1
|
Toepfer S, Keniya MV, Lackner M, Monk BC. Azole Combinations and Multi-Targeting Drugs That Synergistically Inhibit Candidozyma auris. J Fungi (Basel) 2024; 10:698. [PMID: 39452650 PMCID: PMC11508803 DOI: 10.3390/jof10100698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
Limited antifungal treatment options and drug resistance require innovative approaches to effectively combat fungal infections. Combination therapy is a promising strategy that addresses these pressing issues by concurrently targeting multiple cellular sites. The drug targets usually selected for combination therapy are from different cellular pathways with the goals of increasing treatment options and reducing development of resistance. However, some circumstances can prevent the implementation of combination therapy in clinical practice. These could include the increased risk of adverse effects, drug interactions, and even the promotion of drug resistance. Furthermore, robust clinical evidence supporting the superiority of combination therapy over monotherapy is limited and underscores the need for further research. Despite these challenges, synergies detected with different antifungal classes, such as the azoles and echinocandins, suggest that treatment strategies can be optimized by better understanding the underlying mechanisms. This review provides an overview of multi-targeting combination strategies with a primary focus on Candidozyma auris infections.
Collapse
Affiliation(s)
- Stephanie Toepfer
- Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand;
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Mikhail V. Keniya
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Brian C. Monk
- Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand;
| |
Collapse
|
2
|
Sadurski J, Polak-Berecka M, Staniszewski A, Waśko A. Step-by-Step Metagenomics for Food Microbiome Analysis: A Detailed Review. Foods 2024; 13:2216. [PMID: 39063300 PMCID: PMC11276190 DOI: 10.3390/foods13142216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
This review article offers a comprehensive overview of the current understanding of using metagenomic tools in food microbiome research. It covers the scientific foundation and practical application of genetic analysis techniques for microbial material from food, including bioinformatic analysis and data interpretation. The method discussed in the article for analyzing microorganisms in food without traditional culture methods is known as food metagenomics. This approach, along with other omics technologies such as nutrigenomics, proteomics, metabolomics, and transcriptomics, collectively forms the field of foodomics. Food metagenomics allows swift and thorough examination of bacteria and potential metabolic pathways by utilizing foodomic databases. Despite its established scientific basis and available bioinformatics resources, the research approach of food metagenomics outlined in the article is not yet widely implemented in industry. The authors believe that the integration of next-generation sequencing (NGS) with rapidly advancing digital technologies such as artificial intelligence (AI), the Internet of Things (IoT), and big data will facilitate the widespread adoption of this research strategy in microbial analysis for the food industry. This adoption is expected to enhance food safety and product quality in the near future.
Collapse
Affiliation(s)
- Jan Sadurski
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 20-704 Lublin, Poland; (M.P.-B.); (A.S.); (A.W.)
| | | | | | | |
Collapse
|
3
|
Liu T, Asif IM, Chen Y, Zhang M, Li B, Wang L. The Relationship between Diet, Gut Mycobiome, and Functional Gastrointestinal Disorders: Evidence, Doubts, and Prospects. Mol Nutr Food Res 2024; 68:e2300382. [PMID: 38659179 DOI: 10.1002/mnfr.202300382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/11/2023] [Indexed: 04/26/2024]
Abstract
Gut fungi are important parts of intestinal microbes. Dietary ingredients have the potential to regulate the structure of gut fungi in different directions and modulate mycobiome composition by changing dietary patterns, which have been applied to neurological disorders. Emerging pieces of evidence have revealed the regulatory functions of gut mycobiome in gastrointestinal diseases, but the relationships between gut fungi and functional gastrointestinal disorders (FGIDs) are ignored in the past. This review discusses the impact of dietary nutrients and patterns on mycobiome, and the possible ways in which gut fungi are involved in the pathogenesis of FGIDs. Besides affecting host immunity, intestinal fungi can be involved in the pathogenesis of FGIDs by endosymbiosis or bidirectional regulation with gut bacteria as well. In addition, the Mediterranean diet may be the most appropriate dietary pattern for subjects with FGIDs. A full understanding of these associations may have important implications for the pathogenesis and treatment of FGIDs.
Collapse
Affiliation(s)
- Tianxu Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, 430070, China
| | - Ismail Muhammad Asif
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, 430070, China
| | - Yan Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, 430070, China
| | - Meixue Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, 430070, China
| | - Ling Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, 430070, China
| |
Collapse
|
4
|
Bontemps Z, Moënne-Loccoz Y, Hugoni M. Stochastic and deterministic assembly processes of microbial communities in relation to natural attenuation of black stains in Lascaux Cave. mSystems 2024; 9:e0123323. [PMID: 38289092 PMCID: PMC10878041 DOI: 10.1128/msystems.01233-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/28/2023] [Indexed: 02/21/2024] Open
Abstract
Community assembly processes are complex and understanding them represents a challenge in microbial ecology. Here, we used Lascaux Cave as a stable, confined environment to quantify the importance of stochastic vs deterministic processes during microbial community dynamics across the three domains of life in relation to an anthropogenic disturbance that had resulted in the side-by-side occurrence of a resistant community (unstained limestone), an impacted community (present in black stains), and a resilient community (attenuated stains). Metabarcoding data showed that the microbial communities of attenuated stains, black stains, and unstained surfaces differed, with attenuated stains being in an intermediate position. We found four scenarios to explain community response to disturbance in stable conditions for the three domains of life. Specifically, we proposed the existence of a fourth, not-documented yet scenario that concerns the always-rare microbial taxa, where stochastic processes predominate even after disturbance but are replaced by deterministic processes during post-disturbance recovery. This suggests a major role of always-rare taxa in resilience, perhaps because they might provide key functions required for ecosystem recovery.IMPORTANCEThe importance of stochastic vs deterministic processes in cave microbial ecology has been a neglected topic so far, and this work provided an opportunity to do so in a context related to the dynamics of black-stain alterations in Lascaux, a UNESCO Paleolithic cave. Of particular significance was the discovery of a novel scenario for always-rare microbial taxa in relation to disturbance, in which stochastic processes are replaced later by deterministic processes during post-disturbance recovery, i.e., during attenuation of black stains.
Collapse
Affiliation(s)
- Zélia Bontemps
- UMR 5557 Ecologie Microbienne, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, Villeurbanne, France
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Yvan Moënne-Loccoz
- UMR 5557 Ecologie Microbienne, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, Villeurbanne, France
| | - Mylène Hugoni
- UMR 5557 Ecologie Microbienne, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, Villeurbanne, France
- UMR 5240 Microbiologie Adaptation et Pathogénie, INSA Lyon, CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France
- Institut Universitaire de France (IUF), France
| |
Collapse
|
5
|
Owens LA, Friant S, Martorelli Di Genova B, Knoll LJ, Contreras M, Noya-Alarcon O, Dominguez-Bello MG, Goldberg TL. VESPA: an optimized protocol for accurate metabarcoding-based characterization of vertebrate eukaryotic endosymbiont and parasite assemblages. Nat Commun 2024; 15:402. [PMID: 38195557 PMCID: PMC10776621 DOI: 10.1038/s41467-023-44521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
Protocols for characterizing taxonomic assemblages by deep sequencing of short DNA barcode regions (metabarcoding) have revolutionized our understanding of microbial communities and are standardized for bacteria, archaea, and fungi. Unfortunately, comparable methods for host-associated eukaryotes have lagged due to technical challenges. Despite 54 published studies, issues remain with primer complementarity, off-target amplification, and lack of external validation. Here, we present VESPA (Vertebrate Eukaryotic endoSymbiont and Parasite Analysis) primers and optimized metabarcoding protocol for host-associated eukaryotic community analysis. Using in silico prediction, panel PCR, engineered mock community standards, and clinical samples, we demonstrate VESPA to be more effective at resolving host-associated eukaryotic assemblages than previously published methods and to minimize off-target amplification. When applied to human and non-human primate samples, VESPA enables reconstruction of host-associated eukaryotic endosymbiont communities more accurately and at finer taxonomic resolution than microscopy. VESPA has the potential to advance basic and translational science on vertebrate eukaryotic endosymbiont communities, similar to achievements made for bacterial, archaeal, and fungal microbiomes.
Collapse
Affiliation(s)
- Leah A Owens
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | - Sagan Friant
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Anthropology, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Bruno Martorelli Di Genova
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, The University of Vermont, Burlington, VT, USA
| | - Laura J Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Monica Contreras
- Center for Biophysics and Biochemistry, Venezuelan Institute of Scientific Research (IVIC), Caracas, Venezuela
| | - Oscar Noya-Alarcon
- Centro Amazónico de Investigación y Control de Enfermedades Tropicales-CAICET, Puerto Ayacucho, Amazonas, Venezuela
| | - Maria G Dominguez-Bello
- Department of Biochemistry and Microbiology, Rutgers University-New Brunswick, New Brunswick, NJ, USA
- Department of Anthropology, Rutgers University, New Brunswick, NJ, USA
- Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
- Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada
| | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Trofymow JA, Shay PE, Tomm B, Bérubé JA, Ramsfield T. Differences in Soil Fungal Communities between Forested Reclamation and Forestry Sites in the Alberta Oil Sands Region. J Fungi (Basel) 2023; 9:1110. [PMID: 37998915 PMCID: PMC10672713 DOI: 10.3390/jof9111110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Fungi play key roles in forest soils and provide benefits to trees via mycorrhizal symbioses. After severe disturbance, forest regrowth can be impeded because of changes in fungal communities. In 2013-2014, soil fungi in forest floor and mineral soil were examined by Roche 454 pyrosequencing in undisturbed, harvested, and burned jack pine stands in a forested area near Fort Chipewyan, Alberta. These fungal communities were compared with jack pine, white spruce, and larch stands in Gateway Hill, a nearby certified reclaimed area. In 2014, a more detailed sampling of forestry and reclamation jack pine sites examined fungi in soil fractions using two high-throughput sequencing platforms and a sporocarp survey. The significances of compositional and functional differences in fungal communities between the forested and reclamation sites were assessed using permutation tests of partially constrained ordinations, accounting for confounding factors by variance partitioning. Taxa associated with the forestry area were primarily ectomycorrhizal. Fungal richness and diversity were greater in soils from the reclamation sites and included significantly more pathogenic taxa and taxa with unknown functional properties. Fungal community dissimilarities may have been artefacts of historical legacies or, alternatively, may have resulted from contrasting niche differentiation between forestry and reclamation sites.
Collapse
Affiliation(s)
- John. A. Trofymow
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Philip-Edouard Shay
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada
- Canadian Wood Fibre Centre, Canadian Forest Service, 1350 Regent Street, Fredericton, NB E3B 5P7, Canada;
| | - Bradley Tomm
- Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, 5320-122nd Street, Edmonton, AB T6H 3S5, Canada; (B.T.); (T.R.)
| | - Jean A. Bérubé
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1055 Rue du Peps, Québec, QC G1V 4C7, Canada;
| | - Tod Ramsfield
- Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, 5320-122nd Street, Edmonton, AB T6H 3S5, Canada; (B.T.); (T.R.)
| |
Collapse
|
7
|
Hong G, Daniel SG, Lee JJ, Bittinger K, Glaser L, Mattei LM, Dorgan DJ, Hadjiliadis D, Kawut SM, Collman RG. Distinct community structures of the fungal microbiome and respiratory health in adults with cystic fibrosis. J Cyst Fibros 2023; 22:636-643. [PMID: 36822979 PMCID: PMC10440372 DOI: 10.1016/j.jcf.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/05/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND The respiratory tract fungal microbiome in cystic fibrosis (CF) has been understudied despite increasing recognition of fungal pathogens in CF lung disease. We sought to better understand the fungal communities in adults with CF, and to define relationships between fungal profiles and clinical characteristics. METHODS We enrolled 66 adults with CF and collected expectorated sputum, spirometry, Cystic Fibrosis Questionnaire-revised, and clinical data. Fungi were molecularly profiled by sequencing of the internal transcribed spacer (ITS) region. Total fungal abundance was measured by quantitative PCR. Relative abundance and qPCR-corrected abundances were determined. Selective fungus culture identified cultivable fungi. Alpha diversity and beta diversity were measured and relationships with clinical parameters were interrogated. RESULTS Median age was 29 years and median FEV1 percent predicted 58%. Members of the Candida genus were the most frequent dominant taxa in CF sputum. Apiotrichum, Trichosporon, Saccharomyces cerevisiae, and Scedosporium were present in high relative abundance in few samples; whereas, Aspergillus species were detected at low levels. Higher FEV1% predicted and CFTR modulator use were associated with greater alpha-diversity. Chronic azithromycin use was associated with lower alpha-diversity. Patients with acute pulmonary had distinct fungal community composition compared to clinically stable subjects. Differing yeast species were mainly responsible for the community differences. CONCLUSION The respiratory tract fungal microbiome in adults with CF is associated with lung function, pulmonary exacerbation status, macrolide use, and CFTR modulator use. Future work to better understand fungal diversity in the CF airway and its impact on lung health is necessary.
Collapse
Affiliation(s)
- Gina Hong
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Palestine, State of.
| | - Scott G Daniel
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia 19104
| | - Jung-Jin Lee
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia 19104
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia 19104
| | - Laurel Glaser
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lisa M Mattei
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia 19104
| | - Daniel J Dorgan
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Palestine, State of
| | - Denis Hadjiliadis
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Palestine, State of
| | - Steven M Kawut
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Palestine, State of
| | - Ronald G Collman
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Palestine, State of
| |
Collapse
|
8
|
Stockdale SR, Hill C. Incorporating plasmid biology and metagenomics into a holistic model of the human gut microbiome. Curr Opin Microbiol 2023; 73:102307. [PMID: 37002975 DOI: 10.1016/j.mib.2023.102307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/14/2023] [Accepted: 03/05/2023] [Indexed: 04/01/2023]
Abstract
The human gut microbiome is often described as the collection of bacteria, archaea, fungi, protists, and viruses associated with an individual, with no acknowledgement of the plasmid constituents. However, like viruses, plasmids are autonomous intracellular replicating entities that can influence the genotype and phenotype of their host and mediate trans-kingdom interactions. Plasmids are frequently noted as vehicles for horizontal gene transfer and for spreading antibiotic resistance, yet their multifaceted contribution to mutualistic and antagonistic interactions within the human microbiome and impact on human health is overlooked. In this review, we highlight the importance of plasmids and their biological properties as overlooked components of microbiomes. Subsequent human microbiome studies should include dedicated analyses of plasmids, particularly as a holistic understanding of human-microbial interactions is required before effective and safe interventions can be implemented to improve human well-being.
Collapse
|
9
|
Sen K, Bai M, Li J, Ding X, Sen B, Wang G. Spatial Patterns of Planktonic Fungi Indicate Their Potential Contributions to Biological Carbon Pump and Organic Matter Remineralization in the Water Column of South China Sea. J Fungi (Basel) 2023; 9:640. [PMID: 37367576 DOI: 10.3390/jof9060640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Fungi have long been known to be dynamic in coastal water columns with multiple trophic modes. However, little is known about their interactions with abiotic and biotic components, contribution to the biological carbon pump (BCP), and organic matter remineralization in the oceanic water column. In this study, we investigated how fungi vary spatially and how their variations relate to that of bacteria in the water column of the South China Sea (SCS). Fungi were about three orders less prevalent than bacteria, and the main factors influencing their distribution were depth, temperature, and distance from the sites of riverine inputs. The decline in the abundance of fungi with depth was less steep than that of bacteria. Correlation tests revealed a strong positive association between the abundance of fungi and bacteria, especially in the twilight (r = 0.62) and aphotic (r = 0.70) zones. However, the co-occurrence network revealed mutual exclusion between certain members of fungi and bacteria. The majority of fungi in the water column were saprotrophs, which indicated that they were generally involved in the degradation of organic matter, particularly in twilight and aphotic zones. Similar to bacteria, the involvement of fungi in the metabolism of carbohydrates, proteins, and lipids was predicted, pointing to their participation in the turnover of organic carbon and the biogeochemical cycling of carbon, nitrogen, and sulfur. These findings suggest that fungi play a role in BCP and support their inclusion in marine microbial ecosystem models.
Collapse
Affiliation(s)
- Kalyani Sen
- Centre for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Mohan Bai
- Centre for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqian Li
- Centre for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xueyan Ding
- Centre for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Centre for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Centre for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Alonso L, Pommier T, Simon L, Maucourt F, Doré J, Dubost A, Trân Van V, Minard G, Valiente Moro C, Douady CJ, Moënne‐Loccoz Y. Microbiome analysis in Lascaux Cave in relation to black stain alterations of rock surfaces and collembola. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:80-91. [PMID: 36424842 PMCID: PMC10103860 DOI: 10.1111/1758-2229.13133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 05/20/2023]
Abstract
Anthropization of Palaeolithic caves open for tourism may favour collembola invasion and result in the formation of black stains attributed to pigmented fungi. However, ecological processes underpinning black stain formation are not fully understood. Here, we tested the hypotheses that black stains from the Apse room of Lascaux Cave display a specific microbiota enriched in pigmented fungi, and that collembola thriving on the stains have the potential to consume and disseminate these black fungi. Metabarcoding showed that the microbiota of black stains and neighbouring unstained parts strongly differed, with in black stains a higher prevalence of Ochroconis and other pigmented fungi and the strong regression of Pseudomonas bacteria (whose isolates inhibited in vitro the growth of pigmented fungi). Isotopic analyses indicated that Folsomia candida collembola thriving on stains could feed on black stain in situ and assimilate the pigmented fungi they were fed with in vitro. They could carry these fungi and disseminate them when tested with complex black stains from Lascaux. This shows that black stain formation is linked to the development of pigmented fungi, which coincides with the elimination of antagonistic pseudomonads, and points towards a key role of F. candida collembola in the dynamics of pigmented fungi.
Collapse
Affiliation(s)
- Lise Alonso
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie MicrobienneVilleurbanneFrance
| | - Thomas Pommier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie MicrobienneVilleurbanneFrance
| | - Laurent Simon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNAVilleurbanneFrance
| | - Flavien Maucourt
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie MicrobienneVilleurbanneFrance
| | - Jeanne Doré
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie MicrobienneVilleurbanneFrance
| | - Audrey Dubost
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie MicrobienneVilleurbanneFrance
| | - Van Trân Van
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie MicrobienneVilleurbanneFrance
| | - Guillaume Minard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie MicrobienneVilleurbanneFrance
| | - Claire Valiente Moro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie MicrobienneVilleurbanneFrance
| | - Christophe J. Douady
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNAVilleurbanneFrance
| | - Yvan Moënne‐Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie MicrobienneVilleurbanneFrance
| |
Collapse
|
11
|
Barone GD, Cernava T, Ullmann J, Liu J, Lio E, Germann AT, Nakielski A, Russo DA, Chavkin T, Knufmann K, Tripodi F, Coccetti P, Secundo F, Fu P, Pfleger B, Axmann IM, Lindblad P. Recent developments in the production and utilization of photosynthetic microorganisms for food applications. Heliyon 2023; 9:e14708. [PMID: 37151658 PMCID: PMC10161259 DOI: 10.1016/j.heliyon.2023.e14708] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 05/09/2023] Open
Abstract
The growing use of photosynthetic microorganisms for food and food-related applications is driving related biotechnology research forward. Increasing consumer acceptance, high sustainability, demand of eco-friendly sources for food, and considerable global economic concern are among the main factors to enhance the focus on the novel foods. In the cases of not toxic strains, photosynthetic microorganisms not only provide a source of sustainable nutrients but are also potentially healthy. Several published studies showed that microalgae are sources of accessible protein and fatty acids. More than 400 manuscripts were published per year in the last 4 years. Furthermore, industrial approaches utilizing these microorganisms are resulting in new jobs and services. This is in line with the global strategy for bioeconomy that aims to support sustainable development of bio-based sectors. Despite the recognized potential of the microalgal biomass value chain, significant knowledge gaps still exist especially regarding their optimized production and utilization. This review highlights the potential of microalgae and cyanobacteria for food and food-related applications as well as their market size. The chosen topics also include advanced production as mixed microbial communities, production of high-value biomolecules, photoproduction of terpenoid flavoring compounds, their utilization for sustainable agriculture, application as source of nutrients in space, and a comparison with heterotrophic microorganisms like yeast to better evaluate their advantages over existing nutrient sources. This comprehensive assessment should stimulate further interest in this highly relevant research topic.
Collapse
Affiliation(s)
- Giovanni D. Barone
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
- Corresponding author.
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
| | - Jörg Ullmann
- Roquette Klötze GmbH & Co. KG, Lockstedter Chaussee 1, D-38486, Klötze, Germany
| | - Jing Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, 58 Renmin Avenue, Meilan District, Haikou, Hainan Province, 570228, PR China
| | - Elia Lio
- Institute of Chemical Sciences and Technologies (SCITEC) “Giulio Natta” Italian National Research Council (CNR), via Mario Bianco 9, 20131, Milan, Italy
| | - Anna T. Germann
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Andreas Nakielski
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - David A. Russo
- Friedrich Schiller University Jena, Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Lessingstr. 8, D-07743, Jena, Germany
| | - Ted Chavkin
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy
| | - Francesco Secundo
- Institute of Chemical Sciences and Technologies (SCITEC) “Giulio Natta” Italian National Research Council (CNR), via Mario Bianco 9, 20131, Milan, Italy
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, 58 Renmin Avenue, Meilan District, Haikou, Hainan Province, 570228, PR China
| | - Brian Pfleger
- Knufmann GmbH, Bergstraße 23, D-38486, Klötze, Germany
| | - Ilka M. Axmann
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, D-40001, Düsseldorf, Germany
- Corresponding author. Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry–Ångström, Uppsala University, Box 523, SE-75120, Uppsala, Sweden
| |
Collapse
|
12
|
Bontemps Z, Hugoni M, Moënne-Loccoz Y. Microscale dynamics of dark zone alterations in anthropized karstic cave shows abrupt microbial community switch. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160824. [PMID: 36502978 DOI: 10.1016/j.scitotenv.2022.160824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Strong anthropization of karstic caves may result in formation of various wall alterations including dark zones, whose microbial community differs from that of non-altered surfaces nearby. Dark zones grow quickly and without gradual visual changes, leading to the hypothesis of a simple process rather than complex microbial successions, but this is counter-intuitive as underground microbial changes are typically slow and dark zones are microbiologically very distinct from unmarked surfaces. We tested this hypothesis in Paleolithic Lascaux Cave, across two years of microscale sampling. Indeed, Illumina MiSeq metabarcoding evidenced only three community stages for bacteria, fungi and all microeukaryotes together (i.e. unmarked surfaces, newly-formed dark zones and intermediate/old dark zones) and just two stages for archaea (unmarked surfaces vs dark zones), indicating abrupt community changes. The onset of dark zone formation coincided with the development of Ochroconis fungi, Bacteroidota and the bacterial genera Labrys, Nonomuraea and Sphingomonas, in parallel to Pseudomonas counter-selection. Modeling of community assembly processes highlighted that the dynamics of rare taxa in unmarked surfaces adjacent to dark zones and in newly-formed dark zones were governed in part by deterministic processes. This suggests that cooperative relationships between these taxa might be important to promote dark zone formation. Taken together, these findings indicate an abrupt community switch as these new alterations form on Lascaux cave walls.
Collapse
Affiliation(s)
- Zélia Bontemps
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Mylène Hugoni
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France; Univ Lyon, INSA Lyon, CNRS, UMR5240 Microbiologie Adaptation et Pathogénie, F-69621 Villeurbanne, France; Institut Universitaire de France (IUF), France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France.
| |
Collapse
|
13
|
Exploration of Bioinformatics on Microbial Fuel Cell Technology: Trends, Challenges, and Future Prospects. J CHEM-NY 2023. [DOI: 10.1155/2023/6902054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Microbial fuel cells (MFCs) are a cost-effective and environmentally friendly alternative energy method. MFC technology has gained much interest in recent decades owing to its effectiveness in remediating wastewater and generating bioelectricity. The microbial fuel cell generates energy mainlybecause of oxidation-reduction reactions. In this reaction, electrons were transferred between two reactants. Bioinformatics is expanding across a wide range of microbial fuel cell technology. Electroactive species in the microbial community were evaluated using bioinformatics methodologies in whole genome sequencing, RNA sequencing, transcriptomics, metagenomics, and phylogenetics. Technology advancements in microbial fuel cells primarily produce power from organic and inorganic waste from various sources. Reduced chemical oxygen demand and waste degradation are two added advantages for microbial fuel cells. From plants, bacteria, and algae, microbial fuel cells were developed. Due to the rapid advancement of sequencing techniques, bioinformatics approaches are currently widely used in the technology of microbial fuel cells. In addition, they play an important role in determining the composition of electroactive species in microorganisms. The metabolic pathway is also possible to determine with bioinformatics resources. A computational technique that reveals the nature of the mediators and the substrate was also used to predict the electrochemical properties. Computational strategies were used to tackle significant challenges in experimental procedures, such as optimization and understanding microbiological systems. The main focus of this review is on utilizing bioinformatics techniques to improve microbial fuel cell technology.
Collapse
|
14
|
Alonso L, Pommier T, Abrouk D, Hugoni M, Tran Van V, Minard G, Valiente Moro C, Moënne-Loccoz Y. Microbiome Analysis of New, Insidious Cave Wall Alterations in the Apse of Lascaux Cave. Microorganisms 2022; 10:2449. [PMID: 36557702 PMCID: PMC9785961 DOI: 10.3390/microorganisms10122449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Lascaux Cave is a UNESCO site that was closed to the public following wall surface alterations. Most black stains that had formed on wall surface are stable or receding, but a new type of alteration visually quite different (termed dark zones) developed in Lascaux's Apse room in the last 15 years. Here, we tested the hypothesis that dark zones displayed a different microbial community than black stains previously documented in the same room, using metabarcoding (MiSeq sequencing). Indeed, dark zones, black stains and neighboring unstained parts displayed distinct microbial communities. However, similarly to what was observed in black stains, pigmented fungi such as Ochroconis (now Scolecobasidium) were more abundant and the bacteria Pseudomonas less abundant in dark zones than in unstained parts. The collembola Folsomia candida, which can disseminate microorganisms involved in black stain development, was also present on dark zones. Illumina sequencing evidenced Ochroconis (Scolecobasidium) in all collembola samples from dark zones, as in collembola from black stains. This study shows that the microbial properties of dark zones are peculiar, yet dark zones display a number of microbial resemblances with black stains, which suggests a possible role of collembola in promoting these two types of microbial alterations on wall surfaces.
Collapse
Affiliation(s)
- Lise Alonso
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Thomas Pommier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Danis Abrouk
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Mylène Hugoni
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622 Villeurbanne, France
- Univ Lyon, INSA Lyon, CNRS, UMR5240 Microbiologie Adaptation et Pathogénie, F-69621 Villeurbanne, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Van Tran Van
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Guillaume Minard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Claire Valiente Moro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622 Villeurbanne, France
| |
Collapse
|
15
|
Afridi MS, Ali S, Salam A, César Terra W, Hafeez A, Ali B, S AlTami M, Ameen F, Ercisli S, Marc RA, Medeiros FHV, Karunakaran R. Plant Microbiome Engineering: Hopes or Hypes. BIOLOGY 2022; 11:biology11121782. [PMID: 36552290 PMCID: PMC9774975 DOI: 10.3390/biology11121782] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Rhizosphere microbiome is a dynamic and complex zone of microbial communities. This complex plant-associated microbial community, usually regarded as the plant's second genome, plays a crucial role in plant health. It is unquestioned that plant microbiome collectively contributes to plant growth and fitness. It also provides a safeguard from plant pathogens, and induces tolerance in the host against abiotic stressors. The revolution in omics, gene-editing and sequencing tools have somehow led to unravel the compositions and latent interactions between plants and microbes. Similarly, besides standard practices, many biotechnological, (bio)chemical and ecological methods have also been proposed. Such platforms have been solely dedicated to engineer the complex microbiome by untangling the potential barriers, and to achieve better agriculture output. Yet, several limitations, for example, the biological obstacles, abiotic constraints and molecular tools that capably impact plant microbiome engineering and functionality, remained unaddressed problems. In this review, we provide a holistic overview of plant microbiome composition, complexities, and major challenges in plant microbiome engineering. Then, we unearthed all inevitable abiotic factors that serve as bottlenecks by discouraging plant microbiome engineering and functionality. Lastly, by exploring the inherent role of micro/macrofauna, we propose economic and eco-friendly strategies that could be harnessed sustainably and biotechnologically for resilient plant microbiome engineering.
Collapse
Affiliation(s)
- Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras, (UFLA), Lavras 37200-900, MG, Brazil
| | - Sher Ali
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| | - Abdul Salam
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Willian César Terra
- Department of Plant Pathology, Federal University of Lavras, (UFLA), Lavras 37200-900, MG, Brazil
| | - Aqsa Hafeez
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mona S AlTami
- Biology Department, College of Science, Qassim University, Burydah 52571, Saudi Arabia
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănă ̧stur Street, 400372 Cluj-Napoca, Romania
| | - Flavio H V Medeiros
- Department of Plant Pathology, Federal University of Lavras, (UFLA), Lavras 37200-900, MG, Brazil
| | - Rohini Karunakaran
- Unit of Biochemistry, Centre of Excellence for Biomaterials Engineering, Faculty of Medicine, AIMST University, Semeling, Bedong 08100, Malaysia
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering (SSE), SIMATS, Thandalam, Chennai 602105, Tamil Nadu, India
- Centre of Excellence for Biomaterials Science, AIMST University, Semeling, Bedong 08100, Malaysia
| |
Collapse
|
16
|
Boix-Amorós A, Monaco H, Sambataro E, Clemente JC. Novel technologies to characterize and engineer the microbiome in inflammatory bowel disease. Gut Microbes 2022; 14:2107866. [PMID: 36104776 PMCID: PMC9481095 DOI: 10.1080/19490976.2022.2107866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We present an overview of recent experimental and computational advances in technology used to characterize the microbiome, with a focus on how these developments improve our understanding of inflammatory bowel disease (IBD). Specifically, we present studies that make use of flow cytometry and metabolomics assays to provide a functional characterization of microbial communities. We also describe computational methods for strain-level resolution, temporal series, mycobiome and virome data, co-occurrence networks, and compositional data analysis. In addition, we review novel techniques to therapeutically manipulate the microbiome in IBD. We discuss the benefits and drawbacks of these technologies to increase awareness of specific biases, and to facilitate a more rigorous interpretation of results and their potential clinical application. Finally, we present future lines of research to better characterize the relation between microbial communities and IBD pathogenesis and progression.
Collapse
Affiliation(s)
- Alba Boix-Amorós
- Department of Genetics and Genomic Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai. New York, NY, USA
| | - Hilary Monaco
- Department of Genetics and Genomic Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai. New York, NY, USA
| | - Elisa Sambataro
- Department of Biological Sciences, CUNY Hunter College, New York, NY, USA
| | - Jose C. Clemente
- Department of Genetics and Genomic Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai. New York, NY, USA,CONTACT Jose C. Clemente Department of Genetics and Genomic Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai. New York, NY10029USA
| |
Collapse
|
17
|
DNA metabarcoding data reveals harmful algal-bloom species undescribed previously at the northern Antarctic Peninsula region. Polar Biol 2022. [DOI: 10.1007/s00300-022-03084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Current Techniques to Study Beneficial Plant-Microbe Interactions. Microorganisms 2022; 10:microorganisms10071380. [PMID: 35889099 PMCID: PMC9317800 DOI: 10.3390/microorganisms10071380] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Many different experimental approaches have been applied to elaborate and study the beneficial interactions between soil bacteria and plants. Some of these methods focus on changes to the plant and others are directed towards assessing the physiology and biochemistry of the beneficial plant growth-promoting bacteria (PGPB). Here, we provide an overview of some of the current techniques that have been employed to study the interaction of plants with PGPB. These techniques include the study of plant microbiomes; the use of DNA genome sequencing to understand the genes encoded by PGPB; the use of transcriptomics, proteomics, and metabolomics to study PGPB and plant gene expression; genome editing of PGPB; encapsulation of PGPB inoculants prior to their use to treat plants; imaging of plants and PGPB; PGPB nitrogenase assays; and the use of specialized growth chambers for growing and monitoring bacterially treated plants.
Collapse
|
19
|
Stockdale SR, Harrington RS, Shkoporov AN, Khokhlova EV, Daly KM, McDonnell SA, O'Reagan O, Nolan JA, Sheehan D, Lavelle A, Draper LA, Shanahan F, Ross RP, Hill C. Metagenomic assembled plasmids of the human microbiome vary across disease cohorts. Sci Rep 2022; 12:9212. [PMID: 35654877 PMCID: PMC9163076 DOI: 10.1038/s41598-022-13313-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
We compiled a human metagenome assembled plasmid (MAP) database and interrogated differences across multiple studies that were originally designed to investigate the composition of the human microbiome across various lifestyles, life stages and events. This was performed as plasmids enable bacteria to rapidly expand their functional capacity through mobilisation, yet their contribution to human health and disease is poorly understood. We observed that inter-sample β-diversity differences of plasmid content (plasmidome) could distinguish cohorts across a multitude of conditions. We also show that reduced intra-sample plasmidome α-diversity is consistent amongst patients with inflammatory bowel disease (IBD) and Clostridioides difficile infections. We also show that faecal microbiota transplants can restore plasmidome diversity. Overall plasmidome diversity, specific plasmids, and plasmid-encoded functions can all potentially act as biomarkers of IBD or its severity. The human plasmidome is an overlooked facet of the microbiome and should be integrated into investigations regarding the role of the microbiome in promoting health or disease. Including MAP databases in analyses will enable a greater understanding of the roles of plasmid-encoded functions within the gut microbiome and will inform future human metagenome analyses.
Collapse
Affiliation(s)
- S R Stockdale
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland.
| | - R S Harrington
- School of Microbiology, University College Cork, Co. Cork, Ireland
| | - A N Shkoporov
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - E V Khokhlova
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - K M Daly
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - S A McDonnell
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - O O'Reagan
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - J A Nolan
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - D Sheehan
- Department of Medicine, University College Cork, Co. Cork, Ireland
| | - A Lavelle
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Department of Medicine, University College Cork, Co. Cork, Ireland
| | - L A Draper
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - F Shanahan
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Department of Medicine, University College Cork, Co. Cork, Ireland
| | - R P Ross
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - C Hill
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland.
- School of Microbiology, University College Cork, Co. Cork, Ireland.
| |
Collapse
|
20
|
van Thiel IAM, Stavrou AA, de Jong A, Theelen B, Davids M, Hakvoort TBM, Admiraal-van den Berg I, Weert ICM, de Kruijs MAMHV, Vu D, Moissl-Eichinger C, Heinsbroek SEM, Jonkers DMAE, Hagen F, Boekhout T, de Jonge WJ, van den Wijngaard RM. Genetic and phenotypic diversity of fecal Candida albicans strains in irritable bowel syndrome. Sci Rep 2022; 12:5391. [PMID: 35354908 PMCID: PMC8967921 DOI: 10.1038/s41598-022-09436-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/21/2022] [Indexed: 12/16/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a common disorder characterized by chronic abdominal pain and changes in bowel movements. Visceral hypersensitivity is thought to be responsible for pain complaints in a subset of patients. In an IBS-like animal model, visceral hypersensitivity was triggered by intestinal fungi, and lower mycobiota α-diversity in IBS patients was accompanied by a shift toward increased presence of Candida albicans and Saccharomyces cerevisiae. Yet, this shift was observed in hypersensitive as well as normosensitive patients and diversity did not differ between IBS subgroups. The latter suggests that, when a patient changes from hyper- to normosensitivity, the relevance of intestinal fungi is not necessarily reflected in compositional mycobiota changes. We now confirmed this notion by performing ITS1 sequencing on an existing longitudinal set of fecal samples. Since ITS1 methodology does not recognize variations within species, we next focused on heterogeneity within cultured healthy volunteer and IBS-derived C. albicans strains. We observed inter- and intra-individual genomic variation and partial clustering of strains from hypersensitive patients. Phenotyping showed differences related to growth, yeast-to-hyphae morphogenesis and gene expression, specifically of the gene encoding fungal toxin candidalysin. Our investigations emphasize the need for strain-specific cause-and-effect studies within the realm of IBS research.
Collapse
Affiliation(s)
- Isabelle A M van Thiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Aimilia A Stavrou
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Auke de Jong
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Mark Davids
- Laboratory of Experimental Vascular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Microbiota Center Amsterdam, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Theodorus B M Hakvoort
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.,Microbiota Center Amsterdam, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Iris Admiraal-van den Berg
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.,Microbiota Center Amsterdam, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Isabelle C M Weert
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Martine A M Hesselink-van de Kruijs
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Center for Microbiome Research, Medical University Graz, Graz, Austria
| | - Sigrid E M Heinsbroek
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.,Gastroenterology and Hepatology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Daisy M A E Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.,Gastroenterology and Hepatology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - René M van den Wijngaard
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands. .,Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands. .,Gastroenterology and Hepatology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Different Airway Inflammatory Phenotypes Correlate with Specific Fungal and Bacterial Microbiota in Asthma and Chronic Obstructive Pulmonary Disease. J Immunol Res 2022; 2022:2177884. [PMID: 35310604 PMCID: PMC8933093 DOI: 10.1155/2022/2177884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/22/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022] Open
Abstract
Background Studies of chronic airway inflammatory diseases have increasingly focused on airway microbiota. However, the microbiota characteristics of asthma and chronic obstructive pulmonary disease (COPD) patients with different airway inflammatory phenotypes remain unclear. Objective We aimed to reveal the differences of fungal and bacterial microbiota between eosinophilic asthma (EA) and noneosinophilic asthma (NEA) patients and between eosinophilic COPD (EC) and noneosinophilic COPD (NEC) patients. Further, explore whether similarities exist in the airway microbiota of patients with the same phenotype. Methods Induced sputum samples were collected from 45 asthma subjects and 39 COPD subjects. The airway microbiota of the subjects was profiled by nearly full-length 16S rRNA and internal transcribed space (ITS) sequencing. Results Subjects with eosinophilic phenotype (EA and EC) showed significant differences in both fungal and bacterial microbiota compared to the corresponding subjects with noneosinophilic phenotype (NEA and NEC). In addition, no differences were observed between the fungal microbiota of subjects with the same phenotype (EA vs. EC, NEA vs. NEC). In bacterial microbiota, the greater relative abundance of Streptococcus thermophilus was observed in EA and EC subjects, while Ochrobactrum was enriched in NEA and NEC subjects. In fungal microbiota, the EA and EC subjects showed higher relative abundances of Aspergillus and Bjerkandera, while the NEA and NEC subjects were enriched in Rhodotorula and Papiliotrema. Conclusions Different airway inflammatory phenotypes were related to specific fungal and bacterial microbiota in both asthma and COPD, while the same airway inflammatory phenotype revealed a degree of similarity in airway microbiota, particularly in fungal microbiota.
Collapse
|
22
|
Analyzing the human gut mycobiome – a short guide for beginners. Comput Struct Biotechnol J 2022; 20:608-614. [PMID: 35116136 PMCID: PMC8790610 DOI: 10.1016/j.csbj.2022.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/30/2022] Open
Abstract
The human body is a dynamic ecosystem consisting of millions of microbes which are often comprised under the term microbiome. Compared to bacteria, which count for the overwhelming majority of the microbiome, the number of human-associated fungi is small and often underestimated. Nonetheless, they can be found in different host niches such as the gut, the oral cavity and the skin. The fungal community has several potential roles in health and disease of the human host. In this review we will focus on intestinal fungi and their interaction with the host as well as bacteria. We also summarize technical challenges and possible biases researchers must be aware of when conducting mycobiome analysis.
Collapse
|
23
|
Retnakumar R, Nath AN, Nair GB, Chattopadhyay S. Gastrointestinal microbiome in the context of Helicobacter pylori infection in stomach and gastroduodenal diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:53-95. [DOI: 10.1016/bs.pmbts.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Abstract
Inflammatory bowel disease (IBD) is a life-threatening and chronic inflammatory disease of gastrointestinal tissue, with complex pathogenesis. Current research on IBD has mainly focused on bacteria; however, the role of fungi in IBD is largely unknown due to the incomplete annotation of fungi in current genomic databases. With the development of molecular techniques, the gut mycobiome has been found to have great diversity. In addition, increasing evidence has shown intestinal mycobiome plays an important role in the physiological and pathological processes of IBD. In this review, we will systemically introduce the recent knowledge about multi-dimensional fungal dysbiosis associated with IBD, the interactions between fungus and bacteria, the role of fungi in inflammation in IBD, and highlight recent advances in the potential therapeutic role of fungus in IBD, which may hold the keys to develop new predictive, therapeutic or prognostic approaches in IBD.
Collapse
Affiliation(s)
- Sui Wang
- Laboratory of Translational Gastroenterology, Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yu-Rong Zhang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education (Peking University), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yan-Bo Yu
- Department of Gastroenterology, Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
25
|
Mishra K, Bukavina L, Ghannoum M. Symbiosis and Dysbiosis of the Human Mycobiome. Front Microbiol 2021; 12:636131. [PMID: 34630340 PMCID: PMC8493257 DOI: 10.3389/fmicb.2021.636131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
The influence of microbiological species has gained increased visibility and traction in the medical domain with major revelations about the role of bacteria on symbiosis and dysbiosis. A large reason for these revelations can be attributed to advances in deep-sequencing technologies. However, the research on the role of fungi has lagged. With the continued utilization of sequencing technologies in conjunction with traditional culture assays, we have the opportunity to shed light on the complex interplay between the bacteriome and the mycobiome as they relate to human health. In this review, we aim to offer a comprehensive overview of the human mycobiome in healthy and diseased states in a systematic way. The authors hope that the reader will utilize this review as a scaffolding to formulate their understanding of the mycobiome and pursue further research.
Collapse
Affiliation(s)
- Kirtishri Mishra
- University Hospitals Cleveland Medical Center, Urology Institute, Cleveland, OH, United States.,Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Laura Bukavina
- University Hospitals Cleveland Medical Center, Urology Institute, Cleveland, OH, United States.,Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Mahmoud Ghannoum
- Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Center for Medical Mycology, and Integrated Microbiome Core, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Department of Dermatology, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
26
|
Villar CC, Dongari-Bagtzoglou A. Fungal diseases: Oral dysbiosis in susceptible hosts. Periodontol 2000 2021; 87:166-180. [PMID: 34463992 DOI: 10.1111/prd.12378] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The oral cavity is colonized by a large number of microorganisms that are referred to collectively as the oral microbiota. These indigenous microorganisms have evolved in symbiotic relationships with the oral mucosal immune system and are involved in maintaining homeostasis in the oral cavity. Although Candida species are commonly found in the healthy oral cavity without causing infection, these fungi can become pathogenic. Recents advances indicate that the development of oral candidiasis is driven both by Candida albicans overgrowth in a dysbiotic microbiome and by disturbances in the host's immune system. Perturbation of the oral microbiota triggered by host-extrinsic (ie, medications), host-intrinsic (ie, host genetics), and microbiome-intrinsic (ie, microbial interactions) factors may increase the risk of oral candidiasis. In this review, we provide an overview of the oral mycobiome, with a particular focus on the interactions of Candida albicans with some of the most common oral bacteria and the oral mucosal immune system. Also, we present a summary of our current knowledge of the host-intrinsic and host-extrinsic factors that can predispose to oral candidiasis.
Collapse
Affiliation(s)
- Cristina Cunha Villar
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| |
Collapse
|
27
|
Li JJ, Zhu M, Kashyap PC, Chia N, Tran NH, McWilliams RR, Bekaii-Saab TS, Ma WW. The role of microbiome in pancreatic cancer. Cancer Metastasis Rev 2021; 40:777-789. [PMID: 34455517 PMCID: PMC8402962 DOI: 10.1007/s10555-021-09982-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
Recent studies of the human microbiome have offered new insights into how the microbiome can impact cancer development and treatment. Specifically, in pancreatic ductal adenocarcinoma (PDAC), the microbiota has been shown to modulate PDAC risk, contribute to tumorigenesis, impact the tumor microenvironment, and alter treatment response. These findings provide rationale for further investigations into leveraging the microbiome to develop new strategies to diagnose and treat PDAC patients. There is growing evidence that microbiome analyses have the potential to become easily performed, non-invasive diagnostic, prognostic, and predictive biomarkers in pancreatic cancer. More excitingly, there is now emerging interest in developing interventions based on the modulation of microbiota. Fecal microbiota transplantation, probiotics, dietary changes, and antibiotics are all potential strategies to augment the efficacy of current therapeutics and reduce toxicities. While there are still challenges to overcome, this is a rapidly growing field that holds promise for translation into clinical practice and provides a new approach to improving patient outcomes.
Collapse
Affiliation(s)
- Jenny Jing Li
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Mojun Zhu
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Purna C Kashyap
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nicholas Chia
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nguyen H Tran
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Robert R McWilliams
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Tanios S Bekaii-Saab
- Division of Hematology/Oncology, Mayo Clinic, 2779 E. Mayo Boulevard, Phoenix, AZ, USA
| | - Wen Wee Ma
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA.
| |
Collapse
|
28
|
A human respiratory tract-associated bacterium with an extremely small genome. Commun Biol 2021; 4:628. [PMID: 34040152 PMCID: PMC8155191 DOI: 10.1038/s42003-021-02162-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/28/2021] [Indexed: 01/05/2023] Open
Abstract
Recent advances in culture-independent microbiological analyses have greatly expanded our understanding of the diversity of unculturable microbes. However, human pathogenic bacteria differing significantly from known taxa have rarely been discovered. Here, we present the complete genome sequence of an uncultured bacterium detected in human respiratory tract named IOLA, which was determined by developing a protocol to selectively amplify extremely AT-rich genomes. The IOLA genome is 303,838 bp in size with a 20.7% GC content, making it the smallest and most AT-rich genome among known human-associated bacterial genomes to our best knowledge and comparable to those of insect endosymbionts. While IOLA belongs to order Rickettsiales (mostly intracellular parasites), the gene content suggests an epicellular parasitic lifestyle. Surveillance of clinical samples provides evidence that IOLA can be predominantly detected in patients with respiratory bacterial infections and can persist for at least 15 months in the respiratory tract, suggesting that IOLA is a human respiratory tract-associated bacterium. Kazumasa Fukuda et al. complete a new genome sequence for an uncultured bacterium detected in human respiratory tract named IOLA. The IOLA genome is found to be among the smallest and most AT-rich of known human-associated bacterial genomes and surveillance of clinical samples indicates that IOLA is in fact a human respiratory tract-associated bacterium.
Collapse
|
29
|
Castaño A, Prosenkov A, Baragaño D, Otaegui N, Sastre H, Rodríguez-Valdés E, Gallego JLR, Peláez AI. Effects of in situ Remediation With Nanoscale Zero Valence Iron on the Physicochemical Conditions and Bacterial Communities of Groundwater Contaminated With Arsenic. Front Microbiol 2021; 12:643589. [PMID: 33815330 PMCID: PMC8010140 DOI: 10.3389/fmicb.2021.643589] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Nanoscale Zero-Valent Iron (nZVI) is a cost-effective nanomaterial that is widely used to remove a broad range of metal(loid)s and organic contaminants from soil and groundwater. In some cases, this material alters the taxonomic and functional composition of the bacterial communities present in these matrices; however, there is no conclusive data that can be generalized to all scenarios. Here we studied the effect of nZVI application in situ on groundwater from the site of an abandoned fertilizer factory in Asturias, Spain, mainly polluted with arsenic (As). The geochemical characteristics of the water correspond to a microaerophilic and oligotrophic environment. Physico-chemical and microbiological (cultured and total bacterial diversity) parameters were monitored before and after nZVI application over six months. nZVI treatment led to a marked increase in Fe(II) concentration and a notable fall in the oxidation-reduction potential during the first month of treatment. A substantial decrease in the concentration of As during the first days of treatment was observed, although strong fluctuations were subsequently detected in most of the wells throughout the six-month experiment. The possible toxic effects of nZVI on groundwater bacteria could not be clearly determined from direct observation of those bacteria after staining with viability dyes. The number of cultured bacteria increased during the first two weeks of the treatment, although this was followed by a continuous decrease for the following two weeks, reaching levels moderately below the initial number at the end of sampling, and by changes in their taxonomic composition. Most bacteria were tolerant to high As(V) concentrations and showed the presence of diverse As resistance genes. A more complete study of the structure and diversity of the bacterial community in the groundwater using automated ribosomal intergenic spacer analysis (ARISA) and sequencing of the 16S rRNA amplicons by Illumina confirmed significant alterations in its composition, with a reduction in richness and diversity (the latter evidenced by Illumina data) after treatment with nZVI. The anaerobic conditions stimulated by treatment favored the development of sulfate-reducing bacteria, thereby opening up the possibility to achieve more efficient removal of As.
Collapse
Affiliation(s)
- Ana Castaño
- Area of Microbiology, Department of Functional Biology and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Oviedo, Spain
| | - Alexander Prosenkov
- Area of Microbiology, Department of Functional Biology and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Oviedo, Spain
| | - Diego Baragaño
- INDUROT and Environmental Biogeochemistry and Raw Materials Group, Campus of Mieres, University of Oviedo, Mieres, Spain
| | - Nerea Otaegui
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Derio, Spain
| | - Herminio Sastre
- Department of Chemical and Environmental Engineering and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Oviedo, Spain
| | - Eduardo Rodríguez-Valdés
- INDUROT and Environmental Biogeochemistry and Raw Materials Group, Campus of Mieres, University of Oviedo, Mieres, Spain
| | - José Luis R Gallego
- INDUROT and Environmental Biogeochemistry and Raw Materials Group, Campus of Mieres, University of Oviedo, Mieres, Spain
| | - Ana Isabel Peláez
- Area of Microbiology, Department of Functional Biology and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Oviedo, Spain.,University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
30
|
Francioli D, Lentendu G, Lewin S, Kolb S. DNA Metabarcoding for the Characterization of Terrestrial Microbiota-Pitfalls and Solutions. Microorganisms 2021; 9:361. [PMID: 33673098 PMCID: PMC7918050 DOI: 10.3390/microorganisms9020361] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Soil-borne microbes are major ecological players in terrestrial environments since they cycle organic matter, channel nutrients across trophic levels and influence plant growth and health. Therefore, the identification, taxonomic characterization and determination of the ecological role of members of soil microbial communities have become major topics of interest. The development and continuous improvement of high-throughput sequencing platforms have further stimulated the study of complex microbiota in soils and plants. The most frequently used approach to study microbiota composition, diversity and dynamics is polymerase chain reaction (PCR), amplifying specific taxonomically informative gene markers with the subsequent sequencing of the amplicons. This methodological approach is called DNA metabarcoding. Over the last decade, DNA metabarcoding has rapidly emerged as a powerful and cost-effective method for the description of microbiota in environmental samples. However, this approach involves several processing steps, each of which might introduce significant biases that can considerably compromise the reliability of the metabarcoding output. The aim of this review is to provide state-of-the-art background knowledge needed to make appropriate decisions at each step of a DNA metabarcoding workflow, highlighting crucial steps that, if considered, ensures an accurate and standardized characterization of microbiota in environmental studies.
Collapse
Affiliation(s)
- Davide Francioli
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany; (S.L.); (S.K.)
| | - Guillaume Lentendu
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland;
| | - Simon Lewin
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany; (S.L.); (S.K.)
| | - Steffen Kolb
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany; (S.L.); (S.K.)
| |
Collapse
|
31
|
Upper Respiratory Dysbiosis with a Facultative-dominated Ecotype in Advanced Lung Disease and Dynamic Change after Lung Transplant. Ann Am Thorac Soc 2020; 16:1383-1391. [PMID: 31415219 DOI: 10.1513/annalsats.201904-299oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rationale: The oropharyngeal microbiome is a primary source of lung microbiota, contributes to lower respiratory infection, and is also a driver of oral health.Objectives: We sought to understand oropharyngeal microbial communities in advanced lung disease, community dynamics after lung transplantation, and ecological features of dysbiosis.Methods: Oropharyngeal wash samples were obtained from individuals with end-stage disease awaiting transplantation (n = 22) and longitudinally from individuals at 6 weeks, 3 months, and 6 months after transplantation (n = 33), along with healthy control subjects (n = 14). Bacterial 16S and fungal internal transcribed spacer rRNA regions were deep-sequenced, and bacterial community respiratory patterns were imputed from taxonomic composition.Results: Healthy subjects' oropharyngeal microbiomes showed a gradient of community types reflecting relative enrichment of strictly anaerobic, aerobic, or facultative anaerobic bacteria. Patients with end-stage lung disease showed severe dysbiosis by both taxonomic composition and respiration phenotypes, with reduced richness and diversity, increased facultative and decreased aerobic bacteria, and absence of communities characterized by obligate aerobes. In patients at 6 weeks and 3 months post-transplant, richness and diversity were intermediate between healthy and pretransplant subjects, with near-normal distribution of community types. However, by 6 months post-transplant, oropharyngeal wash resembled the low-diversity facultative-dominated profile of pretransplant subjects. Community ecotype correlated with Candida abundance.Conclusions: End-stage lung disease is associated with marked upper respiratory tract dysbiosis involving both community structure and respiratory metabolism profiles of constituent bacteria. Dynamic changes occur after lung transplantation, with partial normalization early but later appearance of severe dysbiosis similar to pretransplant patients. Aberrant oropharyngeal communities may predispose to abnormal lung microbiota and infection risk both in advanced lung disease and after transplantation.
Collapse
|
32
|
Angebault C, Payen M, Woerther PL, Rodriguez C, Botterel F. Combined bacterial and fungal targeted amplicon sequencing of respiratory samples: Does the DNA extraction method matter? PLoS One 2020; 15:e0232215. [PMID: 32343737 PMCID: PMC7188255 DOI: 10.1371/journal.pone.0232215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background High-throughput sequencing techniques are used to analyse the diversity of the respiratory microbiota in health and disease. Although extensive data are available regarding bacterial respiratory microbiota, its fungal component remains poorly studied. This is partly due to the technical issues associated with fungal metagenomics analyses. In this study, we compared two DNA extraction protocols and two fungal amplification targets for combined bacterial and fungal targeted amplicon sequencing analyses of the respiratory microbiota. Methods Six sputa, randomly selected from routine samples in Mondor Hospital (Creteil, France) and treated anonymously, were tested after bacterial and fungal routine culture. Two of which were spiked with Aspergillus Fumigati and Aspergillus Nigri (105 conidia/mL). After mechanical lysis, DNA was extracted using automated QIAsymphony® extraction (AQE) or manual PowerSoil® MoBio extraction (MPE). DNA yield and purity were compared. DNA extracted from spiked sputa was subjected to (i) real-time PCR for Aspergillus DNA detection and (ii) combined metagenomic analyses targeting barcoded primers for fungal ITS1 and ITS2, and bacterial V1-V2 and V3-V4 16S regions. Amplicon libraries were prepared using MiSeq Reagent V3 kit on Illumina platform. Data were analysed using PyroMIC© and SHAMAN software, and compared with culture results. Results AQE extraction provided a higher yield of DNA (AQE/MPE DNA ratio = 4.5 [1.3–11]) in a shorter time. The yield of Aspergillus DNA detected by qPCR was similar for spiked sputa regardless of extraction protocol. The extraction moderately impacted the diversity or relative abundances of bacterial communities using targeted amplicon sequencing (2/43 taxa impacted). For fungi, the relative abundances of 4/11 major taxa were impacted and AQE results were closer to culture results. The V1-V2 or V3-V4 and ITS1 or ITS2 targets assessed similarly the diversity of bacterial and fungal major taxa, but ITS2 and V3-V4 detected more minor taxa. Conclusion Our results showed the importance of DNA extraction for combined bacterial and fungal targeted metagenomics of respiratory samples. The extraction protocol can affect DNA yield and the relative abundances of few bacterial but more fungal taxa. For fungal analysis, ITS2 allowed the detection of a greater number of minor taxa compared with ITS1.
Collapse
Affiliation(s)
- Cécile Angebault
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, CHU Henri Mondor, Assistance Publique des Hôpitaux de Paris (APHP), Créteil, France
- EA DYNAMiC 7380, Faculté de Santé, Univ Paris-Est Créteil, Créteil, France
- EA DYNAMiC 7380, Ecole nationale vétérinaire d’Alfort, USC Anses, Maison-Alfort, France
- * E-mail:
| | - Mathilde Payen
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, CHU Henri Mondor, Assistance Publique des Hôpitaux de Paris (APHP), Créteil, France
| | - Paul-Louis Woerther
- EA DYNAMiC 7380, Faculté de Santé, Univ Paris-Est Créteil, Créteil, France
- Unité de Bactériologie-Hygiène, Département de Prévention, Diagnostic et Traitement des Infections, CHU Henri Mondor, APHP, Créteil, France
| | - Christophe Rodriguez
- Next-Generation Sequencing Platform”Génomiques”, INSERM U955, APHP, IMRB Créteil, Créteil, France
| | - Françoise Botterel
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, CHU Henri Mondor, Assistance Publique des Hôpitaux de Paris (APHP), Créteil, France
- EA DYNAMiC 7380, Faculté de Santé, Univ Paris-Est Créteil, Créteil, France
- EA DYNAMiC 7380, Ecole nationale vétérinaire d’Alfort, USC Anses, Maison-Alfort, France
| |
Collapse
|
33
|
Shah RM, McKenzie EJ, Rosin MT, Jadhav SR, Gondalia SV, Rosendale D, Beale DJ. An Integrated Multi-Disciplinary Perspectivefor Addressing Challenges of the Human Gut Microbiome. Metabolites 2020; 10:E94. [PMID: 32155792 PMCID: PMC7143645 DOI: 10.3390/metabo10030094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
Our understanding of the human gut microbiome has grown exponentially. Advances in genome sequencing technologies and metagenomics analysis have enabled researchers to study microbial communities and their potential function within the context of a range of human gut related diseases and disorders. However, up until recently, much of this research has focused on characterizing the gut microbiological community structure and understanding its potential through system wide (meta) genomic and transcriptomic-based studies. Thus far, the functional output of these microbiomes, in terms of protein and metabolite expression, and within the broader context of host-gut microbiome interactions, has been limited. Furthermore, these studies highlight our need to address the issues of individual variation, and of samples as proxies. Here we provide a perspective review of the recent literature that focuses on the challenges of exploring the human gut microbiome, with a strong focus on an integrated perspective applied to these themes. In doing so, we contextualize the experimental and technical challenges of undertaking such studies and provide a framework for capitalizing on the breadth of insight such approaches afford. An integrated perspective of the human gut microbiome and the linkages to human health will pave the way forward for delivering against the objectives of precision medicine, which is targeted to specific individuals and addresses the issues and mechanisms in situ.
Collapse
Affiliation(s)
- Rohan M. Shah
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Dutton Park, QLD 4102, Australia
| | - Elizabeth J. McKenzie
- Liggins Institute, The University of Auckland, Grafton, Auckland 1142, New Zealand; (E.J.M.); (M.T.R.)
| | - Magda T. Rosin
- Liggins Institute, The University of Auckland, Grafton, Auckland 1142, New Zealand; (E.J.M.); (M.T.R.)
| | - Snehal R. Jadhav
- Centre for Advanced Sensory Science, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia;
| | - Shakuntla V. Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
| | | | - David J. Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Dutton Park, QLD 4102, Australia
| |
Collapse
|
34
|
Sen S, Mansell TJ. Yeasts as probiotics: Mechanisms, outcomes, and future potential. Fungal Genet Biol 2020; 137:103333. [PMID: 31923554 DOI: 10.1016/j.fgb.2020.103333] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/18/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
The presence of commensal fungal species in the human gut indicates that organisms from this kingdom have the potential to benefit the host as well. Saccharomyces boulardii, a yeast strain isolated about a hundred years ago, is the most well-characterized probiotic yeast. Though for the most part it genetically resembles Saccharomyces cerevisiae, specific phenotypic differences make it better suited for the gut microenvironment such as better acid and heat tolerance. Several studies using animal hosts suggest that S. boulardii can be used as a biotherapeutic in humans. Clinical trials indicate that it can alleviate symptoms from gastrointestinal (GI) tract infections to some extent, but further trials are needed to understand the full therapeutic potential of S. boulardii. Improvement on probiotic function using engineered yeast is an attractive future direction, though genome modification tools for use in S. boulardii have been limited until recently. However, some tools available for S. cerevisiae should be applicable for S. boulardii as well. In this review, we summarize the observed probiotic effect of this yeast and the state of the art for genome engineering tools that could help enhance its probiotic properties.
Collapse
Affiliation(s)
- Swastik Sen
- Interdepartmental Graduate Microbiology Program, Iowa State University, 4122A, BRL, 617 Bissel Rd, Ames, IA 50011, USA.
| | - Thomas J Mansell
- Interdepartmental Graduate Microbiology Program, Iowa State University, 4122A, BRL, 617 Bissel Rd, Ames, IA 50011, USA; Department of Chemical and Biological Engineering, Iowa State University, 2112 Sweeney Hall, 618 Bissel Rd, Ames, IA 50011, USA.
| |
Collapse
|
35
|
Barrera-Vázquez OS, Gomez-Verjan JC. The Unexplored World of Human Virome, Mycobiome, and Archaeome in Aging. J Gerontol A Biol Sci Med Sci 2019; 75:1834-1837. [DOI: 10.1093/gerona/glz274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Indexed: 12/18/2022] Open
Abstract
Abstract
In the last decades, improvements in different aspects of sanitation, medical care, and nutrition, among others, have permitted an increase in the average lifespan of human population around the world. These advances have stimulated an increased interest in the study of the aging process and age-sensitive characteristics, such as the microbial community that colonizes the human body (microbiome). The human microbiome is composed of bacteria (bacteriome), archaea (archaeome), fungi (mycobiome), and viruses (virome). To date, research has mainly been centered on the composition of the bacteriome, with other members remain poorly studied. Interestingly, changes in the composition of the microbiome have been implicated in aging and age-related diseases. Therefore, in the present perspective, we suggest expanding the scope to research to include the role and the possible associations that the other members of the microbiome could have in the aging organism. An expanded view of the microbiome would increase our knowledge of the physiology of aging and may be particularly valuable for the treatment and diagnosis of age-related diseases.
Collapse
|
36
|
Ackerman AL, Chai TC. The Bladder is Not Sterile: an Update on the Urinary Microbiome. CURRENT BLADDER DYSFUNCTION REPORTS 2019; 14:331-341. [PMID: 32612735 DOI: 10.1007/s11884-019-00543-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purpose of Review The article discusses (1) techniques used to study bacterial urinary microbiota; (2) existence of non-bacterial urinary microbiota; (3) associations between changes in urinary microbiota and various benign lower urinary tract disorders. Recent Findings Urine harbors a diverse microbial community that resides within it. A multitude of studies have identified differences in these communities associated with urologic conditions, suggesting that microbial communities may maintain normal bladder homeostasis. Technological advances in analytic approaches have improved our understanding of the urinary microbiome. The choice of urine sampling method (voided, catheterized, or aspirated) will significantly influence microbiome findings. Sex and age highly influence urinary microbiota; in addition to rigorous inclusion criteria, microbial studies must be sufficiently powered to overcome the substantial interindividual variability of urinary microbiota. Regardless of these complicating factors, studies have identified microbial patterns correlating with both urologic diagnoses and treatment responses. Summary Without a clear understanding of the variability of and exogenous influences on the urinary microbiota in the absence of disease, it has been challenging to reveal the microbial patterns responsible for disease pathophysiology. Host mechanisms in response to the urinary microbiome are also poorly understood. Additional research can address whether the manipulation of urinary microbiota will benefit lower urinary tract health.
Collapse
Affiliation(s)
- A Lenore Ackerman
- Cedars-Sinai Medical Center, 99 N. La Cienega Blvd. Suite M102, Beverly Hills, CA 90211, USA
| | - Toby C Chai
- Boston Medical Center, Boston University School of Medicine, 725 Albany St., Suite 3B, Shapiro Building, Boston, MA 02118, USA
| |
Collapse
|
37
|
Frau A, Kenny JG, Lenzi L, Campbell BJ, Ijaz UZ, Duckworth CA, Burkitt MD, Hall N, Anson J, Darby AC, Probert CSJ. DNA extraction and amplicon production strategies deeply inf luence the outcome of gut mycobiome studies. Sci Rep 2019; 9:9328. [PMID: 31249384 PMCID: PMC6597572 DOI: 10.1038/s41598-019-44974-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/28/2019] [Indexed: 12/28/2022] Open
Abstract
Microbial ecology studies are often performed through extraction of metagenomic DNA followed by amplification and sequencing of a marker. It is known that each step may bias the results. These biases have been explored for the study of bacterial communities, but rarely for fungi. Our aim was therefore to evaluate methods for the study of the gut mycobiome. We first evaluated DNA extraction methods in fungal cultures relevant to the gut. Afterwards, to assess how these methods would behave with an actual sample, stool from a donor was spiked with cells from the same cultures. We found that different extraction kits favour some species and bias against others. In terms of amplicon sequencing, we evaluated five primer sets, two for ITS2 and one for ITS1, 18S and 28S rRNA. Results showed that 18S rRNA outperformed the other markers: it was able to amplify all the species in the mock community and to discriminate among them. ITS primers showed both amplification and sequencing biases, the latter related to the variable length of the product. We identified several biases in the characterisation of the gut mycobiome and showed how crucial it is to be aware of these before drawing conclusions from the results of these studies.
Collapse
Affiliation(s)
- Alessandra Frau
- Gastroenterology Research Unit, Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - John G Kenny
- Centre for Genomic Research (CGR), University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.,Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Luca Lenzi
- Centre for Genomic Research (CGR), University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Barry J Campbell
- Gastroenterology Research Unit, Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Umer Z Ijaz
- School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow, G12 8LT, UK
| | - Carrie A Duckworth
- Gastroenterology Research Unit, Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Michael D Burkitt
- Gastroenterology Research Unit, Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK.,Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Dover Street, Manchester, M13 9PT, UK
| | - Neil Hall
- Earlham Institute, Colney Ln, Norwich, NR4 7UZ, UK
| | - Jim Anson
- Liverpool Clinical Laboratories Directorate of Infection and Immunity, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Prescot Street, Liverpool, L7 8XP, UK
| | - Alistair C Darby
- Centre for Genomic Research (CGR), University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Christopher S J Probert
- Gastroenterology Research Unit, Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK.
| |
Collapse
|
38
|
McGinniss JE, Imai I, Simon-Soro A, Brown MC, Knecht VR, Frye L, Ravindran PM, Dothard MI, Wadell DA, Sohn MB, Li H, Christie JD, Diamond JM, Haas AR, Lanfranco AR, DiBardino DM, Bushman FD, Collman RG. Molecular analysis of the endobronchial stent microbial biofilm reveals bacterial communities that associate with stent material and frequent fungal constituents. PLoS One 2019; 14:e0217306. [PMID: 31141557 PMCID: PMC6541290 DOI: 10.1371/journal.pone.0217306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/08/2019] [Indexed: 12/19/2022] Open
Abstract
Endobronchial stents are increasingly used to treat airway complications in multiple conditions including lung transplantation but little is known about the biofilms that form on these devices. We applied deep sequencing to profile luminal biofilms of 46 endobronchial stents removed from 20 subjects primarily with lung transplantation-associated airway compromise. Microbial communities were analyzed by bacterial 16S rRNA and fungal ITS marker gene sequencing. Corynebacterium was the most common bacterial taxa across biofilm communities. Clustering analysis revealed three bacterial biofilm types: one low diversity and dominated by Corynebacterium; another was polymicrobial and characterized by Staphylococcus; and the third was polymicrobial and associated with Pseudomonas, Streptococcus, and Prevotella. Biofilm type was significantly correlated with stent material: covered metal with the Staphylococcus-type biofilm, silicone with the Corynebacterium-dominated biofilm, and uncovered metal with the polymicrobial biofilm. Subjects with sequential stents had frequent transitions between community types. Fungal analysis found Candida was most prevalent, Aspergillus was common and highly enriched in two of three stents associated with airway anastomotic dehiscence, and fungal taxa not typically considered pathogens were highly enriched in some stents. Thus, molecular analysis revealed a complex and dynamic endobronchial stent biofilm with three bacterial types that associate with stent material, a central role for Corynebacterium, and that both expected and unexpected fungi inhabit this unique niche. The current work provides a foundation for studies to investigate the relationship between stent biofilm composition and clinical outcomes, mechanisms of biofilm establishment, and strategies for improved stent technology and use in airway compromise.
Collapse
Affiliation(s)
- John E. McGinniss
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ize Imai
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Aurea Simon-Soro
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Melanie C. Brown
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Vincent R. Knecht
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Laura Frye
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Priyanka M. Ravindran
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marisol I. Dothard
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dylan A. Wadell
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael B. Sohn
- Department of Epidemiology, Biostatistics and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hongzhe Li
- Department of Epidemiology, Biostatistics and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jason D. Christie
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Epidemiology, Biostatistics and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joshua M. Diamond
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrew R. Haas
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anthony R. Lanfranco
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David M. DiBardino
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (RGC); (FDB)
| | - Ronald G. Collman
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (RGC); (FDB)
| |
Collapse
|
39
|
Ackerman AL, Anger JT, Khalique MU, Ackerman JE, Tang J, Kim J, Underhill DM, Freeman MR. Optimization of DNA extraction from human urinary samples for mycobiome community profiling. PLoS One 2019; 14:e0210306. [PMID: 31022216 PMCID: PMC6483181 DOI: 10.1371/journal.pone.0210306] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/15/2019] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Recent data suggest the urinary tract hosts a microbial community of varying composition, even in the absence of infection. Culture-independent methodologies, such as next-generation sequencing of conserved ribosomal DNA sequences, provide an expansive look at these communities, identifying both common commensals and fastidious organisms. A fundamental challenge has been the isolation of DNA representative of the entire resident microbial community, including fungi. MATERIALS AND METHODS We evaluated multiple modifications of commonly-used DNA extraction procedures using standardized male and female urine samples, comparing resulting overall, fungal and bacterial DNA yields by quantitative PCR. After identifying protocol modifications that increased DNA yields (lyticase/lysozyme digestion, bead beating, boil/freeze cycles, proteinase K treatment, and carrier DNA use), all modifications were combined for systematic confirmation of optimal protocol conditions. This optimized protocol was tested against commercially available methodologies to compare overall and microbial DNA yields, community representation and diversity by next-generation sequencing (NGS). RESULTS Overall and fungal-specific DNA yields from standardized urine samples demonstrated that microbial abundances differed significantly among the eight methods used. Methodologies that included multiple disruption steps, including enzymatic, mechanical, and thermal disruption and proteinase digestion, particularly in combination with small volume processing and pooling steps, provided more comprehensive representation of the range of bacterial and fungal species. Concentration of larger volume urine specimens at low speed centrifugation proved highly effective, increasing resulting DNA levels and providing greater microbial representation and diversity. CONCLUSIONS Alterations in the methodology of urine storage, preparation, and DNA processing improve microbial community profiling using culture-independent sequencing methods. Our optimized protocol for DNA extraction from urine samples provided improved fungal community representation. Use of this technique resulted in equivalent representation of the bacterial populations as well, making this a useful technique for the concurrent evaluation of bacterial and fungal populations by NGS.
Collapse
Affiliation(s)
- A. Lenore Ackerman
- Department of Surgery, Division of Urology, Cedars−Sinai Medical Center, Los Angeles, CA, United States of America
| | - Jennifer Tash Anger
- Department of Surgery, Division of Urology, Cedars−Sinai Medical Center, Los Angeles, CA, United States of America
| | - Muhammad Umair Khalique
- Department of Surgery, Division of Urology, Cedars−Sinai Medical Center, Los Angeles, CA, United States of America
| | - James E. Ackerman
- Department of Surgery, Division of Urology, Cedars−Sinai Medical Center, Los Angeles, CA, United States of America
| | - Jie Tang
- Department of Biomedical Sciences, Cedars−Sinai Medical Center, Los Angeles, CA, United States of America
| | - Jayoung Kim
- Department of Surgery, Division of Urology, Cedars−Sinai Medical Center, Los Angeles, CA, United States of America
- Department of Biomedical Sciences, Cedars−Sinai Medical Center, Los Angeles, CA, United States of America
| | - David M. Underhill
- Department of Biomedical Sciences, Cedars−Sinai Medical Center, Los Angeles, CA, United States of America
- Department of Medicine, Cedars−Sinai Medical Center, Los Angeles, CA, United States of America
| | - Michael R. Freeman
- Department of Surgery, Division of Urology, Cedars−Sinai Medical Center, Los Angeles, CA, United States of America
- Department of Biomedical Sciences, Cedars−Sinai Medical Center, Los Angeles, CA, United States of America
| | | |
Collapse
|
40
|
Clarke EL, Lauder AP, Hofstaedter CE, Hwang Y, Fitzgerald AS, Imai I, Biernat W, Rękawiecki B, Majewska H, Dubaniewicz A, Litzky LA, Feldman MD, Bittinger K, Rossman MD, Patterson KC, Bushman FD, Collman RG. Microbial Lineages in Sarcoidosis. A Metagenomic Analysis Tailored for Low-Microbial Content Samples. Am J Respir Crit Care Med 2019; 197:225-234. [PMID: 28846439 DOI: 10.1164/rccm.201705-0891oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RATIONALE The etiology of sarcoidosis is unknown, but microbial agents are suspected as triggers. OBJECTIVES We sought to identify bacterial, fungal, or viral lineages in specimens from patients with sarcoidosis enriched relative to control subjects using metagenomic DNA sequencing. Because DNA from environmental contamination contributes disproportionately to samples with low authentic microbial content, we developed improved methods for filtering environmental contamination. METHODS We analyzed specimens from subjects with sarcoidosis (n = 93), control subjects without sarcoidosis (n = 72), and various environmental controls (n = 150). Sarcoidosis specimens consisted of two independent sets of formalin-fixed, paraffin-embedded lymph node biopsies, BAL, Kveim reagent, and fresh granulomatous spleen from a patient with sarcoidosis. All specimens were analyzed by bacterial 16S and fungal internal transcribed spacer ribosomal RNA gene sequencing. In addition, BAL was analyzed by shotgun sequencing of fractions enriched for viral particles, and Kveim and spleen were subjected to whole-genome shotgun sequencing. MEASUREMENTS AND MAIN RESULTS In one tissue set, fungi in the Cladosporiaceae family were enriched in sarcoidosis compared with nonsarcoidosis tissues; in the other tissue set, we detected enrichment of several bacterial lineages in sarcoidosis but not Cladosporiaceae. BAL showed limited enrichment of Aspergillus fungi. Several microbial lineages were detected in Kveim and spleen, including Cladosporium. No microbial lineage was enriched in more than one sample type after correction for multiple comparisons. CONCLUSIONS Metagenomic sequencing revealed enrichment of microbes in single types of sarcoidosis samples but limited concordance across sample types. Statistical analysis accounting for environmental contamination was essential to avoiding false positives.
Collapse
Affiliation(s)
| | | | - Casey E Hofstaedter
- 2 Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | | | | | | | | | | | | | - Anna Dubaniewicz
- 5 Department of Pulmonology, Medical University of Gdansk, Gdansk, Poland
| | - Leslie A Litzky
- 6 Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael D Feldman
- 6 Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kyle Bittinger
- 2 Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | | | | | | | | |
Collapse
|
41
|
De Filippo C, Di Paola M, Giani T, Tirelli F, Cimaz R. Gut microbiota in children and altered profiles in juvenile idiopathic arthritis. J Autoimmun 2019; 98:1-12. [PMID: 30638708 DOI: 10.1016/j.jaut.2019.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022]
Abstract
Microbial diversity plays a key role in the maintenance of intestinal homeostasis and in the development of the immune system in the gut mucosa. Maybe one of the most important function of our gut microbiota is the immune system education, in particular the discrimination of friends from foes that occurs during childhood. In addition to bacterial antigens, several metabolites of microbial origin have a crucial role in training of the immune system, such as Short Chain Fatty Acids (SCFAs). There are many evidences on the role of the gut microbiota in rheumatic diseases, in particular modifications of microbiota composition causing dysbiosis that, in turn, can induce gut permeability, and thus immunological imbalance and trigger inflammation. In particular, immune cells can reach extra-intestinal sites, such as joints and trigger local inflammation. Childhood is a crucial period of life for development and evolution of the gut microbiota, especially for the acquisition of fundamental functions such as immunotolerance of commensal microorganisms. For this reason, gut dysbiosis is gaining interest as a potential pathogenetic factor for Juvenile Idiopathic Arthritis (JIA). Here we summarized the studies conducted on JIA patients in which a pro-arthritogenic microbial profiles has been observed; this, together with a depletion of microbial biodiversity, clearly distinguish patients' from healthy subjects' microbiota. Further studies are however needed to better clarify the role of microbiota in JIA pathogenesis.
Collapse
Affiliation(s)
- Carlotta De Filippo
- Institute of Biology and Agrarian Biotechnology (IBBA), National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy
| | - Monica Di Paola
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Teresa Giani
- Rheumatology Unit, Anna Meyer Children's Hospital, University of Florence, Viale G. Pieraccini 24, 50139, Florence, Italy; Department of Medica Biotechnologies, University of Siena, Viale Mario Bracci, 16 53100, Siena, Italy
| | - Francesca Tirelli
- Rheumatology Unit, Anna Meyer Children's Hospital, University of Florence, Viale G. Pieraccini 24, 50139, Florence, Italy
| | - Rolando Cimaz
- Rheumatology Unit, Anna Meyer Children's Hospital, University of Florence, Viale G. Pieraccini 24, 50139, Florence, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, Meyer Children's Hospital, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
42
|
Forbes JD, Bernstein CN, Tremlett H, Van Domselaar G, Knox NC. A Fungal World: Could the Gut Mycobiome Be Involved in Neurological Disease? Front Microbiol 2019; 9:3249. [PMID: 30687254 PMCID: PMC6333682 DOI: 10.3389/fmicb.2018.03249] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/14/2018] [Indexed: 02/05/2023] Open
Abstract
The human microbiome has received decades of attention from scientific and medical research communities. The human gastrointestinal tract is host to immense populations of microorganisms including bacteria, viruses, archaea, and fungi (the gut microbiota). High-throughput sequencing and computational advancements provide unprecedented ability to investigate the structure and function of microbial communities associated with the human body in health and disease. Most research to date has largely focused on elucidating the bacterial component of the human gut microbiota. Study of the gut "mycobiota," which refers to the diverse array of fungal species, is a relatively new and rapidly progressing field. Though omnipresent, the number and abundance of fungi occupying the human gut is orders of magnitude smaller than that of bacteria. Recent insights however, have suggested that the gut mycobiota may be intricately linked to health and disease. Evaluation of the gut mycobiota has shown that not only are the fungal communities altered in disease, but they also play a role in maintaining intestinal homeostasis and influencing systemic immunity. In addition, it is now widely accepted that host-fungi and bacteria-fungi associations are critical to host health. While research of the gut mycobiota in health and disease is on the rise, little research has been performed in the context of neuroimmune and neurodegenerative conditions. Gut microbiota dysbiosis (specifically bacteria and archaea) have been reported in neurological diseases such as multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's, among others. Given the widely accepted bacteria-fungi associations and paucity of mycobiota-specific studies in neurological disease, this review discusses the potential role fungi may play in multiple sclerosis and other neurological diseases. Herein, we provide an overview of recent advances in gut mycobiome research and discuss the plausible role of both intestinal and non-intestinal fungi in the context of neuroimmune and neurodegenerative conditions.
Collapse
Affiliation(s)
- Jessica D. Forbes
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Charles N. Bernstein
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Helen Tremlett
- Centre for Brain Health and Faculty of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Natalie C. Knox
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
43
|
Alonso L, Creuzé-des-Châtelliers C, Trabac T, Dubost A, Moënne-Loccoz Y, Pommier T. Rock substrate rather than black stain alterations drives microbial community structure in the passage of Lascaux Cave. MICROBIOME 2018; 6:216. [PMID: 30518415 PMCID: PMC6282324 DOI: 10.1186/s40168-018-0599-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/18/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND The World-famous UNESCO heritage from the Paleolithic human society, Lascaux Cave (France), has endeavored intense microclimatic perturbations, in part due to high touristic pressure. These perturbations have resulted in numerous disturbances of the cave ecosystem, including on its microbial compartment, which resulted in the formation of black stains especially on the rock faces of the passage. We investigated the cave microbiome in this part of Lascaux by sampling three mineral substrates (soil, banks, and inclined planes) on and outside stains to assess current cave microbial assemblage and explore the possibility that pigmented microorganisms involved in stain development occur as microbial consortia. METHODS Microbial abundance and diversity were assessed by means of quantitative PCR and high-throughput sequencing (Illumina MiSeq) of several DNA and cDNA taxonomic markers. Five sampling campaigns were carried out during winter and summer to embrace potential seasonal effect in this somewhat stable environment (based on measurements of temperature and CO2 concentration). RESULTS While the season or type of mineral substrate did not affect the abundances of bacteria and micro-eukaryotes on or outside stains, mineral substrate rather than stain presence appears to be the most significant factor determining microbial diversity and structuring microbial community, regardless of whether DNA or cDNA markers were considered. A phylogenetic signal was also detected in relation to substrate types, presence of stains but not with season among the OTUs common to the three substrates. Co-occurrence network analyses showed that most bacterial and fungal interactions were positive regardless of the factor tested (season, substrate, or stain), but these networks varied according to ecological conditions and time. Microorganisms known to harbor pigmentation ability were well established inside but also outside black stains, which may be prerequisite for subsequent stain formation. CONCLUSIONS This first high throughput sequencing performed in Lascaux Cave showed that black stains were secondary to mineral substrate in determining microbiome community structure, regardless of whether total or transcriptionally active bacterial and micro-eukaryotic communities were considered. These results revealed the potential for new stain formation and highlight the need for careful microbiome management to avoid further cave wall degradation.
Collapse
Affiliation(s)
- Lise Alonso
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557/1418 Ecologie Microbienne, 69622, Villeurbanne, France
| | - Charline Creuzé-des-Châtelliers
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557/1418 Ecologie Microbienne, 69622, Villeurbanne, France
| | - Théo Trabac
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557/1418 Ecologie Microbienne, 69622, Villeurbanne, France
| | - Audrey Dubost
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557/1418 Ecologie Microbienne, 69622, Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557/1418 Ecologie Microbienne, 69622, Villeurbanne, France
| | - Thomas Pommier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557/1418 Ecologie Microbienne, 69622, Villeurbanne, France.
| |
Collapse
|
44
|
Godoy-Vitorino F, Romaguera J, Zhao C, Vargas-Robles D, Ortiz-Morales G, Vázquez-Sánchez F, Sanchez-Vázquez M, de la Garza-Casillas M, Martinez-Ferrer M, White JR, Bittinger K, Dominguez-Bello MG, Blaser MJ. Cervicovaginal Fungi and Bacteria Associated With Cervical Intraepithelial Neoplasia and High-Risk Human Papillomavirus Infections in a Hispanic Population. Front Microbiol 2018; 9:2533. [PMID: 30405584 PMCID: PMC6208322 DOI: 10.3389/fmicb.2018.02533] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/04/2018] [Indexed: 01/28/2023] Open
Abstract
The human cervicovaginal microbiota resides at an interface between the host and the environment and may affect susceptibility to disease. Puerto Rican women have high human papillomavirus (HPV) infection and cervical cancer rates. We hypothesized that the population structure of the cervicovaginal bacterial and fungal biota changed with cervical squamous intraepithelial lesions and HPV infections. DNA was extracted from cervix, introitus, and anal sites of 62 patients attending high-risk San Juan clinics. The 16S rRNA V4 region and ITS-2 fungal regions were amplified and sequenced using Illumina technology. HPV genotyping was determined by reverse hybridization with the HPV SPF10-LiPA25 kit. HPV prevalence was 84% of which ∼44% subjects were infected with high-risk HPV, ∼35% were co-infected with as many as 9 HPV types and ∼5% were infected with exclusively low-risk HPV types. HPV diversity did not change with cervical dysplasia. Cervical bacteria were more diverse in patients with CIN3 pre-cancerous lesions. We found enrichment of Atopobium vaginae and Gardnerella vaginalis in patients with CIN3 lesions. We found no significant bacterial biomarkers associated with HPV infections. Fungal diversity was significantly higher in cervical samples with high-risk HPV and introitus samples of patients with Atypical Squamous Cells of Undetermined Significance (ASCUS). Fungal biomarker signatures for vagina and cervix include Sporidiobolaceae and Sacharomyces for ASCUS, and Malassezia for high-risk HPV infections. Our combined data suggests that specific cervicovaginal bacterial and fungal populations are related to the host epithelial microenvironment, and could play roles in cervical dysplasia.
Collapse
Affiliation(s)
- Filipa Godoy-Vitorino
- Microbiome Lab, Department of Microbiology and Medical Zoology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
- Microbial Ecology and Genomics Laboratory, Department of Natural Sciences, Inter American University of Puerto Rico, San Juan, PR, United States
| | - Josefina Romaguera
- Department of Obstetrics and Gynecology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
| | - Chunyu Zhao
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Daniela Vargas-Robles
- Department of Biology, University of Puerto Rico, San Juan, PR, Puerto Rico
- Servicio Autónomo Centro Amazónico de Investigación y Control de Enfermedades Tropicales Simón Bolívar, MPPS, Puerto Ayacucho, Venezuela
| | - Gilmary Ortiz-Morales
- Microbial Ecology and Genomics Laboratory, Department of Natural Sciences, Inter American University of Puerto Rico, San Juan, PR, United States
| | - Frances Vázquez-Sánchez
- Microbial Ecology and Genomics Laboratory, Department of Natural Sciences, Inter American University of Puerto Rico, San Juan, PR, United States
| | | | - Manuel de la Garza-Casillas
- Microbial Ecology and Genomics Laboratory, Department of Natural Sciences, Inter American University of Puerto Rico, San Juan, PR, United States
| | - Magaly Martinez-Ferrer
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, United States
- Department of Pharmaceutical Sciences, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
| | | | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology and of Anthropology, Rutgers University, New Brunswick, NJ, United States
| | - Martin J. Blaser
- Department of Medicine and Department of Microbiology, School of Medicine, New York University, New York, NY, United States
| |
Collapse
|
45
|
Lager S, de Goffau MC, Sovio U, Peacock SJ, Parkhill J, Charnock-Jones DS, Smith GCS. Detecting eukaryotic microbiota with single-cell sensitivity in human tissue. MICROBIOME 2018; 6:151. [PMID: 30172254 PMCID: PMC6119588 DOI: 10.1186/s40168-018-0529-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Fetal growth restriction, pre-eclampsia, and pre-term birth are major adverse pregnancy outcomes. These complications are considerable contributors to fetal/maternal morbidity and mortality worldwide. A significant proportion of these cases are thought to be due to dysfunction of the placenta. However, the underlying mechanisms of placental dysfunction are unclear. The aim of the present study was to investigate whether adverse pregnancy outcomes are associated with evidence of placental eukaryotic infection. RESULTS We modified the 18S Illumina Amplicon Protocol of the Earth Microbiome Project and made it capable of detecting just a single spiked-in genome copy of Plasmodium falciparum, Saccharomyces cerevisiae, or Toxoplasma gondii among more than 70,000 human cells. Using this method, we were unable to detect eukaryotic pathogens in placental biopsies in instances of adverse pregnancy outcome (n = 199) or in healthy controls (n = 99). CONCLUSIONS Eukaryotic infection of the placenta is not an underlying cause of the aforementioned pregnancy complications. Possible clinical applications for this non-targeted, yet extremely sensitive, eukaryotic screening method are manifest.
Collapse
Affiliation(s)
- Susanne Lager
- Department of Obstetrics and Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | - Ulla Sovio
- Department of Obstetrics and Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sharon J Peacock
- Wellcome Trust Sanger Institute, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - D Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Gordon C S Smith
- Department of Obstetrics and Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK.
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
46
|
Angebault C, Ghozlane A, Volant S, Botterel F, d’Enfert C, Bougnoux ME. Combined bacterial and fungal intestinal microbiota analyses: Impact of storage conditions and DNA extraction protocols. PLoS One 2018; 13:e0201174. [PMID: 30074988 PMCID: PMC6075747 DOI: 10.1371/journal.pone.0201174] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022] Open
Abstract
Background The human intestinal microbiota contains a vast community of microorganisms increasingly studied using high-throughput DNA sequencing. Standardized protocols for storage and DNA extraction from fecal samples have been established mostly for bacterial microbiota analysis. Here, we investigated the impact of storage and DNA extraction on bacterial and fungal community structures detected concomitantly. Methods Fecal samples from healthy adults were stored at -80°C as such or diluted in RNAlater® and subjected to 2 extraction protocols with mechanical lysis: the Powersoil® MoBio kit or the International Human Microbiota Standard (IHMS) Protocol Q. Libraries of the 12 samples targeting the V3-V4 16S and the ITS1 regions were prepared using Metabiote® (Genoscreen) and sequenced on GS-FLX-454. Sequencing data were analysed using SHAMAN (http://shaman.pasteur.fr/). The bacterial and fungal microbiota were compared in terms of diversity and relative abundance. Results We obtained 171869 and 199089 quality-controlled reads for 16S and ITS, respectively. All 16S reads were assigned to 41 bacterial genera; only 52% of ITS reads were assigned to 40 fungal genera/section. Rarefaction curves were satisfactory in 3/3 and 2/3 subjects for 16S and ITS, respectively. PCoA showed important inter-individual variability of intestinal microbiota largely overweighing the effect of storage or extraction. Storage in RNAlater® impacted (downward trend) the relative abundances of 7/41 bacterial and 6/40 fungal taxa, while extraction impacted randomly 18/41 bacterial taxa and 1/40 fungal taxon. Conclusion Our results showed that RNAlater® moderately impacts bacterial or fungal community structures, while extraction significantly influences the bacterial composition. For combined bacterial and fungal intestinal microbiota analysis, immediate sample freezing should be preferred when feasible, but storage in RNAlater® remains an option under unfavourable conditions or for concomitant metatranscriptomic analysis; and extraction should rely on protocols validated for bacterial analysis, such as IHMS Protocol Q, and including a powerful mechanical lysis, essential for fungal extraction.
Collapse
Affiliation(s)
- Cécile Angebault
- Unité de Parasitologie-Mycologie, Service de Microbiologie clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
- Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- Unité de Parasitologie-Mycologie, Département de Virologie, Bactériologie-Hygiène, Mycologie-Parasitologie, Unité transversale du traitement des infections (VBHMP–UT2I), DHU-VIC, CHU Henri Mondor, Assistance Publique des Hôpitaux de Paris (APHP), Créteil, France
- EA Dynamyc 7380 UPEC, ENVA, Faculté de Médecine de Créteil, Créteil
| | - Amine Ghozlane
- Institut Pasteur, Bioinformatics and Biostatistics Hub—C3BI—USR 3756 IP CNRS, Paris, France
| | - Stevenn Volant
- Institut Pasteur, Bioinformatics and Biostatistics Hub—C3BI—USR 3756 IP CNRS, Paris, France
| | - Françoise Botterel
- Unité de Parasitologie-Mycologie, Département de Virologie, Bactériologie-Hygiène, Mycologie-Parasitologie, Unité transversale du traitement des infections (VBHMP–UT2I), DHU-VIC, CHU Henri Mondor, Assistance Publique des Hôpitaux de Paris (APHP), Créteil, France
- EA Dynamyc 7380 UPEC, ENVA, Faculté de Médecine de Créteil, Créteil
| | - Christophe d’Enfert
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Département Mycologie, Paris, France
| | - Marie-Elisabeth Bougnoux
- Unité de Parasitologie-Mycologie, Service de Microbiologie clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
- Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Département Mycologie, Paris, France
- * E-mail: ,
| |
Collapse
|
47
|
Rhee RL, Sreih AG, Najem CE, Grayson PC, Zhao C, Bittinger K, Collman RG, Merkel PA. Characterisation of the nasal microbiota in granulomatosis with polyangiitis. Ann Rheum Dis 2018; 77:1448-1453. [PMID: 29997110 DOI: 10.1136/annrheumdis-2018-213645] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Prior studies have suggested a potential link between nasal microbes and granulomatosis with polyangiitis (GPA; Wegener's), but these studies relied on culture-dependent methods. This study comprehensively examined the entire community of nasal microbiota (bacteria and fungi) in participants with GPA compared with healthy controls using deep sequencing methods. METHODS 16S rRNA and internal transcribed spacer gene sequencing were performed on nasal microbial DNA isolated from nasal swabs of 60 participants with GPA and 41 healthy controls. Alpha and beta diversity were assessed as well as the relative abundance of the most abundant bacterial and fungal taxa. The effects of covariates including disease activity and immunosuppressive therapies on microbial composition were evaluated. RESULTS Compared with controls, participants with GPA had a significantly different microbial composition (weighted UniFrac p=0.04) and lower relative abundance of Propionibacterium acnes and Staphylococcus epidermidis (for both, false discovery rate-corrected p=0.02). Disease activity in GPA was associated with a lower abundance of fungal order Malasseziales compared with participants with GPA in remission (p=0.04) and controls (p=0.01). Use of non-glucocorticoid immunosuppressive therapy was associated with 'healthy' nasal microbiota while participants with GPA who were off immunosuppressive therapy had more dysbiosis (weighted UniFrac p=0.01). No difference in the relative abundance of Staphylococcus aureus was observed between GPA and controls. CONCLUSIONS GPA is associated with an altered nasal microbial composition, at both the bacterial and fungal levels. Use of immunosuppressive therapies and disease remission are associated with healthy microbial communities.
Collapse
Affiliation(s)
- Rennie L Rhee
- Division of Rheumatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Antoine G Sreih
- Division of Rheumatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Catherine E Najem
- Division of Rheumatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Peter C Grayson
- Vasculitis Translational Research Program, National Institutes of of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Chunyu Zhao
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ronald G Collman
- Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Peter A Merkel
- Division of Rheumatology and the Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
48
|
Unprecedented Symbiont Eukaryote Diversity Is Governed by Internal Trophic Webs in a Wild Non-Human Primate. Protist 2018; 169:307-320. [DOI: 10.1016/j.protis.2018.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 01/08/2023]
|
49
|
Ma L, Cissé OH, Kovacs JA. A Molecular Window into the Biology and Epidemiology of Pneumocystis spp. Clin Microbiol Rev 2018; 31:e00009-18. [PMID: 29899010 PMCID: PMC6056843 DOI: 10.1128/cmr.00009-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pneumocystis, a unique atypical fungus with an elusive lifestyle, has had an important medical history. It came to prominence as an opportunistic pathogen that not only can cause life-threatening pneumonia in patients with HIV infection and other immunodeficiencies but also can colonize the lungs of healthy individuals from a very early age. The genus Pneumocystis includes a group of closely related but heterogeneous organisms that have a worldwide distribution, have been detected in multiple mammalian species, are highly host species specific, inhabit the lungs almost exclusively, and have never convincingly been cultured in vitro, making Pneumocystis a fascinating but difficult-to-study organism. Improved molecular biologic methodologies have opened a new window into the biology and epidemiology of Pneumocystis. Advances include an improved taxonomic classification, identification of an extremely reduced genome and concomitant inability to metabolize and grow independent of the host lungs, insights into its transmission mode, recognition of its widespread colonization in both immunocompetent and immunodeficient hosts, and utilization of strain variation to study drug resistance, epidemiology, and outbreaks of infection among transplant patients. This review summarizes these advances and also identifies some major questions and challenges that need to be addressed to better understand Pneumocystis biology and its relevance to clinical care.
Collapse
Affiliation(s)
- Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| | - Ousmane H Cissé
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| |
Collapse
|
50
|
Tipton L, Cuenco KT, Huang L, Greenblatt RM, Kleerup E, Sciurba F, Duncan SR, Donahoe MP, Morris A, Ghedin E. Measuring associations between the microbiota and repeated measures of continuous clinical variables using a lasso-penalized generalized linear mixed model. BioData Min 2018; 11:12. [PMID: 29983746 PMCID: PMC6003033 DOI: 10.1186/s13040-018-0173-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 05/27/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Human microbiome studies in clinical settings generally focus on distinguishing the microbiota in health from that in disease at a specific point in time. However, microbiome samples may be associated with disease severity or continuous clinical health indicators that are often assessed at multiple time points. While the temporal data from clinical and microbiome samples may be informative, analysis of this type of data can be problematic for standard statistical methods. RESULTS To identify associations between microbiota and continuous clinical variables measured repeatedly in two studies of the respiratory tract, we adapted a statistical method, the lasso-penalized generalized linear mixed model (LassoGLMM). LassoGLMM can screen for associated clinical variables, incorporate repeated measures of individuals, and address the large number of species found in the microbiome. As is common in microbiome studies, when the number of variables is an order of magnitude larger than the number of samples LassoGLMM can be imperfect in its variable selection. We overcome this limitation by adding a pre-screening step to reduce the number of variables evaluated in the model. We assessed the use of this adapted two-stage LassoGLMM for its ability to determine which microbes are associated with continuous repeated clinical measures.We found associations (retaining a non-zero coefficient in the LassoGLMM) between 10 laboratory measurements and 43 bacterial genera in the oral microbiota, and between 2 cytokines and 3 bacterial genera in the lung. We compared our associations with those identified by the Wilcoxon test after dichotomizing our outcomes and identified a non-significant trend towards differential abundance between high and low outcomes. Our two-step LassoGLMM explained more of the variance seen in the outcome of interest than other variants of the LassoGLMM method. CONCLUSIONS We demonstrated a method that can account for the large number of genera detected in microbiome studies and repeated measures of clinical or longitudinal studies, allowing for the detection of strong associations between microbes and clinical measures. By incorporating the design strengths of repeated measurements and a prescreening step to aid variable selection, our two-step LassoGLMM will be a useful analytic method for investigating relationships between microbes and repeatedly measured continuous outcomes.
Collapse
Affiliation(s)
- Laura Tipton
- Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
- Department of Biology, Center for Genomics & Systems Biology, New York University, New York, NY 10003 USA
| | - Karen T. Cuenco
- Genentech, 1 DNA Way, MS-231C, South San Francisco, CA 94080 USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Laurence Huang
- Department of Medicine, School of Medicine, University of California, San Francisco, CA 94143 USA
| | - Ruth M. Greenblatt
- Department of Medicine, School of Medicine, University of California, San Francisco, CA 94143 USA
- Departments of Clinical Pharmacy, Epidemiology and Biostatistics, Schools of Pharmacy and Medicine, University of California, San Francisco, CA 94143 USA
| | - Eric Kleerup
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Frank Sciurba
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Steven R. Duncan
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Michael P. Donahoe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Alison Morris
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Elodie Ghedin
- Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
- Department of Biology, Center for Genomics & Systems Biology, New York University, New York, NY 10003 USA
- College of Global Public Health, New York University, New York, NY 10003 USA
| |
Collapse
|