1
|
Kesälahti R, Kumpula TA, Cervantes S, Kujala ST, Mattila TM, Tyrmi JS, Niskanen AK, Rastas P, Savolainen O, Pyhäjärvi T. Optimising Exome Captures in Species With Large Genomes Using Species-Specific Repetitive DNA Blocker. Mol Ecol Resour 2024:e14053. [PMID: 39692189 DOI: 10.1111/1755-0998.14053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/19/2024] [Accepted: 10/28/2024] [Indexed: 12/19/2024]
Abstract
Large and highly repetitive genomes are common. However, research interests usually lie within the non-repetitive parts of the genome, as they are more likely functional, and can be used to answer questions related to adaptation, selection and evolutionary history. Exome capture is a cost-effective method for providing sequencing data from protein-coding parts of the genes. C0t-1 DNA blockers consist of repetitive DNA and are used in exome captures to prevent the hybridisation of repetitive DNA sequences to capture baits or bait-bound genomic DNA. Universal blockers target repetitive regions shared by many species, while species-specific c0t-1 DNA is prepared from the DNA of the studied species, thus perfectly matching the repetitive DNA contents of the species. So far, the use of species-specific c0t-1 DNA has been limited to a few model species. Here, we evaluated the performance of blocker treatments in exome captures of Pinus sylvestris, a widely distributed conifer species with a large (> 20 Gbp) and highly repetitive genome. We compared treatment with a commercial universal blocker to treatments with species-specific c0t-1 (30,000 and 60,000 ng). Species-specific c0t-1 captured more unique exons than the initial set of targets leading to increased SNP discovery and reduced sequencing of tandem repeats compared to the universal blocker. Based on our results, we recommend optimising exome captures using at least 60,000 ng of species-specific c0t-1 DNA. It is relatively easy and fast to prepare and can also be used with existing bait set designs.
Collapse
Affiliation(s)
- Robert Kesälahti
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Timo A Kumpula
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Sandra Cervantes
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sonja T Kujala
- Natural Resources Institute Finland (Luke), Oulu, Finland
| | - Tiina M Mattila
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Jaakko S Tyrmi
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Alina K Niskanen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Outi Savolainen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Tanja Pyhäjärvi
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Jang MJ, Cho HJ, Park YS, Lee HY, Bae EK, Jung S, Jin H, Woo J, Park E, Kim SJ, Choi JW, Chae GY, Guk JY, Kim DY, Kim SH, Kang MJ, Lee H, Cheon KS, Kim IS, Kim YM, Kim MS, Ko JH, Kang KS, Choi D, Park EJ, Kim S. Haplotype-resolved genome assembly and resequencing analysis provide insights into genome evolution and allelic imbalance in Pinus densiflora. Nat Genet 2024; 56:2551-2561. [PMID: 39428511 DOI: 10.1038/s41588-024-01944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/10/2024] [Indexed: 10/22/2024]
Abstract
Haplotype-level allelic characterization facilitates research on the functional, evolutionary and breeding-related features of extremely large and complex plant genomes. We report a 21.7-Gb chromosome-level haplotype-resolved assembly in Pinus densiflora. We found genome rearrangements involving translocations and inversions between chromosomes 1 and 3 of Pinus species and a proliferation of specific long terminal repeat (LTR) retrotransposons (LTR-RTs) in P. densiflora. Evolutionary analyses illustrated that tandem and LTR-RT-mediated duplications led to an increment of transcription factor (TF) genes in P. densiflora. The haplotype sequence comparison showed allelic imbalances, including presence-absence variations of genes (PAV genes) and their functional contributions to flowering and abiotic stress-related traits in P. densiflora. Allele-aware resequencing analysis revealed PAV gene diversity across P. densiflora accessions. Our study provides insights into key mechanisms underlying the evolution of genome structure, LTR-RTs and TFs within the Pinus lineage as well as allelic imbalances and diversity across P. densiflora.
Collapse
Affiliation(s)
- Min-Jeong Jang
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea
| | - Hye Jeong Cho
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea
| | - Young-Soo Park
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea
| | - Hye-Young Lee
- Plant Immunity Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Horticulture, Gyeongsang National University, Jinju, Republic of Korea
| | - Eun-Kyung Bae
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Seungmee Jung
- Department of Molecular Biology, College of Agricultural, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - Hongshi Jin
- Department of Molecular Biology, College of Agricultural, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - Jongchan Woo
- Department of Molecular Biology, College of Agricultural, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - Eunsook Park
- Department of Molecular Biology, College of Agricultural, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - Seo-Jin Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea
| | - Jin-Wook Choi
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea
| | - Geun Young Chae
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea
| | - Ji-Yoon Guk
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea
| | - Do Yeon Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea
| | - Sun-Hyung Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea
| | - Min-Jeong Kang
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Hyoshin Lee
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Kyeong-Seong Cheon
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| | - In Sik Kim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Yong-Min Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Myung-Shin Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Republic of Korea
| | - Jae-Heung Ko
- Department of Plant and Environment New Resources, Kyung Hee University, Yongin, Republic of Korea
| | - Kyu-Suk Kang
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Republic of Korea
| | - Doil Choi
- Plant Immunity Research Center, Seoul National University, Seoul, Republic of Korea
| | - Eung-Jun Park
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea.
| | - Seungill Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Qu K, Liu D, Sun L, Li M, Xia T, Sun W, Xia Y. De novo assembly and comprehensive analysis of the mitochondrial genome of Taxus wallichiana reveals different repeats mediate recombination to generate multiple conformations. Genomics 2024; 116:110900. [PMID: 39067796 DOI: 10.1016/j.ygeno.2024.110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Taxus plants are the exclusive source of paclitaxel, an anticancer drug with significant medicinal and economic value. Interspecies hybridization and gene introgression during evolution have obscured distinctions among Taxus species, complicating their phylogenetic classification. While the chloroplast genome of Taxus wallichiana, a widely distributed species in China, has been sequenced, its mitochondrial genome (mitogenome) remains uncharacterized.We sequenced and assembled the T. wallichiana mitogenome using BGI short reads and Nanopore long reads, facilitating comparisons with other gymnosperm mitogenomes. The T. wallichiana mitogenome spanning 469,949 bp, predominantly forms a circular configuration with a GC content of 50.51%, supplemented by 3 minor configurations mediated by one pair of LRs and two pairs of IntRs. It includes 32 protein-coding genes, 7 tRNA genes, and 3 rRNA genes, several of which exist in multiple copies.We detailed the mitogenome's structure, codon usage, RNA editing, and sequence migration between organelles, constructing a phylogenetic tree to elucidate evolutionary relationships. Unlike typical gymnosperm mitochondria, T. wallichiana shows no evidence of mitochondrial-plastid DNA transfer (MTPT), highlighting its unique genomic architecture. Synteny analysis indicated extensive genomic rearrangements in T. wallichiana, likely driven by recombination among abundant repetitive sequences. This study offers a high-quality T. wallichiana mitogenome, enhancing our understanding of gymnosperm mitochondrial evolution and supporting further cultivation and utilization of Taxus species.
Collapse
Affiliation(s)
- Kai Qu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China; National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China; National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Limin Sun
- Forestry College of Shandong Agricultural University, Taian 271018, China
| | - Meng Li
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Tiantian Xia
- Shandong Jianzhu University, Jinan 250101, China
| | - Weixia Sun
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Yufei Xia
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
4
|
Alakärppä E, Salo HM, Suokas M, Jokipii-Lukkari S, Vuosku J, Häggman H. Targeted bisulfite sequencing of Scots pine adaptation-related genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112173. [PMID: 38944158 DOI: 10.1016/j.plantsci.2024.112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
During environmental changes, epigenetic processes can enable adaptive responses faster than natural selection. In plants, very little is known about the role of DNA methylation during long-term adaptation. Scots pine is a widely distributed coniferous species which must adapt to different environmental conditions throughout its long lifespan. Thus, epigenetic modifications may contribute towards this direction. We provide bisulfite next-generation sequencing data from the putative promoters and exons of eight adaptation-related genes (A3IP2, CCA1, COL1, COL2, FTL2, MFT1, PHYO, and ZTL) in three Scots pine populations located in northern and southern parts of Finland. DNA methylation levels were studied in the two seed tissues: the maternal megagametophyte which contributes to embryo viability, and the biparental embryo which represents the next generation. In most genes, differentially methylated cytosines (DMCs) were in line with our previously demonstrated gene expression differences found in the same Scots pine populations. In addition, we found a strong correlation of total methylation levels between the embryo and megagametophyte tissues of a given individual tree, which indicates that DNA methylation can be inherited from the maternal parent. In conclusion, our results imply that DNA methylation differences may contribute to the adaptation of Scots pine populations in different climatic conditions.
Collapse
Affiliation(s)
- Emmi Alakärppä
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland.
| | - Heikki M Salo
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Marko Suokas
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Soile Jokipii-Lukkari
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Jaana Vuosku
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Hely Häggman
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| |
Collapse
|
5
|
Bruxaux J, Zhao W, Hall D, Curtu AL, Androsiuk P, Drouzas AD, Gailing O, Konrad H, Sullivan AR, Semerikov V, Wang XR. Scots pine - panmixia and the elusive signal of genetic adaptation. THE NEW PHYTOLOGIST 2024; 243:1231-1246. [PMID: 38308133 DOI: 10.1111/nph.19563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
Scots pine is the foundation species of diverse forested ecosystems across Eurasia and displays remarkable ecological breadth, occurring in environments ranging from temperate rainforests to arid tundra margins. Such expansive distributions can be favored by various demographic and adaptive processes and the interactions between them. To understand the impact of neutral and selective forces on genetic structure in Scots pine, we conducted range-wide population genetic analyses on 2321 trees from 202 populations using genotyping-by-sequencing, reconstructed the recent demography of the species and examined signals of genetic adaptation. We found a high and uniform genetic diversity across the entire range (global FST 0.048), no increased genetic load in expanding populations and minor impact of the last glacial maximum on historical population sizes. Genetic-environmental associations identified only a handful of single-nucleotide polymorphisms significantly linked to environmental gradients. The results suggest that extensive gene flow is predominantly responsible for the observed genetic patterns in Scots pine. The apparent missing signal of genetic adaptation is likely attributed to the intricate genetic architecture controlling adaptation to multi-dimensional environments. The panmixia metapopulation of Scots pine offers a good study system for further exploration into how genetic adaptation and plasticity evolve under gene flow and changing environment.
Collapse
Affiliation(s)
- Jade Bruxaux
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - David Hall
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
- Forestry Research Institute of Sweden (Skogforsk), 918 21, Sävar, Sweden
| | | | - Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Andreas D Drouzas
- Laboratory of Systematic Botany and Phytogeography, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077, Göttingen, Germany
| | - Heino Konrad
- Department of Forest Biodiversity and Nature Conservation, Unit of Ecological Genetics, Austrian Research Centre for Forests (BFW), 1140, Vienna, Austria
| | - Alexis R Sullivan
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - Vladimir Semerikov
- Institute of Plant and Animal Ecology, Ural Division of Russian Academy of Sciences, 620144, Ekaterinburg, Russia
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
6
|
Capblancq T, Sękiewicz K, Dering M. Forest genomics in the Caucasus through the lens of its dominant tree species - Fagus orientalis. Mol Ecol 2024; 33:e17475. [PMID: 39021282 DOI: 10.1111/mec.17475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
The last glacial period is known to have greatly influenced the demographic history of temperate forest trees, with important range contractions and post-glacial expansions that led to the formation of multiple genetic lineages and secondary contact zones in the Northern Hemisphere. These dynamics have been extensively studied for European and North American species but are still poorly understood in other temperate regions of rich biodiversity such as the Caucasus. Our study helps filling that gap by deciphering the genomic landscapes of F. orientalis across the South Caucasus. The use of genome-wide data confirmed a past demographic history strongly influenced by the Last Glacial Maximum, revealing two disjunct glacial refugia in the Colchis and Hyrcanian regions. The resulting patterns of genetic diversity, load and differentiation are not always concordant across the region, with genetic load pinpointing the location of the glacial refugia more efficiently than genetic diversity alone. The Hyrcanian forests show depleted genetic diversity and substantial isolation, even if long-distance gene flow is still present with the main centre of diversity in the Greater Caucasus. Finally, we characterize a strong heterogeneity of genetic diversity and differentiation along the species chromosomes, with noticeably a first chromosome showing low diversity and weak differentiation.
Collapse
Affiliation(s)
- Thibaut Capblancq
- Université Grenoble-Alpes, Université Savoie Mont Blanc, CNRS, Laboratoire d'Écologie Alpine, Grenoble, France
| | | | - Monika Dering
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Department of Silviculture, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
7
|
Ye P, Che X, Liu Y, Zeng M, Guo W, Long Y, Liu T, Wang Z. Genome-wide identification and characterization of the AP2/ERF gene family in loblolly pine ( Pinus taeda L.). PeerJ 2024; 12:e17388. [PMID: 38799072 PMCID: PMC11122039 DOI: 10.7717/peerj.17388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
The loblolly pine (Pinus taeda L.) is one of the most profitable forest species worldwide owing to its quick growth, high wood yields, and strong adaptability. The AP2/ERF gene family plays a widespread role in the physiological processes of plant defense responses and the biosynthesis of metabolites. Nevertheless, there are no reports on this gene family in loblolly pine (P. taeda). In this study, a total of 303 members of the AP2/ERF gene family were identified. Through multiple sequence alignment and phylogenetic analysis, they were classified into four subfamilies, including AP2 (34), RAV (17), ERF (251), and Soloist (1). An analysis of the conservation domains, conserved motifs, and gene structure revealed that every PtAP2/ERF transcription factor (TF) had at least one AP2 domain. While evolutionary conservation was displayed within the same subfamilies, the distribution of conserved domains, conserved motifs, and gene architectures varied between subfamilies. Cis-element analysis revealed abundant light-responsive elements, phytohormone-responsive elements, and stress-responsive elements in the promoter of the PtAP2/ERF genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of potential target genes showed that the AP2/ERF gene family might play a critical role in plant growth and development, the response to environmental stresses, and metabolite biosynthesis. Utilizing quantitative real-time PCR (qRT-PCR), we examined the expression patterns of 10 randomly selected genes from Group IX after 6 h of treatments with mechanical injury, ethephon (Eth), and methyl jasmonate (MeJA). The AP2/ERF gene family in the loblolly pine was systematically analyzed for the first time in this study, offering a theoretical basis for exploring the functions and applications of AP2/ERF genes.
Collapse
Affiliation(s)
- Peiqi Ye
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, Guangdong, China
| | - Xiaoliang Che
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, Guangdong, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, Guangdong, China
| | - Ming Zeng
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, Guangdong, China
| | - Wenbing Guo
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, Guangdong, China
| | - Yongbin Long
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, Guangdong, China
| | - Tianyi Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhe Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Neale DB, Zimin AV, Meltzer A, Bhattarai A, Amee M, Figueroa Corona L, Allen BJ, Puiu D, Wright J, De La Torre AR, McGuire PE, Timp W, Salzberg SL, Wegrzyn JL. A genome sequence for the threatened whitebark pine. G3 (BETHESDA, MD.) 2024; 14:jkae061. [PMID: 38526344 PMCID: PMC11075562 DOI: 10.1093/g3journal/jkae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
Whitebark pine (WBP, Pinus albicaulis) is a white pine of subalpine regions in the Western contiguous United States and Canada. WBP has become critically threatened throughout a significant part of its natural range due to mortality from the introduced fungal pathogen white pine blister rust (WPBR, Cronartium ribicola) and additional threats from mountain pine beetle (Dendroctonus ponderosae), wildfire, and maladaptation due to changing climate. Vast acreages of WBP have suffered nearly complete mortality. Genomic technologies can contribute to a faster, more cost-effective approach to the traditional practices of identifying disease-resistant, climate-adapted seed sources for restoration. With deep-coverage Illumina short reads of haploid megagametophyte tissue and Oxford Nanopore long reads of diploid needle tissue, followed by a hybrid, multistep assembly approach, we produced a final assembly containing 27.6 Gb of sequence in 92,740 contigs (N50 537,007 bp) and 34,716 scaffolds (N50 2.0 Gb). Approximately 87.2% (24.0 Gb) of total sequence was placed on the 12 WBP chromosomes. Annotation yielded 25,362 protein-coding genes, and over 77% of the genome was characterized as repeats. WBP has demonstrated the greatest variation in resistance to WPBR among the North American white pines. Candidate genes for quantitative resistance include disease resistance genes known as nucleotide-binding leucine-rich repeat receptors (NLRs). A combination of protein domain alignments and direct genome scanning was employed to fully describe the 3 subclasses of NLRs. Our high-quality reference sequence and annotation provide a marked improvement in NLR identification compared to previous assessments that leveraged de novo-assembled transcriptomes.
Collapse
Affiliation(s)
- David B Neale
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Whitebark Pine Ecosystem Foundation, Missoula, MT 59808, USA
| | - Aleksey V Zimin
- Department of Biomedical Engineering and Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Amy Meltzer
- Department of Biomedical Engineering and Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Akriti Bhattarai
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Maurice Amee
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | - Brian J Allen
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- University of California Cooperative Extension, Central Sierra, Jackson, CA 95642, USA
| | - Daniela Puiu
- Department of Biomedical Engineering and Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jessica Wright
- USDA Forest Service, Pacific Southwest Research Station, Davis, CA 95618, USA
| | | | - Patrick E McGuire
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Winston Timp
- Department of Biomedical Engineering and Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Steven L Salzberg
- Department of Biomedical Engineering and Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Departments of Computer Science and Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
9
|
Shen B, Shen A, Liu L, Tan Y, Li S, Tan Z. Assembly and comparative analysis of the complete multichromosomal mitochondrial genome of Cymbidium ensifolium, an orchid of high economic and ornamental value. BMC PLANT BIOLOGY 2024; 24:255. [PMID: 38594641 PMCID: PMC11003039 DOI: 10.1186/s12870-024-04962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Orchidaceae is one of the largest groups of angiosperms, and most species have high economic value and scientific research value due to their ornamental and medicinal properties. In China, Chinese Cymbidium is a popular ornamental orchid with high economic value and a long history. However, to date, no detailed information on the mitochondrial genome of any species of Chinese Cymbidium has been published. RESULTS Here, we present the complete assembly and annotation of the mitochondrial genome of Cymbidium ensifolium (L.) Sw. The mitogenome of C. ensifolium was 560,647 bp in length and consisted of 19 circular subgenomes ranging in size from 21,995 bp to 48,212 bp. The genome encoded 35 protein-coding genes, 36 tRNAs, 3 rRNAs, and 3405 ORFs. Repeat sequence analysis and prediction of RNA editing sites revealed a total of 915 dispersed repeats, 162 simple repeats, 45 tandem repeats, and 530 RNA editing sites. Analysis of codon usage showed a preference for codons ending in A/T. Interorganellar DNA transfer was identified in 13 of the 19 chromosomes, with plastid-derived DNA fragments representing 6.81% of the C. ensifolium mitochondrial genome. The homologous fragments of the mitochondrial genome and nuclear genome were also analysed. Comparative analysis showed that the GC content was conserved, but the size, structure, and gene content of the mitogenomes varied greatly among plants with multichromosomal mitogenome structure. Phylogenetic analysis based on the mitogenomes reflected the evolutionary and taxonomic statuses of C. ensifolium. Interestingly, compared with the mitogenomes of Cymbidium lancifolium Hook. and Cymbidium macrorhizon Lindl., the mitogenome of C. ensifolium lost 8 ribosomal protein-coding genes. CONCLUSION In this study, we assembled and annotated the mitogenome of C. ensifolium and compared it with the mitogenomes of other Liliidae and plants with multichromosomal mitogenome structures. Our findings enrich the mitochondrial genome database of orchid plants and reveal the rapid structural evolution of Cymbidium mitochondrial genomes, highlighting the potential for mitochondrial genes to help decipher plant evolutionary history.
Collapse
Affiliation(s)
- Baoming Shen
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Airong Shen
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Lina Liu
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Yun Tan
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Sainan Li
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Zhuming Tan
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China.
| |
Collapse
|
10
|
Park S, Kwak M, Park S. Complete organelle genomes of Korean fir, Abies koreana and phylogenomics of the gymnosperm genus Abies using nuclear and cytoplasmic DNA sequence data. Sci Rep 2024; 14:7636. [PMID: 38561351 PMCID: PMC10985005 DOI: 10.1038/s41598-024-58253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Abies koreana E.H.Wilson is an endangered evergreen coniferous tree that is native to high altitudes in South Korea and susceptible to the effects of climate change. Hybridization and reticulate evolution have been reported in the genus; therefore, multigene datasets from nuclear and cytoplasmic genomes are needed to better understand its evolutionary history. Using the Illumina NovaSeq 6000 and Oxford Nanopore Technologies (ONT) PromethION platforms, we generated complete mitochondrial (1,174,803 bp) and plastid (121,341 bp) genomes from A. koreana. The mitochondrial genome is highly dynamic, transitioning from cis- to trans-splicing and breaking conserved gene clusters. In the plastome, the ONT reads revealed two structural conformations of A. koreana. The short inverted repeats (1186 bp) of the A. koreana plastome are associated with different structural types. Transcriptomic sequencing revealed 1356 sites of C-to-U RNA editing in the 41 mitochondrial genes. Using A. koreana as a reference, we additionally produced nuclear and organelle genomic sequences from eight Abies species and generated multiple datasets for maximum likelihood and network analyses. Three sections (Balsamea, Momi, and Pseudopicea) were well grouped in the nuclear phylogeny, but the phylogenomic relationships showed conflicting signals in the mitochondrial and plastid genomes, indicating a complicated evolutionary history that may have included introgressive hybridization. The obtained data illustrate that phylogenomic analyses based on sequences from differently inherited organelle genomes have resulted in conflicting trees. Organelle capture, organelle genome recombination, and incomplete lineage sorting in an ancestral heteroplasmic individual can contribute to phylogenomic discordance. We provide strong support for the relationships within Abies and new insights into the phylogenomic complexity of this genus.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Myounghai Kwak
- National Institute of Biological Resources, Incheon, 22689, South Korea.
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
11
|
Zhao W, Gao J, Hall D, Andersson BA, Bruxaux J, Tomlinson KW, Drouzas AD, Suyama Y, Wang XR. Evolutionary radiation of the Eurasian Pinus species under pervasive gene flow. THE NEW PHYTOLOGIST 2024. [PMID: 38515228 DOI: 10.1111/nph.19694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Evolutionary radiation, a pivotal aspect of macroevolution, offers valuable insights into evolutionary processes. The genus Pinus is the largest genus in conifers withc . $$ c. $$ 90% of the extant species emerged in the Miocene, which signifies a case of rapid diversification. Despite this remarkable history, our understanding of the mechanisms driving radiation within this expansive genus has remained limited. Using exome capture sequencing and a fossil-calibrated phylogeny, we investigated the divergence history, niche diversification, and introgression among 13 closely related Eurasian species spanning climate zones from the tropics to the boreal Arctic. We detected complex introgression among lineages in subsection Pinus at all stages of the phylogeny. Despite this widespread gene exchange, each species maintained its genetic identity and showed clear niche differentiation. Demographic analysis unveiled distinct population histories among these species, which further influenced the nucleotide diversity and efficacy of purifying and positive selection in each species. Our findings suggest that radiation in the Eurasian pines was likely fueled by interspecific recombination and further reinforced by their adaptation to distinct environments. Our study highlights the constraints and opportunities for evolutionary change, and the expectations of future adaptation in response to environmental changes in different lineages.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, SE-90187, Sweden
| | - Jie Gao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - David Hall
- Forestry Research Institute of Sweden (Skogforsk), Sävar, SE-91833, Sweden
| | - Bea Angelica Andersson
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, SE-90187, Sweden
| | - Jade Bruxaux
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, SE-90187, Sweden
| | - Kyle W Tomlinson
- Center for Integrative Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephant, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Andreas D Drouzas
- Laboratory of Systematic Botany and Phytogeography, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Yoshihisa Suyama
- Graduate School of Agricultural Science, Tohoku University, Miyagi, 989-6711, Japan
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, SE-90187, Sweden
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
12
|
Lo T, Coombe L, Gagalova KK, Marr A, Warren RL, Kirk H, Pandoh P, Zhao Y, Moore RA, Mungall AJ, Ritland C, Pavy N, Jones SJM, Bohlmann J, Bousquet J, Birol I, Thomson A. Assembly and annotation of the black spruce genome provide insights on spruce phylogeny and evolution of stress response. G3 (BETHESDA, MD.) 2023; 14:jkad247. [PMID: 37875130 PMCID: PMC10755193 DOI: 10.1093/g3journal/jkad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/17/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Black spruce (Picea mariana [Mill.] B.S.P.) is a dominant conifer species in the North American boreal forest that plays important ecological and economic roles. Here, we present the first genome assembly of P. mariana with a reconstructed genome size of 18.3 Gbp and NG50 scaffold length of 36.0 kbp. A total of 66,332 protein-coding sequences were predicted in silico and annotated based on sequence homology. We analyzed the evolutionary relationships between P. mariana and 5 other spruces for which complete nuclear and organelle genome sequences were available. The phylogenetic tree estimated from mitochondrial genome sequences agrees with biogeography; specifically, P. mariana was strongly supported as a sister lineage to P. glauca and 3 other taxa found in western North America, followed by the European Picea abies. We obtained mixed topologies with weaker statistical support in phylogenetic trees estimated from nuclear and chloroplast genome sequences, indicative of ancient reticulate evolution affecting these 2 genomes. Clustering of protein-coding sequences from the 6 Picea taxa and 2 Pinus species resulted in 34,776 orthogroups, 560 of which appeared to be specific to P. mariana. Analysis of these specific orthogroups and dN/dS analysis of positive selection signatures for 497 single-copy orthogroups identified gene functions mostly related to plant development and stress response. The P. mariana genome assembly and annotation provides a valuable resource for forest genetics research and applications in this broadly distributed species, especially in relation to climate adaptation.
Collapse
Affiliation(s)
- Theodora Lo
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Lauren Coombe
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Kristina K Gagalova
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Alex Marr
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - René L Warren
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Heather Kirk
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Pawan Pandoh
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Yongjun Zhao
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Richard A Moore
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Andrew J Mungall
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Carol Ritland
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Nathalie Pavy
- Canada Research Chair in Forest Genomics, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Steven J M Jones
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Joerg Bohlmann
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Inanç Birol
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Ashley Thomson
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
13
|
Hao F, Liu X, Zhou B, Tian Z, Zhou L, Zong H, Qi J, He J, Zhang Y, Zeng P, Li Q, Wang K, Xia K, Guo X, Li L, Shao W, Zhang B, Li S, Yang H, Hui L, Chen W, Peng L, Liu F, Rong ZQ, Peng Y, Zhu W, McCallum JA, Li Z, Xu X, Yang H, Macknight RC, Wang W, Cai J. Chromosome-level genomes of three key Allium crops and their trait evolution. Nat Genet 2023; 55:1976-1986. [PMID: 37932434 DOI: 10.1038/s41588-023-01546-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/20/2023] [Indexed: 11/08/2023]
Abstract
Allium crop breeding remains severely hindered due to the lack of high-quality reference genomes. Here we report high-quality chromosome-level genome assemblies for three key Allium crops (Welsh onion, garlic and onion), which are 11.17 Gb, 15.52 Gb and 15.78 Gb in size with the highest recorded contig N50 of 507.27 Mb, 109.82 Mb and 81.66 Mb, respectively. Beyond revealing the genome evolutionary process of Allium species, our pathogen infection experiments and comparative metabolomic and genomic analyses showed that genes encoding enzymes involved in the metabolic pathway of Allium-specific flavor compounds may have evolved from an ancient uncharacterized plant defense system widely existing in many plant lineages but extensively boosted in alliums. Using in situ hybridization and spatial RNA sequencing, we obtained an overview of cell-type categorization and gene expression changes associated with spongy mesophyll cell expansion during onion bulb formation, thus indicating the functional roles of bulb formation genes.
Collapse
Affiliation(s)
- Fei Hao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xue Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Botong Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zunzhe Tian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Lina Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Hang Zong
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jiyan Qi
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Juan He
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yongting Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Peng Zeng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Qiong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Kai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Keke Xia
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
| | - Xing Guo
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
- BGI Research, Wuhan, China
| | - Li Li
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
| | - Wenwen Shao
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
| | | | - Shengkang Li
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
| | - Haifeng Yang
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Linchong Hui
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Wei Chen
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Lixin Peng
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, China
| | - Yingmei Peng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Wenbo Zhu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - John A McCallum
- The New Zealand Institute for Plant and Food Research, Christchurch, New Zealand
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China.
| | - Hui Yang
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | | | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| | - Jing Cai
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
14
|
Shu M, Moran EV. Identifying genetic variation associated with environmental gradients and drought-tolerance phenotypes in ponderosa pine. Ecol Evol 2023; 13:e10620. [PMID: 37841219 PMCID: PMC10576020 DOI: 10.1002/ece3.10620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/05/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
As climate changes, understanding the genetic basis of local adaptation in plants becomes an ever more pressing issue. Combining genotype-environment association (GEA) with genotype-phenotype association (GPA) analysis has an exciting potential to uncover the genetic basis of environmental responses. We use these approaches to identify genetic variants linked to local adaptation to drought in Pinus ponderosa. Over 4 million Single Nucleotide Polymorphisms (SNPs) were identified using 223 individuals from across the Sierra Nevada of California. 927,740 (22.3%) SNPs were retained after filtering for proximity to genes and used in our association analyses. We found 1374 associated with five major climate variables, with the largest number (1151) associated with April 1st snowpack. We also conducted a greenhouse study with various drought-tolerance traits measured in first-year seedlings of a subset of the genotyped trees grown in the greenhouse. 796 SNPs were associated with control-condition trait values, while 1149 were associated with responsiveness of these traits to drought. While no individual SNPs were associated with both the environmental variables and the measured traits, several annotated genes were associated with both, particularly those involved in cell wall formation, biotic and abiotic stress responses, and ubiquitination. However, the functions of many of the associated genes have not yet been determined due to the lack of gene annotation information for conifers. Future studies are needed to assess the developmental roles and ecological significance of these unknown genes.
Collapse
Affiliation(s)
- Mengjun Shu
- Life and Environmental SciencesUniversity of CaliforniaMercedCaliforniaUSA
| | - Emily V. Moran
- Life and Environmental SciencesUniversity of CaliforniaMercedCaliforniaUSA
| |
Collapse
|
15
|
Teyssier C, Rogier O, Claverol S, Gautier F, Lelu-Walter MA, Duruflé H. Comprehensive Organ-Specific Profiling of Douglas Fir ( Pseudotsuga menziesii) Proteome. Biomolecules 2023; 13:1400. [PMID: 37759800 PMCID: PMC10526743 DOI: 10.3390/biom13091400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The Douglas fir (Pseudotsuga menziesii) is a conifer native to North America that has become increasingly popular in plantations in France due to its many advantages as timber: rapid growth, quality wood, and good adaptation to climate change. Tree genetic improvement programs require knowledge of a species' genetic structure and history and the development of genetic markers. The very slow progress in this field, for Douglas fir as well as the entire genus Pinus, can be explained using the very large size of their genomes, as well as by the presence of numerous highly repeated sequences. Proteomics, therefore, provides a powerful way to access genomic information of otherwise challenging species. Here, we present the first Douglas fir proteomes acquired using nLC-MS/MS from 12 different plant organs or tissues. We identified 3975 different proteins and quantified 3462 of them, then examined the distribution of specific proteins across plant organs/tissues and their implications in various molecular processes. As the first large proteomic study of a resinous tree species with organ-specific profiling, this short note provides an important foundation for future genomic annotations of conifers and other trees.
Collapse
Affiliation(s)
| | - Odile Rogier
- INRAE, ONF, BioForA, UMR 0588, 45075 Orleans, France
| | - Stéphane Claverol
- Plateforme de Protéomique, Université de Bordeaux, 33405 Bordeaux, France
| | | | | | | |
Collapse
|
16
|
van Mantgem PJ, Milano ER, Dudney J, Nesmith JCB, Vandergast AG, Zald HSJ. Growth, drought response, and climate-associated genomic structure in whitebark pine in the Sierra Nevada of California. Ecol Evol 2023; 13:e10072. [PMID: 37206686 PMCID: PMC10191741 DOI: 10.1002/ece3.10072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/21/2023] Open
Abstract
Whitebark pine (Pinus albicaulis Engelm.) has experienced rapid population declines and is listed as threatened under the Endangered Species Act in the United States. Whitebark pine in the Sierra Nevada of California represents the southernmost end of the species' distribution and, like other portions of its range, faces threats from an introduced pathogen, native bark beetles, and a rapidly warming climate. Beyond these chronic stressors, there is also concern about how this species will respond to acute stressors, such as drought. We present patterns of stem growth from 766 large (average diameter at breast height >25 cm), disease-free whitebark pine across the Sierra Nevada before and during a recent period of drought. We contextualize growth patterns using population genomic diversity and structure from a subset of 327 trees. Sampled whitebark pine generally had positive to neutral stem growth trends from 1970 to 2011, which was positively correlated with minimum temperature and precipitation. Indices of stem growth during drought years (2012 to 2015) relative to a predrought interval were mostly positive to neutral at our sampled sites. Individual tree growth response phenotypes appeared to be linked to genotypic variation in climate-associated loci, suggesting that some genotypes can take better advantage of local climatic conditions than others. We speculate that reduced snowpack during the 2012 to 2015 drought years may have lengthened the growing season while retaining sufficient moisture to maintain growth at most study sites. Growth responses may differ under future warming, however, particularly if drought severity increases and modifies interactions with pests and pathogens.
Collapse
Affiliation(s)
| | - Elizabeth R. Milano
- U.S. Geological SurveyWestern Ecological Research CenterSan DiegoCaliforniaUSA
- Present address:
USDA Forest ServiceRocky Mountain Research StationMoscowIdahoUSA
| | - Joan Dudney
- Environmental Studies ProgramUC Santa BarbaraSanta BarbaraCaliforniaUSA
- Department of Environmental Science, Policy, & ManagementUC BerkeleyBerkeleyCaliforniaUSA
- Department of Plant SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Amy G. Vandergast
- U.S. Geological SurveyWestern Ecological Research CenterSan DiegoCaliforniaUSA
| | - Harold S. J. Zald
- USDA Forest ServicePacific Northwest Research StationCorvallisOregonUSA
| |
Collapse
|
17
|
Guo JF, Zhao W, Andersson B, Mao JF, Wang XR. Genomic clines across the species boundary between a hybrid pine and its progenitor in the eastern Tibetan Plateau. PLANT COMMUNICATIONS 2023:100574. [PMID: 36906801 PMCID: PMC10363505 DOI: 10.1016/j.xplc.2023.100574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/09/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Most species have clearly defined distribution ranges and ecological niches. The genetic and ecological causes of species differentiation and the mechanisms that maintain species boundaries between newly evolved taxa and their progenitors are, however, less clearly defined. This study investigated the genetic structure and clines in Pinus densata, a pine of hybrid origin on the southeastern Tibetan Plateau, to gain an understanding of the contemporary dynamics of species barriers. We analyzed genetic diversity in a range-wide collection of P. densata and representative populations of its progenitors, Pinus tabuliformis and Pinus yunnanensis, using exome capture sequencing. We detected four distinct genetic groups within P. densata that reflect its migration history and major gene-flow barriers across the landscape. The demographies of these genetic groups in the Pleistocene were associated with regional glaciation histories. Interestingly, population sizes rebounded rapidly during interglacial periods, suggesting persistence and resilience of the species during the Quaternary ice age. In the contact zone between P. densata and P. yunnanensis, 3.36% of the analyzed loci (57 849) showed exceptional patterns of introgression, suggesting their potential roles in either adaptive introgression or reproductive isolation. These outliers showed strong clines along critical climate gradients and enrichment in a number of biological processes relevant to high-altitude adaptation. This indicates that ecological selection played an important role in generating genomic heterogeneity and a genetic barrier across a zone of species transition. Our study highlights the forces that operate to maintain species boundaries and promote speciation in the Qinghai-Tibetan Plateau and other mountain systems.
Collapse
Affiliation(s)
- Jing-Fang Guo
- National Engineering Research Center of Tree Breeding and Ecological Restoration; State Key Laboratory of Tree Genetics and Breeding; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, 90187 Umeå, Sweden
| | - Bea Andersson
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, 90187 Umeå, Sweden
| | - Jian-Feng Mao
- National Engineering Research Center of Tree Breeding and Ecological Restoration; State Key Laboratory of Tree Genetics and Breeding; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, 90187 Umeå, Sweden.
| |
Collapse
|
18
|
Wu C, Wang Y, Sun H. Targeted and untargeted metabolomics reveals deep analysis of drought stress responses in needles and roots of Pinus taeda seedlings. FRONTIERS IN PLANT SCIENCE 2023; 13:1031466. [PMID: 36798806 PMCID: PMC9927248 DOI: 10.3389/fpls.2022.1031466] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/28/2022] [Indexed: 06/01/2023]
Abstract
Drought stress is one of major environmental stresses affecting plant growth and yield. Although Pinus taeda trees are planted in rainy southern China, local drought sometime occurs and can last several months, further affecting their growth and resin production. In this study, P. taeda seedlings were treated with long-term drought (42 d), and then targeted and untargeted metabolomics analysis were carried out to evaluate drought tolerance of P. taeda. Targeted metabolomics analysis showed that levels of some sugars, phytohormones, and amino acids significantly increased in the roots and needles of water-stressed (WS) P. taeda seedlings, compared with well-watered (WW) pine seedlings. These metabolites included sucrose in pine roots, the phytohormones abscisic acid and sacylic acid in pine needles, the phytohormone gibberellin (GA4) and the two amino acids, glycine and asparagine, in WS pine roots. Compared with WW pine seedlings, the neurotransmitter acetylcholine significantly increased in needles of WS pine seedlings, but significantly reduced in their roots. The neurotransmitters L-glutamine and hydroxytyramine significantly increased in roots and needles of WS pine seedlings, respectively, compared with WW pine seedlings, but the neurotransmitter noradrenaline significantly reduced in needles of WS pine seedlings. Levels of some unsaturated fatty acids significantly reduced in roots or needles of WS pine seedlings, compared with WW pine seedlings, such as linoleic acid, oleic acid, myristelaidic acid, myristoleic acid in WS pine roots, and palmitelaidic acid, erucic acid, and alpha-linolenic acid in WS pine needles. However, three saturated fatty acids significantly increased in WS pine seedlings, i.e., dodecanoic acid in WS pine needles, tricosanoic acid and heptadecanoic acid in WS pine roots. Untargeted metabolomics analysis showed that levels of some metabolites increased in WS pine seedlings, especially sugars, long-chain lipids, flavonoids, and terpenoids. A few of specific metabolites increased greatly, such as androsin, piceatanol, and panaxatriol in roots and needles of WS pine seedlings. Comparing with WW pine seedlings, it was found that the most enriched pathways in WS pine needles included flavone and flavonol biosynthesis, ABC transporters, diterpenoid biosynthesis, plant hormone signal transduction, and flavonoid biosynthesis; in WS pine roots, the most enriched pathways included tryptophan metabolism, caffeine metabolism, sesquiterpenoid and triterpenoid biosynthesis, plant hormone signal transduction, biosynthesis of phenylalanine, tyrosine, and tryptophan. Under long-term drought stress, P. taeda seedlings showed their own metabolomics characteristics, and some new metabolites and biosynthesis pathways were found, providing a guideline for breeding drought-tolerant cultivars of P. taeda.
Collapse
Affiliation(s)
- Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Yun Wang
- College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Honggang Sun
- Institute of Subtropic Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, China
| |
Collapse
|
19
|
Piña JS, Orozco-Arias S, Tobón-Orozco N, Camargo-Forero L, Tabares-Soto R, Guyot R. G-SAIP: Graphical Sequence Alignment Through Parallel Programming in the Post-Genomic Era. Evol Bioinform Online 2023; 19:11769343221150585. [PMID: 36703866 PMCID: PMC9871978 DOI: 10.1177/11769343221150585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 01/22/2023] Open
Abstract
A common task in bioinformatics is to compare DNA sequences to identify similarities between organisms at the sequence level. An approach to such comparison is the dot-plots, a 2-dimensional graphical representation to analyze DNA or protein alignments. Dot-plots alignment software existed before the sequencing revolution, and now there is an ongoing limitation when dealing with large-size sequences, resulting in very long execution times. High-Performance Computing (HPC) techniques have been successfully used in many applications to reduce computing times, but so far, very few applications for graphical sequence alignment using HPC have been reported. Here, we present G-SAIP (Graphical Sequence Alignment in Parallel), a software capable of spawning multiple distributed processes on CPUs, over a supercomputing infrastructure to speed up the execution time for dot-plot generation up to 1.68× compared with other current fastest tools, improve the efficiency for comparative structural genomic analysis, phylogenetics because the benefits of pairwise alignments for comparison between genomes, repetitive structure identification, and assembly quality checking.
Collapse
Affiliation(s)
- Johan S. Piña
- Department of Data Science, People
Contact, Manizales, Caldas, Colombia,Department of Computer Science,
Universidad Autónoma de Manizales, Manizales, Caldas, Colombia,Johan S. Piña, Department of Computer
Science, Universidad Autónoma de Manizales, Antigua estación del ferrocarril,
Manizales, Caldas 170004, Colombia.
| | - Simon Orozco-Arias
- Department of Computer Science,
Universidad Autónoma de Manizales, Manizales, Caldas, Colombia,Department of Systems and Informatics,
Universidad de Caldas, Manizales, Caldas, Colombia
| | - Nicolas Tobón-Orozco
- Department of Computer Science,
Universidad Autónoma de Manizales, Manizales, Caldas, Colombia
| | | | - Reinel Tabares-Soto
- Department of Electronics and
Automation, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia
| | - Romain Guyot
- Department of Electronics and
Automation, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia,Institut de Recherche pour le
Développement, CIRAD, University of Montpellier, Montpellier, France
| |
Collapse
|
20
|
Kersten B, Rellstab C, Schroeder H, Brodbeck S, Fladung M, Krutovsky KV, Gugerli F. The mitochondrial genome sequence of Abies alba Mill. reveals a high structural and combinatorial variation. BMC Genomics 2022; 23:776. [PMID: 36443651 PMCID: PMC9703787 DOI: 10.1186/s12864-022-08993-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/05/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Plant mitogenomes vary widely in size and genomic architecture. Although hundreds of plant mitogenomes of angiosperm species have already been sequence-characterized, only a few mitogenomes are available from gymnosperms. Silver fir (Abies alba) is an economically important gymnosperm species that is widely distributed in Europe and occupies a large range of environmental conditions. Reference sequences of the nuclear and chloroplast genome of A. alba are available, however, the mitogenome has not yet been assembled and studied. RESULTS Here, we used paired-end Illumina short reads generated from a single haploid megagametophyte in combination with PacBio long reads from high molecular weight DNA of needles to assemble the first mitogenome sequence of A. alba. Assembly and scaffolding resulted in 11 mitogenome scaffolds, with the largest scaffold being 0.25 Mbp long. Two of the scaffolds displayed a potential circular structure supported by PCR. The total size of the A. alba mitogenome was estimated at 1.43 Mbp, similar to the size (1.33 Mbp) of a draft assembly of the Abies firma mitogenome. In total, 53 distinct genes of known function were annotated in the A. alba mitogenome, comprising 41 protein-coding genes, nine tRNA, and three rRNA genes. The proportion of highly repetitive elements (REs) was 0.168. The mitogenome seems to have a complex and dynamic structure featured by high combinatorial variation, which was specifically confirmed by PCR for the contig with the highest mapping coverage. Comparative analysis of all sequenced mitogenomes of gymnosperms revealed a moderate, but significant positive correlation between mitogenome size and proportion of REs. CONCLUSIONS The A. alba mitogenome provides a basis for new comparative studies and will allow to answer important structural, phylogenetic and other evolutionary questions. Future long-read sequencing with higher coverage of the A. alba mitogenome will be the key to further resolve its physical structure. The observed positive correlation between mitogenome size and proportion of REs will be further validated once available mitogenomes of gymnosperms would become more numerous. To test whether a higher proportion of REs in a mitogenome leads to an increased recombination and higher structural complexity and variability is a prospective avenue for future research.
Collapse
Affiliation(s)
- Birgit Kersten
- Thünen Institute of Forest Genetics, Sieker Landstrasse 2, 22927 Grosshansdorf, Germany
| | - Christian Rellstab
- grid.419754.a0000 0001 2259 5533Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Hilke Schroeder
- Thünen Institute of Forest Genetics, Sieker Landstrasse 2, 22927 Grosshansdorf, Germany
| | - Sabine Brodbeck
- grid.419754.a0000 0001 2259 5533Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, Sieker Landstrasse 2, 22927 Grosshansdorf, Germany
| | - Konstantin V. Krutovsky
- grid.7450.60000 0001 2364 4210Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Felix Gugerli
- grid.419754.a0000 0001 2259 5533Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
21
|
Mishima K, Hirakawa H, Iki T, Fukuda Y, Hirao T, Tamura A, Takahashi M. Comprehensive collection of genes and comparative analysis of full-length transcriptome sequences from Japanese larch (Larix kaempferi) and Kuril larch (Larix gmelinii var. japonica). BMC PLANT BIOLOGY 2022; 22:470. [PMID: 36192701 PMCID: PMC9531402 DOI: 10.1186/s12870-022-03862-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Japanese larch (Larix kaempferi) is an economically important deciduous conifer species that grows in cool-temperate forests and is endemic to Japan. Kuril larch (L. gmelinii var. japonica) is a variety of Dahurian larch that is naturally distributed in the Kuril Islands and Sakhalin. The hybrid larch (L. gmelinii var. japonica × L. kaempferi) exhibits heterosis, which manifests as rapid juvenile growth and high resistance to vole grazing. Since these superior characteristics have been valued by forestry managers, the hybrid larch is one of the most important plantation species in Hokkaido. To accelerate molecular breeding in these species, we collected and compared full-length cDNA isoforms (Iso-Seq) and RNA-Seq short-read, and merged them to construct candidate gene as reference for both Larix species. To validate the results, candidate protein-coding genes (ORFs) related to some flowering signal-related genes were screened from the reference sequences, and the phylogenetic relationship with closely related species was elucidated. RESULTS Using the isoform sequencing of PacBio RS ll and the de novo assembly of RNA-Seq short-read sequences, we identified 50,690 and 38,684 ORFs in Japanese larch and Kuril larch, respectively. BUSCO completeness values were 90.5% and 92.1% in the Japanese and Kuril larches, respectively. After comparing the collected ORFs from the two larch species, a total of 19,813 clusters, comprising 22,571 Japanese larch ORFs and 22,667 Kuril larch ORFs, were contained in the intersection of the Venn diagram. In addition, we screened several ORFs related to flowering signals (SUPPRESSER OF OVEREXPRESSION OF CO1: SOC1, LEAFY: LFY, FLOWERING Locus T: FT, CONSTANCE: CO) from both reference sequences, and very similar found in other species. CONCLUSIONS The collected ORFs will be useful as reference sequences for molecular breeding of Japanese and Kuril larches, and also for clarifying the evolution of the conifer genome and investigating functional genomics.
Collapse
Affiliation(s)
- Kentaro Mishima
- Tohoku Regional Breeding Office, Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 95 Osaki, Takizawa, Iwate, 020-0621, Japan.
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Taiichi Iki
- Tohoku Regional Breeding Office, Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 95 Osaki, Takizawa, Iwate, 020-0621, Japan
| | - Yoko Fukuda
- Hokkaido Regional Breeding Office, Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 561-1 Bunkyodaimidorimachi, Ebetsu, Hokkaido, 069-0836, Japan
| | - Tomonori Hirao
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Akira Tamura
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Makoto Takahashi
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| |
Collapse
|
22
|
Weisweiler M, Arlt C, Wu PY, Van Inghelandt D, Hartwig T, Stich B. Structural variants in the barley gene pool: precision and sensitivity to detect them using short-read sequencing and their association with gene expression and phenotypic variation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3511-3529. [PMID: 36029318 PMCID: PMC9519679 DOI: 10.1007/s00122-022-04197-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Structural variants (SV) of 23 barley inbreds, detected by the best combination of SV callers based on short-read sequencing, were associated with genome-wide and gene-specific gene expression and, thus, were evaluated to predict agronomic traits. In human genetics, several studies have shown that phenotypic variation is more likely to be caused by structural variants (SV) than by single nucleotide variants. However, accurate while cost-efficient discovery of SV in complex genomes remains challenging. The objectives of our study were to (i) facilitate SV discovery studies by benchmarking SV callers and their combinations with respect to their sensitivity and precision to detect SV in the barley genome, (ii) characterize the occurrence and distribution of SV clusters in the genomes of 23 barley inbreds that are the parents of a unique resource for mapping quantitative traits, the double round robin population, (iii) quantify the association of SV clusters with transcript abundance, and (iv) evaluate the use of SV clusters for the prediction of phenotypic traits. In our computer simulations based on a sequencing coverage of 25x, a sensitivity > 70% and precision > 95% was observed for all combinations of SV types and SV length categories if the best combination of SV callers was used. We observed a significant (P < 0.05) association of gene-associated SV clusters with global gene-specific gene expression. Furthermore, about 9% of all SV clusters that were within 5 kb of a gene were significantly (P < 0.05) associated with the gene expression of the corresponding gene. The prediction ability of SV clusters was higher compared to that of single-nucleotide polymorphisms from an array across the seven studied phenotypic traits. These findings suggest the usefulness of exploiting SV information when fine mapping and cloning the causal genes underlying quantitative traits as well as the high potential of using SV clusters for the prediction of phenotypes in diverse germplasm sets.
Collapse
Affiliation(s)
- Marius Weisweiler
- Institute for Quantitative Genetics and Genomics of Plants, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Christopher Arlt
- Institute for Quantitative Genetics and Genomics of Plants, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Po-Ya Wu
- Institute for Quantitative Genetics and Genomics of Plants, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Delphine Van Inghelandt
- Institute for Quantitative Genetics and Genomics of Plants, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Thomas Hartwig
- Institute for Molecular Physiology, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Benjamin Stich
- Institute for Quantitative Genetics and Genomics of Plants, Universitätsstraße 1, 40225, Düsseldorf, Germany.
- Cluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
23
|
Lecoy J, Sachin Ranade S, Rosario García-Gil M. Analysis of the ASR and LP3 homologous gene families reveal positive selection acting on LP3-3 gene. Gene 2022; 850:146935. [DOI: 10.1016/j.gene.2022.146935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
|
24
|
Wan T, Gong Y, Liu Z, Zhou Y, Dai C, Wang Q. Evolution of complex genome architecture in gymnosperms. Gigascience 2022; 11:6659718. [PMID: 35946987 PMCID: PMC9364684 DOI: 10.1093/gigascience/giac078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Gymnosperms represent an ancient lineage that diverged from early spermatophytes during the Devonian. The long fossil records and low diversity in living species prove their complex evolutionary history, which included ancient radiations and massive extinctions. Due to their ultra-large genome size, the whole-genome assembly of gymnosperms has only generated in the past 10 years and is now being further expanded into more taxonomic representations. Here, we provide an overview of the publicly available gymnosperm genome resources and discuss their assembly quality and recent findings in large genome architectures. In particular, we describe the genomic features most related to changes affecting the whole genome. We also highlight new realizations relative to repetitive sequence dynamics, paleopolyploidy, and long introns. Based on the results of relevant genomic studies of gymnosperms, we suggest additional efforts should be made toward exploring the genomes of medium-sized (5–15 gigabases) species. Lastly, more comparative analyses among high-quality assemblies are needed to understand the genomic shifts and the early species diversification of seed plants.
Collapse
Affiliation(s)
- Tao Wan
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.,Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China.,Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen 518004, China
| | - Yanbing Gong
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Research Center for Ecology, College of Science, Tibet University, Lhasa 850000, China
| | - Zhiming Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen 518004, China
| | - YaDong Zhou
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Can Dai
- School of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Qingfeng Wang
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.,Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
25
|
Chen ZQ, Zan Y, Zhou L, Karlsson B, Tuominen H, García-Gil MR, Wu HX. Genetic architecture behind developmental and seasonal control of tree growth and wood properties in Norway spruce. FRONTIERS IN PLANT SCIENCE 2022; 13:927673. [PMID: 36017254 PMCID: PMC9396349 DOI: 10.3389/fpls.2022.927673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/12/2022] [Indexed: 06/01/2023]
Abstract
Genetic control of tree growth and wood formation varies depending on the age of the tree and the time of the year. Single-locus, multi-locus, and multi-trait genome-wide association studies (GWAS) were conducted on 34 growth and wood property traits in 1,303 Norway spruce individuals using exome capture to cover ~130K single-nucleotide polymorphisms (SNPs). GWAS identified associations to the different wood traits in a total of 85 gene models, and several of these were validated in a progenitor population. A multi-locus GWAS model identified more SNPs associated with the studied traits than single-locus or multivariate models. Changes in tree age and annual season influenced the genetic architecture of growth and wood properties in unique ways, manifested by non-overlapping SNP loci. In addition to completely novel candidate genes, SNPs were located in genes previously associated with wood formation, such as cellulose synthases and a NAC transcription factor, but that have not been earlier linked to seasonal or age-dependent regulation of wood properties. Interestingly, SNPs associated with the width of the year rings were identified in homologs of Arabidopsis thaliana BARELY ANY MERISTEM 1 and rice BIG GRAIN 1, which have been previously shown to control cell division and biomass production. The results provide tools for future Norway spruce breeding and functional studies.
Collapse
Affiliation(s)
- Zhi-Qiang Chen
- Department Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Yanjun Zan
- Department Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Linghua Zhou
- Department Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Hannele Tuominen
- Department Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Maria Rosario García-Gil
- Department Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Harry X. Wu
- Department Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO) National Collection Research Australia, Black Mountain Laboratory, Canberra, ACT, Australia
| |
Collapse
|
26
|
Annotation of Siberian Larch (Larix sibirica Ledeb.) Nuclear Genome—One of the Most Cold-Resistant Tree Species in the Only Deciduous GENUS in Pinaceae. PLANTS 2022; 11:plants11152062. [PMID: 35956540 PMCID: PMC9370799 DOI: 10.3390/plants11152062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
The recent release of the nuclear, chloroplast and mitochondrial genome assemblies of Siberian larch (Larix sibirica Ledeb.), one of the most cold-resistant tree species in the only deciduous genus of Pinaceae, with seasonal senescence and a rot-resistant valuable timber widely used in construction, greatly contributed to the development of genomic resources for the larch genus. Here, we present an extensive repeatome analysis and the first annotation of the draft nuclear Siberian larch genome assembly. About 66% of the larch genome consists of highly repetitive elements (REs), with the likely wave of retrotransposons insertions into the larch genome estimated to occur 4–5 MYA. In total, 39,370 gene models were predicted, with 87% of them having homology to the Arabidopsis-annotated proteins and 78% having at least one GO term assignment. The current state of the genome annotations allows for the exploration of the gymnosperm and angiosperm species for relative gene abundance in different functional categories. Comparative analysis of functional gene categories across different angiosperm and gymnosperm species finds that the Siberian larch genome has an overabundance of genes associated with programmed cell death (PCD), autophagy, stress hormone biosynthesis and regulatory pathways; genes that may play important roles in seasonal senescence and stress response to extreme cold in larch. Despite being incomplete, the draft assemblies and annotations of the conifer genomes are at a point of development where they now represent a valuable source for further genomic, genetic and population studies.
Collapse
|
27
|
Hu LJ, Wu XQ, Wen TY, Ye JR, Qiu YJ, Rui L, Zhang Y. The key molecular pattern BxCDP1 of Bursaphelenchus xylophilus induces plant immunity and enhances plant defense response via two small peptide regions. FRONTIERS IN PLANT SCIENCE 2022; 13:937473. [PMID: 35991456 PMCID: PMC9382027 DOI: 10.3389/fpls.2022.937473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The migratory plant-parasitic nematode Bursaphelenchus xylophilus is the pathogen of the pine wilt disease (PWD), causing serious damage to pine forests in China. During the process of plant resistance to multiple pathogens, plant immunity plays a key role. In this current study, the pathogen-associated molecular pattern (PAMP) BxCDP1 in B. xylophilus has been identified, but the host target protein of BxCDP1 and its key amino acid region inducing the plant immunity have yet to be elucidated. We found that BxCDP1 could trigger superoxide production, H2O2 production, and callose deposits. A RING-H2 finger protein 1 (RHF1) of Pinus thunbergii was screened and characterized as a target protein of BxCDP1 by yeast two-hybrid and co-immunoprecipitation (Co-IP). Moreover, two peptides (namely M9 and M16) proved to be key regions of BxCDP1 to induce PAMP-triggered immunity (PTI) in Nicotiana benthamiana, which also induced the expression of pathogenesis-related (PR) genes (PtPR-3, PtPR-4, and PtPR-5) in P. thunbergii and enhanced the resistance of the host to B. xylophilus. These results indicate that BxCDP1 plays a critical role in the interaction between B. xylophilus and P. thunbergii, and both peptides M9 and M16 have the potential to be developed and utilized as immune inducers of pines against B. xylophilus in future.
Collapse
Affiliation(s)
- Long-Jiao Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Tong-Yue Wen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yi-Jun Qiu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Lin Rui
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
28
|
Yu Y, Aitken SN, Rieseberg LH, Wang T. Using landscape genomics to delineate seed and breeding zones for lodgepole pine. THE NEW PHYTOLOGIST 2022; 235:1653-1664. [PMID: 35569109 PMCID: PMC9545436 DOI: 10.1111/nph.18223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Seed and breeding zones traditionally are delineated based on local adaptation of phenotypic traits associated with climate variables, an approach requiring long-term field experiments. In this study, we applied a landscape genomics approach to delineate seed and breeding zones for lodgepole pine. We used a gradient forest (GF) model to select environment-associated single nucleotide polymorphisms (SNPs) using three SNP datasets (full, neutral and candidate) and 20 climate variables for 1906 lodgepole pine (Pinus contorta) individuals in British Columbia and Alberta, Canada. The two GF models built with the full (28 954) and candidate (982) SNPs were compared. The GF models identified winter-related climate as major climatic factors driving genomic patterns of lodgepole pine's local adaptation. Based on the genomic gradients predicted by the full and candidate GF models, lodgepole pine distribution range in British Columbia and Alberta was delineated into six seed and breeding zones. Our approach is a novel and effective alternative to traditional common garden approaches for delineating seed and breeding zone, and could be applied to tree species lacking data from provenance trials or common garden experiments.
Collapse
Affiliation(s)
- Yue Yu
- Department of Forest Sciences, Centre for Forest Conservation GeneticsUniversity of British Columbia3041‐2424 Main MallVancouverBCV6T 1Z4Canada
| | - Sally N. Aitken
- Department of Forest Sciences, Centre for Forest Conservation GeneticsUniversity of British Columbia3041‐2424 Main MallVancouverBCV6T 1Z4Canada
| | - Loren H. Rieseberg
- Department of Botany and Biodiversity Research CentreUniversity of British Columbia6270 University BoulevardVancouverBCV6T 1Z4Canada
| | - Tongli Wang
- Department of Forest Sciences, Centre for Forest Conservation GeneticsUniversity of British Columbia3041‐2424 Main MallVancouverBCV6T 1Z4Canada
| |
Collapse
|
29
|
Chung H, Nandhakumar S, Yang S. GridSet: Visualizing Individual Elements and Attributes for Analysis of Set-Typed Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:2983-2998. [PMID: 33360996 DOI: 10.1109/tvcg.2020.3047111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present GridSet, a novel set visualization for exploring elements, their attributes, intersections, as well as entire sets. In this set visualization, each set representation is composed of glyphs, which represent individual elements and their attributes utilizing different visual encodings. In each set, elements are organized within a grid treemap layout that can provide space-efficient overviews of the elements structured by set intersections across multiple sets. These intersecting elements can be connected among sets through visual links. These visual representations for the individual set, elements, and intersection in GridSet facilitate novel interaction approaches for undertaking analysis tasks by utilizing both macroscopic views of sets, as well as microscopic views of elements and attribute details. In order to perform multiple set operations, GridSet supports a simple and straightforward process for set operations through dragging and dropping set objects. Our use cases involving two large set-typed datasets demonstrate that GridSet facilitates the exploration and identification of meaningful patterns and distributions of elements with respect to attributes and set intersections for solving complex analysis problems in set-typed data.
Collapse
|
30
|
Yu J, Ran Z, Zhang J, Wei L, Ma W. Genome-Wide Insights Into the Organelle Translocation of Photosynthetic NDH-1 Genes During Evolution. Front Microbiol 2022; 13:956578. [PMID: 35910652 PMCID: PMC9326235 DOI: 10.3389/fmicb.2022.956578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Translocation of chloroplast-located genes to mitochondria or nucleus is considered to be a safety strategy that impedes mutation of photosynthetic genes and maintains their household function during evolution. The organelle translocation strategy is also developed in photosynthetic NDH-1 (pNDH-1) genes but its understanding is still far from complete. Here, we found that the mutation rate of the conserved pNDH-1 genes was gradually reduced but their selection pressure was maintained at a high level during evolution from cyanobacteria to angiosperm. By contrast, oxygenic photosynthesis-specific (OPS) pNDH-1 genes had an opposite trend, explaining the reason why they were transferred from the reactive oxygen species (ROS)-enriched chloroplast to the ROS-barren nucleus. Further, genome-wide sequence analysis supported the possibility that all conserved pNDH-1 genes lost in chloroplast genomes of Chlorophyceae and Pinaceae were transferred to the ROS-less mitochondrial genome as deduced from their truncated pNDH-1 gene fragments. Collectively, we propose that the organelle translocation strategy of pNDH-1 genes during evolution is necessary to maintain the function of the pNDH-1 complex as an important antioxidant mechanism for efficient photosynthesis.
Collapse
|
31
|
Sun C, Xie YH, Li Z, Liu YJ, Sun XM, Li JJ, Quan WP, Zeng QY, Van de Peer Y, Zhang SG. The Larix kaempferi genome reveals new insights into wood properties. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1364-1373. [PMID: 35442564 DOI: 10.1111/jipb.13265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Here, through single-molecule real-time sequencing, we present a high-quality genome sequence of the Japanese larch (Larix kaempferi), a conifer species with great value for wood production and ecological afforestation. The assembled genome is 10.97 Gb in size, harboring 45,828 protein-coding genes. Of the genome, 66.8% consists of repeat sequences, of which long terminal repeat retrotransposons are dominant and make up 69.86%. We find that tandem duplications have been responsible for the expansion of genes involved in transcriptional regulation and stress responses, unveiling their crucial roles in adaptive evolution. Population transcriptome analysis reveals that lignin content in L. kaempferi is mainly determined by the process of monolignol polymerization. The expression values of six genes (LkCOMT7, LkCOMT8, LkLAC23, LkLAC102, LkPRX148, and LkPRX166) have significantly positive correlations with lignin content. These results indicated that the increased expression of these six genes might be responsible for the high lignin content of the larches' wood. Overall, this study provides new genome resources for investigating the evolution and biological function of conifer trees, and also offers new insights into wood properties of larches.
Collapse
Affiliation(s)
- Chao Sun
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yun-Hui Xie
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Yan-Jing Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiao-Mei Sun
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jing-Jing Li
- Nextomics Biosciences Co., Ltd, Wuhan, 430073, China
| | - Wei-Peng Quan
- Nextomics Biosciences Co., Ltd, Wuhan, 430073, China
| | - Qing-Yin Zeng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
- Department of Biochemistry, Genetics and Microbiology, Pretoria, South Africa
| | - Shou-Gong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
32
|
Cao S, Duan H, Sun Y, Hu R, Wu B, Lin J, Deng W, Li Y, Zheng H. Genome-Wide Association Study With Growth-Related Traits and Secondary Metabolite Contents in Red- and White-Heart Chinese Fir. FRONTIERS IN PLANT SCIENCE 2022; 13:922007. [PMID: 35845628 PMCID: PMC9280351 DOI: 10.3389/fpls.2022.922007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Chinese fir [Cunninghamia lanceolata (Lamb.) Hook] is an important evergreen coniferous tree species that is widely distributed in many southern provinces of China and has important economic value. The Chinese fir accounts for 1/4 and 1/3 of the total artificial forest area and stock volume, respectively. Red-heart Chinese fir is popular in the market because of its high density and red heartwood. The long-growth cycle hindered the breeding process of Chinese fir, while molecular marker-assisted breeding could accelerate it. However, Chinese fir, a perennial conifer species, has a large genome, which has not yet been published. In this study, the growth-related traits and secondary metabolite contents of red- and white-heart Chinese fir were measured and found to be different between them. There are extremely significant differences among growth-related traits (p < 0.001), but secondary metabolite contents have different correlations due to differences in chemical structure. Moreover, genotype effect analysis of the substantially correlated single nucleotide polymorphisms (SNPs) revealed that most of the loci related to each growth-related traits were different from each other, indicating a type specificity of the genes regulated different growth-related traits. Furthermore, among the loci related to secondary metabolite contents, nine loci associated with multiple metabolite phenotypes such as Marker21022_4, Marker21022_172, Marker24559_31, Marker27425_37, Marker20748_85, Marker18841_115, Marker18841_198, Marker65846_146, and Marker21486_163, suggesting the presence of pleiotropic genes. This study identified the potential SNP markers associated with secondary metabolites in Chinese fir, thus setting the basis for molecular marker-assisted selection.
Collapse
Affiliation(s)
- Sen Cao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongjing Duan
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Experimental School Affiliated to Chinese Academy of Sciences, Beijing, China
| | - Yuhan Sun
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ruiyang Hu
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, China
| | - Bo Wu
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jun Lin
- Longshan State Forest Farm of Lechang, Lechang, China
| | - Wenjian Deng
- Longshan State Forest Farm of Lechang, Lechang, China
| | - Yun Li
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Huiquan Zheng
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| |
Collapse
|
33
|
Heuchel A, Hall D, Zhao W, Gao J, Wennström U, Wang XR. Genetic diversity and background pollen contamination in Norway spruce and Scots pine seed orchard crops. FORESTRY RESEARCH 2022; 2:8. [PMID: 39525423 PMCID: PMC11524256 DOI: 10.48130/fr-2022-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2024]
Abstract
Seed orchards are the key link between tree breeding and production forest for conifer trees. In Sweden, Scots pine and Norway spruce seed orchards currently supply ca. 85% of seedlings used in annual reforestation. The functionality of these seed orchards is thus crucial for supporting long-term production gain and sustainable diversity. We conducted a large-scale genetic investigation of pine and spruce orchards across Sweden using genotyping-by-sequencing. We genotyped 3,300 seedlings/trees from six orchards and 10 natural stands to gain an overview of mating structure and genetic diversity in orchard crops. We found clear differences in observed heterozygosity (H O) and background pollen contamination (BPC) rates between species, with pine orchard crops showing higher H O and BPC than spruce. BPC in pine crops varied from 87% at young orchard age to 12% at mature age, wherease this rate ranged between 27%-4% in spruce crops. Substantial variance in parental contribution was observed in all orchards with 30%-50% parents contibuting to 80% of the progeny. Selfing was low (2%-6%) in all seed crops. Compared to natural stands, orchard crops had slightly lower H O but no strong signal of inbreeding. Our results provide valuable references for orchard management.
Collapse
Affiliation(s)
- Alisa Heuchel
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå SE-90187, Sweden
| | - David Hall
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå SE-90187, Sweden
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå SE-90187, Sweden
| | - Jie Gao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, Yunnan, China
| | - Ulfstand Wennström
- The Forestry Research Institute of Sweden (Skogforsk), Sävar SE-918 21, Sweden
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå SE-90187, Sweden
| |
Collapse
|
34
|
Chasing genetic correlation breakers to stimulate population resilience to climate change. Sci Rep 2022; 12:8238. [PMID: 35581288 PMCID: PMC9114142 DOI: 10.1038/s41598-022-12320-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Global climate change introduces new combinations of environmental conditions, which is expected to increase stress on plants. This could affect many traits in multiple ways that are as yet unknown but will likely require the modification of existing genetic relationships among functional traits potentially involved in local adaptation. Theoretical evolutionary studies have determined that it is an advantage to have an excess of recombination events under heterogeneous environmental conditions. Our study, conducted on a population of radiata pine (Pinus radiata D. Don), was able to identify individuals that show high genetic recombination at genomic regions, which potentially include pleiotropic or collocating QTLs responsible for the studied traits, reaching a prediction accuracy of 0.80 in random cross-validation and 0.72 when whole family was removed from the training population and predicted. To identify these highly recombined individuals, a training population was constructed from correlation breakers, created through tandem selection of parents in the previous generation and their consequent mating. Although the correlation breakers showed lower observed heterogeneity possibly due to direct selection in both studied traits, the genomic regions with statistically significant differences in the linkage disequilibrium pattern showed higher level of heretozygosity, which has the effect of decomposing unfavourable genetic correlation. We propose undertaking selection of correlation breakers under current environmental conditions and using genomic predictions to increase the frequency of these ’recombined’ individuals in future plantations, ensuring the resilience of planted forests to changing climates. The increased frequency of such individuals will decrease the strength of the population-level genetic correlations among traits, increasing the opportunity for new trait combinations to be developed in the future.
Collapse
|
35
|
Montes J, Peláez P, Moreno‐Letelier A, Gernandt DS. Coalescent-based species delimitation in North American pinyon pines using low-copy nuclear genes and plastomes. AMERICAN JOURNAL OF BOTANY 2022; 109:706-726. [PMID: 35526278 PMCID: PMC9321694 DOI: 10.1002/ajb2.1847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
PREMISE Accurate species delimitation is essential for evolutionary biology, conservation, and biodiversity management. We studied species delimitation in North American pinyon pines, Pinus subsection Cembroides, a natural group with high levels of incomplete lineage sorting. METHODS We used coalescent-based methods and multivariate analyses of low-copy number nuclear genes and nearly complete high-copy number plastomes generated with the Hyb-Seq method. The three coalescent-based species delimitation methods evaluated were the Generalized Mixed Yule Coalescent (GMYC), Poisson Tree Process (PTP), and Trinomial Distribution of Triplets (Tr2). We also measured admixture in populations with possible introgression. RESULTS Our results show inconsistencies among GMYC, PTP, and Tr2. The single-locus based GMYC analysis of plastid DNA recovered a higher number of species (up to 24 entities, including singleton lineages and clusters) than PTP and the multi-locus coalescent approach. The PTP analysis identified 10 species whereas Tr2 recovered 13, which agreed closely with taxonomic treatments. CONCLUSIONS We found that PTP and GMYC identified species with low levels of ILS and high morphological divergence (P. maximartinezii, P. pinceana, and P. rzedowskii). However, GMYC method oversplit species by identification of more divergent samples as singletons. Moreover, both PTP and GMYC were incapable of identifying some species that are readily identified morphologically. We suggest that the divergence times between lineages within North American pinyon pines are so disparate that GMYC results are unreliable. Results of the Tr2 method coincided well with previous delimitations based on morphology, DNA, geography, and secondary chemistry.
Collapse
Affiliation(s)
- José‐Rubén Montes
- Posgrado en Ciencias Biológicas, Instituto de BiologíaUniversidad Nacional Autónoma de México04510Ciudad de MéxicoMexico
| | - Pablo Peláez
- Centro de Ciencias GenómicasUniversidad Nacional Autónoma de México62210CuernavacaMorelosMexico
| | - Alejandra Moreno‐Letelier
- Jardín Botánico, Instituto de BiologíaUniversidad Nacional Autónoma de México04510Ciudad de MéxicoMexico
| | - David S. Gernandt
- Departamento de Botánica, Instituto de BiologíaUniversidad Nacional Autónoma de México04510Ciudad de MéxicoMexico
| |
Collapse
|
36
|
Valderrama‐Martín JM, Ortigosa F, Ávila C, Cánovas FM, Hirel B, Cantón FR, Cañas RA. A revised view on the evolution of glutamine synthetase isoenzymes in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:946-960. [PMID: 35199893 PMCID: PMC9310647 DOI: 10.1111/tpj.15712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 05/29/2023]
Abstract
Glutamine synthetase (GS) is a key enzyme responsible for the incorporation of inorganic nitrogen in the form of ammonium into the amino acid glutamine. In plants, two groups of functional GS enzymes are found: eubacterial GSIIb (GLN2) and eukaryotic GSIIe (GLN1/GS). Only GLN1/GS genes are found in vascular plants, which suggests that they are involved in the final adaptation of plants to terrestrial life. The present phylogenetic study reclassifies the different GS genes of seed plants into three clusters: GS1a, GS1b and GS2. The presence of genes encoding GS2 has been expanded to Cycadopsida gymnosperms, which suggests the origin of this gene in a common ancestor of Cycadopsida, Ginkgoopsida and angiosperms. GS1a genes have been identified in all gymnosperms, basal angiosperms and some Magnoliidae species. Previous studies in conifers and the gene expression profiles obtained in ginkgo and magnolia in the present work could explain the absence of GS1a in more recent angiosperm species (e.g. monocots and eudicots) as a result of the redundant roles of GS1a and GS2 in photosynthetic cells. Altogether, the results provide a better understanding of the evolution of plant GS isoenzymes and their physiological roles, which is valuable for improving crop nitrogen use efficiency and productivity. This new view of GS evolution in plants, including a new cytosolic GS group (GS1a), has important functional implications in the context of plant metabolism adaptation to global changes.
Collapse
Affiliation(s)
- José Miguel Valderrama‐Martín
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y BioquímicaUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
- Integrative Molecular Biology LabUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| | - Francisco Ortigosa
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y BioquímicaUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| | - Concepción Ávila
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y BioquímicaUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| | - Francisco M. Cánovas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y BioquímicaUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| | - Bertrand Hirel
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre de Versailles‐GrignonRD 1078026Versailles CedexFrance
| | - Francisco R. Cantón
- Integrative Molecular Biology LabUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| | - Rafael A. Cañas
- Integrative Molecular Biology LabUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| |
Collapse
|
37
|
Genomic Prediction of Complex Traits in Perennial Plants: A Case for Forest Trees. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2467:493-520. [PMID: 35451788 DOI: 10.1007/978-1-0716-2205-6_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This chapter provides an overview of the genomic selection progress in long-lived forest tree species. Factors affecting the prediction accuracy in genomic prediction are assessed with examples from empirical studies. Infrastructure and resources required for the implementation of genomic selection are evaluated. Some general guidelines are provided for the successful application of genomic selection in forest tree breeding programs.
Collapse
|
38
|
Chai G, Lu M, Yang X, Demura T, Li W, Li Q. Editorial: Wood Development and Physiology in a Changing Climate. FRONTIERS IN PLANT SCIENCE 2022; 13:906736. [PMID: 35528942 PMCID: PMC9069742 DOI: 10.3389/fpls.2022.906736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Guohua Chai
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Mengzhu Lu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
39
|
Hassani SB, Trontin JF, Raschke J, Zoglauer K, Rupps A. Constitutive Overexpression of a Conifer WOX2 Homolog Affects Somatic Embryo Development in Pinus pinaster and Promotes Somatic Embryogenesis and Organogenesis in Arabidopsis Seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:838421. [PMID: 35360299 PMCID: PMC8960953 DOI: 10.3389/fpls.2022.838421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Although full sequence data of several embryogenesis-related genes are available in conifers, their functions are still poorly understood. In this study, we focused on the transcription factor WUSCHEL-related HOMEOBOX 2 (WOX2), which is involved in determination of the apical domain during early embryogenesis, and is required for initiation of the stem cell program in the embryogenic shoot meristem of Arabidopsis. We studied the effects of constitutive overexpression of Pinus pinaster WOX2 (PpWOX2) by Agrobacterium-mediated transformation of P. pinaster somatic embryos and Arabidopsis seedlings. Overexpression of PpWOX2 during proliferation and maturation of somatic embryos of P. pinaster led to alterations in the quantity and quality of cotyledonary embryos. In addition, transgenic somatic seedlings of P. pinaster showed non-embryogenic callus formation in the region of roots and subsequently inhibited root growth. Overexpression of PpWOX2 in Arabidopsis promoted somatic embryogenesis and organogenesis in a part of the transgenic seedlings of the first and second generations. A concomitant increased expression of endogenous embryogenesis-related genes such as AtLEC1 was detected in transgenic plants of the first generation. Various plant phenotypes observed from single overexpressing transgenic lines of the second generation suggest some significant interactions between PpWOX2 and AtWOX2. As an explanation, functional redundancy in the WOX family is suggested for seed plants. Our results demonstrate that the constitutive high expression of PpWOX2 in Arabidopsis and P. pinaster affected embryogenesis-related traits. These findings further support some evolutionary conserved roles of this gene in embryo development of seed plants and have practical implications toward somatic embryogenesis induction in conifers.
Collapse
Affiliation(s)
- Seyedeh Batool Hassani
- Department of Plant Systematics and Evolution, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Juliane Raschke
- Department of Plant Systematics and Evolution, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kurt Zoglauer
- Department of Plant Systematics and Evolution, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrea Rupps
- Department of Plant Systematics and Evolution, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
40
|
Kastally C, Niskanen AK, Perry A, Kujala ST, Avia K, Cervantes S, Haapanen M, Kesälahti R, Kumpula TA, Mattila TM, Ojeda DI, Tyrmi JS, Wachowiak W, Cavers S, Kärkkäinen K, Savolainen O, Pyhäjärvi T. Taming the massive genome of Scots pine with PiSy50k, a new genotyping array for conifer research. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1337-1350. [PMID: 34897859 PMCID: PMC9303803 DOI: 10.1111/tpj.15628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Pinus sylvestris (Scots pine) is the most widespread coniferous tree in the boreal forests of Eurasia, with major economic and ecological importance. However, its large and repetitive genome presents a challenge for conducting genome-wide analyses such as association studies, genetic mapping and genomic selection. We present a new 50K single-nucleotide polymorphism (SNP) genotyping array for Scots pine research, breeding and other applications. To select the SNP set, we first genotyped 480 Scots pine samples on a 407 540 SNP screening array and identified 47 712 high-quality SNPs for the final array (called 'PiSy50k'). Here, we provide details of the design and testing, as well as allele frequency estimates from the discovery panel, functional annotation, tissue-specific expression patterns and expression level information for the SNPs or corresponding genes, when available. We validated the performance of the PiSy50k array using samples from Finland and Scotland. Overall, 39 678 (83.2%) SNPs showed low error rates (mean = 0.9%). Relatedness estimates based on array genotypes were consistent with the expected pedigrees, and the level of Mendelian error was negligible. In addition, array genotypes successfully discriminate between Scots pine populations of Finnish and Scottish origins. The PiSy50k SNP array will be a valuable tool for a wide variety of future genetic studies and forestry applications.
Collapse
Affiliation(s)
- Chedly Kastally
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Alina K. Niskanen
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Annika Perry
- UK Centre for Ecology & HydrologyBush EstatePenicuikMidlothianEH26 0QBUK
| | - Sonja T. Kujala
- Natural Resources Institute Finland (Luke)Paavo Havaksen tie 390570OuluFinland
| | - Komlan Avia
- Université de StrasbourgINRAESVQV UMR‐A 1131F‐68000ColmarFrance
| | - Sandra Cervantes
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Matti Haapanen
- Natural Resources Institute Finland (Luke)Latokartanonkaari 9FI‐00790HelsinkiFinland
| | - Robert Kesälahti
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Timo A. Kumpula
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Tiina M. Mattila
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
- Department of Organismal BiologyEBCUppsala UniversityNorbyvägen 18 AUppsala752 36Sweden
| | - Dario I. Ojeda
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
- Norwegian Institute of Bioeconomy ResearchP.O. Box 115Ås1431Norway
| | - Jaakko S. Tyrmi
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Witold Wachowiak
- Institute of Environmental BiologyFaculty of BiologyAdam Mickiewicz University in PoznańUniwersytetu Poznańskiego 661‐614PoznańPoland
| | - Stephen Cavers
- UK Centre for Ecology & HydrologyBush EstatePenicuikMidlothianEH26 0QBUK
| | - Katri Kärkkäinen
- Natural Resources Institute Finland (Luke)Paavo Havaksen tie 390570OuluFinland
| | - Outi Savolainen
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Tanja Pyhäjärvi
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
- Department of Forest SciencesUniversity of HelsinkiP.O. Box 2700014HelsinkiFinland
| |
Collapse
|
41
|
Identification and Tissue-Specific Expression Analysis of CYP720B Subfamily Genes in Slash Pine and Loblolly Pine. FORESTS 2022. [DOI: 10.3390/f13020283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diterpene resin acids (DRAs) are major components of pine oleoresin that can effectively resist the invasion of insects and pathogenic microorganisms. The subfamily of cytochrome P450s, CYP720B, catalyzes diterpene products into DRAs. Identifying CYP720B subfamily members and revealing the characteristics of tissue-specific expression would help understand diterpene-rich structures and diverse types. Slash pine and loblolly pine are important pines that provide oleoresin products. In this study, we identified CYP720B candidate genes based on the Pinus taeda V2.0 genome and full-length transcriptome of slash pine by PacBio. A total of 17 genes in slash pine and 19 in loblolly pine were identified and classified into four main clades by phylogenetic analysis. An analysis of cis-acting elements showed that CYP720B genes were closely related to adversity resistance. The gene expression of these candidates in different tissues was quantified by real-time quantitative PCR (RT–qPCR) analysis. Most of the genes showed relatively higher expression levels in roots and stems than in the other tissues, corresponding with the results of DRA component detection by gas chromatography–mass spectrometry (GC–MS), which indicated that stems and roots might be important tissues in oleoresin biosynthesis. These results provide a valuable resource for a better understanding of the biological role of individual CYP720Bs in slash pine and loblolly pine.
Collapse
|
42
|
Ence D, Smith KE, Fan S, Gomide Neves L, Paul R, Wegrzyn J, Peter GF, Kirst M, Brawner J, Nelson CD, Davis JM. NLR diversity and candidate fusiform rust resistance genes in loblolly pine. G3 GENES|GENOMES|GENETICS 2022; 12:6460333. [PMID: 34897455 PMCID: PMC9210285 DOI: 10.1093/g3journal/jkab421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 11/14/2022]
Abstract
Abstract
Resistance to fusiform rust disease in loblolly pine (Pinus taeda) is a classic gene-for-gene system. Early resistance gene mapping in the P. taeda family 10-5 identified RAPD markers for a major fusiform rust resistance gene, Fr1. More recently, single nucleotide polymorphism (SNP) markers associated with resistance were mapped to a full-length gene model in the loblolly pine genome encoding for a nucleotide-binding site leucine-rich repeat (NLR) protein. NLR genes are one of the most abundant gene families in plant genomes and are involved in effector-triggered immunity. Inter- and intraspecies studies of NLR gene diversity and expression have resulted in improved disease resistance. To characterize NLR gene diversity and discover potential resistance genes, we assembled de novo transcriptomes from 92 loblolly genotypes from across the natural range of the species. In these transcriptomes, we identified novel NLR transcripts that are not present in the loblolly pine reference genome and found significant geographic diversity of NLR genes providing evidence of gene family evolution. We designed capture probes for these NLRs to identify and map SNPs that stably cosegregate with resistance to the SC20-21 isolate of Cronartium quercuum f.sp. fusiforme (Cqf) in half-sib progeny of the 10-5 family. We identified 10 SNPs and 2 quantitative trait loci associated with resistance to SC20-21 Cqf. The geographic diversity of NLR genes provides evidence of NLR gene family evolution in loblolly pine. The SNPs associated with rust resistance provide a resource to enhance breeding and deployment of resistant pine seedlings.
Collapse
Affiliation(s)
- Daniel Ence
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Katherine E Smith
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
- USDA Forest Service, Southern Research, Southern Institute of Forest Genetics, Saucier, MS 39574, USA
| | - Shenghua Fan
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY 40546, USA
- Department of Horticulture, University of Kentucky, Lexington, KY 40546, USA
| | | | - Robin Paul
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Jill Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Gary F Peter
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Matias Kirst
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Jeremy Brawner
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - C Dana Nelson
- USDA Forest Service, Southern Research, Southern Institute of Forest Genetics, Saucier, MS 39574, USA
- USDA Forest Service, Southern Research Station, Forest Health Research and Education Center, Lexington, KY 40546, USA
| | - John M Davis
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
43
|
Genome-Wide Prediction of Transcription Start Sites in Conifers. Int J Mol Sci 2022; 23:ijms23031735. [PMID: 35163661 PMCID: PMC8836283 DOI: 10.3390/ijms23031735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
The identification of promoters is an essential step in the genome annotation process, providing a framework for gene regulatory networks and their role in transcription regulation. Despite considerable advances in the high-throughput determination of transcription start sites (TSSs) and transcription factor binding sites (TFBSs), experimental methods are still time-consuming and expensive. Instead, several computational approaches have been developed to provide fast and reliable means for predicting the location of TSSs and regulatory motifs on a genome-wide scale. Numerous studies have been carried out on the regulatory elements of mammalian genomes, but plant promoters, especially in gymnosperms, have been left out of the limelight and, therefore, have been poorly investigated. The aim of this study was to enhance and expand the existing genome annotations using computational approaches for genome-wide prediction of TSSs in the four conifer species: loblolly pine, white spruce, Norway spruce, and Siberian larch. Our pipeline will be useful for TSS predictions in other genomes, especially for draft assemblies, where reliable TSS predictions are not usually available. We also explored some of the features of the nucleotide composition of the predicted promoters and compared the GC properties of conifer genes with model monocot and dicot plants. Here, we demonstrate that even incomplete genome assemblies and partial annotations can be a reliable starting point for TSS annotation. The results of the TSS prediction in four conifer species have been deposited in the Persephone genome browser, which allows smooth visualization and is optimized for large data sets. This work provides the initial basis for future experimental validation and the study of the regulatory regions to understand gene regulation in gymnosperms.
Collapse
|
44
|
Cao HX, Vu GTH, Gailing O. From Genome Sequencing to CRISPR-Based Genome Editing for Climate-Resilient Forest Trees. Int J Mol Sci 2022; 23:966. [PMID: 35055150 PMCID: PMC8780650 DOI: 10.3390/ijms23020966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Due to the economic and ecological importance of forest trees, modern breeding and genetic manipulation of forest trees have become increasingly prevalent. The CRISPR-based technology provides a versatile, powerful, and widely accepted tool for analyzing gene function and precise genetic modification in virtually any species but remains largely unexplored in forest species. Rapidly accumulating genetic and genomic resources for forest trees enabled the identification of numerous genes and biological processes that are associated with important traits such as wood quality, drought, or pest resistance, facilitating the selection of suitable gene editing targets. Here, we introduce and discuss the latest progress, opportunities, and challenges of genome sequencing and editing for improving forest sustainability.
Collapse
Affiliation(s)
- Hieu Xuan Cao
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
| | - Giang Thi Ha Vu
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
- Center for Integrated Breeding Research (CiBreed), Georg-August University of Göttingen, 37073 Gottingen, Germany
| |
Collapse
|
45
|
Phylotranscriptomics reveals the evolutionary history of subtropical East Asian white pines: further insights into gymnosperm diversification. Mol Phylogenet Evol 2022; 168:107403. [PMID: 35031461 DOI: 10.1016/j.ympev.2022.107403] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/15/2021] [Accepted: 12/25/2021] [Indexed: 11/20/2022]
Abstract
Floristic composition within a geographic area is driven by a wide array of factors from local biotic interactions to biogeographical processes. Subtropical East Asia is a key biodiversity hotspot of the world, and harbors the most families of extant gymnosperms and a large number of endemic genera with ancient origins, but rare phylogenetic studies explored whether it served as a diversification center for gymnosperms. Here, we investigated the evolutionary and biogeographical history of subtropical East Asian white pines using an integrative approach that combines phylotranscriptomic and ecological analyses. Using 2,606 orthologous nuclear genes, we reconstructed a fully resolved and dated phylogeny of these species. Two main clades first diverged in the early Miocene, and by the late Miocene, all species appeared. Two white pines endemic to Taiwan Island experienced independent colonization events and regional extinction, which resulted in the present disjunctive distribution from mainland China. Ecological and biogeographical analyses indicate that the monsoon-driven assembly of evergreen broadleaved forests (EBLFs) might have significantly affected the diversification of subtropical East Asian white pines. Our study highlights the interactions of biotic and abiotic forces in the diversification and speciation of subtropical East Asian white pines. These findings indicate that subtropical East Asia is not only a floristic museum, but also a diversification center for gymnosperms. Our study also demonstrates the importance of phylotranscriptomics on species delimitation and biodiversity conservation, particularly for closely related species.
Collapse
|
46
|
Ashraf MF, Hou D, Hussain Q, Imran M, Pei J, Ali M, Shehzad A, Anwar M, Noman A, Waseem M, Lin X. Entailing the Next-Generation Sequencing and Metabolome for Sustainable Agriculture by Improving Plant Tolerance. Int J Mol Sci 2022; 23:651. [PMID: 35054836 PMCID: PMC8775971 DOI: 10.3390/ijms23020651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Crop production is a serious challenge to provide food for the 10 billion individuals forecasted to live across the globe in 2050. The scientists' emphasize establishing an equilibrium among diversity and quality of crops by enhancing yield to fulfill the increasing demand for food supply sustainably. The exploitation of genetic resources using genomics and metabolomics strategies can help generate resilient plants against stressors in the future. The innovation of the next-generation sequencing (NGS) strategies laid the foundation to unveil various plants' genetic potential and help us to understand the domestication process to unmask the genetic potential among wild-type plants to utilize for crop improvement. Nowadays, NGS is generating massive genomic resources using wild-type and domesticated plants grown under normal and harsh environments to explore the stress regulatory factors and determine the key metabolites. Improved food nutritional value is also the key to eradicating malnutrition problems around the globe, which could be attained by employing the knowledge gained through NGS and metabolomics to achieve suitability in crop yield. Advanced technologies can further enhance our understanding in defining the strategy to obtain a specific phenotype of a crop. Integration among bioinformatic tools and molecular techniques, such as marker-assisted, QTLs mapping, creation of reference genome, de novo genome assembly, pan- and/or super-pan-genomes, etc., will boost breeding programs. The current article provides sequential progress in NGS technologies, a broad application of NGS, enhancement of genetic manipulation resources, and understanding the crop response to stress by producing plant metabolites. The NGS and metabolomics utilization in generating stress-tolerant plants/crops without deteriorating a natural ecosystem is considered a sustainable way to improve agriculture production. This highlighted knowledge also provides useful research that explores the suitable resources for agriculture sustainability.
Collapse
Affiliation(s)
- Muhammad Furqan Ashraf
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Muhammad Imran
- Colleges of Agriculture and Horticulture, South China Agricultural University, Guangzhou 510642, China; (M.I.); (M.W.)
| | - Jialong Pei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Mohsin Ali
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Aamar Shehzad
- Maize Research Station, AARI, Faisalabad 38000, Pakistan;
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
| | - Muhammad Waseem
- Colleges of Agriculture and Horticulture, South China Agricultural University, Guangzhou 510642, China; (M.I.); (M.W.)
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| |
Collapse
|
47
|
Neale DB, Zimin AV, Zaman S, Scott AD, Shrestha B, Workman RE, Puiu D, Allen BJ, Moore ZJ, Sekhwal MK, De La Torre AR, McGuire PE, Burns E, Timp W, Wegrzyn JL, Salzberg SL. Assembled and annotated 26.5 Gbp coast redwood genome: a resource for estimating evolutionary adaptive potential and investigating hexaploid origin. G3 (BETHESDA, MD.) 2022; 12:6460957. [PMID: 35100403 PMCID: PMC8728005 DOI: 10.1093/g3journal/jkab380] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
Sequencing, assembly, and annotation of the 26.5 Gbp hexaploid genome of coast redwood (Sequoia sempervirens) was completed leading toward discovery of genes related to climate adaptation and investigation of the origin of the hexaploid genome. Deep-coverage short-read Illumina sequencing data from haploid tissue from a single seed were combined with long-read Oxford Nanopore Technologies sequencing data from diploid needle tissue to create an initial assembly, which was then scaffolded using proximity ligation data to produce a highly contiguous final assembly, SESE 2.1, with a scaffold N50 size of 44.9 Mbp. The assembly included several scaffolds that span entire chromosome arms, confirmed by the presence of telomere and centromere sequences on the ends of the scaffolds. The structural annotation produced 118,906 genes with 113 containing introns that exceed 500 Kbp in length and one reaching 2 Mb. Nearly 19 Gbp of the genome represented repetitive content with the vast majority characterized as long terminal repeats, with a 2.9:1 ratio of Copia to Gypsy elements that may aid in gene expression control. Comparison of coast redwood to other conifers revealed species-specific expansions for a plethora of abiotic and biotic stress response genes, including those involved in fungal disease resistance, detoxification, and physical injury/structural remodeling and others supporting flavonoid biosynthesis. Analysis of multiple genes that exist in triplicate in coast redwood but only once in its diploid relative, giant sequoia, supports a previous hypothesis that the hexaploidy is the result of autopolyploidy rather than any hybridizations with separate but closely related conifer species.
Collapse
Affiliation(s)
- David B Neale
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
| | - Sumaira Zaman
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.,Department of Computer Science & Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Alison D Scott
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Bikash Shrestha
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Rachael E Workman
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniela Puiu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
| | - Brian J Allen
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Zane J Moore
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Manoj K Sekhwal
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA
| | | | - Patrick E McGuire
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Emily Burns
- Save the Redwoods League, San Francisco, CA 94104, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA.,Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Steven L Salzberg
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA.,Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
48
|
Amaral J, Valledor L, Alves A, Martín-García J, Pinto G. Studying tree response to biotic stress using a multi-disciplinary approach: The pine pitch canker case study. FRONTIERS IN PLANT SCIENCE 2022; 13:916138. [PMID: 36160962 PMCID: PMC9501998 DOI: 10.3389/fpls.2022.916138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/18/2022] [Indexed: 05/09/2023]
Abstract
In an era of climate change and global trade, forests sustainability is endangered by several biotic threats. Pine pitch canker (PPC), caused by Fusarium circinatum, is one of the most important disease affecting conifers worldwide. To date, no effective control measures have been found for this disease. Earlier studies on PPC were mainly focused on the pathogen itself or on determining the levels of susceptibility of different hosts to F. circinatum infection. However, over the last years, plenty of information on the mechanisms that may explain the susceptibility or resistance to PPC has been published. This data are useful to better understand tree response to biotic stress and, most importantly, to aid the development of innovative and scientific-based disease control measures. This review gathers and discusses the main advances on PPC knowledge, especially focusing on multi-disciplinary studies investigating the response of pines with different levels of susceptibility to PPC upon infection. After an overview of the general knowledge of the disease, the importance of integrating information from physiological and Omics studies to unveil the mechanisms behind PPC susceptibility/resistance and to develop control strategies is explored. An extensive review of the main host responses to PPC was performed, including changes in water relations, signalling (ROS and hormones), primary metabolism, and defence (resin, phenolics, and PR proteins). A general picture of pine response to PPC is suggested according to the host susceptibility level and the next steps and gaps on PPC research are pointed out.
Collapse
Affiliation(s)
- Joana Amaral
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
- *Correspondence: Joana Amaral,
| | - Luis Valledor
- Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Spain
- University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Artur Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Jorge Martín-García
- Department of Vegetal Production and Forest Resources, University of Valladolid, Palencia, Spain
- Sustainable Forest Management Research Institute, University of Valladolid-INIA, Palencia, Spain
| | - Glória Pinto
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
- Glória Pinto,
| |
Collapse
|
49
|
Shen T, Xu M, Qi H, Feng Y, Yang Z, Xu M. Protoplast isolation and transcriptome analysis of developing xylem in Pinus massoniana (Pinaceae). Mol Biol Rep 2021; 49:1857-1869. [PMID: 34826048 DOI: 10.1007/s11033-021-06995-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND With active physiological and biochemical activities, tissue-specific protoplasts from cambial derivatives, could serve as a specific source for information on xylogenesis for softwood species resistant to stable genetic transformation and lacking available mutants. METHODS AND RESULTS In this study, protoplasts were isolated from developing xylem of the Chinese red pine, Pinus massoniana, by enzymolysis. High-quality RNAs were extracted from developing xylem and their protoplasts for constructing transcriptome libraries. Using Illumina HiSeq 2500 PE150 platform, a total of 362,328,426 clean paired-end reads (54.35G) were generated from multiple cDNA libraries and assembled into 146,422 unigenes. The transcriptome data were further analysed to identify 1567 differentially expressed genes (DEGs) between the isolated protoplasts and developing xylem of P. massoniana (Masson pine), 1126 DEGs were upregulated in protoplasts relative to developing xylem cells and 441 were downregulated. Most of the differentially expressed genes in biological process terms are related to plant response, which may be due to the response to cell wall removal. Further, the expression pattern of 71 unigenes involved in lignin biosynthesis was verified by RNA-seq. CONCLUSIONS This study is the first to report the transcriptome profiles of the developing xylem and its protoplasts of coniferous trees, which provide a new perspective and valuable resource for tracking transcriptional regulatory events in wood formation of Masson pine.
Collapse
Affiliation(s)
- Tengfei Shen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning, 530002, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Mengxuan Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Haoran Qi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuanheng Feng
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning, 530002, China
| | - Zhangqi Yang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning, 530002, China
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
50
|
Comparative Genomics Analysis of Repetitive Elements in Ten Gymnosperm Species: "Dark Repeatome" and Its Abundance in Conifer and Gnetum Species. Life (Basel) 2021; 11:life11111234. [PMID: 34833110 PMCID: PMC8620675 DOI: 10.3390/life11111234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Repetitive elements (RE) and transposons (TE) can comprise up to 80% of some plant genomes and may be essential for regulating their evolution and adaptation. The “repeatome” information is often unavailable in assembled genomes because genomic areas of repeats are challenging to assemble and are often missing from final assembly. However, raw genomic sequencing data contain rich information about RE/TEs. Here, raw genomic NGS reads of 10 gymnosperm species were studied for the content and abundance patterns of their “repeatome”. We utilized a combination of alignment on databases of repetitive elements and de novo assembly of highly repetitive sequences from genomic sequencing reads to characterize and calculate the abundance of known and putative repetitive elements in the genomes of 10 conifer plants: Pinus taeda, Pinus sylvestris, Pinus sibirica, Picea glauca, Picea abies, Abies sibirica, Larix sibirica, Juniperus communis, Taxus baccata, and Gnetum gnemon. We found that genome abundances of known and newly discovered putative repeats are specific to phylogenetically close groups of species and match biological taxa. The grouping of species based on abundances of known repeats closely matches the grouping based on abundances of newly discovered putative repeats (kChains) and matches the known taxonomic relations.
Collapse
|