokine profile in our in vitro CTH model matched that of the breast cancer biopsies, in vivo. Pronounced cytokine expression and PGCCs count were detected in particularly CTH-DB cultures and basal-like breast cancer biopsies. CONCLUSIONS The analysis of cytokine profiles in PGCCs present mostly in basal-like breast cancer biopsies and derived from CTH cells chronically infected with the high-risk HCMV strains might have the potential to provide novel therapies such as cytokine-based immunotherapy which is a promising field in cancer treatments.
Collapse
Affiliation(s)
- Sandy Haidar Ahmad
- Department Pathogens and Inflammation-EPILAB, EA4266, University of France-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Ranim El Baba
- Department Pathogens and Inflammation-EPILAB, EA4266, University of France-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Georges Herbein
- Department Pathogens and Inflammation-EPILAB, EA4266, University of France-Comté, 16 Route de Gray, 25030, Besançon Cedex, France.
- Department of Virology, CHRU Besancon, Besancon, France.
| |
Collapse
|
17
|
Adinew GM, Messeha S, Taka E, Mochona B, Redda KK, Soliman KFA. Thymoquinone Inhibition of Chemokines in TNF-α-Induced Inflammatory and Metastatic Effects in Triple-Negative Breast Cancer Cells. Int J Mol Sci 2023; 24:9878. [PMID: 37373025 PMCID: PMC10298461 DOI: 10.3390/ijms24129878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The lack of identifiable molecular targets or biomarkers hinders the development of treatment options in triple-negative breast cancer (TNBC). However, natural products offer a promising alternative by targeting inflammatory chemokines in the tumor microenvironment (TME). Chemokines are crucial in promoting breast cancer growth and metastasis and correlate to the altered inflammatory process. In the present study, we evaluated the anti-inflammatory and antimetastatic effects of the natural product thymoquinone (TQ) on TNF-α-stimulated TNBC cells (MDA-MB-231 and MDA-MB-468) to study the cytotoxic, antiproliferative, anticolony, antimigratory, and antichemokine effects using enzyme-linked immunosorbent assays, quantitative real-time reverse transcription-polymerase chain reactions, and Western blots were used in sequence to validate the microarray results further. Four downregulated inflammatory cytokines were identified, CCL2 and CCL20 in MDA-MB-468 cells and CCL3 and CCL4 in MDA-MB-231 cells. Furthermore, when TNF-α-stimulated MDA-MB-231 cells were compared with MDA-MB-468 cells, the two cells were sensitive to TQ's antichemokine and antimetastatic effect in preventing cell migration. It was concluded from this investigation that genetically different cell lines may respond to TQ differently, as TQ targets CCL3 and CCL4 in MDA-MB-231 cells and CCL2 and CCL20 in MDA-MB-468 cells. Therefore, the results indicate that TQ may be recommended as a component of the therapeutic strategy for TNBC treatment. These outcomes stem from the compound's capacity to suppress the chemokine. Even though these findings support the usage of TQ as part of a therapy strategy for TNBC associated with the identified chemokine dysregulations, additional in vivo studies are needed to confirm these in vitro results.
Collapse
Affiliation(s)
- Getinet M. Adinew
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.M.); (E.T.); (K.K.R.)
| | - Samia Messeha
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.M.); (E.T.); (K.K.R.)
| | - Equar Taka
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.M.); (E.T.); (K.K.R.)
| | - Bereket Mochona
- Department of Chemistry, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Kinfe K. Redda
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.M.); (E.T.); (K.K.R.)
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.M.); (E.T.); (K.K.R.)
| |
Collapse
|
18
|
Yoshimura T, Li C, Wang Y, Matsukawa A. The chemokine monocyte chemoattractant protein-1/CCL2 is a promoter of breast cancer metastasis. Cell Mol Immunol 2023:10.1038/s41423-023-01013-0. [PMID: 37208442 DOI: 10.1038/s41423-023-01013-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/17/2023] [Indexed: 05/21/2023] Open
Abstract
Breast cancer is the most prevalent cancer worldwide, and metastasis is the leading cause of death in cancer patients. Human monocyte chemoattractant protein-1 (MCP-1/CCL2) was isolated from the culture supernatants of not only mitogen-activated peripheral blood mononuclear leukocytes but also malignant glioma cells based on its in vitro chemotactic activity toward human monocytes. MCP-1 was subsequently found to be identical to a previously described tumor cell-derived chemotactic factor thought to be responsible for the accumulation of tumor-associated macrophages (TAMs), and it became a candidate target of clinical intervention; however, the role of TAMs in cancer development was still controversial at the time of the discovery of MCP-1. The in vivo role of MCP-1 in cancer progression was first evaluated by examining human cancer tissues, including breast cancers. Positive correlations between the level of MCP-1 production in tumors and the degree of TAM infiltration and cancer progression were established. The contribution of MCP-1 to the growth of primary tumors and metastasis to the lung, bone, and brain was examined in mouse breast cancer models. The results of these studies strongly suggested that MCP-1 is a promoter of breast cancer metastasis to the lung and brain but not bone. Potential mechanisms of MCP-1 production in the breast cancer microenvironment have also been reported. In the present manuscript, we review studies in which the role of MCP-1 in breast cancer development and progression and the mechanisms of its production were examined and attempt to draw a consensus and discuss the potential use of MCP-1 as a biomarker for diagnosis.
Collapse
Affiliation(s)
- Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.
| | - Chunning Li
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Yuze Wang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
19
|
Hamza S, Garanina EE, Alsaadi M, Khaiboullina SF, Tezcan G. Blocking the Hormone Receptors Modulates NLRP3 in LPS-Primed Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24054846. [PMID: 36902278 PMCID: PMC10002867 DOI: 10.3390/ijms24054846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
NOD-like receptor protein 3 (NLRP3) may contribute to the growth and propagation of breast cancer (BC). The effect of estrogen receptor-α (ER-α), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) on NLRP3 activation in BC remains unknown. Additionally, our knowledge of the effect of blocking these receptors on NLRP3 expression is limited. We used GEPIA, UALCAN, and the Human Protein Atlas for transcriptomic profiling of NLRP3 in BC. Lipopolysaccharide (LPS) and adenosine 5'-triphosphate (ATP) were used to activate NLRP3 in luminal A MCF-7 and in TNBC MDA-MB-231 and HCC1806 cells. Tamoxifen (Tx), mifepristone (mife), and trastuzumab (Tmab) were used to block ER-α, PR, and HER2, respectively, on inflammasome activation in LPS-primed MCF7 cells. The transcript level of NLRP3 was correlated with ER-ɑ encoding gene ESR1 in luminal A (ER-α+, PR+) and TNBC tumors. NLRP3 protein expression was higher in untreated and LPS/ATP-treated MDA-MB-231 cells than in MCF7 cells. LPS/ATP-mediated NLRP3 activation reduced cell proliferation and recovery of wound healing in both BC cell lines. LPS/ATP treatment prevented spheroid formation in MDA-MB-231 cells but did not affect MCF7. HGF, IL-3, IL-8, M-CSF, MCP-1, and SCGF-b cytokines were secreted in both MDA-MB-231 and MCF7 cells in response to LPS/ATP treatment. Tx (ER-α inhibition) promoted NLRP3 activation and increased migration and sphere formation after LPS treatment of MCF7 cells. Tx-mediated activation of NLRP3 was associated with increased secretion of IL-8 and SCGF-b compared to LPS-only-treated MCF7 cells. In contrast, Tmab (Her2 inhibition) had a limited effect on NLRP3 activation in LPS-treated MCF7 cells. Mife (PR inhibition) opposed NLRP3 activation in LPS-primed MCF7 cells. We have found that Tx increased the expression of NLRP3 in LPS-primed MCF7. These data suggest a link between blocking ER-α and activation of NLRP3, which was associated with increased aggressiveness of the ER-α+ BC cells.
Collapse
Affiliation(s)
- Shaimaa Hamza
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Mohammad Alsaadi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: or (S.F.K.); (G.T.); Fax: +1-775682-8258 (S.F.K.); +90-224-294-00-78 (G.T.)
| | - Gulcin Tezcan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa 16059, Turkey
- Correspondence: or (S.F.K.); (G.T.); Fax: +1-775682-8258 (S.F.K.); +90-224-294-00-78 (G.T.)
| |
Collapse
|
20
|
Halim PA, Sharkawi SMZ, Labib MB. Novel pyrazole-based COX-2 inhibitors as potential anticancer agents: Design, synthesis, cytotoxic effect against resistant cancer cells, cell cycle arrest, apoptosis induction and dual EGFR/Topo-1 inhibition. Bioorg Chem 2023; 131:106273. [PMID: 36444790 DOI: 10.1016/j.bioorg.2022.106273] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Novel differently substituted pyrazole derivatives were designed, synthesized and evaluated for their anticancer activity. All compounds selectively inhibited COX-2 enzyme (IC50 = 0.043-0.56 μM). Compounds 11, 12 and 15 showed superior potency (IC50 = 0.043-0.049 μM) and screened for their antiproliferative effect against MCF-7 and HT-29 cancer cell lines using doxorubicin and 5-FU as reference drugs. Compounds 11, 12 and 15 showed good potency against MCF-7 (IC50 = 2.85-23.99 μM) and HT-29 (IC50 = 2.12-69.37 μM) cell lines. Also, compounds 11, 12 and 15 displayed (IC50 = 56.61-115.75 μM) against non-cancerous WI-38 cells compared to doxorubicin (IC50 = 13.32 μM). Compound 11 showed superior cytotoxicity against both MCF-7 (IC50 = 2.85) and HT-29 (IC50 = 2.12 μM) and was more potent than 5-FU (HT-29: IC50 = 8.77 μM). Besides, it displayed IC50 of 115.75 μM against normal WI-38 cells regarding it as a safe cytotoxic agent. In addition, compound 11 displayed IC50 values of 63.44 μM and 98.60 μM against resistant HT-29 and resistant MCF-7 cancer cell lines sequentially. The most potent compound arrested cell cycle at G1/S phase in HT-29 treated cells displaying accumulation of cells in G0 phase and increase in percentage of cells in both early and late apoptotic stages. Apoptotic induction ability was confirmed via up-regulation of BAX, down-regulation of Bcl-2 and activation of caspase-3/9 protein levels. Compound 11 inhibited both EGFR (IC50 = 0.083 μM) and Topo-1 (IC50 = 0.020 μM) enzymes. Also, compound 11 decreased both total and phosphorylated EGFR concentration in HT-29 cells. Finally, molecular docking study showed good binding interactions between novel compounds and target receptors.
Collapse
Affiliation(s)
- Peter A Halim
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Souty M Z Sharkawi
- Department of Pharmacology & Toxicolgy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Madlen B Labib
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
21
|
Ren X, Fan Y, Shi D, Liu Y. Expression and significance of IL-6 and IL-8 in canine mammary gland tumors. Sci Rep 2023; 13:1302. [PMID: 36693957 PMCID: PMC9873921 DOI: 10.1038/s41598-023-28389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Mammary gland tumors are the most common malignant diseases which seriously threaten the health of women and female dogs. There is a lack of an effective tumor marker which can effectively assist in the early diagnosis, and prognosis of mammary gland tumors in veterinary clinical medicine. IL-6, and IL-8 as immunosuppressive factors may stimulate tumor cells growth, contribute to loco-regional relapse and metastasis that might be utilized as a marker for immunity status and monitoring of the course of tumor. The present study aimed to investigate the expression of serum/tissue IL-6, IL-8 and IL-10 in canine mammary gland tumors using Enzyme linked immunosorbent assay(ELISA), Western blot and Immunohistochemistry assay(IHC) to determine whether it is associated with tumor progression. The results showed that levels of IL-6, IL-8 and IL-10 in serum were higher in malignant tumor group than that in benign tumor and control group; the expression levels of IL-6 and IL-8 were significantly elevated in grade III than in grade I and II and was related to metastasis. Likewise, IL-6 and IL-8 were also highly expressed in malignant tumor tissues. Elevated expression of IL-6 was associated with histopathological grade and metastases in malignant tumors. Moreover, high expression of IL-6 occurred in the Basal-like subtypes whereas high expression of IL-8 occurred in the Luminal B subtypes. The results of this study indicated that changes of IL-6 and IL-8 in the tumor microenvironments were closely related to the diseases status and may be used as a potential diagnostic or biomarker in canine mammary gland tumors.
Collapse
Affiliation(s)
- Xiaoli Ren
- Zhengzhou City Key Laboratory of Animal Nutritional Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.,Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yuying Fan
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Dongmei Shi
- Zhengzhou City Key Laboratory of Animal Nutritional Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Yun Liu
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
22
|
Uchendu I, Zhilenkova A, Pirogova Y, Basova M, Bagmet L, Kohanovskaia I, Ngaha Y, Ikebunwa O, Sekacheva M. Cytokines as Potential Therapeutic Targets and their Role in the Diagnosis and Prediction of Cancers. Curr Pharm Des 2023; 29:2552-2567. [PMID: 37916493 DOI: 10.2174/0113816128268111231024054240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023]
Abstract
The death rate from cancer is declining as a result of earlier identification and more advanced treatments. Nevertheless, a number of unfavourable adverse effects, including prolonged, long-lasting inflammation and reduced immune function, usually coexist with anti-cancer therapies and lead to a general decline in quality of life. Improvements in standardized comprehensive therapy and early identification of a variety of aggressive tumors remain the main objectives of cancer research. Tumor markers in those with cancer are tumor- associated proteins that are clinically significant. Even while several tumor markers are routinely used, they don't always provide reliable diagnostic information. Serum cytokines are promising markers of tumor stage, prognosis, and responsiveness to therapy. In fact, several cytokines are currently proposed as potential biomarkers in a variety of cancers. It has actually been proposed that the study of circulatory cytokines together with biomarkers that are particular to cancer can enhance and accelerate cancer diagnosis and prediction, particularly via blood samples that require minimal to the absence of invasion. The purpose of this review was to critically examine relevant primary research literature in order to elucidate the role and importance of a few identified serum cytokines as prospective therapeutic targets in oncological diseases.
Collapse
Affiliation(s)
- Ikenna Uchendu
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Angelina Zhilenkova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Yuliya Pirogova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Maria Basova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Leonid Bagmet
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Iana Kohanovskaia
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Yvan Ngaha
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Obinna Ikebunwa
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, University of Nigeria, Enugu Campus, Enugu, Nigeria
- Department of Biotechnology, First Moscow State Medical University of The Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Marina Sekacheva
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| |
Collapse
|
23
|
Sweeney C, Lazennec G, Vogel CFA. Environmental exposure and the role of AhR in the tumor microenvironment of breast cancer. Front Pharmacol 2022; 13:1095289. [PMID: 36588678 PMCID: PMC9797527 DOI: 10.3389/fphar.2022.1095289] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Activation of the aryl hydrocarbon receptor (AhR) through environmental exposure to chemicals including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated dibenzo-p-dioxins (PCDDs) can lead to severe adverse health effects and increase the risk of breast cancer. This review considers several mechanisms which link the tumor promoting effects of environmental pollutants with the AhR signaling pathway, contributing to the development and progression of breast cancer. We explore AhR's function in shaping the tumor microenvironment, modifying immune tolerance, and regulating cancer stemness, driving breast cancer chemoresistance and metastasis. The complexity of AhR, with evidence for both oncogenic and tumor suppressor roles is discussed. We propose that AhR functions as a "molecular bridge", linking disproportionate toxin exposure and policies which underlie environmental injustice with tumor cell behaviors which drive poor patient outcomes.
Collapse
Affiliation(s)
- Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, United States
| | - Gwendal Lazennec
- Centre National de la Recherche Scientifique, SYS2DIAG-ALCEN, Cap Delta, Montpellier, France
| | - Christoph F. A. Vogel
- Center for Health and the Environment, University of California Davis, Davis, CA, United States
- Department of Environmental Toxicology, University of California Davis, Davis, CA, United States
| |
Collapse
|
24
|
Motyka J, Gacuta E, Kicman A, Kulesza M, Ławicki P, Ławicki S. Plasma Levels of CXC Motif Chemokine 1 (CXCL1) and Chemokine 8 (CXCL8) as Diagnostic Biomarkers in Luminal A and B Breast Cancer. J Clin Med 2022; 11:jcm11226694. [PMID: 36431173 PMCID: PMC9693547 DOI: 10.3390/jcm11226694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Chemokines are involved in the regulation of immune balance and in triggering an immune response. CXCL1 and CXCL8 belong to the ELR-motif-containing group of CXC chemokines, which, in breast cancer (BC), stimulate angiogenesis and increase migration and invasiveness of tumor cells. The aim of this study was to evaluate CXCL1, CXCL8 and comparative marker CA 15-3 plasma concentrations in BC patients with luminal subtypes A and B. The study group consisted of 100 patients with BC, and the control group of 50 subjects with benign breast lesions and 50 healthy women. Chemokines concentrations were determined by ELISA method; CA15-3-by CMIA. Concentrations of CXCL8 and CA15-3 were significantly higher in BC total group and luminal B (for CA15-3 also in luminal A) subtype of BC than in healthy controls and subjects with benign lesions. In the total BC group, the highest SE, PPV and NPV were observed for CXCL8 (70%, 77.78%, 50%, resp.). A combined analysis of tested chemokines with CA 15-3 increased SE and NPV values (96%, 69.23%, resp.). The diagnostic power of the test (measured by area under ROC curve (AUC)) showed the highest value for CXCL8 in the total BC group (0.6410), luminal A (0.6120) and B subgroup of BC (0.6700). For the combined parameter, the AUC was increasing and reached the highest value for CXCL1 + CXCL8 + CA15-3 combination (0.7024). In light of these results, we suggest that CXCL8 could be used as an additional diagnostic marker that would positively influence the diagnostic utility of CA 15-3, especially in luminal B subtype of BC.
Collapse
Affiliation(s)
- Joanna Motyka
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence:
| | - Ewa Gacuta
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Aleksandra Kicman
- Department of Aesthetic Medicine, Medical University of Bialystok, 15-267 Bialystok, Poland
| | - Monika Kulesza
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Paweł Ławicki
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Sławomir Ławicki
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
25
|
Lewińska A, Wróbel K, Błoniarz D, Adamczyk-Grochala J, Wołowiec S, Wnuk M. Lapatinib- and fulvestrant-PAMAM dendrimer conjugates promote apoptosis in chemotherapy-induced senescent breast cancer cells with different receptor status. BIOMATERIALS ADVANCES 2022; 140:213047. [PMID: 35917687 DOI: 10.1016/j.bioadv.2022.213047] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Lapatinib (L) and fulvestrant (F) are used in targeted anticancer therapies, in particular, against phenotypically different breast cancer cells. L, a dual inhibitor of EGFR and HER2 tyrosine kinases, is active against HER2-positive breast cancer cells, while F, a selective estrogen receptor degrader (SERD), is active against ER-positive breast cancer cells. However, the action of L and F can be limited due to their relatively low water solubility and bioavailability. In the present study, poly(amidoamine) (PAMAM) dendrimer G3 was functionalized with L or F or L and F to compare their effects with free L or F against breast cancer cells with different receptor status (ER-positive MCF-7, triple negative MDA-MB-231 and HER2-positive SK-BR-3 cells). L-PAMAM and F-PAMAM conjugates potentiated cytostatic and cytotoxic action of L and F that was accompanied by elevated levels of autophagy. TRDMT1, RNA methyltransferase, was also involved in this response as judged by TRDMT1 nuclear translocation and nano-drug resistance of TRDMT1 gene knockout cells. Nano-drugs also promoted elimination of doxorubicin-induced senescent breast cancer cells by apoptosis-mediated senolysis regardless of receptor status. In conclusion, we propose a novel anticancer approach based on L-PAMAM and F-PAMAM nanoplatforms being effective, at least, against breast cancer cells with different phenotypic features.
Collapse
Affiliation(s)
- Anna Lewińska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Nature Sciences, University of Rzeszow, Rzeszow, Poland
| | - Konrad Wróbel
- Department of Biochemistry and General Chemistry, Medical College, University of Rzeszow, Rzeszow, Poland
| | - Dominika Błoniarz
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Nature Sciences, University of Rzeszow, Rzeszow, Poland
| | - Jagoda Adamczyk-Grochala
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Nature Sciences, University of Rzeszow, Rzeszow, Poland
| | - Stanisław Wołowiec
- Department of Biochemistry and General Chemistry, Medical College, University of Rzeszow, Rzeszow, Poland
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Nature Sciences, University of Rzeszow, Rzeszow, Poland.
| |
Collapse
|
26
|
Zhang R, Zhong B, He J, Yang X, He M, Zeng W, Pan J, Fang Z, Jia J, Liu H. Single-cell transcriptomes identifies characteristic features of mouse macrophages in liver Mallory-Denk bodies formation. Exp Mol Pathol 2022; 127:104811. [PMID: 35850229 DOI: 10.1016/j.yexmp.2022.104811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/09/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
Abstract
Mallory-Denk bodies (MDBs) consist of intracellular aggregates of misfolded proteins in ballooned hepatocytes and serve as important markers of progression in certain liver diseases. Resident hepatic macrophage-mediated inflammation influences the development of chronic liver diseases and cancer. Here, the first systematic study of macrophages heterogeneity in mice was conducted to illustrate the pathogenesis of MDB formation using single-nucleus RNA sequencing (snRNA-seq). Furthermore, we provided transcriptional profiles of macrophages obtained from the fractionation of mouse liver tissues following chronic injury. We equally identified seven discrete macrophage subpopulations, each involved in specific cellular activated pathways such as basal metabolism, immune regulation, angiogenesis, and cell cycle regulation. Among these, a specific macrophage cluster (Cluster4), a subpopulation specifically expressing genes that regulate cell division and the cell cycle, was identified. Interestingly, we found that CCR2 was significantly induced in Cluster2, thereby inducing monocytes to migrate to macrophages to promote MDB pathogenesis. Thus, our study is the first to demonstrate the heterogeneity of macrophages associated with liver MDB formation in mice through single-cell resolution. This serves as the basis for further insights into the pathogenesis of liver MDB formation and molecular mechanisms of chronic liver disease progression.
Collapse
Affiliation(s)
- Rong Zhang
- School of Basic Medical Sciences, Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, China; Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Bei Zhong
- School of Basic Medical Sciences, Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, China
| | - Jiashan He
- School of Basic Medical Sciences, Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, China
| | - Xinyu Yang
- School of Basic Medical Sciences, Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, China
| | - Menghua He
- School of Basic Medical Sciences, Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, China
| | - Wuyi Zeng
- School of Basic Medical Sciences, Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, China
| | - Jiayi Pan
- School of Basic Medical Sciences, Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, China
| | - Zixuan Fang
- School of Basic Medical Sciences, Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, China
| | - Jiangtao Jia
- School of Basic Medical Sciences, Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, China
| | - Hui Liu
- School of Basic Medical Sciences, Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, China; The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
27
|
Chen J, Wei Y, Yang W, Huang Q, Chen Y, Zeng K, Chen J. IL-6: The Link Between Inflammation, Immunity and Breast Cancer. Front Oncol 2022; 12:903800. [PMID: 35924148 PMCID: PMC9341216 DOI: 10.3389/fonc.2022.903800] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Breast cancer is one of the leading causes of mortality in females. Over the past decades, intensive efforts have been made to uncover the pathogenesis of breast cancer. Interleukin-6 (IL-6) is a pleiotropic factor which has a vital role in host defense immunity and acute stress. Moreover, a wide range of studies have identified the physiological and pathological roles of IL-6 in inflammation, immune and cancer. Recently, several IL-6 signaling pathway-targeted monoclonal antibodies have been developed for cancer and immune therapy. Combination of IL-6 inhibitory antibody with other pathways blockage drugs have demonstrated promising outcome in both preclinical and clinical trials. This review focuses on emerging studies on the strong linkages of IL-6/IL-6R mediated regulation of inflammation and immunity in cancer, especially in breast cancer.
Collapse
Affiliation(s)
- Juan Chen
- Department of Medicine and Rehabilitation, Tung Wah Eastern Hospital, Hong Kong, Hong Kong SAR, China
| | - Yanghui Wei
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- *Correspondence: Yanghui Wei, ; Jiawei Chen,
| | - Weiqin Yang
- School of Biomedical Sciences, The Chinese, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qingnan Huang
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yong Chen
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Kai Zeng
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jiawei Chen
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- *Correspondence: Yanghui Wei, ; Jiawei Chen,
| |
Collapse
|
28
|
Interleukin-1 and Nuclear Factor Kappa B Signaling Promote Breast Cancer Progression and Treatment Resistance. Cells 2022; 11:cells11101673. [PMID: 35626710 PMCID: PMC9139516 DOI: 10.3390/cells11101673] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
While meant for wound healing and immunity in response to injury and infection, inflammatory signaling is usurped by cancerous tumors to promote disease progression, including treatment resistance. The interleukin-1 (IL-1) inflammatory cytokine family functions in wound healing and innate and adaptive immunity. Two major, closely related IL-1 family members, IL-1α and IL-1β, promote tumorigenic phenotypes and contribute to treatment resistance in cancer. IL-1 signaling converges on transactivation of the Nuclear Factor Kappa B (NF-κB) and Activator protein 1 (AP-1) transcription factors. NF-κB and AP-1 signaling are also activated by the inflammatory cytokine Tumor Necrosis Factor Alpha (TNFα) and microbe-sensing Toll-Like Receptors (TLRs). As reviewed elsewhere, IL-1, TNFα, and TLR can promote cancer progression through NF-κB or AP-1. In this review, we focus on what is known about the role of IL-1α and IL-1β in breast cancer (BCa) progression and therapeutic resistance, and state evidence for the role of NF-κB in mediating IL-1-induced BCa progression and therapeutic resistance. We will present evidence that IL-1 promotes BCa cell proliferation, BCa stem cell expansion, angiogenesis, and metastasis. IL-1 also regulates intracellular signaling and BCa cell hormone receptor expression in a manner that confers a growth advantage to the tumor cells and allows BCa cells to evade therapy. As such, the IL-1 receptor antagonist, anakinra, is in clinical trials to treat BCa and multiple other cancer types. This article presents a review of the literature from the 1990s to the present, outlining the evidence supporting a role for IL-1 and IL-1-NF-κB signaling in BCa progression.
Collapse
|
29
|
Todorović-Raković N, Milovanović J, Greenman J, Radulovic M. The prognostic significance of serum interferon-gamma (IFN-γ) in hormonally dependent breast cancer. Cytokine 2022; 152:155836. [PMID: 35219004 DOI: 10.1016/j.cyto.2022.155836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/15/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Interferon-γ (IFN-γ) is a pleiotropic immunomodulatory cytokine. Because of its contradictory and even dualistic roles in malignancies, its potential as a biomarker remains to be unraveled. AIM To evaluate the prognostic significance of serum IFN-γ in hormonally treated breast cancer patients. MATERIAL AND METHODS The study included 72 premenopausal breast cancer patients with known clinicopathological characteristics. All patients received adjuvant hormonal therapy based on hormone receptor-positivity. The median follow-up period was 93 months. IFN-γ serum protein levels were determined by quantitative ELISA. Prognostic performance was evaluated by the receiver operating characteristic (ROC), Cox proportional hazards regression and Kaplan-Meier analyses. Classification of patients into IFN-γlow and IFN-γhigh subgroups was performed by the use of the outcome-oriented cut-off point categorization approach. RESULTS The best prognostic performance was achieved by IFN-γ (AUC = 0.24 and p = 0.01 for distant events, AUC = 0.29 and p = 0.01 for local and distant events combined). Age and IFN-γ were prognostically significant in instances of all types of outcomes and IFN-γ was the independent prognostic parameter (Cox regression). There was a significant difference between IFN-γ values of patients without any events and those with distant metastases (Mann-Whitney test, p = 0.007). IFN-γ levels correlated significantly with nodal status and tumor stage (Spearman's rank order, r = -0.283 and r = -0.238, respectively). Distant recurrence incidence was 4% for the IFN-γhigh subgroup and 33% for the IFN-γlow subgroup (Kaplan-Meier analysis). CONCLUSIONS Raised serum IFN-γ levels associate independently with favorable disease outcome in hormonally dependent breast cancer.
Collapse
Affiliation(s)
- Nataša Todorović-Raković
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia.
| | - Jelena Milovanović
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia.
| | - John Greenman
- Department of Biomedical Sciences, University of Hull, Hull, UK.
| | - Marko Radulovic
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia.
| |
Collapse
|
30
|
Abdel-Latif M, Riad A, Soliman RA, Elkhouly AM, Nafae H, Gad MZ, Motaal AA, Youness RA. MALAT-1/p53/miR-155/miR-146a ceRNA circuit tuned by methoxylated quercitin glycoside alters immunogenic and oncogenic profiles of breast cancer. Mol Cell Biochem 2022; 477:1281-1293. [PMID: 35129780 DOI: 10.1007/s11010-022-04378-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Triple-Negative Breast Cancer (TNBC) is one of the most aggressive and hot BC subtypes. Our research group has recently shed the light on the utility of natural compounds as effective immunotherapeutic agents. The aim of this study is to investigate the role of a methoxylated quercetin glycoside (MQG) isolated from Cleome droserifolia in harnessing TNBC progression and tuning the tumor microenvironment and natural killer cells cytotoxicity. Results showed that MQG showed the highest potency (IC50 = 12 µM) in repressing cellular proliferation, colony-forming ability, migration, and invasion capacities. Mechanistically, MQG was found to modulate a circuit of competing endogenous RNAs where it was found to reduce the oncogenic MALAT-1 lncRNA and induce TP53 and its downstream miRNAs; miR-155 and miR-146a. Accordingly, this leads to alteration in several downstream signaling pathways such as nitric oxide synthesizing machinery, natural killer cells' cytotoxicity through inducing the expression of its activating ligands such as MICA/B, ULBP2, CD155, and ICAM-1 and trimming of the immune-suppressive cytokines such as TNF-α and IL-10. In conclusion, this study shows that MQG act as a compelling anti-cancer agent repressing TNBC hallmarks, activating immune cell recognition, and alleviating the immune-suppressive tumor microenvironment experienced by TNBC patients.
Collapse
Affiliation(s)
- Mustafa Abdel-Latif
- Molecular Genetics Research Team (MGRT), Biotechnology Program, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ahmed Riad
- Molecular Genetics Research Team (MGRT), Biotechnology Program, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Raghda A Soliman
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Aisha M Elkhouly
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Heba Nafae
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohamed Z Gad
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Amira Abdel Motaal
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rana A Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt. .,Department of Biology and Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, 11578, Egypt.
| |
Collapse
|
31
|
CXCR2 Mediates Distinct Neutrophil Behavior in Brain Metastatic Breast Tumor. Cancers (Basel) 2022; 14:cancers14030515. [PMID: 35158784 PMCID: PMC8833752 DOI: 10.3390/cancers14030515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Brain metastasis is one of the main causes of mortality among breast cancer patients, but the origins and the mechanisms that drive this process remain poorly understood. Here, we report that the upregulation of certain CXCR2-associated ligands in the brain metastatic variants of the breast cancer cells (BrM) dynamically activate the corresponding CXCR2 receptors on the neutrophils, thereby resulting in the modulation of certain key functional neutrophil responses towards the BrM. Using established neutrophil-tumor biomimetic co-culture models, we show that the upregulation of CXCR2 increases the recruitment of Tumor-Associated Neutrophils (TANs) towards the BrM, to enable location-favored formation of Neutrophil Extracellular Traps (NETs). Inhibition of CXCR2 using small molecule antagonist AZD5069 reversed this behavior, limiting the neutrophil responses to the BrM and retarding the reciprocal tumor development. We further demonstrate that abrogation of NETs formation using Neutrophil Elastase Inhibitor (NEI) significantly decreases the influx of neutrophils towards BrM but not to their parental tumor, suggesting that CXCR2 activation could be used by the brain metastatic tumors as a mechanism to program the tumor-infiltrating TANs into a pro-NETotic state, so as to assume a unique spatial distribution that assists in the subsequent migration and invasion of the metastatic tumor cells. This new perspective indicates that CXCR2 is a critical target for suppressing neutrophilic inflammation in brain metastasis.
Collapse
|
32
|
Md S, Alhakamy NA, Alharbi WS, Ahmad J, Shaik RA, Ibrahim IM, Ali J. Development and Evaluation of Repurposed Etoricoxib Loaded Nanoemulsion for Improving Anticancer Activities against Lung Cancer Cells. Int J Mol Sci 2021; 22:13284. [PMID: 34948081 PMCID: PMC8705699 DOI: 10.3390/ijms222413284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
In the present work, novel modality for lung cancer intervention has been explored. Primary literature has established the potential role of cyclooxygenase-2 (COX-2) inhibitor in regression of multiple forms of carcinomas. To overcome its poor water solubility and boost anticancer activity, etoricoxib (ETO) was chosen as a therapeutic candidate for repurposing and formulated into a nanoemulsion (NE). The prepared ETO loaded NE was characterized for the surface charge, droplet size, surface morphology, and in vitro release. The optimized ETO loaded NE was then investigated for its anticancer potential employing A549 lung cancer cell line via cytotoxicity, apoptotic activity, mitochondrial membrane potential activity, cell migration assay, cell cycle analysis, Caspase-3, 9, and p53 activity by ELISA and molecular biomarker analysis through RT-PCR test. The developed ETO-NE formulation showed adequate homogeneity in the droplet size distribution with polydispersity index (PDI) of (0.2 ± 0.03) and had the lowest possible droplet size (124 ± 2.91 nm) and optimal negative surface charge (-8.19 ± 1.51 mV) indicative of colloidal stability. The MTT assay results demonstrated that ETO-NE exhibited substantial anticancer activity compared to the free drug. The ETO-NE showed a substantially potent cytotoxic effect against lung cancer cells, as was evident from the commencement of apoptosis/necrotic cell death and S-phase cell cycle arrests in A549 cells. The study on these molecules through RT-PCR confirmed that ETO-NE is significantly efficacious in mitigating the abundance of IL-B, IL-6, TNF, COX-2, and NF-kB as compared to the free ETO and control group. The current study demonstrates that ETO-NE represents a feasible approach that could provide clinical benefits for lung cancer patients in the future.
Collapse
Affiliation(s)
- Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.S.A.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.S.A.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.S.A.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| | - Rasheed A. Shaik
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ibrahim M. Ibrahim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| |
Collapse
|
33
|
Martínez-Pérez C, Kay C, Meehan J, Gray M, Dixon JM, Turnbull AK. The IL6-like Cytokine Family: Role and Biomarker Potential in Breast Cancer. J Pers Med 2021; 11:1073. [PMID: 34834425 PMCID: PMC8624266 DOI: 10.3390/jpm11111073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
IL6-like cytokines are a family of regulators with a complex, pleiotropic role in both the healthy organism, where they regulate immunity and homeostasis, and in different diseases, including cancer. Here we summarise how these cytokines exert their effect through the shared signal transducer IL6ST (gp130) and we review the extensive evidence on the role that different members of this family play in breast cancer. Additionally, we discuss how the different cytokines, their related receptors and downstream effectors, as well as specific polymorphisms in these molecules, can serve as predictive or prognostic biomarkers with the potential for clinical application in breast cancer. Lastly, we also discuss how our increasing understanding of this complex signalling axis presents promising opportunities for the development or repurposing of therapeutic strategies against cancer and, specifically, breast neoplasms.
Collapse
Affiliation(s)
- Carlos Martínez-Pérez
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - Charlene Kay
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - James Meehan
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - Mark Gray
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - J. Michael Dixon
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
| | - Arran K. Turnbull
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| |
Collapse
|
34
|
Jørgensen N, Lænkholm AV, Sækmose SG, Hansen LB, Hviid TVF. Peripheral blood immune markers in breast cancer: Differences in regulatory T cell abundance are related to clinical parameters. Clin Immunol 2021; 232:108847. [PMID: 34506945 DOI: 10.1016/j.clim.2021.108847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cancer development is among other factors driven by tumor immune escape and tumor-mediated changes in the immune response. Investigating systemic immune changes may provide important knowledge for the improvement of patient prognosis and treatment opportunities. METHODS The systemic immune profile of patients with ER-positive breast cancer (n = 22) and healthy controls (n = 30) was investigated based on complete blood counts, flow cytometric analysis of T cell subsets including regulatory T cells (Tregs), and immune assays investigating soluble (s)HLA-G and the cytokine profile in plasma. We further examined the correlation between the immune markers and clinical parameters including tumor size, tumor grade and lymph node involvement. RESULTS Results indicated that breast cancer patients possessed a higher amount of neutrophils and monocytes and fewer lymphocytes and eosinophils compared with healthy controls. Breast cancer patients had significantly more CD25+CD127low Tregs than controls, and both lymphocyte and Treg numbers were negatively correlated with tumor size. Furthermore, Treg numbers were elevated in grade I tumors compared with grade II tumors and with healthy controls. No difference in sHLA-G levels was observed between patients and controls. Higher levels of IL-6 and TNF-α were observed in breast cancer patients. Cytokine and sHLA-G levels were not associated with clinical parameters. CONCLUSION The results of this exploratory study contribute to the elucidation of the systemic immune response in breast cancer indicating a potential use of peripheral immune cell counts and Tregs to distinguish patients from healthy controls and as potential diagnostic and prognostic biomarkers to be investigated in future studies.
Collapse
Affiliation(s)
- Nanna Jørgensen
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Anne-Vibeke Lænkholm
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Surgical Pathology, Zealand University Hospital, Sygehusvej 9, 4000 Roskilde, Denmark
| | - Susanne Gjørup Sækmose
- Department of Clinical Immunology, Zealand University Hospital, Ringstedgade 77, 4700 Næstved, Denmark
| | - Lone Bak Hansen
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Plastic and Breast Surgery, Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark
| | - Thomas Vauvert F Hviid
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
35
|
Pulido T, Velarde MC, Alimirah F. The senescence-associated secretory phenotype: Fueling a wound that never heals. Mech Ageing Dev 2021; 199:111561. [PMID: 34411604 DOI: 10.1016/j.mad.2021.111561] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/29/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022]
Abstract
Wound healing is impaired with advanced age and certain chronic conditions, such as diabetes and obesity. Moreover, common cancer treatments, including chemotherapy and radiation, can cause unintended tissue damage and impair wound healing. Available wound care treatments are not always effective, as some wounds fail to heal or recur after treatment. Hence, a more thorough understanding of the pathophysiology of chronic, nonhealing wounds may offer new ideas for the development of effective wound care treatments. Cancers are sometimes referred to as wounds that never heal, sharing mechanisms similar to wound healing. We describe in this review how cellular senescence and the senescence-associated secretory phenotype (SASP) contribute to chronic wounds versus cancer.
Collapse
Affiliation(s)
- Tanya Pulido
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Michael C Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101, Philippines.
| | | |
Collapse
|
36
|
Bouaouiche S, Ghione S, Sghaier R, Burgy O, Racoeur C, Derangère V, Bettaieb A, Plenchette S. Nitric Oxide-Releasing Drug Glyceryl Trinitrate Targets JAK2/STAT3 Signaling, Migration and Invasion of Triple-Negative Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22168449. [PMID: 34445170 PMCID: PMC8395103 DOI: 10.3390/ijms22168449] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive disease with invasive and metastasizing properties associated with a poor prognosis. The STAT3 signaling pathway has shown a pivotal role in cancer cell migration, invasion, metastasis and drug resistance of TNBC cells. IL-6 is a main upstream activator of the JAK2/STAT3 pathway. In the present study we examined the impact of the NO-donor glyceryl trinitrate (GTN) on the activation of the JAK2/STAT3 signaling pathway and subsequent migration, invasion and metastasis ability of TNBC cells through in vitro and in vivo experiments. We used a subtoxic dose of carboplatin and/or recombinant IL-6 to activate the JAK2/STAT3 signaling pathway and its functional outcomes. We found an inhibitory effect of GTN on the activation of the JAK2/STAT3 signaling, migration and invasion of TNBC cells. We discovered that GTN inhibits the activation of JAK2, the upstream activator of STAT3, and mediates the S-nitrosylation of JAK2. Finally, the effect of GTN (Nitronal) on lung metastasis was investigated to assess its antitumor activity in vivo.
Collapse
Affiliation(s)
- Sarra Bouaouiche
- Laboratoire d’Immunologie et Immunothérapie des Cancers (LIIC), EPHE, PSL Research University, 75000 Paris, France; (S.B.); (S.G.); (R.S.); (C.R.); (A.B.)
- Laboratoire d’Immunologie et Immunothérapie des Cancers (LIIC), EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Silvia Ghione
- Laboratoire d’Immunologie et Immunothérapie des Cancers (LIIC), EPHE, PSL Research University, 75000 Paris, France; (S.B.); (S.G.); (R.S.); (C.R.); (A.B.)
- Laboratoire d’Immunologie et Immunothérapie des Cancers (LIIC), EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Randa Sghaier
- Laboratoire d’Immunologie et Immunothérapie des Cancers (LIIC), EPHE, PSL Research University, 75000 Paris, France; (S.B.); (S.G.); (R.S.); (C.R.); (A.B.)
- Laboratoire d’Immunologie et Immunothérapie des Cancers (LIIC), EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Olivier Burgy
- INSERM U1231, UFR Sciences de Santé, Université de Bourgogne-Franche Comté, 21000 Dijon, France;
| | - Cindy Racoeur
- Laboratoire d’Immunologie et Immunothérapie des Cancers (LIIC), EPHE, PSL Research University, 75000 Paris, France; (S.B.); (S.G.); (R.S.); (C.R.); (A.B.)
- Laboratoire d’Immunologie et Immunothérapie des Cancers (LIIC), EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Valentin Derangère
- Plateforme de Transfert en Biologie du Cancer, Centre Georges-François Leclerc, 21000 Dijon, France;
| | - Ali Bettaieb
- Laboratoire d’Immunologie et Immunothérapie des Cancers (LIIC), EPHE, PSL Research University, 75000 Paris, France; (S.B.); (S.G.); (R.S.); (C.R.); (A.B.)
- Laboratoire d’Immunologie et Immunothérapie des Cancers (LIIC), EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Stéphanie Plenchette
- Laboratoire d’Immunologie et Immunothérapie des Cancers (LIIC), EPHE, PSL Research University, 75000 Paris, France; (S.B.); (S.G.); (R.S.); (C.R.); (A.B.)
- Laboratoire d’Immunologie et Immunothérapie des Cancers (LIIC), EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France
- Correspondence: or ; Tel.: +33-3-80-39-33-59; Fax: +33-3-80-39-34-34
| |
Collapse
|
37
|
Park YMM, Shivappa N, Petimar J, Hodgson ME, Nichols HB, Steck SE, Hébert JR, Sandler DP. Dietary inflammatory potential, oxidative balance score, and risk of breast cancer: Findings from the Sister Study. Int J Cancer 2021; 149:615-626. [PMID: 33783833 PMCID: PMC8256885 DOI: 10.1002/ijc.33581] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/09/2021] [Accepted: 03/04/2021] [Indexed: 12/16/2022]
Abstract
Diet, inflammation, and oxidative stress may be important in breast carcinogenesis, but evidence on the role of the inflammatory and prooxidative potential of dietary patterns is limited. Energy adjusted-Dietary Inflammatory Index (E-DII™) and dietary oxidative balance score (D-OBS) were calculated for 43 563 Sister Study cohort participants who completed a Block 1998 food frequency questionnaire at enrollment in 2003-2009 and satisfied eligibility criteria. D-OBS was validated using measured F2 -isoprostanes and metabolites. High E-DII score and low D-OBS represent a more proinflammatory and prooxidant diet, respectively, and associations of quartiles of each index with breast cancer (BC) risk were estimated using multivariable Cox proportional hazards regression. There were 2619 BCs diagnosed at least 1 year after enrollment (mean follow-up 8.4 years). There was no overall association between E-DII and BC risk, whereas there was a suggestive inverse association for the highest vs lowest quartile of D-OBS (HR 0.92 [95% CI, 0.81-1.03]). The highest quartile of E-DII was associated with risk of triple-negative BC (HR 1.53 [95% CI, 0.99-2.35]). When the two indices were combined, a proinflammatory/prooxidant diet (highest tertile of E-DII and lowest tertile of D-OBS) was associated with increased risk for all BC (HR 1.13 [95% CI, 1.00-1.27]) and for triple-negative BC (1.72 [95% CI, 1.10-2.70]), compared to an antiinflammatory/antioxidant diet (lowest tertile of E-DII and highest tertile of D-OBS). Diets with increased inflammatory potential and reduced oxidative balance were positively associated with overall and triple-negative BC.
Collapse
Affiliation(s)
- Yong-Moon Mark Park
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Nitin Shivappa
- Cancer Prevention and Control Program, University of South Carolina, Columbia, South Carolina, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
- Connecting Health Innovations, LLC, Columbia, South Carolina, USA
| | - Joshua Petimar
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Hazel B Nichols
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Susan E Steck
- Cancer Prevention and Control Program, University of South Carolina, Columbia, South Carolina, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - James R Hébert
- Cancer Prevention and Control Program, University of South Carolina, Columbia, South Carolina, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
- Connecting Health Innovations, LLC, Columbia, South Carolina, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
38
|
Exploring the Crosstalk between Inflammation and Epithelial-Mesenchymal Transition in Cancer. Mediators Inflamm 2021; 2021:9918379. [PMID: 34220337 PMCID: PMC8219436 DOI: 10.1155/2021/9918379] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor cells undergo invasion and metastasis through epithelial-to-mesenchymal cell transition (EMT) by activation of alterations in extracellular matrix (ECM) protein-encoding genes, enzymes responsible for the breakdown of ECM, and activation of genes that drive the transformation of the epithelial cell to the mesenchymal type. Inflammatory cytokines such as TGFβ, TNFα, IL-1, IL-6, and IL-8 activate transcription factors such as Smads, NF-κB, STAT3, Snail, Twist, and Zeb that drive EMT. EMT drives primary tumors to metastasize in different parts of the body. T and B cells, dendritic cells (DCs), and tumor-associated macrophages (TAMs) which are present in the tumor microenvironment induce EMT. The current review elucidates the interaction between EMT tumor cells and immune cells under the microenvironment. Such complex interactions provide a better understanding of tumor angiogenesis and metastasis and in defining the aggressiveness of the primary tumors. Anti-inflammatory molecules in this context may open new therapeutic options for the better treatment of tumor progression. Targeting EMT and the related mechanisms by utilizing natural compounds may be an important and safe therapeutic alternative in the treatment of tumor growth.
Collapse
|
39
|
Baram T, Erlichman N, Dadiani M, Balint-Lahat N, Pavlovski A, Meshel T, Morzaev-Sulzbach D, Gal-Yam EN, Barshack I, Ben-Baruch A. Chemotherapy Shifts the Balance in Favor of CD8+ TNFR2+ TILs in Triple-Negative Breast Tumors. Cells 2021; 10:cells10061429. [PMID: 34201054 PMCID: PMC8229590 DOI: 10.3390/cells10061429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is primarily treated via chemotherapy; in parallel, efforts are made to introduce immunotherapies into TNBC treatment. CD4+ TNFR2+ lymphocytes were reported as Tregs that contribute to tumor progression. However, our published study indicated that TNFR2+ tumor-infiltrating lymphocytes (TNFR2+ TILs) were associated with improved survival in TNBC patient tumors. Based on our analyses of the contents of CD4+ and CD8+ TILs in TNBC patient tumors, in the current study, we determined the impact of chemotherapy on CD4+ and CD8+ TIL subsets in TNBC mouse tumors. We found that chemotherapy led to (1) a reduction in CD4+ TNFR2+ FOXP3+ TILs, indicating that chemotherapy decreased the content of CD4+ TNFR2+ Tregs, and (2) an elevation in CD8+ TNFR2+ and CD8+ TNFR2+ PD-1+ TILs; high levels of these two subsets were significantly associated with reduced tumor growth. In spleens of tumor-bearing mice, chemotherapy down-regulated CD4+ TNFR2+ FOXP3+ cells but the subset of CD8+ TNFR2+ PD-1+ was not present prior to chemotherapy and was not increased by the treatment. Thus, our data suggest that chemotherapy promotes the proportion of protective CD8+ TNFR2+ TILs and that, unlike other cancer types, therapeutic strategies directed against TNFR2 may be detrimental in TNBC.
Collapse
Affiliation(s)
- Tamir Baram
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
| | - Nofar Erlichman
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
| | - Maya Dadiani
- Sheba Medical Center, Breast Oncology Institute, Ramat Gan 5211401, Israel; (M.D.); (D.M.-S.); (E.N.G.-Y.)
| | - Nora Balint-Lahat
- Sheba Medical Center, Pathology Institute, Ramat Gan 5211401, Israel; (N.B.-L.); (A.P.); (I.B.)
| | - Anya Pavlovski
- Sheba Medical Center, Pathology Institute, Ramat Gan 5211401, Israel; (N.B.-L.); (A.P.); (I.B.)
| | - Tsipi Meshel
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
| | - Dana Morzaev-Sulzbach
- Sheba Medical Center, Breast Oncology Institute, Ramat Gan 5211401, Israel; (M.D.); (D.M.-S.); (E.N.G.-Y.)
| | - Einav Nili Gal-Yam
- Sheba Medical Center, Breast Oncology Institute, Ramat Gan 5211401, Israel; (M.D.); (D.M.-S.); (E.N.G.-Y.)
| | - Iris Barshack
- Sheba Medical Center, Pathology Institute, Ramat Gan 5211401, Israel; (N.B.-L.); (A.P.); (I.B.)
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978-01, Israel
| | - Adit Ben-Baruch
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
- Correspondence: ; Tel.: +972-3-6407933 or +972-3-6405491; Fax: +972-3-6422046
| |
Collapse
|
40
|
Persson E, Gregersson P, Gustafsson A, Fitzpatrick P, Rhost S, Ståhlberg A, Landberg G. Patient-derived scaffolds influence secretion profiles in cancer cells mirroring clinical features and breast cancer subtypes. Cell Commun Signal 2021; 19:66. [PMID: 34090457 PMCID: PMC8178857 DOI: 10.1186/s12964-021-00746-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/27/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Breast cancer is a common malignancy with varying clinical behaviors and for the more aggressive subtypes, novel and more efficient therapeutic approaches are needed. Qualities of the tumor microenvironment as well as cancer cell secretion have independently been associated with malignant clinical behaviors and a better understanding of the interplay between these two features could potentially reveal novel targetable key events linked to cancer progression. METHODS A newly developed human derived in vivo-like growth system, consisting of decellularized patient-derived scaffolds (PDSs) recellularized with standardized breast cancer cell lines (MCF7 and MDA-MB-231), were used to analyze how 63 individual patient specific microenvironments influenced secretion determined by proximity extension assays including 184 proteins and how these relate to clinical outcome. RESULTS The secretome from cancer cells in PDS cultures varied distinctly from cells grown as standard monolayers and besides a general increase in secretion from PDS cultures, several secreted proteins were only detectable in PDSs. Monolayer cells treated with conditioned media from PDS cultures, further showed increased mammosphere formation demonstrating a cancer stem cell activating function of the PDS culture induced secretion. The detailed secretomic profiles from MCF7s growing on 57 individual PDSs differed markedly but unsupervised clustering generated three separate groups having similar secretion profiles that significantly correlated to different clinical behaviors. The secretomic profile that associated with cancer relapse and high grade breast cancer showed induced secretion of the proteins IL-6, CCL2 and PAI-1, all linked to cancer stem cell activation, metastasis and priming of the pre-metastatic niche. Cancer promoting pathways such as "Suppress tumor immunity" and "Vascular and tissue remodeling" was also linked to this more malignant secretion cluster. CONCLUSION PDSs repopulated with cancer cells can be used to assess how cancer secretion is effected by specific and varying microenvironments. More malignant secretion patterns induced by specific patient based cancer microenvironments could further be identified pinpointing novel therapeutic opportunities targeting micro environmentally induced cancer progression via secretion of potent cytokines. Video abstract.
Collapse
Affiliation(s)
- Emma Persson
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1G, 41390, Gothenburg, Sweden
| | - Pernilla Gregersson
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1G, 41390, Gothenburg, Sweden
| | - Anna Gustafsson
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1G, 41390, Gothenburg, Sweden
| | - Paul Fitzpatrick
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1G, 41390, Gothenburg, Sweden
| | - Sara Rhost
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1G, 41390, Gothenburg, Sweden
| | - Anders Ståhlberg
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1G, 41390, Gothenburg, Sweden.,Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, 41390, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hostpital, Region Västra Götaland, 41390, Gothenburg, Sweden
| | - Göran Landberg
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1G, 41390, Gothenburg, Sweden.
| |
Collapse
|
41
|
Morein D, Rubinstein-Achiasaf L, Brayer H, Dorot O, Pichinuk E, Ben-Yaakov H, Meshel T, Pasmanik-Chor M, Ben-Baruch A. Continuous Inflammatory Stimulation Leads via Metabolic Plasticity to a Prometastatic Phenotype in Triple-Negative Breast Cancer Cells. Cells 2021; 10:cells10061356. [PMID: 34072893 PMCID: PMC8229065 DOI: 10.3390/cells10061356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation promotes cancer progression by affecting the tumor cells and their microenvironment. Here, we demonstrate that a continuous stimulation (~6 weeks) of triple-negative breast tumor cells (TNBC) by the proinflammatory cytokines tumor necrosis factor α (TNFα) + interleukin 1β (IL-1β) changed the expression of hundreds of genes, skewing the cells towards a proinflammatory phenotype. While not affecting stemness, the continuous TNFα + IL-1β stimulation has increased tumor cell dispersion and has induced a hybrid metabolic phenotype in TNBC cells; this phenotype was indicated by a transcription-independent elevation in glycolytic activity and by increased mitochondrial respiratory potential (OXPHOS) of TNBC cells, accompanied by elevated transcription of mitochondria-encoded OXPHOS genes and of active mitochondria area. The continuous TNFα + IL-1β stimulation has promoted in a glycolysis-dependent manner the activation of p65 (NF-κB), and the transcription and protein expression of the prometastatic and proinflammatory mediators sICAM-1, CCL2, CXCL8 and CXCL1. Moreover, when TNBC cells were stimulated continuously by TNFα + IL-1β in the presence of a glycolysis inhibitor, their conditioned media had reduced ability to recruit monocytes and neutrophils in vivo. Such inflammation-induced metabolic plasticity, which promotes prometastatic cascades in TNBC, may have important clinical implications in treatment of TNBC patients.
Collapse
Affiliation(s)
- Dina Morein
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
| | - Linor Rubinstein-Achiasaf
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
| | - Hadar Brayer
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
| | - Orly Dorot
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel; (O.D.); (E.P.)
| | - Edward Pichinuk
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel; (O.D.); (E.P.)
| | - Hagar Ben-Yaakov
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
| | - Tsipi Meshel
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Adit Ben-Baruch
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
- Correspondence: ; Tel.: +972-3-6405491; Fax: +972-3-6422046
| |
Collapse
|
42
|
Williams MM, Christenson JL, O'Neill KI, Hafeez SA, Ihle CL, Spoelstra NS, Slansky JE, Richer JK. MicroRNA-200c restoration reveals a cytokine profile to enhance M1 macrophage polarization in breast cancer. NPJ Breast Cancer 2021; 7:64. [PMID: 34045467 PMCID: PMC8160264 DOI: 10.1038/s41523-021-00273-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
Abstract
Many immune suppressive mechanisms utilized by triple negative breast cancer (TNBC) are regulated by oncogenic epithelial-to-mesenchymal transition (EMT). How TNBC EMT impacts innate immune cells is not fully understood. To determine how TNBC suppresses antitumor macrophages, we used microRNA-200c (miR-200c), a powerful repressor of EMT, to drive mesenchymal-like mouse mammary carcinoma and human TNBC cells toward a more epithelial state. MiR-200c restoration significantly decreased growth of mouse mammary carcinoma Met-1 cells in culture and in vivo. Cytokine profiling of Met-1 and human BT549 cells revealed that miR-200c upregulated cytokines, such as granulocyte-macrophage colony-stimulating factor (GM-CSF), promoted M1 antitumor macrophage polarization. Cytokines upregulated by miR-200c correlated with an epithelial gene signature and M1 macrophage polarization in BC patients and predicted a more favorable overall survival for TNBC patients. Our findings demonstrate that immunogenic cytokines (e.g., GM-CSF) are suppressed in aggressive TNBC, warranting further investigation of cytokine-based therapies to limit disease recurrence.
Collapse
Affiliation(s)
- Michelle M Williams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica L Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kathleen I O'Neill
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sabrina A Hafeez
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Claire L Ihle
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicole S Spoelstra
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jill E Slansky
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
43
|
Timaxian C, Vogel CFA, Orcel C, Vetter D, Durochat C, Chinal C, NGuyen P, Aknin ML, Mercier-Nomé F, Davy M, Raymond-Letron I, Van TNN, Diermeier SD, Godefroy A, Gary-Bobo M, Molina F, Balabanian K, Lazennec G. Pivotal Role for Cxcr2 in Regulating Tumor-Associated Neutrophil in Breast Cancer. Cancers (Basel) 2021; 13:cancers13112584. [PMID: 34070438 PMCID: PMC8197482 DOI: 10.3390/cancers13112584] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Chemokines present in the tumor microenvironment are essential for the control of tumor progression. We show here that several ligands of the chemokine receptor Cxcr2 were up-regulated in the PyMT (polyoma middle T oncogene) model of breast cancer. Interestingly, the knock-down of Cxcr2 in PyMT animals led to an increased growth of the primary tumor and lung metastasis. The analysis of tumor content of PyMT-Cxcr2-/- animals highlighted an increased infiltration of tumor associated neutrophils (TANs), mirrored by a decreased recruitment of tumor associated macrophages (TAMs) compared to PyMT animals. Analysis of PyMT-Cxcr2-/- TANs revealed that they lost their killing ability compared to PyMT-Cxcr2+/+ TANs. The transcriptomic analysis of PyMT-Cxcr2-/- TANs showed that they had a more pronounced pro-tumor TAN2 profile compared to PyMT TANs. In particular, PyMT-Cxcr2-/- TANs displayed an up-regulation of the pathways involved in reactive oxygen species (ROS) production and angiogenesis and factors favoring metastasis, but reduced apoptosis. In summary, our data reveal that a lack of Cxcr2 provides TANs with pro-tumor effects.
Collapse
Affiliation(s)
- Colin Timaxian
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
- CNRS, GDR 3697 Microenvironment of Tumor Niches, Micronit, France;
| | - Christoph F. A. Vogel
- Center for Health and the Environment, University of California, 1 Shields Avenue, Davis, CA 95616, USA;
| | - Charlotte Orcel
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Diana Vetter
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Camille Durochat
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Clarisse Chinal
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Phuong NGuyen
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Marie-Laure Aknin
- CNRS, Institut Paris Saclay d’Innovation Thérapeutique, Université Paris-Saclay, Inserm, 92296 Châtenay-Malabry, France; (M.-L.A.); (F.M.-N.)
| | - Françoise Mercier-Nomé
- CNRS, Institut Paris Saclay d’Innovation Thérapeutique, Université Paris-Saclay, Inserm, 92296 Châtenay-Malabry, France; (M.-L.A.); (F.M.-N.)
| | - Martin Davy
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Isabelle Raymond-Letron
- Department of Histopathology, National Veterinary School of Toulouse, 31076 Toulouse, France;
- Platform of Experimental and Compared Histopathology, STROMALab, UMR UPS/CNRS 5223, EFS, Inserm U1031, 31076 Toulouse, France
| | - Thi-Nhu-Ngoc Van
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Anastasia Godefroy
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (A.G.); (M.G.-B.)
| | - Magali Gary-Bobo
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (A.G.); (M.G.-B.)
| | - Franck Molina
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Karl Balabanian
- CNRS, GDR 3697 Microenvironment of Tumor Niches, Micronit, France;
- Institut de Recherche Saint-Louis, Université de Paris, EMiLy, Inserm U1160, 75010 Paris, France
| | - Gwendal Lazennec
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
- CNRS, GDR 3697 Microenvironment of Tumor Niches, Micronit, France;
- Correspondence:
| |
Collapse
|
44
|
Boissière-Michot F, Jacot W, Massol O, Mollevi C, Lazennec G. CXCR2 Levels Correlate with Immune Infiltration and a Better Prognosis of Triple-Negative Breast Cancers. Cancers (Basel) 2021; 13:cancers13102328. [PMID: 34066060 PMCID: PMC8151934 DOI: 10.3390/cancers13102328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Tumor microenvironment is critical for cancer progression. The role of the chemokine receptors in breast cancers is still under investigation. The aim of this study was to focus on a retrospective cohort of triple-negative breast cancers (TNBCs) and analyze the involvement of CXCR2 and its link with immune infiltration and immune checkpoint markers. High densities of CXCR2-positive cells were associated with high-grade tumors. Higher quantities of CXCR2-positive cells were correlated with elevated density of tumor-infiltrating lymphocytes (TILs), CD8+ cytotoxic lymphocytes, expression of PD-L1 by tumor and stromal cells and of PD-1 by stromal cells. In univariate analysis, low levels of CXCR2 were correlated with poor OS and RFS. In multivariate analysis, low levels of CXCR2 were associated with poor OS. Overall, our data highlight the potential beneficial association of high levels of CXCR2 with a subgroup of TNBC patients characterized by a better prognosis. Abstract Chemokines and their receptors are key players in breast cancer progression and outcome. Previous studies have shown that the chemokine receptor CXCR2 was expressed at higher levels by cells of the tumor microenvironment in triple-negative breast cancers (TNBCs). The aim of this study was to focus our attention on a retrospective cohort of 290 TNBC cases and analyze the involvement of CXCR2, CD11b (a marker of granulocytes) and CD66b (a marker of neutrophils) and their link with immune infiltration and immune checkpoint markers. We report that high densities of CXCR2-, CD11b- and CD66b-positive cells were associated with high-grade tumors. Moreover, molecular apocrine TNBCs, defined here as tumors that express both AR and FOXA1 biomarkers, exhibited low levels of CXCR2 and CD11b. High CXCR2 and CD11b levels were correlated with elevated density of tumor-infiltrating lymphocytes (TILs), CD8+ cytotoxic lymphocytes, expression of PD-L1 by tumor and stromal cells and of PD-1 by stromal cells. On the other hand, CD66b levels were associated only with CD8+, stromal PD-L1 and PD-1 expression. In univariate analysis, low levels of CXCR2 were correlated with poor OS and RFS. In multivariate analysis, low levels of CXCR2 were associated with poor OS. Finally, in TNBC treated with adjuvant chemotherapy, CXCR2 density was associated with longer RFS. Overall, our data highlight the potential beneficial association of high levels of CXCR2 with a subgroup of TNBC patients characterized by a better prognosis.
Collapse
Affiliation(s)
- Florence Boissière-Michot
- Institut Régional du Cancer de Montpellier (ICM), Val d’Aurelle, 34298 Montpellier, France; (F.B.-M.); (W.J.); (O.M.); (C.M.)
| | - William Jacot
- Institut Régional du Cancer de Montpellier (ICM), Val d’Aurelle, 34298 Montpellier, France; (F.B.-M.); (W.J.); (O.M.); (C.M.)
- Montpellier University, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, 34298 Montpellier, France
| | - Océane Massol
- Institut Régional du Cancer de Montpellier (ICM), Val d’Aurelle, 34298 Montpellier, France; (F.B.-M.); (W.J.); (O.M.); (C.M.)
| | - Caroline Mollevi
- Institut Régional du Cancer de Montpellier (ICM), Val d’Aurelle, 34298 Montpellier, France; (F.B.-M.); (W.J.); (O.M.); (C.M.)
- Institut Desbrest d’Epidémiologie et de Santé Publique, UMR Inserm—Université de Montpellier, 34090 Montpellier, France
| | - Gwendal Lazennec
- CNRS, SYS2DIAG, ALCEDIAG, Cap Delta, 1682 Rue de la Valsière, 34184 Montpellier, France
- CNRS, GDR 3697 “Microenvironment of Tumor Niches”, Micronit, France
- Correspondence:
| |
Collapse
|
45
|
Ivolgin DA, Kudlay DA. Mesenchymal multipotent stromal cells and cancer safety: two sides of the same coin or a double-edged sword (review of foreign literature). RUSSIAN JOURNAL OF PEDIATRIC HEMATOLOGY AND ONCOLOGY 2021; 8:64-84. [DOI: 10.21682/2311-1267-2021-8-1-64-84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Knowledge about the mechanisms of action of mesenchymal multipotent stromal cells (MSC) has undergone a significant evolution since their discovery. From the first attempts to use the remarkable properties of MSC in restoring the functions of organs and tissues, the most important question arose – how safe their use would be? One of the aspects of safety of the use of such biomaterial is tumorogenicity and oncogenicity. Numerous studies have shown that the mechanisms by which MSC realize their regenerative potential can, in principle, have a stimulating effect on tumor cells. This review presents specific mechanisms that have a potentially pro-tumor effect, which include the homing of MSC to the tumor site, support for replicative and proliferative signaling of both cancer cells and cancer stem cells, angiogenesis, and effects on the epithelial-mesenchymal transition. Along with pro-tumor mechanisms, the mechanisms of possible antitumor action are also described – direct suppression of tumor growth, loading and transportation of chemotherapeutic agents, oncolytic viruses, genetic modifications for targeting cancer, delivery of “suicide genes” to the tumor. Also, in conclusion, a small review of the current clinical trials of MSC as antitumor agents for malignant neoplasms of various localization (gastrointestinal tract, lungs, ovaries) is given.
Collapse
Affiliation(s)
- D. A. Ivolgin
- I.I. Mechnikov North-Western State Medical University, Ministry of Health of Russia
| | - D. A. Kudlay
- JSC “GENERIUM”;
I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University);
National Research Center – Institute of Immunology Federal Medical-Biological Agency of Russia
| |
Collapse
|
46
|
Chen X, Wang Y, Jiang S. The Effect of Sirtuin 2 (Sirt2) Overexpressing Bone Marrow Mesenchymal Stem Cells on the Growth of Human Epidermal Growth Factor Receptor 2 (Her-2) Breast Cancer Cells and Its Mechanism. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our study investigates the effect of high expression of Sirt2 in MSCs (MSCs-Sirt2) on Her-2 breast cancer cell proliferation. A mouse subcutaneous xenograft tumor model was established and MSCssirt2 analysis was performed on nude mice. TUNEL staining, flow cytometry, western-blot, real-time
PCR and immunohistochemistry were used to detect cancer cell apoptosis. The number of NK cells infiltrated by flow cytometry detected the tumor tissue of tumor-bearing mice, and its killing activity on tumor-bearing mice was detected by isotope labeling and release method. The levels of TNF-α,
IFN-γ, IL-8, IL-6 and IL-10 were detected by ELISA. Caspase-3 level was decreased in the MSCs group (P <0.01) while increased in the MSCs-sirt2 group (P <0.001). However, PCNA expression showed an opposite profile in the Her-2 group and MSCs-sirt2 group compared to
Caspase-3 level (P <0.01). The tumor volume and weight in the MSCs-sirt2 group was significantly reduced (P < 0.01), while increased in the MSCs group significantly (P < 0.05). The number of Ki-67-positive tumor cells in MSCs-sirt2 group was significantly reduced
(P <0.01) and increased in MSCs group (P < 0.001) with oppositive number of TUNEL-positive tumor cells in the MSCs-sirt2 group and MSCs group (P <0.01). IFN-γ level showed an upward trend (P <0.001). The NK cell toxicity of MSCs-Sirt2 group was
significantly higher (P <0.001). MSCs-Sirt2 has an inhibitory effect on Her-2 breast cancer cell growth by enhancing the local inflammatory response of NK cells.
Collapse
Affiliation(s)
- Xiaolin Chen
- Department of Pharmacy, Chongqing Jiangjin District Central Hospital, Chingqing, 402260, China
| | - Yan Wang
- Department of Cardiothoracic Surgery, Chongqing Jiangjin District Central Hospital, Chingqing, 402260, China
| | - Sunlu Jiang
- Minimally Invasive Interventional Center, Hubei Cancer Hospital, Wuhan, Hubei, 430000, China
| |
Collapse
|
47
|
Sigdel I, Gupta N, Faizee F, Khare VM, Tiwari AK, Tang Y. Biomimetic Microfluidic Platforms for the Assessment of Breast Cancer Metastasis. Front Bioeng Biotechnol 2021; 9:633671. [PMID: 33777909 PMCID: PMC7992012 DOI: 10.3389/fbioe.2021.633671] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/05/2021] [Indexed: 12/27/2022] Open
Abstract
Of around half a million women dying of breast cancer each year, more than 90% die due to metastasis. Models necessary to understand the metastatic process, particularly breast cancer cell extravasation and colonization, are currently limited and urgently needed to develop therapeutic interventions necessary to prevent breast cancer metastasis. Microfluidic approaches aim to reconstitute functional units of organs that cannot be modeled easily in traditional cell culture or animal studies by reproducing vascular networks and parenchyma on a chip in a three-dimensional, physiologically relevant in vitro system. In recent years, microfluidics models utilizing innovative biomaterials and micro-engineering technologies have shown great potential in our effort of mechanistic understanding of the breast cancer metastasis cascade by providing 3D constructs that can mimic in vivo cellular microenvironment and the ability to visualize and monitor cellular interactions in real-time. In this review, we will provide readers with a detailed discussion on the application of the most up-to-date, state-of-the-art microfluidics-based breast cancer models, with a special focus on their application in the engineering approaches to recapitulate the metastasis process, including invasion, intravasation, extravasation, breast cancer metastasis organotropism, and metastasis niche formation.
Collapse
Affiliation(s)
- Indira Sigdel
- Biofluidics Laboratory, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States
| | - Niraj Gupta
- Biofluidics Laboratory, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States
| | - Fairuz Faizee
- Biofluidics Laboratory, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States
| | - Vishwa M Khare
- Eurofins Lancaster Laboratories, Philadelphia, PA, United States
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Yuan Tang
- Biofluidics Laboratory, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States
| |
Collapse
|
48
|
Jang JH, Kim DH, Surh YJ. Dynamic roles of inflammasomes in inflammatory tumor microenvironment. NPJ Precis Oncol 2021; 5:18. [PMID: 33686176 PMCID: PMC7940484 DOI: 10.1038/s41698-021-00154-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
The inflammatory tumor microenvironment has been known to be closely connected to all stages of cancer development, including initiation, promotion, and progression. Systemic inflammation in the tumor microenvironment is increasingly being recognized as an important prognostic marker in cancer patients. Inflammasomes are master regulators in the first line of host defense for the initiation of innate immune responses. Inflammasomes sense pathogen-associated molecular patterns and damage-associated molecular patterns, following recruitment of immune cells into infection sites. Therefore, dysregulated expression/activation of inflammasomes is implicated in pathogenesis of diverse inflammatory disorders. Recent studies have demonstrated that inflammasomes play a vital role in regulating the development and progression of cancer. This review focuses on fate-determining roles of the inflammasomes and the principal downstream effector cytokine, IL-1β, in the tumor microenvironment.
Collapse
Affiliation(s)
- Jeong-Hoon Jang
- grid.31501.360000 0004 0470 5905Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Do-Hee Kim
- grid.411203.50000 0001 0691 2332Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, Gyeonggi-do South Korea
| | - Young-Joon Surh
- grid.31501.360000 0004 0470 5905Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea ,grid.31501.360000 0004 0470 5905Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea ,grid.31501.360000 0004 0470 5905Cancer Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
49
|
Chang CM, Lam HYP, Hsu HJ, Jiang SJ. Interleukin-10: A double-edged sword in breast cancer. Tzu Chi Med J 2021; 33:203-211. [PMID: 34386356 PMCID: PMC8323643 DOI: 10.4103/tcmj.tcmj_162_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/01/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is a frequently diagnosed cancer among women worldwide. Currently, BC can be divided into different subgroups according to the presence of the following hormone receptors: estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Each of these subgroups has different treatment strategies. However, the presence of new metastatic lesions and patient deterioration suggest resistance to a given treatment. Various lines of evidence had shown that cytokines are one of the important mediators of tumor growth, invasion, metastasis, and treatment resistance. Interleukin-10 (IL-10) is an immunoregulatory cytokine, and acts as a poor prognostic marker in many cancers. The anti-inflammatory IL-10 blocks certain effects of inflammatory cytokines. It also antagonizes the co-stimulatory molecules on the antigen-presenting cells. Here, we review the current knowledge on the function and molecular mechanism of IL-10, and recent findings on how IL-10 contributes to the progression of BC.
Collapse
Affiliation(s)
- Chun-Ming Chang
- Department of General Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Ho Yin Pekkle Lam
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hao-Jen Hsu
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Life Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shinn-Jong Jiang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
50
|
Alves MT, Simões R, Pestana RMC, de Oliveira AN, Oliveira HHM, Soares CE, Sabino ADP, Silva LM, Gomes KB. Interleukin-10 Levels are Associated with Doxorubicin-Related Cardiotoxicity in Breast Cancer Patients in a One-Year Follow-Up Study. Immunol Invest 2021; 51:883-898. [PMID: 33557640 DOI: 10.1080/08820139.2021.1882486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Myocardial toxicity is a common side effect of doxorubicin (DOXO) therapy in breast cancer patients. We hypothesized that DOXO-induced cardiotoxicity may be related to the release of inflammatory cytokines in response to the treatment. This study aimed to assess changes in plasma levels of interleukin (IL)-1β, IL-6, IL-10 and tumor necrosis factor (TNF) after chemotherapy and to correlate these levels with cardiac biomarkers and clinical data.Methods: Sixty-four patients with breast cancer treated with DOXO were included. Twenty-two subjects (cases) developed cardiotoxicity until one year after the end of DOXO treatment. Cytokines and cardiac markers were evaluated before starting chemotherapy (T0), up to 7 days after the last infusion (T1) and 12 months after the last infusion (T2).Results: Higher IL-10 levels were observed in the case group compared to controls at T1 (p = .006) and T2 (p = .046). The IL-1β, IL-6 and TNF levels did not change during treatment in each group (p > .05), nor between the case and control groups. The IL-10 levels were higher at T1 than at T0 and T2 (p < .05 for both) in the cardiotoxicity group. A correlation between IL-10 and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels at T0 and T2 in the cardiotoxicity group was observed (p = .048 and p = .004, respectively).Conclusion: Our study demonstrated that DOXO induced an increase in plasma IL-10 levels in patients who presented cardiotoxicity after treatment, which correlated with NT-proBNP levels.
Collapse
Affiliation(s)
- Michelle Teodoro Alves
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Simões
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Mendonça Cardoso Pestana
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Cintia Esteves Soares
- Fundação Hospitalar do Estado de Minas Gerais (FHEMIG), Belo Horizonte, Minas Gerais, Brazil
| | - Adriano de Paula Sabino
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Karina Braga Gomes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|