1
|
Hou G, Zhu S, Li H, Li C, Liu X, Ren C, Zhu X, Shi Q, Zhang Z. Establishment of a Real-Time Reverse Transcription Recombinase-Aided Isothermal Amplification (qRT-RAA) Assay for the Rapid Detection of Bovine Respiratory Syncytial Virus. Vet Sci 2024; 11:589. [PMID: 39728929 DOI: 10.3390/vetsci11120589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Bovine respiratory syncytial virus (BRSV) is a significant cause of bovine respiratory disease, resulting in significant losses to the cattle industry. For rapid detection of BRSV, a real-time recombinase-aided isothermal amplification assay (qRT-RAA) based on the F gene of BRSV was developed in this study. RESULTS The developed qRT-RAA assay showed good exponential amplification of the target fragment in 20 min at a constant temperature of 39 °C. And this assay displayed a high specificity for BRSV, without cross-reactions with Infectious Bovine Rhinotracheitis Virus (IBRV), Bovine Parainfluenza Virus Type 3 (BPIV3), Bovine Viral Diarrhea Virus (BVDV), and Bovine Coronavirus (BCoV). With the standard RNA of BRSV serving as a template, the limit of detection for qRT-RAA was 102 copies/μL. We examined ninety-seven clinical samples from cattle with respiratory disease using this method and determined a positive rate of 7.2% (7/97), consistent with results using the classical PCR method reported previously. CONCLUSIONS A qRT-RAA assay for BRSV detection was established in this study. The method is specific and sensitive and can be completed within 20 min at 39 °C. These works demonstrate that the generated qRT-RAA assay is an effective diagnostic tool for rapidly detecting BRSV in resource-limited settings, which may be applied for the clinical detection of BRSV.
Collapse
Affiliation(s)
- Guanxin Hou
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China
| | - Siping Zhu
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China
| | - Hong Li
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China
| | - Chihuan Li
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China
| | - Xiaochen Liu
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China
| | - Chao Ren
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China
| | - Xintong Zhu
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China
| | - Qiumei Shi
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China
| | - Zhiqiang Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China
| |
Collapse
|
2
|
Jorritsma R, de Jong R, van den Hoven M, van Werven T. BRSV seroprevalence and associated risk factors on Dutch dairy farms. Vet J 2024; 308:106270. [PMID: 39577556 DOI: 10.1016/j.tvjl.2024.106270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Bovine respiratory syncytial virus (BRSV) causes infections of the respiratory tract of cattle and is endemic in the Netherlands. We aimed to update our knowledge on the seroprevalence of BRSV in youngstock on Dutch dairy farms by performing a cross sectional study during the winter of 2021-2022 and a telephone survey with the farmers to map the most important risk factors for the introduction, presence, and circulation of BRSV. Of 671 sampled calves among 135 herds, we found a seropositivity of 75 % at calf level and 77 % on herd level. Risk factors appeared similar to those identified by others including a higher ratio of youngstock versus adult cows and suboptimal colostrum administration. We concluded that the BRSV seroprevalence at animal and herd level is still substantially high, confirming the endemic circulation of this virus on the majority of the Dutch dairy farms. But given that there is also a smaller number of seronegative herds and the available knowledge about biological sound risk factors for BRSV circulation, it could be worth investigating the feasibility of decreasing the seroprevalence of BRSV at herd level in the Netherlands taking into account the lessons learned from the Norwegian control program.
Collapse
Affiliation(s)
- R Jorritsma
- Sustainable Ruminant Health, Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht 3584 CL, the Netherlands.
| | - R de Jong
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, Lelystad 8221 RA, the Netherlands
| | - M van den Hoven
- Sustainable Ruminant Health, Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht 3584 CL, the Netherlands
| | - T van Werven
- Sustainable Ruminant Health, Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht 3584 CL, the Netherlands; University Farm Animal Practice, Reijerscopse Overgang 1, Harmelen 3481 LZ, the Netherlands
| |
Collapse
|
3
|
Liu Y, Li Q, Shao S, Ji X, Gao W, Fan Y, Liu M, Wang Y, Bai J. HSPA4 Enhances BRSV Entry via Clathrin-Mediated Endocytosis Through Regulating the PI3K-Akt Signaling Pathway and ATPase Activity of HSC70. Viruses 2024; 16:1784. [PMID: 39599898 PMCID: PMC11598967 DOI: 10.3390/v16111784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is an enveloped RNA virus that utilizes clathrin-mediated endocytosis for cell entry and is a significant pathogen in bovine respiratory disease (BRD). Heat shock protein family A member 4 (HSPA4), a member of the HSP70 family, is known to be involved in the progression of various cancers. However, its role in virus entry has not been previously explored. Through experiments involving Western blot analysis, virus titer, and virus copies analysis, we demonstrated that HSPA4 can regulate BRSV entry and replication. The specific regulation mode is to enhance BRSV entry by promoting clathrin-mediated endocytosis. We used Western blot, virus titer, virus copies analysis, and IFA to demonstrate that HSPA4 can promote clathrin heavy chain protein (CHC) expression and further promote BRSV entry by activating the PI3K-Akt signaling pathway. Furthermore, we observed that HSPA4 boosts the efficiency of clathrin-mediated endocytosis by increasing the ATPase activity of heat shock cognate protein 70 (HSC70), thereby facilitating BRSV entry. Additionally, our investigation into the impact of HSPA4 on the entry of other viruses revealed that HSPA4 can facilitate the entry of a variety of viruses into host cells.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.S.); (X.J.); (W.G.); (Y.F.); (M.L.); (Y.W.)
| | - Qiongyi Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.S.); (X.J.); (W.G.); (Y.F.); (M.L.); (Y.W.)
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Shuai Shao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.S.); (X.J.); (W.G.); (Y.F.); (M.L.); (Y.W.)
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Xiaolan Ji
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.S.); (X.J.); (W.G.); (Y.F.); (M.L.); (Y.W.)
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Wanning Gao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.S.); (X.J.); (W.G.); (Y.F.); (M.L.); (Y.W.)
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Yiyang Fan
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.S.); (X.J.); (W.G.); (Y.F.); (M.L.); (Y.W.)
| | - Mingqi Liu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.S.); (X.J.); (W.G.); (Y.F.); (M.L.); (Y.W.)
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Yan Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.S.); (X.J.); (W.G.); (Y.F.); (M.L.); (Y.W.)
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Jialin Bai
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.S.); (X.J.); (W.G.); (Y.F.); (M.L.); (Y.W.)
| |
Collapse
|
4
|
da Silva Barcelos L, Ford AK, Frühauf MI, Botton NY, Fischer G, Maggioli MF. Interactions Between Bovine Respiratory Syncytial Virus and Cattle: Aspects of Pathogenesis and Immunity. Viruses 2024; 16:1753. [PMID: 39599867 PMCID: PMC11598946 DOI: 10.3390/v16111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is a major respiratory pathogen in cattle and is relevant to the livestock industry worldwide. BRSV is most severe in young calves and is often associated with stressful management events. The disease is responsible for economic losses due to lower productivity, morbidity, mortality, and prevention and treatment costs. As members of the same genus, bovine and human RSV share a high degree of homology and are similar in terms of their genomes, transmission, clinical signs, and epidemiology. This overlap presents an opportunity for One Health approaches and translational studies, with dual benefits; however, there is still a relative lack of studies focused on BRSV, and the continued search for improved prophylaxis highlights the need for a deeper understanding of its immunological features. BRSV employs different host-immunity-escaping mechanisms that interfere with effective long-term memory responses to current vaccines and natural infections. This review presents an updated description of BRSV's immunity processes, such as the PRRs and signaling pathways involved in BRSV infection, aspects of its pathogeny, and the evading mechanisms developed by the virus to thwart the immune response.
Collapse
Affiliation(s)
- Lariane da Silva Barcelos
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Alexandra K. Ford
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
| | - Matheus Iuri Frühauf
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Nadalin Yandra Botton
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Geferson Fischer
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Mayara Fernanda Maggioli
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
| |
Collapse
|
5
|
Grego E, Kelly SM, McGill JL, Wannemuehler M, Narasimhan B. Bovine Respiratory Syncytial Virus Nanovaccine Induces Long-Lasting Humoral Immunity in Mice. ACS Pharmacol Transl Sci 2024; 7:3205-3215. [PMID: 39421663 PMCID: PMC11480889 DOI: 10.1021/acsptsci.4c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
With limited therapies and vaccines available, human respiratory syncytial virus (HRSV) has a significant negative health impact on all age groups but particularly on infants, young children, and older adults. Bovine respiratory syncytial virus (BRSV) is pathogenically and antigenically similar to HRSV. Building upon previous studies using a BRSV nanovaccine coencapsulating multiple proteins, this work demonstrates the development and comparative evaluation of a coencapsulated nanovaccine to a cocktail nanovaccine formulation composed of polyanhydride nanoparticles encapsulating BRSV postfusion (F) glycoprotein and CpG ODN 1668 coadjuvant delivered simultaneously with nanoparticles encapsulating BRSV attachment glycoprotein (G) and CpG ODN 1668. These nanovaccine formulations were administered to C57BL/6 mice by one of two prime-boost regimens (i.e., intranasal/intranasal or intranasal/subcutaneous) followed by assessment of humoral immunity. The cocktail nanovaccine induced sustained anti-F and anti-G serum IgG antibody responses for 12 weeks postprimary immunization. Using polyanhydride particles to deliver G protein in a prime-boost regime also significantly induced serum anti-G antibodies compared to protein and coadjuvant alone. Serum IgG induced by the nanovaccine demonstrated virus-neutralizing capability from 42 to 119 days postprimary immunization. Further, anti-F IgG antibodies were detected in the bronchoalveolar lavage fluid of vaccinated animals. Finally, the nanovaccine induced long-lived anti-F antibody secreting plasma cells that were detectable in the bone marrow 205 days postprimary immunization. Overall, the BRSV nanovaccine(s) successfully induced long-lived humoral immune responses capable of virus neutralization, making this a promising vaccine candidate for further evaluation in other relevant animal models.
Collapse
Affiliation(s)
- Elizabeth Grego
- Chemical
& Biological Engineering, Iowa State
University, Ames, Iowa 50011, United States
- Nanovaccine
Institute, Ames, Iowa 50011, United States
| | - Sean M. Kelly
- Chemical
& Biological Engineering, Iowa State
University, Ames, Iowa 50011, United States
- Nanovaccine
Institute, Ames, Iowa 50011, United States
| | - Jodi L. McGill
- Nanovaccine
Institute, Ames, Iowa 50011, United States
- Veterinary
Microbiology & Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Michael Wannemuehler
- Nanovaccine
Institute, Ames, Iowa 50011, United States
- Veterinary
Microbiology & Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Balaji Narasimhan
- Chemical
& Biological Engineering, Iowa State
University, Ames, Iowa 50011, United States
- Nanovaccine
Institute, Ames, Iowa 50011, United States
| |
Collapse
|
6
|
Brynes A, Williams JV. Small hydrophobic (SH) proteins of Pneumoviridae and Paramyxoviridae: small but mighty. J Virol 2024; 98:e0080924. [PMID: 39177356 PMCID: PMC11407002 DOI: 10.1128/jvi.00809-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Small hydrophobic (SH) proteins are a class of viral accessory proteins expressed by many members of the negative-stranded RNA viral families Paramyxoviridae and Pneumoviridae. Identified SH proteins are type I or II transmembrane (TM) proteins with a single-pass TM domain. Little is known about the functions of SH proteins; however, several possess viroporin activity, enhancing membrane permeability of infected cells or those expressing SH protein. Moreover, several SH proteins inhibit apoptosis and immune signaling pathways within infected cells, including TNF and interferon signaling, or activate inflammasomes. SH proteins are generally nonessential for viral replication in vitro, but loss of SH is often associated with reduced replication in vivo, suggesting a role in enhancing viral replication or evading host immunity. Analogous proteins are expressed by a variety of pathogens of public health importance; thus, understanding the functional importance and mechanisms of SH proteins provides insight into the pathogenesis and replication of negative-sense RNA viruses.
Collapse
Affiliation(s)
- Adam Brynes
- Program in Microbiology & Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Liu Y, Yang D, Jiang W, Chi T, Kang J, Wang Z, Wu F. Cell entry of bovine respiratory syncytial virus through clathrin-mediated endocytosis is regulated by PI3K-Akt and Src-JNK pathways. Front Microbiol 2024; 15:1393127. [PMID: 38690369 PMCID: PMC11059085 DOI: 10.3389/fmicb.2024.1393127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is an RNA virus with envelope that causes acute, febrile, and highly infectious respiratory diseases in cattle. However, the manner and mechanism of BRSV entry into cells remain unclear. In this study, we aimed to explore the entry manner of BRSV into MDBK cells and its regulatory mechanism. Our findings, based on virus titer, virus copies, western blot and IFA analysis, indicate that BRSV enters MDBK cells through endocytosis, relying on dynamin, specifically via clathrin-mediated endocytosis rather than caveolin-mediated endocytosis and micropinocytosis. We observed that the entered BRSV initially localizes in early endosomes and subsequently localizes in late endosomes. Additionally, our results of western blot, virus titer and virus copies demonstrate that BRSV entry through clathrin-mediated endocytosis is regulated by PI3K-Akt and Src-JNK signaling pathways. Overall, our study suggests that BRSV enters MDBK cells through clathrin-mediated endocytosis, entered BRSV is trafficked to late endosome via early endosome, BRSV entry through clathrin-mediated endocytosis is regulated by PI3K-Akt and Src-JNK signaling pathways.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Dongliang Yang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu, China
| | - Wen Jiang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Tianying Chi
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Jingli Kang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Zhiliang Wang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Faxing Wu
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| |
Collapse
|
8
|
Werid GM, Miller D, Hemmatzadeh F, Messele YE, Petrovski K. An overview of the detection of bovine respiratory disease complex pathogens using immunohistochemistry: emerging trends and opportunities. J Vet Diagn Invest 2024; 36:12-23. [PMID: 37982437 PMCID: PMC10734592 DOI: 10.1177/10406387231210489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
The bovine respiratory disease complex (BRDC) is caused by a variety of pathogens, as well as contributing environmental and host-related risk factors. BRDC is the costliest disease for feedlot cattle globally. Immunohistochemistry (IHC) is a valuable tool for enhancing our understanding of BRDC given its specificity, sensitivity, cost-effectiveness, and capacity to provide information on antigen localization and immune response. Emerging trends in IHC include the use of multiplex IHC for the detection of coinfections, the use of digital imaging and automation, improved detection systems using enhanced fluorescent dyes, and the integration of IHC with spatial transcriptomics. Overall, identifying biomarkers for early detection, utilizing high-throughput IHC for large-scale studies, developing standardized protocols and reagents, and integrating IHC with other technologies are some of the opportunities to enhance the accuracy and applicability of IHC. We summarize here the various techniques and protocols used in IHC and highlight their current and potential role in BRDC research.
Collapse
Affiliation(s)
- Gebremeskel Mamu Werid
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Darren Miller
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Farhid Hemmatzadeh
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Yohannes E. Messele
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Kiro Petrovski
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
9
|
Otten ND, Skarbye AP, Krogh MA, Michelsen AM, Nielsen LR. Monitoring bovine dairy calf health and related risk factors in the first three months of rearing. Acta Vet Scand 2023; 65:45. [PMID: 37828550 PMCID: PMC10571325 DOI: 10.1186/s13028-023-00708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Rearing replacement heifers is pivotal for the dairy industry and is associated with high input costs for the preweaned calves, due to their higher susceptibility to diseases. Ensuring calf health and viability calls for systematic approaches in order to mitigate the costs induced by managing sick calves and to ensure animal welfare. The objective of this study was to develop a systematic and feasible health-monitoring tool for bovine dairy calves based on repeated clinical observations and diagnostic results of calves at three time points; the 1st (T0), the 3rd (T1) and the 12th (T3) week of age. The study included observations from 77 dairy heifer calves in nine Danish commercial dairy herds. Immunisation status was assessed by serum Brix% at T0. Clinical scoring included gastrointestinal disease (GD) and respiratory disease (RD). The average daily weight gain (ADWG) was estimated from heart-girth measurements. Pathogen detection from nasal swabs and faecal samples were analysed for 16 respiratory and enteric pathogens by means of high-throughput real time-PCR. All measures obtained in each herd were visualised in a panel to follow the health status of each calf over time. RESULTS The individual clinical observations combined with diagnostic information from immunisation and pathogen detection form each enrolled calf are presented in a herd dashboard illustrating the health status over the study period. This monitoring revealed failure of passive transfer (Brix% < 8.1) in 31% of the 77 enrolled calves, signs of severe GD peaked at T0 with 20% affected calves, while signs of severe RD peaked at T2 with 42% affected calves. ADWG over the first eight weeks was estimated to be 760 g (± 190 g). Pathogen profiles varied between herds. CONCLUSIONS The large variation in both clinical disease and pathogen occurrence across herds emphasizes the need for herd specific monitoring. Combining the results of the present study from measures of immunisation, health and growth from individual calves in one visualisation panel allowed for the detection of patterns across age groups in the specific herds, showing promising potential for early detection and interventions that can lead to enhanced calf health and welfare.
Collapse
Affiliation(s)
- Nina Dam Otten
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 8, DK-1870, Frederiksberg C, Denmark.
| | - Alice Puk Skarbye
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 8, DK-1870, Frederiksberg C, Denmark
| | - Mogens Agerbo Krogh
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, DK-8830, Tjele, Denmark
| | - Anne Marie Michelsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 8, DK-1870, Frederiksberg C, Denmark
| | - Liza Rosenbaum Nielsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 8, DK-1870, Frederiksberg C, Denmark
| |
Collapse
|
10
|
Reyes-Calderón A, Mindreau-Ganoza E, Pardo-Figueroa B, Garcia-Luquillas KR, Yufra SP, Romero PE, Antonini C, Renom JM, Mota CR, Santa-Maria MC. Evaluation of low-cost SARS-CoV-2 RNA purification methods for viral quantification by RT-qPCR and next-generation sequencing analysis: Implications for wider wastewater-based epidemiology adoption. Heliyon 2023; 9:e16130. [PMID: 37228686 PMCID: PMC10188194 DOI: 10.1016/j.heliyon.2023.e16130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/09/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Based Epidemiology (WBE) consists of quantifying biomarkers in sewerage systems to derive real-time information on the health and/or lifestyle of the contributing population. WBE usefulness was vastly demonstrated in the context of the COVID-19 pandemic. Many methods for SARS-CoV-2 RNA determination in wastewater were devised, which vary in cost, infrastructure requirements and sensitivity. For most developing countries, implementing WBE for viral outbreaks, such as that of SARS-CoV-2, proved challenging due to budget, reagent availability and infrastructure constraints. In this study, we assessed low-cost methods for SARS-CoV-2 RNA quantification by RT-qPCR, and performed variant identification by NGS in wastewater samples. Results showed that the effect of adjusting pH to 4 and/or adding MgCl2 (25 mM) was negligible when using the adsorption-elution method, as well as basal physicochemical parameters in the sample. In addition, results supported the standardized use of linear rather than plasmid DNA for a more accurate viral RT-qPCR estimation. The modified TRIzol-based purification method in this study yielded comparable RT-qPCR estimation to a column-based approach, but provided better NGS results, suggesting that column-based purification for viral analysis should be revised. Overall, this work provides evaluation of a robust, sensitive and cost-effective method for SARS-CoV-2 RNA analysis that could be implemented for other viruses, for a wider WEB adoption.
Collapse
Affiliation(s)
- Alonso Reyes-Calderón
- Centro de Investigación y Tecnología del Agua - CITA, Universidad de Ingenieria y Tecnologia – UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| | - Elías Mindreau-Ganoza
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Germán Amézaga s/n, Lima, 15081, Peru
| | - Braulio Pardo-Figueroa
- Centro de Investigación y Tecnología del Agua - CITA, Universidad de Ingenieria y Tecnologia – UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| | - Katherine R. Garcia-Luquillas
- Centro de Investigación y Tecnología del Agua - CITA, Universidad de Ingenieria y Tecnologia – UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| | - Sonia P. Yufra
- Departamento de Ingeniería Metalúrgica e Ingeniería Ambiental, Universidad Nacional de San Agustín, Av. Independencia s/n, Arequipa, 04001, Peru
| | - Pedro E. Romero
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Germán Amézaga s/n, Lima, 15081, Peru
| | - Claudia Antonini
- Departamento de Ingeniería Industrial, Universidad de Ingenieria y Tecnologia - UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| | - Jose-Miguel Renom
- Departamento de Ciencias, Universidad de Ingenieria y Tecnologia - UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| | - Cesar R. Mota
- Departamento de Engenharia Sanitária e Ambiental, Escola de Engenharia, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, Belo Horizonte, 6.627, 31270-901, Brazil
| | - Monica C. Santa-Maria
- Centro de Investigación y Tecnología del Agua - CITA, Universidad de Ingenieria y Tecnologia – UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| |
Collapse
|
11
|
Gaudino M, Nagamine B, Ducatez MF, Meyer G. Understanding the mechanisms of viral and bacterial coinfections in bovine respiratory disease: a comprehensive literature review of experimental evidence. Vet Res 2022; 53:70. [PMID: 36068558 PMCID: PMC9449274 DOI: 10.1186/s13567-022-01086-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine respiratory disease (BRD) is one of the most important diseases impacting the global cattle industry, resulting in significant economic loss. Commonly referred to as shipping fever, BRD is especially concerning for young calves during transport when they are most susceptible to developing disease. Despite years of extensive study, managing BRD remains challenging as its aetiology involves complex interactions between pathogens, environmental and host factors. While at the beginning of the twentieth century, scientists believed that BRD was only caused by bacterial infections ("bovine pasteurellosis"), we now know that viruses play a key role in BRD induction. Mixtures of pathogenic bacteria and viruses are frequently isolated from respiratory secretions of animals with respiratory illness. The increased diagnostic screening data has changed our understanding of pathogens contributing to BRD development. In this review, we aim to comprehensively examine experimental evidence from all existing studies performed to understand coinfections between respiratory pathogens in cattle. Despite the fact that pneumonia has not always been successfully reproduced by in vivo calf modelling, several studies attempted to investigate the clinical significance of interactions between different pathogens. The most studied model of pneumonia induction has been reproduced by a primary viral infection followed by a secondary bacterial superinfection, with strong evidence suggesting this could potentially be one of the most common scenarios during BRD onset. Different in vitro studies indicated that viral priming may increase bacterial adherence and colonization of the respiratory tract, suggesting a possible mechanism underpinning bronchopneumonia onset in cattle. In addition, a few in vivo studies on viral coinfections and bacterial coinfections demonstrated that a primary viral infection could also increase the pathogenicity of a secondary viral infection and, similarly, dual infections with two bacterial pathogens could increase the severity of BRD lesions. Therefore, different scenarios of pathogen dynamics could be hypothesized for BRD onset which are not limited to a primary viral infection followed by a secondary bacterial superinfection.
Collapse
Affiliation(s)
- Maria Gaudino
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | | | - Gilles Meyer
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| |
Collapse
|
12
|
Santos-Rivera M, Woolums AR, Thoresen M, Meyer F, Vance CK. Bovine Respiratory Syncytial Virus (BRSV) Infection Detected in Exhaled Breath Condensate of Dairy Calves by Near-Infrared Aquaphotomics. Molecules 2022; 27:549. [PMID: 35056864 PMCID: PMC8779643 DOI: 10.3390/molecules27020549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is a major contributor to respiratory disease in cattle worldwide. Traditionally, BRSV infection is detected based on non-specific clinical signs, followed by reverse transcriptase-polymerase chain reaction (RT-PCR), the results of which can take days to obtain. Near-infrared aquaphotomics evaluation based on biochemical information from biofluids has the potential to support the rapid identification of BRSV infection in the field. This study evaluated NIR spectra (n = 240) of exhaled breath condensate (EBC) from dairy calves (n = 5) undergoing a controlled infection with BRSV. Changes in the organization of the aqueous phase of EBC during the baseline (pre-infection) and infected (post-infection and clinically abnormal) stages were found in the WAMACS (water matrix coordinates) C1, C5, C9, and C11, likely associated with volatile and non-volatile compounds in EBC. The discrimination of these chemical profiles by PCA-LDA models differentiated samples collected during the baseline and infected stages with an accuracy, sensitivity, and specificity >93% in both the calibration and validation. Thus, biochemical changes occurring during BRSV infection can be detected and evaluated with NIR-aquaphotomics in EBC. These findings form the foundation for developing an innovative, non-invasive, and in-field diagnostic tool to identify BRSV infection in cattle.
Collapse
Affiliation(s)
- Mariana Santos-Rivera
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA; (M.S.-R.); (F.M.)
| | - Amelia R. Woolums
- College of Veterinary Medicine, Pathobiology & Population Medicine, Mississippi State University, Starkville, MS 39762, USA; (A.R.W.); (M.T.)
| | - Merrilee Thoresen
- College of Veterinary Medicine, Pathobiology & Population Medicine, Mississippi State University, Starkville, MS 39762, USA; (A.R.W.); (M.T.)
| | - Florencia Meyer
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA; (M.S.-R.); (F.M.)
| | - Carrie K. Vance
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA; (M.S.-R.); (F.M.)
| |
Collapse
|
13
|
Ishikawa S, Miyazawa M, Tanaka C, Uesawa R, Nishizawa J, Uemura R, Kobayashi I, Hobo S. Interferon gamma, lipopolysaccharide, and modified-live viral vaccines stimulation alter the mRNA expression of tumor necrosis factor α, inducible nitric oxide synthase, and interferon β in bovine alveolar macrophages. Vet Immunol Immunopathol 2022; 244:110378. [PMID: 34999416 DOI: 10.1016/j.vetimm.2021.110378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2022]
Abstract
To understand the pathogenesis of bovine respiratory disease (BRD), it is necessary to elucidate the mechanisms of alveolar macrophage regulation by cytokines and pathogen-associated molecular patterns (PAMPs). Moreover, "non-specific effects (NSEs)" an innate immune regulatory mechanism in response to vaccines containing PAMPs, has recently attracted attention. It may be applied to BRD control, but there is limited knowledge in bovine. To investigate this, we stimulated alveolar macrophages in vitro with lipopolysaccharide (LPS), polyinosinic-polycytidylic acid sodium salt (Poly I:C), interferon gamma (IFN-γ), and modified-live viral (MLV) vaccines, respectively, and analyzed changes in tumor necrosis factor alpha (TNF-α), inducible nitric oxide synthase (iNOS), and interferon beta (IFN-β) mRNA expression levels. mRNA expression levels of TNF-α, iNOS, and IFN-β were significantly increased in bovine alveolar macrophages stimulated by IFN-γ and MLV vaccine; LPS, IFN-γ, and MLV vaccine; and MLV vaccine only, respectively. Additionally, all MLV vaccine-stimulated mRNA expression increases were observed in a concentration-dependent manner. These results revealed in part, the mechanism of bovine alveolar macrophage regulation by cytokines and PAMPs. Understanding the regulatory mechanisms of alveolar macrophages will contribute to understanding the pathogenesis of BRD and preventive and therapeutic BRD management based on NSEs.
Collapse
Affiliation(s)
- Shingo Ishikawa
- Division of Veterinary Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Izumi-Sano, Osaka, 598-8531, Japan; Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Masataka Miyazawa
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Chiho Tanaka
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Ryoma Uesawa
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Juri Nishizawa
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Ryoko Uemura
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Ikuo Kobayashi
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Seiji Hobo
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
14
|
Newman RA, Chase CCL, Matos JR, Abdelsalam K, Buterbaugh R, Van Holland S, Abdelaal H, Woolum A, Jagannadha Sastry K. Efficacy of oleandrin and PBI-05204 against bovine viruses of importance to commercial cattle health. Antivir Chem Chemother 2022; 30:20402066221103960. [PMID: 35611441 PMCID: PMC9136442 DOI: 10.1177/20402066221103960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV). and bovine coronavirus (BCV) threaten the productivity of cattle worldwide. Development of therapeutics that can control the spread of these viruses is an unmet need. The present research was designed to explore the in vitro antiviral activity of the Nerium oleander derived cardiac glycoside oleandrin and a defined N. oleander plant extract (PBI-05204) containing oleandrin. Methods Madin Darby Bovine Kidney (MDBK) cells, Bovine Turbinate (BT) cells, and Human Rectal Tumor-18 (HRT-18) cells were used as in vitro culture systems for BVDV, BRSV and BCV, respectively. Cytotoxicity was established using serial dilutions of oleandrin or PBI-05204. Noncytotoxic concentrations of each drug were used either prior to or at 12 h and 24 h following virus exposure to corresponding viruses. Infectious virus titers were determined following each treatment. Results Both oleandrin as well as PBI-05204 demonstrated strong antiviral activity against BVDV, BRSV, and BCV, in a dose-dependent manner, when added prior to or following infection of host cells. Determination of viral loads by PCR demonstrated a concentration dependent decline in virus replication. Importantly, the relative ability of virus produced from treated cultures to infect new host cells was reduced by as much as 10,000-fold at noncytotoxic concentrations of oleandrin or PBI-05204. Conclusions The research demonstrates the potency of oleandrin and PBI-05204 to inhibit infectivity of three important enveloped bovine viruses in vitro. These data showing non-toxic concentrations of oleandrin inhibiting infectivity of three bovine viruses support further investigation of in vivo antiviral efficacy.
Collapse
Affiliation(s)
- Robert A Newman
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77054, USA.,Phoenix Biotechnology, Inc., San Antonio, TX 78217, USA
| | - Christopher C L Chase
- Department of Veterinary and Biomedical Sciences, 2019South Dakota State University, Brookings, SD 57006, USA.,RTI, LLC, Brookings SD 57006, USA
| | - Jose R Matos
- Department of Pathobiology and Population Medicine, Mississippi State University, Starkville, MS 39762, USA.,Innovar, LLC, Plano, TX 75025, USA
| | | | | | | | | | - Amelia Woolum
- Department of Pathobiology and Population Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - K Jagannadha Sastry
- Departments of Thoracic, Head and Neck Medical Oncology and Veterinary Sciences, 4002The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
15
|
Bergeron HC, Tripp RA. Immunopathology of RSV: An Updated Review. Viruses 2021; 13:2478. [PMID: 34960746 PMCID: PMC8703574 DOI: 10.3390/v13122478] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
RSV is a leading cause of respiratory tract disease in infants and the elderly. RSV has limited therapeutic interventions and no FDA-approved vaccine. Gaps in our understanding of virus-host interactions and immunity contribute to the lack of biological countermeasures. This review updates the current understanding of RSV immunity and immunopathology with a focus on interferon responses, animal modeling, and correlates of protection.
Collapse
Affiliation(s)
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
16
|
İnce ÖB, Şevik M, Özgür EG, Sait A. Risk factors and genetic characterization of bovine respiratory syncytial virus in the inner Aegean Region, Turkey. Trop Anim Health Prod 2021; 54:4. [PMID: 34882272 PMCID: PMC8656441 DOI: 10.1007/s11250-021-03022-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022]
Abstract
Bovine respiratory syncytial virus (BRSV) is one of the causative viral agents of the bovine respiratory disease complex. This study was conducted to determine the seropositivity and risk factors associated with BRSV infection and to evaluate the phylogenetic relatedness of the BRSVs in the inner Aegean region of Turkey. In this cross-sectional study, serum samples (n = 557) and nasal swabs (n = 21) were collected from cattle herds (n = 43) between February 2018 and March 2019. A commercial indirect-ELISA kit was used for the detection of antibodies in the sera samples. Reverse-transcriptase PCR was used to detect viral RNA in nasal swabs. Nasal samples were also examined for the detection of bovine parainfluenza-3, bovine viral diarrhoea virus, and bovine herpesvirus 1 by molecular detection methods. Genetic characterization of the local BRSV field isolates was conducted by sequencing attachment glycoprotein (G) gene segment. Epidemiological data on potential risk factors were collected from each sampled herd during blood collection. All herds had at least one seropositive animal. After adjustment for assay sensitivity and specificity, the overall true seropositivity was 58.48% (95% CI: 53.32–63.47). BRSV RNA was detected in 2 of the 21 nasal swabs, whereas other infectious agents were not detected in the investigated samples. Phylogenetic analysis showed that the field isolates of BRSV obtained in this study belonged to subgroup III, but they were located on separate branch from previously characterised Turkish subgroup III isolates. BRSV field strains from this study displayed 3 new amino acid substitutions (P89S, D115G, and S165L) in the G protein chains compared to other main reference BRSV isolates, demonstrating that BRSV is still evolving. Generalised estimating equation model showed that there were positive associations between BRSV infection, age (OR = 2.36, p = 0.001), herd size (OR = 10.32, p < 0.001), herd type (OR = 8.97, p < 0.001), a past history of respiratory disease (OR = 4.06, p < 0.001). The results of this study revealed that BRSV infection is common among cattle herds in the inner Aegean region of Turkey. The obtained epidemiological and genetic data on BRSV infection from this study could be beneficial for designing effective biosecurity practices and vaccination strategies.
Collapse
Affiliation(s)
- Ömer Barış İnce
- Animal Breeding and Genetic Research and Implementation Center, Pamukkale University, Kinikli Campus, 20100, Pamukkale, Denizli, Turkey.
| | - Murat Şevik
- Department of Virology, Necmettin Erbakan University, Veterinary Faculty, 42310, Eregli, Konya, Turkey
| | - Emrah Gökay Özgür
- Faculty of Medicine, Department of Biostatistics and Medical Informatics, Kocaeli University, 41380, Kocaeli, Turkey
| | - Ahmet Sait
- Pendik Veterinary Control Institute, Viral Diagnostic Laboratory, 34890, Pendik, Istanbul, Turkey
| |
Collapse
|
17
|
Lee L, Samardzic K, Wallach M, Frumkin LR, Mochly-Rosen D. Immunoglobulin Y for Potential Diagnostic and Therapeutic Applications in Infectious Diseases. Front Immunol 2021; 12:696003. [PMID: 34177963 PMCID: PMC8220206 DOI: 10.3389/fimmu.2021.696003] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/26/2021] [Indexed: 01/14/2023] Open
Abstract
Antiviral, antibacterial, and antiparasitic drugs and vaccines are essential to maintaining the health of humans and animals. Yet, their production can be slow and expensive, and efficacy lost once pathogens mount resistance. Chicken immunoglobulin Y (IgY) is a highly conserved homolog of human immunoglobulin G (IgG) that has shown benefits and a favorable safety profile, primarily in animal models of human infectious diseases. IgY is fast-acting, easy to produce, and low cost. IgY antibodies can readily be generated in large quantities with minimal environmental harm or infrastructure investment by using egg-laying hens. We summarize a variety of IgY uses, focusing on their potential for the detection, prevention, and treatment of human and animal infections.
Collapse
Affiliation(s)
- Lucia Lee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Kate Samardzic
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael Wallach
- School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
18
|
Duse A, Ohlson A, Stengärde L, Tråvén M, Alenius S, Bengtsson B. Associations between Bovine Coronavirus and Bovine Respiratory Syncytial Virus Infections and Productivity, Health Status and Occurrence of Antimicrobial Resistance in Swedish Dairy Herds. Antibiotics (Basel) 2021; 10:antibiotics10060641. [PMID: 34071864 PMCID: PMC8227817 DOI: 10.3390/antibiotics10060641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Bovine respiratory syncytial virus (BRSV) and bovine coronavirus (BCoV) affect dairy herds worldwide. In this study, effects on herd health, morbidity, and antimicrobial resistance (AMR) were assessed. Herds were considered free of infection (FREE), recently infected (RI) or past steadily infected (PSI) based on antibody testing of milk from primiparous cows. Data from farm records, national databases, and AMR of fecal Escherichia coli from calves were used as outcome variables. Compared to BRSV FREE herds: BRSV PSI herds had significantly higher odds of cough in young stock, a higher proportion of quinolone-resistant E. coli (QREC), but a lower proportion of cows with fever. BRSV RI herds had significantly higher odds of diarrhea in calves and young stock, a higher proportion of QREC and higher odds of multidrug-resistant E. coli. Compared to BCoV FREE herds: BCoV PSI herds had significantly higher odds of cough in all ages, and of diarrhea in young stock and cows, and a higher proportion of cows with fever. BCoV RI herds had significantly higher odds of diarrhea in young stock and cows and of cough in all ages. The results support previous research that freedom from BRSV and BCoV is beneficial for animal welfare and farm economy and possibly also mitigates AMR.
Collapse
Affiliation(s)
- Anna Duse
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, SE-751 89 Uppsala, Sweden;
| | - Anna Ohlson
- Växa Sverige, P.O. Box 30204, SE-104 25 Stockholm, Sweden;
| | | | - Madeleine Tråvén
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden; (M.T.); (S.A.)
| | - Stefan Alenius
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden; (M.T.); (S.A.)
| | - Björn Bengtsson
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, SE-751 89 Uppsala, Sweden;
- Correspondence:
| |
Collapse
|
19
|
Kumagai A, Kawauchi K, Andoh K, Hatama S. Sequence and unique phylogeny of G genes of bovine respiratory syncytial viruses circulating in Japan. J Vet Diagn Invest 2020; 33:162-166. [PMID: 33234033 DOI: 10.1177/1040638720975364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is an etiologic agent of bovine respiratory disease. The rapid evolutionary rate of BRSV contributes to genetic and antigenic heterogeneity of field strains and causes occasional vaccine failure. We conducted molecular epidemiologic characterization of BRSV circulating in Japan to obtain genetic information for vaccine-based disease control. Phylogenetic analysis of G and F gene sequences revealed that all of the isolated Japanese BRSV strains clustered in the same genetic subgroup, which was distinct from the 9 known groups. We assigned the Japanese group to subgenotype X. The Japanese isolates formed 2 temporal clusters: isolates from 2003 to 2005 clustered in lineage A; isolates from 2017 to 2019 formed lineage B. The alignment of the deduced amino acid sequences of the G gene revealed that the central hydrophobic region responsible for viral antigenicity is conserved in all of the isolates; unique amino acid mutations were found mainly in mucin-like regions. Our results suggest that BRSV has evolved uniquely in Japan to form the new subgenotype X; the antigenic homogeneity of the viruses within this group is inferred.
Collapse
Affiliation(s)
- Asuka Kumagai
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Kyoko Kawauchi
- Tokachi Livestock Hygiene Service Center, Obihiro, Hokkaido, Japan
| | - Kiyohiko Andoh
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Shinichi Hatama
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
20
|
Leme RA, Dall Agnol AM, Balbo LC, Pereira FL, Possatti F, Alfieri AF, Alfieri AA. Molecular characterization of Brazilian wild-type strains of bovine respiratory syncytial virus reveals genetic diversity and a putative new subgroup of the virus. Vet Q 2020; 40:83-96. [PMID: 32083983 PMCID: PMC7067174 DOI: 10.1080/01652176.2020.1733704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Bovine orthopneumovirus, formerly known as bovine respiratory syncytial virus (BRSV), is frequently associated with bovine respiratory disease (BRD). Aim To perform the molecular characterization of the G and F proteins of Brazilian wild-type BRSV strains derived from bovine respiratory infections in both beef and dairy cattle. Materials and Methods Ten BRSV strains derived from a dairy heifer rearing unit (n = 3) in 2011 and steers of three other feedlots (n = 7) in 2014 and 2015 were analyzed. For the BRSV G and F partial gene amplifications, RT-nested-PCR assays were performed with sequencing in both directions with forward and reverse primers used. Results The G gene-based analysis revealed that two strains were highly similar to the BRSV sequences representative of subgroup III, including the Bayovac vaccine strain. However, the remaining seven Brazilian BRSV strains were diverse when compared with strains representative of the BRSV I to VIII subgroups. The central hydrophobic region of the Brazilian BRSV G gene showed the replacement of conserved cysteines and other residues of importance to antibody reactivity. The deduced F gene amino acid sequences from the Brazilian BRSV strains showed changes that were absent in the representative sequences of the known subgroups. Viral isolation on the nasopharyngeal swab suspensions failed to isolate BRSV. Conclusion Results suggest that these strains represent a putative new subgroup of BRSV with mutations observed in the immunodominant region of the G protein. However, further studies on these Brazilian BRSV strains should be performed to establish their pathogenic potential.
Collapse
Affiliation(s)
- Raquel Arruda Leme
- National Institute of Science and Technology of Dairy Production Chain (INCT-Leite), Universidade Estadual de Londrina, Paraná, Brazil.,Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Alais Maria Dall Agnol
- National Institute of Science and Technology of Dairy Production Chain (INCT-Leite), Universidade Estadual de Londrina, Paraná, Brazil.,Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Luciana Carvalho Balbo
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Fernanda Louise Pereira
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Flávia Possatti
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Alice Fernandes Alfieri
- National Institute of Science and Technology of Dairy Production Chain (INCT-Leite), Universidade Estadual de Londrina, Paraná, Brazil.,Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Amauri Alcindo Alfieri
- National Institute of Science and Technology of Dairy Production Chain (INCT-Leite), Universidade Estadual de Londrina, Paraná, Brazil.,Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
21
|
León JCP, Diaz W, Vasquez MC, Tobón JC, Sánchez A, Ortiz D. Seroprevalence and risk factor associated with respiratory viral pathogens in dual-purpose cattle of Aguachica, Rio de Oro, and La Gloria municipalities in Cesar department, Colombia. Vet World 2019; 12:951-958. [PMID: 31528017 PMCID: PMC6702553 DOI: 10.14202/vetworld.2019.951-958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/27/2019] [Indexed: 11/16/2022] Open
Abstract
Aim: The research was conducted to determine the seroprevalence and risk factor associated with respiratory viral pathogens in dual-purpose cattle of Aguachica, Rio de Oro and La Gloria municipalities in Cesar department, Colombia. Materials and Methods: The seroprevalence study was done from the random sampling (n=1000) of blood collected from 29 dual-purpose herds, located in three municipalities (Aguachica, Rio de Oro, and La Gloria) of Cesar department. The presence of antibodies against bovine herpesvirus type 1 (BHV-1), bovine respiratory syncytial virus (BRSV), bovine viral diarrhea virus (BVDV), and bovine parainfluenza-3 virus (BPI-3V) in the samples was detected by indirect enzyme-linked immunosorbent assay. Epidemiological data were obtained using a questionnaire administered to the owner or manager of each herd. Results: The overall highest seroprevalence was observed for BHV-1 (94.7%), followed by BRSV (98.6%), BVDV (35.2%), and BPI-3V (47.1%). Regarding the seroprevalence by municipalities, there was a statistical association (p<0.05) for BVDV; however, for BRSV, BHV-1, and BPI-3V, no statistical association was found (p>0.05) between seropositive values and the municipalities, indicating that animal was seropositive in similar proportions in the three municipalities. Female sex and older animals (>24 months) were a significant risk factor for BHV-1 and BPI-3V infection. Regarding the clinical signs, there was a statistical association (p<0.05) between the seropositive values of BVDV and most of clinical signs observed, except for abortion. Conclusion: This research confirms the high seroprevalence of the respiratory viral pathogens in nonvaccinated cattle within the study areas. Therefore, appropriate sanitary management practices and routine vaccination programs should be adopted to reduce the seroprevalence of these infectious agents.
Collapse
Affiliation(s)
- Juan Carlos Pinilla León
- Department of Veterinary Medicine, University of Santander, Faculty of Exact, Natural and Agricultural Sciences, Animal Science Research Group, Bucaramanga, Colombia
| | - Wilson Diaz
- Department of Veterinary Medicine, University of Santander, Faculty of Exact, Natural and Agricultural Sciences, Animal Science Research Group, Bucaramanga, Colombia
| | - María Cristina Vasquez
- Department of Bacteriology and Clinical Laboratory, University of Santander, Faculty of Health Sciences, Research Group in Clinical Management, Bucaramanga, Colombia
| | | | | | | |
Collapse
|
22
|
Guinobert I, Bardot V, Berthomier L, Ripoche I, Faivre C, Haddioui L, Belkhelfa H. Activité virucide in vitro d’un extrait de cyprès sur des virus humains et bovins. ACTA ACUST UNITED AC 2018. [DOI: 10.3166/phyto-2018-0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Toftaker I, Ågren E, Stokstad M, Nødtvedt A, Frössling J. Herd level estimation of probability of disease freedom applied on the Norwegian control program for bovine respiratory syncytial virus and bovine coronavirus. Prev Vet Med 2018; 181:104494. [PMID: 30064709 PMCID: PMC7114343 DOI: 10.1016/j.prevetmed.2018.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 07/03/2018] [Indexed: 11/29/2022]
Abstract
A national control program against bovine respiratory syncytial virus (BRSV) and bovine coronavirus (BCV) was launched in Norway in 2016. A key strategy in the program is to test for presence of antibodies and protect test-negative herds from infection. Because these viruses are endemic, the rate of re-introduction can be high, and a disease-free status will become more uncertain as time from testing elapses. The aim of this study was to estimate the probability of freedom (PostPFree) from BRSV and BCV antibodies over time by use of bulk tank milk (BTM) antibody-testing, geographic information and animal movement data, and to validate the herd-level estimates against subsequent BTM testing. BTM samples were collected from 1148 study herds in West Norway in 2013 and 2016, and these were analyzed for BRSV and BCV antibodies. PostPFree was calculated for herds that were negative in 2013/2014, and updated periodically with new probabilities every three months. Input variables were test sensitivity, the probability of introduction through animal purchase and local transmission. Probability of introduction through animal purchase was calculated by using real animal movement data and herd prevalence in the region of the source herd. The PostPFree from the final three months in 2015 was compared to BTM test results from March 2016 using a Wilcoxon Rank Sum Test. The probability of freedom was generally high for test-negative herds immediately after testing, reflecting the high sensitivity of the tests. It did however, decrease with time since testing, and was greatly affected by purchase of livestock. When comparing the median PostPFree for the final three months to the test results in 2016, it was significantly lower (p < 0.01) for test positive herds. Furthermore, there was a large difference in the proportion of test positive herds between the first and fourth quartile of PostPFree. The results show that PostPFree provides a better estimate of herd-level BTM status for both BRSV and BCV than what can be achieved by relying solely on the previous test-result.
Collapse
Affiliation(s)
- Ingrid Toftaker
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 8146 Dep, Oslo, Norway.
| | - Estelle Ågren
- Department of Disease Control and Epidemiology, National Veterinary Institute, Uppsala, Sweden
| | - Maria Stokstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 8146 Dep, Oslo, Norway
| | - Ane Nødtvedt
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 8146 Dep, Oslo, Norway
| | - Jenny Frössling
- Department of Disease Control and Epidemiology, National Veterinary Institute, Uppsala, Sweden; Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| |
Collapse
|
24
|
Hoppe IBAL, Medeiros ASRD, Arns CW, Samara SI. Bovine respiratory syncytial virus seroprevalence and risk factors in non-vaccinated dairy cattle herds in Brazil. BMC Vet Res 2018; 14:208. [PMID: 29945679 PMCID: PMC6020315 DOI: 10.1186/s12917-018-1535-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/19/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The cattle industry is one of the most important Brazilian agribusiness sectors and is a strong contributor to the national economy. Annually about 44.6 million calves are bred, which makes the optimal management of these animals extremely important. Several diseases can affect the initial stages of the bovine production chain, being the bovine respiratory syncytial virus (BRSV) one of the most relevant pathogens. This study aimed to characterize the epidemiology of BRSV infection in dairy cattle herds of São Paulo State, Brazil, using serological and risk factors analyses. For that, 1243 blood samples were collected of animals from 26 farms and a questionnaire about possible risk factors for BRSV prevalence was performed. The obtained blood sera were analyzed using virus neutralization test (VNT). RESULTS VNT results showed high BRSV prevalence in dairy cattle herds, reaching 79.5% of seropositivity. The BRSV seroprevalence among studied farms ranged from 40 to 100%. The analysis of risk factors indicated that the age group and the occurrence of coinfection with bovine herpesvirus 1 (BoHV-1) and bovine viral diarrhea virus 1 (BVDV-1) should be associated with a higher prevalence of BRSV, while natural suckling was considered a protective factor. CONCLUSIONS The study showed that adult animals over 1 year old are an important risk factor for the high seroprevalence of BRSV in herds. The high BRSV prevalence associated with BoHV-1 and BVDV-1 suggests that biosecurity measures should be applied in order to reduce viral dissemination. Additionally, the natural suckling may be an important management to protect calves from high BRSV seroprevalence.
Collapse
Affiliation(s)
- Ingrid Bortolin Affonso Lux Hoppe
- Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Univ Estadual Paulista – UNESP, Via de Acesso Prof. Paulo Donato Castellane, km 05, Jaboticabal, São Paulo CEP: 14.884-900 Brazil
| | - Andréa Souza Ramos de Medeiros
- Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Univ Estadual Paulista – UNESP, Via de Acesso Prof. Paulo Donato Castellane, km 05, Jaboticabal, São Paulo CEP: 14.884-900 Brazil
| | - Clarice Weis Arns
- Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP, Cidade Universitária, Caixa-postal: 6109, Campinas, São Paulo CEP: 13.083-970 Brazil
| | - Samir Issa Samara
- Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Univ Estadual Paulista – UNESP, Via de Acesso Prof. Paulo Donato Castellane, km 05, Jaboticabal, São Paulo CEP: 14.884-900 Brazil
| |
Collapse
|
25
|
Evaluation of a multiplex immunoassay for bovine respiratory syncytial virus and bovine coronavirus antibodies in bulk tank milk against two indirect ELISAs using latent class analysis. Prev Vet Med 2018; 154:1-8. [PMID: 29685432 PMCID: PMC7114089 DOI: 10.1016/j.prevetmed.2018.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 11/21/2022]
Abstract
Bovine respiratory syncytial virus (BRSV) and bovine coronavirus (BCV) are responsible for respiratory disease and diarrhea in cattle worldwide. The Norwegian control program against these infections is based on herd-level diagnosis using a new multiplex immunoassay. The objective of this study was to estimate sensitivity and specificity across different cut-off values for the MVD-Enferplex BCV/BRSV multiplex, by comparing them to a commercially available ELISA, the SVANOVIR® BCV-Ab and SVANOVIR® BRSV-Ab, respectively. We analyzed bulk tank milk samples from 360 herds in a low- and 360 herds in a high-prevalence area. As none of the tests were considered perfect, estimation of test characteristics was performed using Bayesian latent class models. At the manufacturers’ recommended cut-off values, the median sensitivity for the BRSV multiplex and the BRSV ELISA was 94.4 [89.8–98.7 95% Posterior Credibility Interval (PCI)] and 99.8 [98.7–100 95% PCI], respectively. The median specificity for the BRSV multiplex was 90.6 [85.5–94.4 95% PCI], but only 57.4 [50.5–64.4 95% PCI] for the BRSV ELISA. However, increasing the cut-off of the BRSV ELISA increased specificity without compromising sensitivity. For the BCV multiplex we found that by using only one of the three antigens included in the test, the specificity increased, without concurrent loss in sensitivity. At the recommended cut-off this resulted in a sensitivity of 99.9 [99.3–100 95% PCI] and specificity of 93.7 [88.8–97.8 95% PCI] for the multiplex and a sensitivity of 99.5 [98.1–100 95% PCI] and a specificity of 99.6 [97.6–100 95% PCI] for the BCV ELISA.
Collapse
|
26
|
Toftaker I, Sanchez J, Stokstad M, Nødtvedt A. Bovine respiratory syncytial virus and bovine coronavirus antibodies in bulk tank milk - risk factors and spatial analysis. Prev Vet Med 2016; 133:73-83. [PMID: 27720029 PMCID: PMC7114080 DOI: 10.1016/j.prevetmed.2016.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 06/29/2016] [Accepted: 09/03/2016] [Indexed: 11/03/2022]
Abstract
Bovine respiratory syncytial virus (BRSV) and bovine coronavirus (BCoV) are considered widespread among cattle in Norway and worldwide. This cross-sectional study was conducted based on antibody-ELISA of bulk tank milk (BTM) from 1347 herds in two neighboring counties in western Norway. The study aims were to determine the seroprevalence at herd level, to evaluate risk factors for BRSV and BCoV seropositivity, and to assess how these factors were associated with the spatial distribution of positive herds. The overall prevalence of BRSV and BCoV positive herds in the region was 46.2% and 72.2%, respectively. Isopleth maps of the prevalence risk distribution showed large differences in prevalence risk across the study area, with the highest prevalence in the northern region. Common risk factors of importance for both viruses were herd size, geographic location, and proximity to neighbors. Seropositivity for one virus was associated with increased odds of seropositivity for the other virus. Purchase of livestock was an additional risk factor for BCoV seropositivity, included in the model as in-degree, which was defined as the number of incoming movements from individual herds, through animal purchase, over a period of five years. Local dependence and the contribution of risk factors to this effect were assessed using the residuals from two logistic regression models for each virus. One model contained only the x- and y- coordinates as predictors, the other had all significant predictors included. Spatial clusters of high values of residuals were detected using the normal model of the spatial scan statistic and visualized on maps. Adjusting for the risk factors in the final models had different impact on the spatial clusters for the two viruses: For BRSV the number of clusters was reduced from six to four, for BCoV the number of clusters remained the same, however the log-likelihood ratios changed notably. This indicates that geographical differences in proximity to neighbors, herd size and animal movements explain some of the spatial clusters of BRSV- and BCoV seropositivity, but far from all. The remaining local dependence in the residuals show that the antibody status of one herd is influenced by the antibody status of its neighbors, indicating the importance of indirect transmission and that increased biosecurity routines might be an important preventive strategy.
Collapse
Affiliation(s)
- Ingrid Toftaker
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 8146 Dep, Oslo, Norway.
| | - Javier Sanchez
- Centre for Veterinary Epidemiological Research, University of Prince Edward Island, 550 University Ave, Charlottetown, C1A 4P3, Canada
| | - Maria Stokstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 8146 Dep, Oslo, Norway.
| | - Ane Nødtvedt
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 8146 Dep, Oslo, Norway.
| |
Collapse
|
27
|
Urban-Chmiel R, Wernicki A, Puchalski A, Dec M, Stęgierska D, Grooms DL, Barbu NI. Detection of bovine respiratory syncytial virus infections in young dairy and beef cattle in Poland. Vet Q 2014; 35:33-6. [PMID: 25365424 DOI: 10.1080/01652176.2014.984366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Bovine respiratory syncytial virus (BRSV) is a major contributor to bovine respiratory disease complex in dairy and beef calves, especially during the first year of life. There is a lack of comprehensive information about the prevalence of infection in cattle herds in Poland as well as in European countries outside the European Union. OBJECTIVE The aim of this study was to estimate the prevalence of BRSV infections in young beef and dairy cattle in southeastern Poland, a region that has direct contact with non-EU countries. Animals & methods: Nasal swabs and sera (n = 120) were obtained from young cattle aged 6-12 months from 45 farms in eastern and southeastern Poland. BRSV antigen detection in the nasal swabs was carried out using a rapid immunomigration assay used in diagnosing human respiratory syncytial virus (hRSV) infections in humans, while antibodies to BRSV were detected in the sera by ELISA antibody detection. RESULTS The study confirmed the presence of BRSV infections in young cattle under 12 months of age from both dairy and beef herds. BRSV was detected in 27 of the 45 herds (60%) sampled. CONCLUSIONS Findings from this study indicate a high prevalence of BRSV infections in cattle in Poland, which may have a significant influence on health status and animal performance. The prevalence of infection is similar to that in other parts of Poland and other countries in Europe. Development of strategies to reduce BRSV infections is needed to improve health and productivity.
Collapse
Affiliation(s)
- Renata Urban-Chmiel
- a Sub-department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases , University of Life Sciences , Lublin , Poland
| | | | | | | | | | | | | |
Collapse
|
28
|
Urban-Chmiel R, Wernicki A, Majer-Dziedzic B, Gnat S, Puchalski A, Dec M. Use of different cell lines for in vitro cultures of bovine respiratory syncytial virus. J Virol Methods 2014; 204:62-4. [PMID: 24747584 DOI: 10.1016/j.jviromet.2014.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/17/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
Abstract
This study compared the use of different cell lines for in vitro cultures of bovine respiratory syncytial virus (BRSV). The BRSV 375 strain and 3 nasal swabs obtained from Simmental calves were used for this study. The culture was performed on 3 cell lines: bovine kidney cells (LLC-PK1), bovine tracheal cells (TBTR) and primary chicken embryo-related cells (CER). A comparative analysis of titres was performed using a microplate agglutination test with human group O erythrocytes and bovine erythrocytes. The presence of BRSV in all cell lines was confirmed using the reverse transcriptase polymerase chain reaction (RT-PCR) method. The first small refractile changes in the LLC-PK1 cells occurred at 48h after infection. Syncytial changes were noted 4 days after incubation. Large refractile cell changes were observed on day 3 of growth in the TBTR culture. Syncytia were observed on the second day after infection in subsequent passages. The cytopathic effect in the CER cells occurred 24h after infection, and syncytia appeared after 3 passages. Changes in syncytia indicate an adaptation of the virus for the infection of cells other than tracheal cells in primary and secondary cultures. The highest viral titre was obtained using the TBTR line. The titres obtained in the LLC-PK1 and CER cultures averaged 10(1.86)/ml. The low virus titres in all culture types suggest the need for research aimed at the optimisation of culture conditions.
Collapse
Affiliation(s)
- Renata Urban-Chmiel
- Sub-Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland.
| | - Andrzej Wernicki
- Sub-Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland
| | - Barbara Majer-Dziedzic
- Sub-Department of Veterinary Microbiology, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland
| | - Sebastian Gnat
- Sub-Department of Veterinary Microbiology, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland
| | - Andrzej Puchalski
- Sub-Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland
| | - Marta Dec
- Sub-Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland
| |
Collapse
|
29
|
Use of rapid human respiratory syncytial virus strip tests for detection of bovine respiratory syncytial virus in experimentally vaccinated calves. Pol J Vet Sci 2013; 15:629-34. [PMID: 23390751 DOI: 10.2478/v10181-012-0099-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Three different rapid strip tests: TRU RSV, BinaxNOW RSV and RSV Respi-strip were compared with RT-PCR and ELISA BRSV Ag for the ability to detect bovine respiratory syncytial virus (BRSV) in nasal swabs collected from calves experimentally vaccinated with live vaccine Rispoval RS-PI3. The reference strains of BRSV (375 and A51908) were detected by ELISA BRSV Ag whereas the strains of human respiratory syncytial virus (HRSV) and bovine parainfluenza virus type 3 (BPIV-3) were not. All rapid strip tests as well as RT-PCR reacted positively both to HRSV and BRSV reference strains and negatively to BPIV-3. The detection limit for RT-PCR was 39.1 TCID50 (strain 375 of BRSV), whereas for each of the rapid tests it was approximately 156 TCID50 and 312 TCID50 for antigen ELISA. Diagnostic sensitivity in detecting BRSV in nasal swabs for TRU RSV and RSV Respi-strip tests was 33% and 50% for BinaxNOW RSV. Diagnostic specificity of TRU RSV was 100%, whereas for both BinaxNOW and Respi-strip it was 87%. We concluded that TRU RSV could be used as a supportive rapid test for BRSV screening in nasal swabs taken directly on a farm. However, due to the small group of animals used in the experiment, the results should be regarded as preliminary and the study should be repeated on a larger number of animals.
Collapse
|
30
|
Sacco RE, Nonnecke BJ, Palmer MV, Waters WR, Lippolis JD, Reinhardt TA. Differential expression of cytokines in response to respiratory syncytial virus infection of calves with high or low circulating 25-hydroxyvitamin D3. PLoS One 2012; 7:e33074. [PMID: 22412984 PMCID: PMC3297628 DOI: 10.1371/journal.pone.0033074] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 02/09/2012] [Indexed: 12/20/2022] Open
Abstract
Deficiency of serum levels of 25-hydroxyvitamin D3 has been related to increased risk of lower respiratory tract infections in children. Respiratory syncytial virus (RSV) is a leading cause of low respiratory tract infections in infants and young children. The neonatal calf model of RSV infection shares many features in common with RSV infection in infants and children. In the present study, we hypothesized that calves with low circulating levels of 25-hydroxyvitamin D3 (25(OH)D3) would be more susceptible to RSV infection than calves with high circulating levels of 25(OH)D3. Calves were fed milk replacer diets with different levels of vitamin D for a 10 wk period to establish two treatment groups, one with high (177 ng/ml) and one with low (32.5 ng/ml) circulating 25(OH)D3. Animals were experimentally infected via aerosol challenge with RSV. Data on circulating 25(OH)D3 levels showed that high and low concentrations of 25(OH)D3 were maintained during infection. At necropsy, lung lesions due to RSV were similar in the two vitamin D treatment groups. We show for the first time that RSV infection activates the vitamin D intracrine pathway in the inflamed lung. Importantly, however, we observed that cytokines frequently inhibited by this pathway in vitro are, in fact, either significantly upregulated (IL-12p40) or unaffected (IFN-γ) in the lungs of RSV-infected calves with high circulating levels of 25(OH)D3. Our data indicate that while vitamin D does have an immunomodulatory role during RSV infection, there was no significant impact on pathogenesis during the early phases of RSV infection. Further examination of the potential effects of vitamin D status on RSV disease resolution will require longer-term studies with immunologically sufficient and deficient vitamin D levels.
Collapse
Affiliation(s)
- Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America.
| | | | | | | | | | | |
Collapse
|
31
|
Moulin V, Noordegraaf CV, Makoschey B, van der Sluijs M, Veronesi E, Darpel K, Mertens PP, de Smit H. Clinical disease in sheep caused by bluetongue virus serotype 8, and prevention by an inactivated vaccine. Vaccine 2012; 30:2228-35. [DOI: 10.1016/j.vaccine.2011.11.100] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/22/2011] [Accepted: 11/25/2011] [Indexed: 10/14/2022]
|
32
|
Bem RA, Domachowske JB, Rosenberg HF. Animal models of human respiratory syncytial virus disease. Am J Physiol Lung Cell Mol Physiol 2011; 301:L148-56. [PMID: 21571908 PMCID: PMC3154630 DOI: 10.1152/ajplung.00065.2011] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/05/2011] [Indexed: 11/22/2022] Open
Abstract
Infection with the human pneumovirus pathogen, respiratory syncytial virus (hRSV), causes a wide spectrum of respiratory disease, notably among infants and the elderly. Laboratory animal studies permit detailed experimental modeling of hRSV disease and are therefore indispensable in the search for novel therapies and preventative strategies. Present animal models include several target species for hRSV, including chimpanzees, cattle, sheep, cotton rats, and mice, as well as alternative animal pneumovirus models, such as bovine RSV and pneumonia virus of mice. These diverse animal models reproduce different features of hRSV disease, and their utilization should therefore be based on the scientific hypothesis under investigation. The purpose of this review is to summarize the strengths and limitations of each of these animal models. Our intent is to provide a resource for investigators and an impetus for future research.
Collapse
Affiliation(s)
- Reinout A Bem
- Pediatric Intensive Care Unit, Emma Children’s Hospital, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
33
|
Silva L, Cardoso K, Silva M, Spilki F, Arns C. Cloning of the transmembrane glycoproteins G and F from a Brazilian isolate of bovine respiratory syncytial virus in a prokaryotic system. ARQ BRAS MED VET ZOO 2011. [DOI: 10.1590/s0102-09352011000300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this work was the cloning of those transmembrane glycoproteins G and F from an isolate bovine respiratory syncytial viruses (BRSV) - a Brazilian isolate of BRSV, named BRSV-25-BR in previous studies, in a prokaryotic system to proceed the sequencing of larger genomic fragments. The nucleotide substitutions were confirmed and these clones may also be used in further studies regarding the biological effects of those proteins in vitro and in vivo.
Collapse
|
34
|
Timsit E, Maingourd C, Le Dréan E, Belloc C, Seegers H, Douart A, Assié S. Evaluation of a commercial real-time reverse transcription polymerase chain reaction kit for the diagnosis of Bovine respiratory syncytial virus infection. J Vet Diagn Invest 2010; 22:238-41. [PMID: 20224083 DOI: 10.1177/104063871002200211] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recently a commercial real-time reverse transcription polymerase chain reaction (RT-PCR) kit has been marketed for the detection of Bovine respiratory syncytial virus (BRSV). However, diagnostic interpretation of the results of this kit requires its comparison to commonly used methods. Therefore, the objective of this study was to evaluate the performance of this kit in comparison with the conventional direct fluorescent antibody test (FAT). Twenty BRSV strains and 14 heterologous bovine viruses were used to check the kit's sensitivity and specificity. The efficiency and detection limit of the kit were determined by testing dilution series of a BRSV strain. The comparison between real-time RT-PCR kit and FAT was performed with 94 clinical samples from calves with clinical signs of respiratory disease including lung tissues (n = 55), transtracheal aspiration samples (n = 20), and nasal swab samples (n = 19). All of the BRSV strains tested were detected by real-time RT-PCR. No cross-reaction was shown with the 14 heterologous bovine viruses. The real-time RT-PCR was 99.3% efficient with a detection limit of 0.1 TCID(50) (50% tissue culture infective dose). The results of real-time RT-PCR and FAT were concordant for 65 of the 94 clinical samples tested. The remaining 29 clinical samples were positive by real-time RT-PCR and negative by FAT, demonstrating the higher sensitivity of real-time RT-PCR. In conclusion, the kit evaluated in this study was sensitive, specific, and had a low threshold of detection. Furthermore, the use of this kit instead of FAT allows an improvement of the sensitivity for the detection of BRSV in clinical samples.
Collapse
Affiliation(s)
- Edouard Timsit
- INRA, Veterinary School, UMR 1300 Unit of Bio-aggression, Epidemiology and Risk Analysis, BP 40706, 44307 Nantes Cedex 03, France.
| | | | | | | | | | | | | |
Collapse
|
35
|
Rubbenstroth D, Rautenschlein S. Investigations on the protective role of passively transferred antibodies against avian metapneumovirus infection in turkeys. Avian Pathol 2009; 38:427-36. [DOI: 10.1080/03079450903349204] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Belák S, Thorén P, LeBlanc N, Viljoen G. Advances in viral disease diagnostic and molecular epidemiological technologies. Expert Rev Mol Diagn 2009; 9:367-81. [PMID: 19435457 PMCID: PMC7105750 DOI: 10.1586/erm.09.19] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The early and rapid detection and characterization of specific nucleic acids of medico-veterinary pathogens have proven invaluable for diagnostic purposes. The integration of amplification and signal detection systems, including online real-time devices, have increased speed and sensitivity and greatly facilitated the quantification of target nucleic acids. They have also allowed for sequence characterization using melting or hybridization curves. The newer-generation molecular diagnostic technologies offer, hitherto, unparalleled detection and discrimination methodologies, which are vital for the positive detection and identification of pathogenic agents, as well as the effects of the pathogens on the production of antibodies. The development phase of the novel technologies entails a thorough understanding of accurate diagnosis and discrimination of present and emerging diseases. The development of novel technologies can only be successful if they are transferred and used in the field with a sustainable quality-assured application to allow for the optimal detection and effective control of diseases. The aim of these new tools is to detect the presence of a pathogen agent before the onset of disease. This manuscript focuses mainly on the experiences of two World Organisation for Animal Health collaborating centers in context to molecular diagnosis and molecular epidemiology of transboundary and endemic animal diseases of viral origin, food safety and zoonoses.
Collapse
Affiliation(s)
- Sándor Belák
- Department of Virology, Joint Research and Development Division, Swedish University of Agricultural Sciences and National Veterinary Institute, Uppsala, Sweden.
| | | | | | | |
Collapse
|
37
|
Raviolo J, Bagnis G, Aguilar J, Giraudo J, Zielinski G, Raviolo J, Arns C, Spilki F. Immunocytochemical characterization of the cytopathic effect induced by bovine respiratory syncytial virus strain RC 98 on Hep-2 cells. ARQ BRAS MED VET ZOO 2009. [DOI: 10.1590/s0102-09352009000400028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - G. Bagnis
- Universidad Nacional de Río Cuarto, Argentina
| | - J. Aguilar
- Universidad Nacional de Río Cuarto, Argentina
| | | | - G.C. Zielinski
- Sanidad Animal Estación Experimental Marcos Juárez, Argentina
| | | | | | | |
Collapse
|
38
|
Pestana EA, Belak S, Diallo A, Crowther JR, Viljoen GJ. New Trends in the Diagnosis and Molecular Epidemiology of Viral Diseases. EARLY, RAPID AND SENSITIVE VETERINARY MOLECULAR DIAGNOSTICS - REAL TIME PCR APPLICATIONS 2009. [PMCID: PMC7140775 DOI: 10.1007/978-90-481-3132-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Despite intensive worldwide control programmes against infectious diseases, including vaccination programmes with the use of DIVA vaccines; mass culling (stamping out policies) and regulation of animal movements; various virus diseases still have a very high negative impact on animal health and welfare. The intensification of animal husbandry; centralisation of large groups of animals in industrial production units; globalization of trade in live animals and/or animal products, bedding and feeds; as well as increased tourism, are all considerable factors in the threat of devastating infectious diseases word-wide. The opening of borders between many countries such as in the European continent contributes greatly to the high-risk situation, where infectious agents may easily travel thousands of miles and then suddenly appear in areas where they are unexpected and probably even unknown. The sudden and unexpected appearance of any infectious disease in a new region, be it a country or a continent, may lead to a delayed or innaccurate diagnosis resulting in the uncontrolled spread of the disease agent to other susceptible populations of animals over large geographic areas. Recent major examples are incidences of foot-and-mouth disease (FMD) in the UK, the extension of rinderpest into the Somali plains and Rift Valley fever (RVF) spread into the Arabian Peninsula. The latest major problem is the occurrence, re-occurrence and rapid spread of influenza virus. All these exemplify the serious economic and social impact of the of highly contagious transboundary animal diseases ( TADs).
Collapse
Affiliation(s)
- Ericka A. Pestana
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), A1400 Vienna, Austria
| | - Sandor Belak
- Department of Virology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Adama Diallo
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), A1400 Vienna, Austria
| | - John R. Crowther
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), A1400 Vienna, Austria
| | - Gerrit J. Viljoen
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), A1400 Vienna, Austria
| |
Collapse
|
39
|
Alm K, Koskinen E, Vahtiala S, Andersson M. Acute BRSV infection in young AI bulls: effect on sperm quality. Reprod Domest Anim 2008; 44:456-9. [PMID: 19000222 DOI: 10.1111/j.1439-0531.2008.01116.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bovine respiratory syncytial virus (BRSV) infection is an important part of the calf pneumonia complex, occasionally affecting even adult cattle. However, the pathogenicity of BRSV in animals older than 6 months is often neglected. Finland is free of many contagious diseases in farm animals, and this gives a good opportunity to study the effects of specific pathogens on bovine reproduction. This report describes the deteriorating effects of BRSV epizootics on sperm morphology and fertility of young dairy bulls (n = 79) at a bull station. More than half of the young bulls had a clinical respiratory disease caused by BRSV during their quarantine when they were 6 months old. Four of seven subsequent quarantine groups were affected. Six months later, when these seropositive bulls (n = 54) came into semen production, they had poorer sperm morphology, and the proportion of normal spermatozoa was 74.1% in BRSV-seropositive animals compared with 81.2% in seronegative bulls (n = 25) (p = 0.035). Field fertility was also slightly affected, the 60-day non-return rates were 75.2% and 76.8% for BRSV seropositive and seronegative bulls respectively (p = 0.014). Potential reasons for lowered sperm quality are discussed here.
Collapse
Affiliation(s)
- K Alm
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Pohjoinen pikatie 800, Saarentaus, Finland.
| | | | | | | |
Collapse
|
40
|
Letellier C, Boxus M, Rosar L, Toussaint JF, Walravens K, Roels S, Meyer G, Letesson JJ, Kerkhofs P. Vaccination of calves using the BRSV nucleocapsid protein in a DNA prime-protein boost strategy stimulates cell-mediated immunity and protects the lungs against BRSV replication and pathology. Vaccine 2008; 26:4840-8. [PMID: 18644416 PMCID: PMC7115630 DOI: 10.1016/j.vaccine.2008.06.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 06/25/2008] [Accepted: 06/29/2008] [Indexed: 11/06/2022]
Abstract
Respiratory syncytial virus (RSV) is a major cause of respiratory disease in both cattle and young children. Despite the development of vaccines against bovine (B)RSV, incomplete protection and exacerbation of subsequent RSV disease have occurred. In order to circumvent these problems, calves were vaccinated with the nucleocapsid protein, known to be a major target of CD8+ T cells in cattle. This was performed according to a DNA prime–protein boost strategy. The results showed that DNA vaccination primed a specific T-cell-mediated response, as indicated by both a lymphoproliferative response and IFN-γ production. These responses were enhanced after protein boost. After challenge, mock-vaccinated calves displayed gross pneumonic lesions and viral replication in the lungs. In contrast, calves vaccinated by successive administrations of plasmid DNA and protein exhibited protection against the development of pneumonic lesions and the viral replication in the BAL fluids and the lungs. The protection correlated to the cell-mediated immunity and not to the antibody response.
Collapse
|
41
|
Willoughby K, Thomson K, Maley M, Gilray J, Scholes S, Howie F, Caldow G, Nettleton PF. Development of a real time reverse transcriptase polymerase chain reaction for the detection of bovine respiratory syncytial virus in clinical samples and its comparison with immunohistochemistry and immunofluorescence antibody testing. Vet Microbiol 2007; 126:264-70. [PMID: 17709212 DOI: 10.1016/j.vetmic.2007.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 06/22/2007] [Accepted: 07/03/2007] [Indexed: 10/23/2022]
Abstract
Bovine respiratory syncytial virus is an agent involved in calf pneumonia complex, a disease of significant economic importance. Accurate diagnosis of the agents involved on farm premises is important when formulating disease control measures, including vaccination. We have developed a real time reverse transcriptase polymerase chain reaction (rtRT-PCR) and compared it with the diagnostic tests currently available in the United Kingdom: immunohistochemistry (IHC) and immunofluorescence antibody test (IFAT). The rtRT-PCR had a detection limit of 10 gene copies and was 96% efficient. Recent UK isolates and clinical samples were tested; the rtRT-PCR was more sensitive than both conventional tests.
Collapse
Affiliation(s)
- Kim Willoughby
- Moredun Research Institute, International Research Centre, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Quinting B, Robert B, Letellier C, Boxus M, Kerkhofs P, Schynts F, Collard A. Development of a 1-step enzyme-linked immunosorbent assay for the rapid diagnosis of bovine respiratory syncytial virus in postmortem specimens. J Vet Diagn Invest 2007; 19:238-43. [PMID: 17459851 DOI: 10.1177/104063870701900302] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is associated with severe respiratory disease in cattle. BRSV infection frequently leads to the death of young infected animals. The presence of BRSV in postmortem specimens is routinely detected using indirect immunofluorescence (IIF). However, this technique requires special equipment and considerable expertise. The present paper describes the development of a 1-step ELISA for rapid (1.5 hours) detection of BRSV antigen in organ homogenates. The performance of the new 1-step ELISA was evaluated using bovine postmortem specimens (n = 108) in comparison with 3 other BRSV diagnostic techniques: indirect immunofluorescence, the Clearview respiratory syncytial virus (RSV) test, and real-time reverse transcriptase polymerase chain reaction (RT-PCR). The relative sensitivity, specificity, and the kappa coefficient of 1-step ELISA, the Clearview RSV electroimmunoassay (EIA), and IIF were calculated, using real-time RT-PCR as the reference test. The new 1-step ELISA was the most sensitive and specific of the 3 tests. Thus, the new 1-step ELISA is a reliable test for detecting BRSV antigen in organ homogenates.
Collapse
Affiliation(s)
- Birgit Quinting
- Centre d'Economie Rurale, Division Immunologie Animale, rue du Carmel, 1, 6900 Marloie, Belgium.
| | | | | | | | | | | | | |
Collapse
|
43
|
Hamers C, Juillard V, Fischer L. DNA vaccination against pseudorabies virus and bovine respiratory syncytial virus infections of young animals in the face of maternally derived immunity. J Comp Pathol 2007; 137 Suppl 1:S35-41. [PMID: 17553517 DOI: 10.1016/j.jcpa.2007.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
DNA vaccination represents a unique opportunity to overcome the limitations of conventional early life vaccine strategy which is restricted by the effects of maternally derived immunity. The pseudorabies virus (PRV) infection model in neonatal piglets was employed to demonstrate that a single DNA vaccination was able to prime memory humoral immune responses in the face of high concentrations of maternally derived antibodies. Immunity induced under these conditions protected against challenge with virulent PRV at the end of the fattening period, but long-term protective responses were not correlated with the kinetics of the initial serological responses. The bovine respiratory syncytial virus (BRSV) infection model in young calves was similarly studied, however the ability of DNA vaccination to prime memory humoral responses in the face of high concentrations of maternally derived antibodies was not confirmed, illustrating that the performance of DNA vaccination varies between species and/or infectious disease targets. However, in the BRSV model system it was evident that DNA vaccination could prime cell-mediated immunity in the face of high concentrations of maternally derived antibodies. Although not sufficient to ensure protection against clinical disease or viral excretion as a standalone vaccination strategy, priming by DNA vaccination was proven to establish cell-mediated immune responses for subsequent recall with an inactivated vaccine booster. Under these conditions, protection against challenge virus re-excretion was correlated with interferon (IFN) gamma-producing T-cell responses. The safety and the efficacy of DNA vaccine priming in very young animals in the face of high concentrations of maternally derived antibody provides a unique opportunity to design innovative and flexible vaccination programs to ensure uninterrupted protection under field conditions.
Collapse
MESH Headings
- Animals
- Animals, Newborn/immunology
- Cattle
- Cattle Diseases/immunology
- Cattle Diseases/prevention & control
- DNA, Viral/genetics
- DNA, Viral/immunology
- Disease Models, Animal
- Herpesvirus 1, Suid/genetics
- Herpesvirus 1, Suid/immunology
- Immunity, Cellular/immunology
- Immunity, Cellular/physiology
- Immunity, Maternally-Acquired/immunology
- Pseudorabies/immunology
- Pseudorabies/prevention & control
- Random Allocation
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/prevention & control
- Respiratory Syncytial Virus Infections/veterinary
- Respiratory Syncytial Virus, Bovine/genetics
- Respiratory Syncytial Virus, Bovine/immunology
- Swine
- Swine Diseases/immunology
- Swine Diseases/prevention & control
- Vaccination/methods
- Vaccination/veterinary
- Vaccines, DNA/adverse effects
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
Collapse
Affiliation(s)
- C Hamers
- Merial SAS, Research and Development, Centre de Recherche Saint Vulbas PIPA, Saint Vulbas, France
| | | | | |
Collapse
|
44
|
Fach SJ, Meyerholz DK, Gallup JM, Ackermann MR, Lehmkuhl HD, Sacco RE. Neonatal ovine pulmonary dendritic cells support bovine respiratory syncytial virus replication with enhanced interleukin (IL)-4 And IL-10 gene transcripts. Viral Immunol 2007; 20:119-30. [PMID: 17425426 PMCID: PMC2791088 DOI: 10.1089/vim.2006.0056] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The lung microenvironment is constantly exposed to microorganisms and particulate matter. Lung dendritic cells (DCs) play a crucial role in the uptake and processing of antigens found within the respiratory tract. Respiratory syncytial virus (RSV) is a common respiratory tract pathogen in children that induces an influx of DCs to the mucosal surfaces of the lung. Using a neonatal lamb model, we examined the in vivo permissiveness of DCs to RSV infection, as well as overall cell surface changes and cytokine responses of isolated lung DCs after bovine RSV (BRSV) infection. We report that isolated lung DCs and alveolar macrophages support BRSV replication. Isolated lung DCs were determined to be susceptible to BRSV infection as demonstrated by quantification of BRSV non-structural protein 2 mRNA. BRSV infection induced an initial upregulation of CD14 expression on lung DCs, but by 5 d postinfection expression was similar to that on control cells. No significant changes in CD80/86 or MHC class I expression were seen on lung DCs after BRSV infection. Low to moderate expression of MHC class II and DEC-205 was detected by day 5 postinfection. Initially, on day 3 postinfection, lung DCs from BRSV-infected lambs had decreased endocytosis of fluorescein isothiocyanate (FITC)-ovalbumin (OVA). The amount of FITC-OVA endocytosed by lung DCs isolated on day 5 postinfection was similar to that of controls. The most interesting observation was the induction of immunomodulatory interleukin (IL)-4 and IL-10 cytokine gene transcription in lung DCs and alveolar macrophages after in vivo infection with BRSV. Overall, these findings are the first to demonstrate that neonatal lung DCs support in vivo BRSV replication and produce type II cytokines after viral infection.
Collapse
Affiliation(s)
- Sasha J Fach
- Immunobiology Graduate Program, Iowa State University, Ames, Iowa, USA
| | | | | | | | | | | |
Collapse
|
45
|
Boxus M, Tignon M, Roels S, Toussaint JF, Walravens K, Benoit MA, Coppe P, Letesson JJ, Letellier C, Kerkhofs P. DNA immunization with plasmids encoding fusion and nucleocapsid proteins of bovine respiratory syncytial virus induces a strong cell-mediated immunity and protects calves against challenge. J Virol 2007; 81:6879-89. [PMID: 17459933 PMCID: PMC1933320 DOI: 10.1128/jvi.00502-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial viruses (RSV) are one of the most important respiratory pathogens of humans and cattle, and there is currently no safe and effective vaccine prophylaxis. In this study, we designed two codon-optimized plasmids encoding the bovine RSV fusion (F) and nucleocapsid (N) proteins and assessed their immunogenicity in young calves. Two administrations of both plasmids elicited low antibody levels but primed a strong cell-mediated immunity characterized by lymphoproliferative response and gamma interferon production in vitro and in vivo. Interestingly, this strong cellular response drastically reduced viral replication, clinical signs, and pulmonary lesions after a highly virulent challenge. Moreover, calves that were further vaccinated with a killed-virus vaccine developed high levels of neutralizing antibody and were fully protected following challenge. These results indicate that DNA vaccination could be a promising alternative to the classical vaccines against RSV in cattle and could therefore open perspectives for vaccinating young infants.
Collapse
Affiliation(s)
- Mathieu Boxus
- Biologie Cellulaire et Moléculaire, Faculté des Sciences Agronomiques, 5030 Gembloux, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Deplanche M, Lemaire M, Mirandette C, Bonnet M, Schelcher F, Meyer G. In vivo evidence for quasispecies distributions in the bovine respiratory syncytial virus genome. J Gen Virol 2007; 88:1260-1265. [PMID: 17374770 DOI: 10.1099/vir.0.82668-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We analysed the genetic evolution of bovine respiratory syncytial virus (BRSV) isolate W2-00131, from its isolation in bovine turbinate (BT) cells to its inoculation in calves. Results showed that the BRSV genomic region encoding the highly variable glycoprotein G remained genetically stable after virus isolation and over 10 serial infections in BT cells, as well as following experimental inoculation in calves. This remarkable genetic stability led us to examine the mutant spectrum of several populations derived from this field isolate. Sequence analysis of molecular clones revealed an important genetic heterogeneity in the G-coding region of each population, with mutation frequencies ranging from 6.8 to 10.1×10−4substitutions per nucleotide. The non-synonymous mutations of the mutant spectrum mapped preferentially within the two variable antigenic regions of the ectodomain or close to the highly conserved domain. These results suggest that BRSV populations may evolve as complex and dynamic mutant swarms, despite apparent genetic stability.
Collapse
Affiliation(s)
- Martine Deplanche
- INRA-ENVT, UMR1225 - Interactions Hosts-Pathogens (IHAP), Ecole Nationale Vétérinaire, 31076 Toulouse cedex 03, France
| | - Mylène Lemaire
- Laboratoire Départemental Vétérinaire LVD09, 09007 Foix cedex, France
| | - Carole Mirandette
- INRA-ENVT, UMR1225 - Interactions Hosts-Pathogens (IHAP), Ecole Nationale Vétérinaire, 31076 Toulouse cedex 03, France
| | - Marion Bonnet
- INRA-ENVT, UMR1225 - Interactions Hosts-Pathogens (IHAP), Ecole Nationale Vétérinaire, 31076 Toulouse cedex 03, France
| | - François Schelcher
- INRA-ENVT, UMR1225 - Interactions Hosts-Pathogens (IHAP), Ecole Nationale Vétérinaire, 31076 Toulouse cedex 03, France
| | - Gilles Meyer
- INRA-ENVT, UMR1225 - Interactions Hosts-Pathogens (IHAP), Ecole Nationale Vétérinaire, 31076 Toulouse cedex 03, France
| |
Collapse
|
47
|
Spilki FR, Almeida RS, Ferreira HL, Gameiro J, Verinaud L, Arns CW. Effects of experimental inoculation of bovine respiratory syncytial virus in different inbred mice lineages: Establishment of a murine model for BRSV infection. Vet Microbiol 2006; 118:161-8. [PMID: 16959444 DOI: 10.1016/j.vetmic.2006.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 06/29/2006] [Accepted: 07/13/2006] [Indexed: 11/30/2022]
Abstract
Bovine respiratory syncytial virus (BRSV), a member of the subfamily Pneumovirinae, family Paramyxoviridae, is a major cause of respiratory disorders in young cattle. A number of studies were conducted to validate a reliable animal model for the infection, since BRSV inoculation on the natural host is costly and often unsuccessful. Unfortunately, after inoculation of BRSV in Balb/C mice, viral replication may be detected; however, evident pathological alterations are absent on the experimentally infected animals. In order to establish a mice model that could be used further for preliminary studies of pathological and immunological aspects of BRSV infection, three mice inbred lineages (Balb/C, A/J and C57BL6), possessing different genetic backgrounds, were tested about its susceptibility to the inoculation with BRSV. Animals were inoculated through the nasal and ocular routes and were observed after inoculation. At 7 days post-inoculation (dpi) animals were necropsied and virological (virus isolation and viral nucleic acid amplification) as well as histopathological examinations were performed. A/J and C57BL6 showed interstitial pneumonia, when compared to the Balb/C group. These findings shows that mice may constitute a suitable model for the study of BRSV infections, depending on the mice strain used for experimental inoculations.
Collapse
Affiliation(s)
- Fernando Rosado Spilki
- Depto de Microbiologia e Imunologia, Instituto de Biologia, Campus UNICAMP, Campinas, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
48
|
Almeida R, Spilki F, Roehe P, Verinaud L, Arns C. Bovine respiratory syncytial virus: immunohistochemichal detection in mouse and bovine tissues using a Mab against human respiratory syncytial virus. ARQ BRAS MED VET ZOO 2006. [DOI: 10.1590/s0102-09352006000600001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An immunoistochemical (IHC) test was developed to detect bovine respiratory syncytial virus (BRSV) in cell cultures and tissues of experimentally infected mice and calves, using a commercial monoclonal antibody (Mab) against human respiratory syncytial virus (HRSV), as a less expensive alternative, instead of producing specific monoclonal antibodies to BRSV. Clinical samples from calves suffering respiratory disease were also submitted to this test. IHC detected BRSV antigens in mouse tracheas (3, 5 and 7 days post-infection) and lungs (5 and 7 days post-infection), and in one of three lungs from experimentally infected calves. Lungs samples from two naturally infected calves were tested and resulted positive for BRSV by the IHC test. These results suggest that this test may be used in the future for diagnosis as well as a useful tool to assess the distribution of BRSV infections in Brazilian herds.
Collapse
Affiliation(s)
| | | | - P.M. Roehe
- UFRGS; Centro de Pesquisas Veterinárias Desidério Finamor
| | | | | |
Collapse
|
49
|
Riffault S, Dubuquoy C, Castagné N, Baranowski E, Charley B, Eléouët JF. Replication of Bovine respiratory syncytial virus in murine cells depends on type I interferon-receptor functionality. J Gen Virol 2006; 87:2145-2148. [PMID: 16847109 DOI: 10.1099/vir.0.82091-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine respiratory syncytial virus(BRSV) is able to counteract the alpha/beta interferon (IFN-α/β)-mediated antiviral response for efficient replication in a host-specific manner. Mice models have been developed for experimental infection with human, but not bovine, respiratory syncytial virus strains. Here, it is shown that BRSV can replicate efficiently on primary cell cultures derived from type I IFN receptor-deficient, but not from wild-type IFN-competent, mice. However, BRSV infection was not enhanced in mice devoid of the type I IFN receptor. These results show that type I IFN is a major host-range determinant for infection at the cellular level, but that other factors control virus replication and pathologyin vivo.
Collapse
Affiliation(s)
- Sabine Riffault
- Unité de Virologie et Immunologie Moléculaires, INRA, 78350 Jouy-en-Josas, France
| | - Catherine Dubuquoy
- Unité de Virologie et Immunologie Moléculaires, INRA, 78350 Jouy-en-Josas, France
| | - Nathalie Castagné
- Unité de Virologie et Immunologie Moléculaires, INRA, 78350 Jouy-en-Josas, France
| | - Eric Baranowski
- UMR1225, École nationale vétérinaire de Toulouse (ENVT), 31076 Toulouse, France
| | - Bernard Charley
- Unité de Virologie et Immunologie Moléculaires, INRA, 78350 Jouy-en-Josas, France
| | | |
Collapse
|
50
|
Abstract
Inflammation is an important manifestation of respiratory disease in domestic animals. The respiratory system is mucosal in nature and has specific defense mechanisms used to control invasion by microbes and environmental elements. Inflammation can be beneficial or detrimental to the host. This article broadly discusses the primary mediators and mechanisms of inflammation within the respiratory tract of domestic animals. The role of cells, chemokines, cytokines and mediators in both acute and chronic inflammation are addressed. The pathogenesis of the initial insult determines the type of inflammation that will be induced, whether it is acute, chronic or allergic in origin. Maintenance of the microenvironment of cytokines and chemokines is critical for pulmonary homeostasis. Uncontrolled inflammation in the respiratory tract can be life threatening to the animal. The understanding of the mechanisms of inflammation, whether due to microbes or through inappropriate immune activation such as those occurring with allergies, is required to develop successful intervention strategies and control respiratory disease in animals.
Collapse
Affiliation(s)
- Eileen L Thacker
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, 50011, USA.
| |
Collapse
|