1
|
Artz ME, Brooks ED. Radiation Toxicity in MDA5+ and PL7-Positive Dermatomyositis: Heightened Risk in Autoimmune Subtypes. Int J Part Ther 2024; 14:100109. [PMID: 39431283 PMCID: PMC11489828 DOI: 10.1016/j.ijpt.2024.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 10/22/2024] Open
Abstract
Purpose To increase awareness of peri-radiation therapy (RT) intervention that may unduly heighten the risk of toxicity in lung cancer patients and encourage molecular testing and pretreatment consultation with rheumatology for patients with active autoimmune conditions. Materials and Methods A 42-year-old male with an autoimmune disease was diagnosed with non-small cell lung cancer. He received 4 cycles of pemetrexed/cisplatin with proton therapy (PT) delivered halfway through for a bronchial stump positive margin. After completing the first cycle of adjuvant chemotherapy, he was given 61.6 Gy in 28 fractionations of PT. Before restarting chemotherapy, he experienced a dry cough and later shortness of breath (SOB), which resolved with an aggressive steroid taper. After completing his third cycle of cisplatin/pemetrexed, his SOB and cough worsened. He was admitted for an urgent bronchoscopy with debridement of the distal trachea and proximal left main bronchus. He received high-dose steroids again and another bronchoscopy, revealing a tracheoesophageal fistula. Rheumatology identified an MDA5+ and PL7-positive dermatomyositis subtype at this time, known to be associated with rare ulcerative symptoms. Results A rare MDA5+ and PL7-positive dermatomyositis subtype, discovered post treatment, most likely contributed to SOB and cough following chemotherapy and PT, resulting in bronchoscopy of the irradiated field. A combination of these factors may have contributed to the tracheoesophageal fistula. Conclusion Patients with autoimmune disease should be carefully evaluated for rare underlying subtypes that could pose a danger to treatment. Oncologists should continue to be vigilant about underlying genetic predisposing factors that lead to exacerbated toxicity. Immunosuppressive agents given with RT may be considered for patients with autoimmune disease. Avoidance of biopsy, tissue manipulation, debridement, or any form of soft-tissue or hard-tissue violation needs to be discussed across the multidisciplinary spectrum to avoid nonhealing lesions shortly after RT.
Collapse
Affiliation(s)
- Mark E Artz
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Eric D Brooks
- Premier Radiation Oncology Associates, Clearwater, FL, USA
| |
Collapse
|
2
|
Lyu YH, Liu JQ, Wang FH, Yan WJ, Ming AH, Li GS, Ge JL, Jing R, Liu SJ, Hong-Yang, He YY, Jia-Li. Risk and survival outcomes of secondary pelvic neoplasm after radiotherapy in female patients with genital neoplasms: A large Population-Based cohort study. Radiother Oncol 2024:110595. [PMID: 39521276 DOI: 10.1016/j.radonc.2024.110595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND PURPOSE To investigate the impact of radiotherapy (RT) on the risk of secondary pelvic neoplasms (SPN) and the survival outcomes of patients following a diagnosis of female patients with genital neoplasm(FGN). MATERIALS AND METHODS Utilizing SEER databases, this study involved 102,895 patients from nine oncology centers, spanning 1990 to 2015. We employed the Fine-Gray competing risks regression methodology to chart the trajectory of SPN development and used the Kaplan-Meier method to calculate the 10-year overall survival rates. RESULTS This study included 25,774 patients in the RT group and 77,121 in the non-radiotherapy (NRT) group. The cumulative incidence rate of SPN was 5.10 % in the RT group and 3.42 % in the NRT group. The RT group showed a significantly higher incidence of bladder cancer (adjusted hazard ratio [HR]: 1.75; 95 % confidence interval [CI]: 1.43-2.14; P < 0.05), colon cancer (adjusted HR: 1.32; 95 % CI: 1.16-1.49; P < 0.05), and rectal cancer (adjusted HR: 1.34; 95 % CI: 1.10-1.65; P < 0.05) compared to the NRT group. After propensity score matching, patients in the RT group who developed bladder cancer had significantly reduced 10-year survival rates compared to patients with primary pelvic tumors (P = 0.01). CONCLUSION RT is identified as an independent risk factor for the development of SPN in patients with FGN. Patients with FGN who undergo RT demonstrate a significant increase in the risk of developing secondary neoplasms, specifically bladder cancers, and experience a reduction in 10-year survival rates.
Collapse
Affiliation(s)
- Yan-Hong Lyu
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an 710000, Shaanxi Province, China
| | - Jia-Qi Liu
- Chinese PLA Medical School, Beijing 100853, China
| | - Fa-Han Wang
- School of Basic Medical Sciences, Fourth Military Medical University, Xi'an 710032, China
| | - Wen-Jingchi Yan
- School of Basic Medical Sciences, Fourth Military Medical University, Xi'an 710032, China
| | - An-Hong Ming
- School of Basic Medical Sciences, Fourth Military Medical University, Xi'an 710032, China
| | - Geng-Sheng Li
- School of Basic Medical Sciences, Fourth Military Medical University, Xi'an 710032, China
| | - Jun-Li Ge
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an 710000, Shaanxi Province, China
| | - Ru Jing
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an 710000, Shaanxi Province, China
| | - Shu-Juan Liu
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an 710000, Shaanxi Province, China
| | - Hong-Yang
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an 710000, Shaanxi Province, China
| | - Yuan-Yuan He
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an 710000, Shaanxi Province, China.
| | - Jia-Li
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an 710000, Shaanxi Province, China.
| |
Collapse
|
3
|
Nuijens AC, Oei AL, Koster L, Hoebe RA, Franken NAP, Rasch CRN, Stalpers LJA. Genetic markers of late radiation toxicity in the era of image-guided radiotherapy: lower toxicity rates reduce the predictive value of γ-H2AX foci decay ratio in patients undergoing pelvic radiotherapy. Radiat Oncol 2024; 19:116. [PMID: 39223539 PMCID: PMC11370123 DOI: 10.1186/s13014-024-02501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND A predictive assay for late radiation toxicity would allow more personalized treatment planning, reducing the burden of toxicity for the more sensitive minority, and improving the therapeutic index for the majority. In a previous study in prostate cancer patients, the γ-H2AX foci decay ratio (γ-FDR) was the strongest predictor of late radiation toxicity. The current study aimed to validate this finding in a more varied group of patients with pelvic cancer. Additionally, the potential correlation between the γ-FDR and patient-reported outcomes was investigated. METHODS Prostate and gynecological cancer patients with ≥ 24 months of follow-up were included in the current analysis. Toxicity was evaluated by physician (CTCAE version 4) and patient (EORTC questionnaires). γ-FDRs were determined in ex vivo irradiated lymphocytes. Correlation between γ-FDR and toxicity was assessed using both linear and logistic regression analyses. The highest toxicity grade recorded during follow-up was used. The association between global quality of life and γ-FDR was tested by comparing the change in quality of life over time in patients with γ-FDR < or ≥ 3.41, a previously established threshold. RESULTS Eighty-eight patients were included. Physician-assessed and patient-reported cumulative grade ≥ 2 toxicity was 25% and 29%, respectively; which is much lower than in the previous cohort (i.e., 51% CTCAE grade ≥ 2). Patients with toxicity exhibited less favorable dose-volume parameters. In men, these parameters showed significant improvement compared to the previous cohort. The proportion of patients with a low γ-FDR increased with severity of toxicity, but this trend was not statistically significant. In addition, a γ-FDR < 3.41 was not correlated with the development of moderate to severe toxicity. Post-treatment decline in global quality of life was minimal, and similar for patients with γ-FDR < or ≥ 3.41. CONCLUSIONS In the present study, the γ-H2AX foci decay ratio could not be validated as a predictor of late radiation toxicity in patients with pelvic cancer. Improved radiotherapy techniques with smaller irradiated bladder and bowel volumes have probably resulted in less toxicities. Future studies on genetic markers of toxicity should be powered on these lower incidences. We further recommend taking persistency, next to severity, into consideration.
Collapse
Affiliation(s)
- Anna C Nuijens
- Department of Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Arlene L Oei
- Department of Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.
| | - Lisa Koster
- Department of Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Ron A Hoebe
- Department of Medical Biology and Core Facility Cellular Imaging, Van Leeuwenhoek Centre for Advanced Microscopy-Academic Medical Center (LCAM-AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Nicolaas A P Franken
- Department of Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Coen R N Rasch
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Meyers ML, Mirsky DM. MR Imaging of Placenta Accreta Spectrum: A Comprehensive Literature Review of the Most Recent Advancements. Magn Reson Imaging Clin N Am 2024; 32:573-584. [PMID: 38944441 DOI: 10.1016/j.mric.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
This article delves into the latest MR imaging developments dedicated to diagnosing placenta accreta spectrum (PAS). PAS, characterized by abnormal placental adherence to the uterine wall, is of paramount concern owing to its association with maternal morbidity and mortality, particularly in high-risk pregnancies featuring placenta previa and prior cesarean sections. Although ultrasound (US) remains the primary screening modality, limitations have prompted heightened emphasis on MR imaging. This review underscores the utility of quantitative MR imaging, especially where US findings prove inconclusive or when maternal body habitus poses challenges, acknowledging, however, that interpreting placenta MR imaging demands specialized training for radiologists.
Collapse
Affiliation(s)
- Mariana L Meyers
- Department of Radiology, Pediatric Section, University of Colorado School of Medicine; Children's Hospital Colorado.
| | - David M Mirsky
- Department of Radiology, Pediatric Section, University of Colorado School of Medicine; Children's Hospital Colorado
| |
Collapse
|
5
|
Zhu X, Li Y, Tian X, Jing Y, Wang Z, Yue L, Li J, Wu L, Zhou X, Yu Z, Zhang Y, Guan F, Yang M, Zhang B. REGγ Mitigates Radiation-Induced Enteritis by Preserving Mucin Secretion and Sustaining Microbiome Homeostasis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:975-988. [PMID: 38423356 DOI: 10.1016/j.ajpath.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Radiation-induced enteritis, a significant concern in abdominal radiation therapy, is associated closely with gut microbiota dysbiosis. The mucus layer plays a pivotal role in preventing the translocation of commensal and pathogenic microbes. Although significant expression of REGγ in intestinal epithelial cells is well established, its role in modulating the mucus layer and gut microbiota remains unknown. The current study revealed notable changes in gut microorganisms and metabolites in irradiated mice lacking REGγ, as compared to wild-type mice. Concomitant with gut microbiota dysbiosis, REGγ deficiency facilitated the infiltration of neutrophils and macrophages, thereby exacerbating intestinal inflammation after irradiation. Furthermore, fluorescence in situ hybridization assays unveiled an augmented proximity of bacteria to intestinal epithelial cells in REGγ knockout mice after irradiation. Mechanistically, deficiency of REGγ led to diminished goblet cell populations and reduced expression of key goblet cell markers, Muc2 and Tff3, observed in both murine models, minigut organoid systems and human intestinal goblet cells, indicating the intrinsic role of REGγ within goblet cells. Interestingly, although administration of broad-spectrum antibiotics did not alter the goblet cell numbers or mucin 2 (MUC2) secretion, it effectively attenuated inflammation levels in the ileum of irradiated REGγ absent mice, bringing them down to the wild-type levels. Collectively, these findings highlight the contribution of REGγ in counteracting radiation-triggered microbial imbalances and cell-autonomous regulation of mucin secretion.
Collapse
Affiliation(s)
- Xiangzhan Zhu
- Institute of Pediatric Medicine, Henan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China; School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ya Li
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xue Tian
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiming Jing
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zimeng Wang
- Department of Pharmacology and Cancer, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingling Yue
- Institute of Pediatric Medicine, Henan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Jianhui Li
- Department of Pathology, Xuchang Central Hospital Affiliated to Henan University of Science and Technology, Xuchang, China
| | - Ling Wu
- Department of Medical Imaging, Henan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Xinkui Zhou
- Institute of Pediatric Medicine, Henan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Zhidan Yu
- Institute of Pediatric Medicine, Henan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Yaodong Zhang
- Institute of Pediatric Medicine, Henan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Minglei Yang
- Department of Orthopedic Oncology, The Second Affiliated Hospital of Naval Medical University, Shanghai, China.
| | - Bianhong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
6
|
Naceur A, Bienvenue C, Romano P, Chilian C, Carrier JF. Extending deterministic transport capabilities for very-high and ultra-high energy electron beams. Sci Rep 2024; 14:2796. [PMID: 38307920 PMCID: PMC11226718 DOI: 10.1038/s41598-023-51143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/31/2023] [Indexed: 02/04/2024] Open
Abstract
Focused Very-High Energy Electron (VHEE, 50-300 MeV) and Ultra-High Energy Electron (UHEE, > 300 MeV) beams can accurately target both large and deeply seated human tumors with high sparing properties, while avoiding the spatial requirements and cost of proton and heavy ion facilities. Advanced testing phases are underway at the CLEAR facilities at CERN (Switzerland), NLCTA at Stanford (USA), and SPARC at INFN (Italy), aiming to accelerate the transition to clinical application. Currently, Monte Carlo (MC) transport is the sole paradigm supporting preclinical trials and imminent clinical deployment. In this paper, we propose an alternative: the first extension of the nuclear-reactor deterministic chain NJOY-DRAGON for VHEE and UHEE applications. We have extended the Boltzmann-Fokker-Planck (BFP) multigroup formalism and validated it using standard radio-oncology benchmarks, complex assemblies with a wide range of atomic numbers, and comprehensive irradiation of the entire periodic table. We report that [Formula: see text] of water voxels exhibit a BFP-MC deviation below [Formula: see text] for electron energies under [Formula: see text]. Additionally, we demonstrate that at least [Formula: see text] of voxels of bone, lung, adipose tissue, muscle, soft tissue, tumor, steel, and aluminum meet the same criterion between [Formula: see text] and [Formula: see text]. For water, the thorax, and the breast intra-operative benchmark, typical average BFP-MC deviations of [Formula: see text] and [Formula: see text] were observed at [Formula: see text] and [Formula: see text], respectively. By irradiating the entire periodic table, we observed similar performance between lithium ([Formula: see text]) and cerium ([Formula: see text]). Deficiencies observed between praseodymium ([Formula: see text]) and einsteinium ([Formula: see text]) have been reported, analyzed, and quantified, offering critical insights for the ongoing development of the Evaluated Nuclear Data File mode in NJOY.
Collapse
Affiliation(s)
- Ahmed Naceur
- École Polytechnique, SLOWPOKE Nuclear Reactor Laboratory, Nuclear Engineering Institute, Montréal, H3T1J4, Canada.
- CRCHUM, Centre hospitalier de l'Université de Montréal, Montréal, H2L4M1, Canada.
| | - Charles Bienvenue
- École Polytechnique, Engineering Physics Department, Biomedical Engineering Institute, Montréal, H3T1J4, Canada
| | - Paul Romano
- Computational Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Cornelia Chilian
- École Polytechnique, SLOWPOKE Nuclear Reactor Laboratory, Nuclear Engineering Institute, Montréal, H3T1J4, Canada
| | - Jean-François Carrier
- Department of Physics, Université de Montréal, Montréal, H3T1J4, Canada
- CRCHUM, Centre hospitalier de l'Université de Montréal, Montréal, H2L4M1, Canada
| |
Collapse
|
7
|
Liebenberg N, McWilliam A, Kerns SL, Marshall DC, West CM. Association between rheumatoid arthritis and risk of radiotherapy toxicity: a systematic review. BMJ ONCOLOGY 2024; 3:e000407. [PMID: 39524982 PMCID: PMC11256021 DOI: 10.1136/bmjonc-2024-000407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Objective There is sometimes concern over the use of radiotherapy for cancer in individuals with rheumatoid arthritis (RA), but little evidence to support its avoidance. Identifying any association between RA and risk of radiotherapy toxicity could impact current guidance. We aimed to review the evidence base. Methods and analysis Following PRISMA 2020 guidelines, a systematic review was conducted of Medline, Embase and PubMed databases on 25 November 2019 and updated 22 February 2024. Articles identified for inclusion were reviewed by two independent assessors. Results 155 articles were identified. With repeat articles excluded, 114 remained. 12 articles were included in qualitative analysis. Six studies held no comparison cohort; one compared RA to non-RA collagen vascular disease (CVD) patients; five compared patients with RA to CVD or a matched pair. Studies showed patients with RA developed higher levels of toxicity however only two studies had statistically significant results. Nine of the 12 studies had medium to low quality evidence and displayed predisposition to numerous biases. Conclusion Due to limited high-quality research, it is difficult to draw a clear conclusion on the relationship between RA and radiotherapy toxicity. Given the current lack of strong and high-quality evidence identified in this review, dose reduction of radiotherapy in patients with RA lacks sufficient evidence to be recommended. There is a need for further high-quality research involving prospective analyses of toxicity, up-to-date radiotherapy techniques, long follow-up, and large cohorts. Also, analyses need to adjust for confounding factors, match for risk factors, and incorporate RA activity status assessments.
Collapse
Affiliation(s)
- Nina Liebenberg
- Royal Surrey County Hospital NHS Foundation Trust, Guildford, UK
| | - Alan McWilliam
- Division of Cancer Sciences, The University of Manchester, Manchester, UK; The Christie NHS Foundation Trust, Manchester, UK
| | - Sarah L Kerns
- Department of Radiation Oncology, The Medical College of Wisconsin, WI, United States of America
| | - Deborah C Marshall
- Department of Radiation Oncology, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, NY, United States of America
| | - Catharine M West
- Division of Cancer Sciences, The University of Manchester, Christie Hospital NHS Foundation Trust, Manchester, UK
| |
Collapse
|
8
|
Tam LT, Cole B, Stasi SM, Paulson VA, Wright JN, Hoeppner C, Holtzclaw S, Crotty EE, Ellenbogen RG, Lee A, Ermoian RP, Lockwood CM, Leary SES, Ronsley R. Somatic Versus Germline: A Case Series of Three Children With ATM-Mutated Medulloblastoma. JCO Precis Oncol 2024; 8:e2300333. [PMID: 38207225 DOI: 10.1200/po.23.00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/03/2023] [Accepted: 11/07/2023] [Indexed: 01/13/2024] Open
Abstract
Somatic versus Germline-A Case Series of Three Children with ATM- mutated Medulloblastoma.
Collapse
Affiliation(s)
- Lydia T Tam
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Bonnie Cole
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA
| | - Shannon M Stasi
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Vera A Paulson
- Genetics Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Jason N Wright
- Department of Radiology, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Corrine Hoeppner
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Susan Holtzclaw
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Erin E Crotty
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Neurological Surgery, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | - Richard G Ellenbogen
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | - Amy Lee
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | | | - Christina M Lockwood
- Genetics Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Sarah E S Leary
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Neurological Surgery, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | - Rebecca Ronsley
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Neurological Surgery, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Radiation Oncology, University of Washington, Seattle, WA
| |
Collapse
|
9
|
He L, Zhong C, Chang H, Inman JL, Celniker SE, Ioakeim-Ioannidou M, Liu KX, Haas-Kogan D, MacDonald SM, Threadgill DW, Kogan SC, Mao JH, Snijders AM. Genetic architecture of the acute and persistent immune cell response after radiation exposure. CELL GENOMICS 2023; 3:100422. [PMID: 38020972 PMCID: PMC10667298 DOI: 10.1016/j.xgen.2023.100422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/19/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023]
Abstract
Hematologic toxicity is a common side effect of multimodal cancer therapy. Nearly all animal studies investigating the causes of radiotherapy-induced hematologic toxicity use inbred strains with limited genetic diversity and do not reflect the diverse responses observed in humans. We used the population-based Collaborative Cross (CC) mouse resource to investigate the genetic architecture of the acute and persistent immune response after radiation exposure by measuring 22 immune parameters in 1,720 CC mice representing 35 strains. We determined relative acute and persistent radiation resistance scores at the individual strain level considering contributions from all immune parameters. Genome-wide association analysis identified quantitative trait loci associated with baseline and radiation responses. A cross-species radiation resistance score predicted recurrence-free survival in medulloblastoma patients. We present a community resource of immune parameters and genome-wide association analyses before and after radiation exposure for future investigations of the contributions of host genetics on radiosensitivity.
Collapse
Affiliation(s)
- Li He
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430079, China
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chenhan Zhong
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jamie L. Inman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Susan E. Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Comparative Biochemistry Program, University of California Berkeley, Berkeley, CA 94720, USA
| | | | - Kevin X. Liu
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shannon M. MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David W. Threadgill
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA
- Departments of Nutrition and Cell Biology and Genetics, Texas A&M University, College Station, TX 77843, USA
| | - Scott C. Kogan
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Comparative Biochemistry Program, University of California Berkeley, Berkeley, CA 94720, USA
| | - Antoine M. Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Comparative Biochemistry Program, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Angom RS, Nakka NMR, Bhattacharya S. Advances in Glioblastoma Therapy: An Update on Current Approaches. Brain Sci 2023; 13:1536. [PMID: 38002496 PMCID: PMC10669378 DOI: 10.3390/brainsci13111536] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a primary malignant brain tumor characterized by a high grade of malignancy and an extremely unfavorable prognosis. The current efficacy of established treatments for GBM is insufficient, necessitating the prompt development of novel therapeutic approaches. The progress made in the fundamental scientific understanding of GBM is swiftly translated into more advanced stages of therapeutic studies. Despite extensive efforts to identify new therapeutic approaches, GBM exhibits a high mortality rate. The current efficacy of treatments for GBM patients is insufficient due to factors such as tumor heterogeneity, the blood-brain barrier, glioma stem cells, drug efflux pumps, and DNA damage repair mechanisms. Considering this, pharmacological cocktail therapy has demonstrated a growing efficacy in addressing these challenges. Towards this, various forms of immunotherapy, including the immune checkpoint blockade, chimeric antigen receptor T (CAR T) cell therapy, oncolytic virotherapy, and vaccine therapy have emerged as potential strategies for enhancing the prognosis of GBM. Current investigations are focused on exploring combination therapies to mitigate undesirable side effects and enhance immune responses against tumors. Furthermore, clinical trials are underway to evaluate the efficacy of several strategies to circumvent the blood-brain barrier (BBB) to achieve targeted delivery in patients suffering from recurrent GBM. In this review, we have described the biological and molecular targets for GBM therapy, pharmacologic therapy status, prominent resistance mechanisms, and new treatment approaches. We also discuss these promising therapeutic approaches to assess prospective innovative therapeutic agents and evaluated the present state of preclinical and clinical studies in GBM treatment. Overall, this review attempts to provide comprehensive information on the current status of GBM therapy.
Collapse
Affiliation(s)
- Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (R.S.A.); (N.M.R.N.)
| | - Naga Malleswara Rao Nakka
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (R.S.A.); (N.M.R.N.)
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (R.S.A.); (N.M.R.N.)
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| |
Collapse
|
11
|
An Y, Gu W, Miao M, Miao J, Zhou H, Zhao M, Jiang Y, Li Q, Miao Q. A Self-Assembled Organic Probe with Activatable Near-Infrared Fluoro-Photoacoustic Signals for In Vivo Evaluation of the Radiotherapy Effect. Anal Chem 2023; 95:13984-13991. [PMID: 37672619 DOI: 10.1021/acs.analchem.3c02578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Early evaluation and prediction of the radiotherapy effect against tumors are crucial for effective radiotherapy management. The clinical approach generally relies on anatomical changes in tumor size, which is unable to promptly reflect clinical outcomes and guide a timely adjustment of therapy regimens. To resolve it, we herein develop a self-assembled organic probe (dCyFFs) with caspase-3 (Casp-3)-activatable near-infrared (NIR) fluoro-photoacoustic signals for early evaluation and prediction of radiotherapy efficacy. The probe contains an NIR dye that is caged with a Casp-3-cleavable substrate and linked to a self-assembly initiating moiety. In the presence of Casp-3, the self-assembled probe can undergo secondary assembly into larger nanoparticles and simultaneously activate NIR fluoro-photoacoustic signals. Such a design endows a superior real-time longitudinal imaging capability of Casp-3 generated by radiotherapy as it facilitates the passive accumulation of the probe into tumors, activated signal output with enhanced optical stability, and retention capacity relative to a nonassembling small molecular control probe (dCy). As a result, the probe enables precise prediction of the radiotherapy effect as early as 3 h posttherapy, which is further evidenced by the changes in tumor size after radiotherapy. Overall, the probe with Casp-3-mediated secondary assembly along with activatable NIR fluoro-photoacoustic signals holds great potential for evaluating and predicting the response of radiotherapy in a timely manner, which can also be explored for utilization in other therapeutic modalities.
Collapse
Affiliation(s)
- Yi An
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Wei Gu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Minqian Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jia Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hui Zhou
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Min Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yue Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Abdollahi E, Mozdarani H, Alizadeh BZ. Role of circ-FOXO3 and miR-23a in radiosensitivity of breast cancer. Breast Cancer 2023; 30:714-726. [PMID: 37222952 DOI: 10.1007/s12282-023-01463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
Identifying the radiosensitivity of cells before radiotherapy (RT) in breast cancer (BC) patients allows appropriate switching between routinely used treatment regimens and reduces adverse side effects in exposed patients. In this study, blood was collected from 60 women diagnosed with Invasive Ductal Carcinoma (IDC) BC and 20 healthy women. To predict cellular radiosensitivity, a standard G2-chromosomal assay was performed. From these 60 samples, 20 BC patients were found to be radiosensitive based on the G2 assay. Therefore, molecular studies were finally performed on two equal groups (20 samples each) of patients with and without cellular radiosensitivity. QPCR was performed to examine the expression levels of circ-FOXO3 and miR-23a in peripheral blood mononuclear cells (PBMCs) and RNA sensitivity and specificity were determined by plotting Receiver Operating Characteristic (ROC) curves. Binary logistic regression was performed to identify RNA involvement in BC and cellular radiosensitivity (CR) in BC patients. Meanwhile, qPCR was used to compare differential RNA expression in the radiosensitive MCF-7 and radioresistant MDA-MB-231 cell lines. An annexin -V FITC/PI binding assay was used to measure cell apoptosis 24 and 48 h after 2 Gy, 4 Gy, and 8 Gy gamma-irradiation. Results indicated that circ-FOXO3 was downregulated and miR-23a was upregulated in BC patients. RNA expression levels were directly associated with CR. Cell line results showed that circ-FOXO3 overexpression induced apoptosis in the MCF-7 cell line and miR-23a overexpression inhibited apoptosis in the MDA-MB-231 cell line. Evaluation of the ROC curves revealed that both RNAs had acceptable specificity and sensitivity in predicting CR in BC patients. Binary logistic regression showed that both RNAs were also successful in predicting breast cancer. Although only circ-FOXO3 has been shown to predict CR in BC patients, circ-FOXO3 may function as a tumor suppressor and miR-23a may function as oncomiR in BC. Circ-FOXO3 and miR-23a may be promising potential biomarkers for BC prediction. Furthermore, Circ-FOXO3 could be a potential biomarker for predicting CR in BC patients.
Collapse
Affiliation(s)
- Elahe Abdollahi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Behrooz Z Alizadeh
- Unit of Personalized Medicine, Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Abdollahi E, Mozdarani H. Epigenetic regulation of circ-HIPK3, circ-PVT1, miR-25, and miR-149 in radiosensitivity of breast cancer. Exp Mol Pathol 2023; 132-133:104865. [PMID: 37536436 DOI: 10.1016/j.yexmp.2023.104865] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Assessing the radiosensitivity of cells before administering radiation therapy (RT) to individuals diagnosed with breast cancer (BC) can facilitate the selection of appropriate treatment regimens and minimize the incidence of adverse side effects in patients undergoing radiation exposure. In this research, blood samples were obtained from 60 women who had been diagnosed with Invasive Ductal Carcinoma (IDC) Breast Cancer. The average age of the patients was 47 ± 9.93. Additionally, the study incorporated 20 healthy women, with an average age of 44.43 ± 6.7. A standard G2 assay was conducted to predict the cellular response to radiation. Out of the 60 samples, the G2 assay identified 20 patients with breast cancer who exhibited radiosensitivity. Hence, molecular investigations were ultimately conducted on two equivalent cohorts comprising 20 subjects each, one with and the other without cellular radiosensitivity. The expression levels of miR-149, miR-25, circ-PVT1, and circ-HIPK3 in peripheral blood mononuclear cells (PBMCs) were evaluated using quantitative polymerase chain reaction (qPCR). Receiver Operating Characteristic (ROC) curves were used to evaluate the sensitivity and specificity of the RNAs. An analysis using binary logistic regression was performed to investigate the relationship between RNAs and both BC and cellular radiosensitivity (CR) in patients with BC. The findings revealed a significant upregulation of Circ-HIPK3 and circ-PVT1 in individuals diagnosed with BC. The levels of Circ-HIPK3 and Circ-PVT1 were found to be directly associated with CR in BC patients. The analysis of the ROC curve demonstrated that circ-HIPK3 and circ-PVT1 exhibit favorable specificity and sensitivity in accurately predicting both BC and CR in patients with BC. The findings from the binary logistic regression analysis demonstrated that circ-HIPK3 and circ-PVT1 were effective predictors of both BC and CR. The ROC curve and binary logistic regression analyses provide evidence that miR-25 is a reliable predictor for BC patients exclusively. Our research has demonstrated that circ-HIPK3, circ-PVT1, and miR-25 may be involved in BC regulatory processes. The circular RNAs Circ-HIPK3 and circ-PVT1, as well as miR-25, among other significant biomarkers, could potentially serve as promising biomarkers for predicting BC. Furthermore, Circ-HIPK3 and circ-PVT1 have the potential to serve as biomarkers for predicting CR in BC patients.
Collapse
Affiliation(s)
- Elahe Abdollahi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
14
|
Omer DM, Thompson HM, Verheij FS, Yuval JB, Rosen R, Beets NRA, Luthra A, Romesser PB, Paty PB, Garcia-Aguilar J, Sanchez-Vega F. Rectal Cancer after Prostate Radiation: A Complex and Controversial Disease. Cancers (Basel) 2023; 15:cancers15082214. [PMID: 37190143 DOI: 10.3390/cancers15082214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
A small proportion of rectal adenocarcinomas develop in patients many years after the treatment of a previous cancer using pelvic radiation, and the incidence of these rectal cancers depends on the length of follow-up from the end of radiotherapy. The risk of radiation-associated rectal cancer (RARC) is higher in patients treated with prostate external beam radiotherapy than it is in patients treated with brachytherapy. The molecular features of RARC have not been fully investigated, and survival is lower compared to non-irradiated rectal cancer patients. Ultimately, it is unclear whether the worse outcomes are related to differences in patient characteristics, treatment-related factors, or tumor biology. Radiation is widely used in the management of rectal adenocarcinoma; however, pelvic re-irradiation of RARC is challenging and carries a higher risk of treatment complications. Although RARC can develop in patients treated for a variety of malignancies, it is most common in patients treated for prostate cancer. This study will review the incidence, molecular characteristics, clinical course, and treatment outcomes of rectal adenocarcinoma in patients previously treated with radiation for prostate cancer. For clarity, we will distinguish between rectal cancer not associated with prostate cancer (RCNAPC), rectal cancer in non-irradiated prostate cancer patients (RCNRPC), and rectal cancer in irradiated prostate cancer patients (RCRPC). RARC represents a unique but understudied subset of rectal cancer, and thus requires a more comprehensive investigation in order to improve its treatment and prognosis.
Collapse
Affiliation(s)
- Dana M Omer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hannah M Thompson
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Floris S Verheij
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan B Yuval
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Roni Rosen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nathalie R A Beets
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anisha Luthra
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paul B Romesser
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Philip B Paty
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julio Garcia-Aguilar
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Francisco Sanchez-Vega
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
15
|
Mališić E, Petrović N, Brengues M, Azria D, Matić IZ, Srbljak Ćuk I, Kopčalić K, Stanojković T, Nikitović M. Association of polymorphisms in TGFB1, XRCC1, XRCC3 genes and CD8 T-lymphocyte apoptosis with adverse effect of radiotherapy for prostate cancer. Sci Rep 2022; 12:21306. [PMID: 36494413 PMCID: PMC9734114 DOI: 10.1038/s41598-022-25328-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
The genetic background of each person might affect the severity of radiotherapy (RT)-induced normal tissue toxicity. The aim of study was to evaluate the influence of TGFB1 C-509T and Leu10Pro, XRCC1 Arg280His and XRCC3 Thr241Met polymorphisms as well as the level of radiation-induced CD8 T-lymphocyte apoptosis (RILA) on adverse effects of RT for prostate cancer (PCa). The study included 88 patients with localized or locally advanced PCa who were treated with RT. The polymorphisms were determined by PCR-RFLP analysis on DNA from peripheral blood mononuclear cells. RILA values were measured by flow cytometry. We found that CT genotype of TGFB1 C-509T could be protective biomarker for acute genitourinary (GU) and gastrointestinal (GI) radiotoxicity, while Thr variant of XRCC3 Thr241Met could predict the risk for acute GU radiotoxicity. Correlation between RILA values and toxicity was not detected. Univariate logistic regression analysis showed that Gleason score and risk group were risk factors for late GU, while for late GI radiotoxicity it was diabetes mellitus type 2. However, in multivariate model those were not proven to be significant and independent risk factors. Identification of assays combination predicting individual radiosensitivity is a crucial step towards personalized RT approach.
Collapse
Affiliation(s)
- Emina Mališić
- grid.418584.40000 0004 0367 1010Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11 000 Belgrade, Serbia
| | - Nina Petrović
- grid.418584.40000 0004 0367 1010Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11 000 Belgrade, Serbia ,grid.7149.b0000 0001 2166 9385“VINČA“ Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Muriel Brengues
- grid.121334.60000 0001 2097 0141IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | - David Azria
- grid.121334.60000 0001 2097 0141IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | - Ivana Z. Matić
- grid.418584.40000 0004 0367 1010Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11 000 Belgrade, Serbia
| | - Ivana Srbljak Ćuk
- grid.418584.40000 0004 0367 1010Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11 000 Belgrade, Serbia
| | - Katarina Kopčalić
- grid.418584.40000 0004 0367 1010Department of Radiation Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Tatjana Stanojković
- grid.418584.40000 0004 0367 1010Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11 000 Belgrade, Serbia
| | - Marina Nikitović
- grid.418584.40000 0004 0367 1010Department of Radiation Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia ,grid.7149.b0000 0001 2166 9385Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
16
|
Kopčalić K, Matić IZ, Besu I, Stanković V, Bukumirić Z, Stanojković TP, Stepanović A, Nikitović M. Circulating levels of IL-6 and TGF-β1 in patients with prostate cancer undergoing radiotherapy: associations with acute radiotoxicity and fatigue symptoms. BMC Cancer 2022; 22:1167. [DOI: 10.1186/s12885-022-10255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
The goal of research was to investigate the possible relations between serum concentrations of IL-6 and TGF-β1, individual and clinical characteristics, and adverse effects of radiotherapy in patients with prostate cancer: acute and late genitourinary and gastrointestinal toxicity, and fatigue.
Methods
Thirty-nine patients with localized or locally advanced prostate cancer who were treated with radiotherapy were enrolled in this study. The acute radiotoxicity grades and fatigue levels were assessed during the radiotherapy and 1 month after the radiotherapy. Estimation of the late radiotoxicity was performed every three months in the first year, every four months in the second year, and then every six months. Serum levels of IL-6 and TGF-β1 were determined before radiotherapy and after the 25th radiotherapy fraction by ELISA.
Results
The significant positive association between diabetes mellitus and changes in acute genitourinary toxicity grades during the radiotherapy was observed in prostate cancer patients. In addition, patients who were smokers had significantly higher maximum fatigue levels in comparison with patients who were non-smokers. The circulating IL-6 levels were significantly higher after the 25th radiotherapy fraction in comparison with levels determined before radiotherapy. The significant positive correlations between pretreatment TGF-β1 levels and maximum genitourinary toxicity grades and between TGF-β1 levels after the 25th fraction and genitourinary toxicity grades after the 25th fraction, were found. The pretreatment IL-6 concentrations and TGF-β1 concentrations after the 25th fraction were positively correlated with maximum genitourinary toxicity grades. The IL-6 levels after the 25th fraction were positively associated with genitourinary toxicity grades after this fraction. The pretreatment IL-6 concentrations were significantly positively correlated with maximum fatigue scores. The significant positive correlation between IL-6 concentrations and fatigue scores after the 25th fraction was determined. The positive correlations between IL-6 and TGF-β1 concentrations measured after the 25th fraction and maximum fatigue scores were observed.
Conclusions
Our results suggest that serum levels of IL-6 and TGF-β1 might influence the severity of acute genitourinary radiotoxicity and fatigue in patients with prostate cancer. Combining clinical parameters and circulating cytokine levels might be useful for the prediction of adverse reactions to radiotherapy.
Collapse
|
17
|
Barnett GC, Kerns SL, Dorling L, Fachal L, Aguado-Barrera ME, Martínez-Calvo L, Jandu HK, Welsh C, Tyrer J, Coles CE, Haviland JS, Parker C, Gómez-Caamaño A, Calvo-Crespo P, Sosa-Fajardo P, Burnet NG, Summersgill H, Webb A, De Ruysscher D, Seibold P, Chang-Claude J, Talbot CJ, Rattay T, Parliament M, De Ruyck K, Rosenstein BS, Pharoah PDP, Dunning AM, Vega A, West CML. No Association Between Polygenic Risk Scores for Cancer and Development of Radiation Therapy Toxicity. Int J Radiat Oncol Biol Phys 2022; 114:494-501. [PMID: 35840111 DOI: 10.1016/j.ijrobp.2022.06.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/16/2022] [Accepted: 06/26/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Our aim was to test whether updated polygenic risk scores (PRS) for susceptibility to cancer affect risk of radiation therapy toxicity. METHODS AND MATERIALS Analyses included 9,717 patients with breast (n=3,078), prostate (n=5,748) or lung (n=891) cancer from Radiogenomics and REQUITE Consortia cohorts. Patients underwent potentially curative radiation therapy and were assessed prospectively for toxicity. Germline genotyping involved genome-wide single nucleotide polymorphism (SNP) arrays with nontyped SNPs imputed. PRS for each cancer were generated by summing literature-identified cancer susceptibility risk alleles: 352 breast, 136 prostate, and 24 lung. Weighted PRS were generated using log odds ratio (ORs) for cancer susceptibility. Standardized total average toxicity (STAT) scores at 2 and 5 years (breast, prostate) or 6 to 12 months (lung) quantified toxicity. Primary analysis tested late STAT, secondary analyses investigated acute STAT, and individual endpoints and SNPs using multivariable regression. RESULTS Increasing PRS did not increase risk of late toxicity in patients with breast (OR, 1.000; 95% confidence interval [CI], 0.997-1.002), prostate (OR, 0.99; 95% CI, 0.98-1.00; weighted PRS OR, 0.93; 95% CI, 0.83-1.03), or lung (OR, 0.93; 95% CI, 0.87-1.00; weighted PRS OR, 0.68; 95% CI, 0.45-1.03) cancer. Similar results were seen for acute toxicity. Secondary analyses identified rs138944387 associated with breast pain (OR, 3.05; 95% CI, 1.86-5.01; P = 1.09 × 10-5) and rs17513613 with breast edema (OR, 0.94; 95% CI, 0.92-0.97; P = 1.08 × 10-5). CONCLUSIONS Patients with increased polygenic predisposition to breast, prostate, or lung cancer can safely undergo radiation therapy with no anticipated excess toxicity risk. Some individual SNPs increase the likelihood of a specific toxicity endpoint, warranting validation in independent cohorts and functional studies to elucidate biologic mechanisms.
Collapse
Affiliation(s)
- Gillian C Barnett
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, United Kingdom.
| | - Sarah L Kerns
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom
| | - Laura Fachal
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Miguel E Aguado-Barrera
- Fundación Pública Galega de Medicina Xenómica (FPGMX)-SERGAS, Santiago de Compostela, A Coruña, Spain; Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain
| | - Laura Martínez-Calvo
- Fundación Pública Galega de Medicina Xenómica (FPGMX)-SERGAS, Santiago de Compostela, A Coruña, Spain; Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain
| | - Harkeran K Jandu
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ceilidh Welsh
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Tyrer
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom
| | - Charlotte E Coles
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, United Kingdom
| | - Joanne S Haviland
- Clinical Trials and Statistics Unit, Institute of Cancer Research, London, United Kingdom
| | - Christopher Parker
- Institute of Cancer Research & Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Antonio Gómez-Caamaño
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Spain
| | - Patricia Calvo-Crespo
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Spain
| | - Paloma Sosa-Fajardo
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Spain
| | - Neil G Burnet
- Proton Beam Therapy Centre, Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Holly Summersgill
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Adam Webb
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro Clinic), Maastricht University Medical Center, GROW School for Oncology and Developmental Biology, Maastricht, The Netherlands; Radiation Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| | - Christopher J Talbot
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Tim Rattay
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Matthew Parliament
- Division of Radiation Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Kim De Ruyck
- Departments of Basic Medical Sciences and Radiotherapy, Ghent University Hospital, Ghent, Belgium
| | - Barry S Rosenstein
- Departments of Radiation Oncology and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom
| | - Ana Vega
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom; Fundación Pública Galega de Medicina Xenómica (FPGMX)-SERGAS, Santiago de Compostela, A Coruña, Spain; Biomedical Network on Rare Diseases (CIBERER), Spain
| | - Catharine M L West
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
18
|
Stepanović A, Nikitović M, Stanojković TP, Grujičić D, Bukumirić Z, Srbljak I, Ilić R, Milošević S, Arsenijević T, Petrović N. Association between microRNAs 10b/21/34a and acute toxicity in glioblastoma patients treated with radiotherapy and temozolomide. Sci Rep 2022; 12:7505. [PMID: 35525840 PMCID: PMC9079078 DOI: 10.1038/s41598-022-11445-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/18/2022] [Indexed: 12/20/2022] Open
Abstract
A personalized approach to chemoradiation is important in reducing its potential side effects and identifying a group of patients prone to toxicity. MicroRNAs have been shown to have a predictive potential for radiotoxicity. The goal of the study was to test if levels of miRNA in peripheral blood mononuclear cells of glioblastoma patients are associated with toxicity and to identify the peak time point for toxicity. MicroRNA-10b/21/34a levels were measured in 43 patients with and without toxicity, at baseline, at the 15th, and at the 30th fraction by Real-Time quantitative Polymerase Chain Reaction. MicroRNA-10b/21 levels increased with toxicity grade (p = 0.014; p = 0.013); miR-21/34a levels were significantly different between patients with and without toxicity at the 15th fraction (p = 0.030; p = 0.045), while miR-34a levels significantly changed during treatment (p < 0.001). All three miRNAs showed a significantly high positive correlation with one another. MiR-34a might be considered as a predictive factor for toxicity due to its changes during treatment, and differences between the groups with and without toxicity; miR-10b might be used to predict toxicity; miR-10b/21 might be used for predicting the grade of toxicity in GB patients.
Collapse
Affiliation(s)
- Aleksandar Stepanović
- Department of Radiation Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Marina Nikitović
- Department of Radiation Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia. .,Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Tatjana P Stanojković
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Danica Grujičić
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Clinic of Neurosurgery, Neuro-Oncology Department, University Clinical Center of Serbia, Belgrade, Serbia
| | - Zoran Bukumirić
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Srbljak
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Rosanda Ilić
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Clinic of Neurosurgery, Neuro-Oncology Department, University Clinical Center of Serbia, Belgrade, Serbia
| | - Snežana Milošević
- Clinic of Neurosurgery, Neuro-Oncology Department, University Clinical Center of Serbia, Belgrade, Serbia
| | - Tatjana Arsenijević
- Department of Radiation Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nina Petrović
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia.,"VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
19
|
Davey A, van Herk M, Faivre-Finn C, McWilliam A. Radial Data Mining to Identify Density-Dose Interactions That Predict Distant Failure Following SABR. Front Oncol 2022; 12:838155. [PMID: 35356210 PMCID: PMC8959483 DOI: 10.3389/fonc.2022.838155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Lower dose outside the planned treatment area in lung stereotactic radiotherapy has been linked to increased risk of distant metastasis (DM) possibly due to underdosage of microscopic disease (MDE). Independently, tumour density on pretreatment computed tomography (CT) has been linked to risk of MDE. No studies have investigated the interaction between imaging biomarkers and incidental dose. The interaction would showcase whether the impact of dose on outcome is dependent on imaging and, hence, if imaging could inform which patients require dose escalation outside the gross tumour volume (GTV). We propose an image-based data mining methodology to investigate density-dose interactions radially from the GTV to predict DM with no a priori assumption on location. Methods Dose and density were quantified in 1-mm annuli around the GTV for 199 patients with early-stage lung cancer treated with 60 Gy in 5 fractions. Each annulus was summarised by three density and three dose parameters. For parameter combinations, Cox regressions were performed including a dose-density interaction in independent annuli. Heatmaps were created that described improvement in DM prediction due to the interaction. Regions of significant improvement were identified and studied in overall outcome models. Results Dose-density interactions were identified that significantly improved prediction for over 50% of bootstrap resamples. Dose and density parameters were not significant when the interaction was omitted. Tumour density variance and high peritumour density were associated with DM for patients with more cold spots (less than 30-Gy EQD2) and non-uniform dose about 3 cm outside of the GTV. Associations identified were independent of the mean GTV dose. Conclusions Patients with high tumour variance and peritumour density have increased risk of DM if there is a low and non-uniform dose outside the GTV. The dose regions are independent of tumour dose, suggesting that incidental dose may play an important role in controlling occult disease. Understanding such interactions is key to identifying patients who will benefit from dose-escalation. The methodology presented allowed spatial dose-density interactions to be studied at the exploratory stage for the first time. This could accelerate the clinical implementation of imaging biomarkers by demonstrating the impact of incidental dose for tumours of varying characteristics in routine data.
Collapse
Affiliation(s)
- Angela Davey
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Marcel van Herk
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Corinne Faivre-Finn
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom.,Department of Clinical Oncology, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Alan McWilliam
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
20
|
Khazaei S, Nilsson L, Adrian G, Tryggvadottir H, Konradsson E, Borgquist S, Isaksson K, Ceberg C, Jernström H. Impact of combining vitamin C with radiation therapy in human breast cancer: does it matter? Oncotarget 2022; 13:439-453. [PMID: 35222809 PMCID: PMC8863110 DOI: 10.18632/oncotarget.28204] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Somayeh Khazaei
- Division of Oncology, Clinical Sciences in Lund, Lund University and Skåne University Hospital, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Linn Nilsson
- Division of Oncology, Clinical Sciences in Lund, Lund University and Skåne University Hospital, Lund, Sweden
- Department of Medical Physics and Engineering, Växjö Central Hospital and Department of Research and Development, Region Kronoberg, Växjö, Sweden
| | - Gabriel Adrian
- Division of Oncology, Clinical Sciences in Lund, Lund University and Skåne University Hospital, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Helga Tryggvadottir
- Division of Oncology, Clinical Sciences in Lund, Lund University and Skåne University Hospital, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Elise Konradsson
- Department of Clinical Sciences in Lund, Medical Radiation Physics, Lund University, Lund, Sweden
| | - Signe Borgquist
- Division of Oncology, Clinical Sciences in Lund, Lund University and Skåne University Hospital, Lund, Sweden
- Department of Oncology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Karolin Isaksson
- Division of Surgery, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
- Department of Surgery, Kristianstad Hospital, Kristianstad, Sweden
| | - Crister Ceberg
- Department of Clinical Sciences in Lund, Medical Radiation Physics, Lund University, Lund, Sweden
| | - Helena Jernström
- Division of Oncology, Clinical Sciences in Lund, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
21
|
Córdoba EE, Lacunza E, Güerci AM. Clinical factors affecting the determination of radiotherapy-induced skin toxicity in breast cancer. Radiat Oncol J 2022; 39:315-323. [PMID: 34986553 PMCID: PMC8743461 DOI: 10.3857/roj.2020.00395] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
Purpose Radiotherapy is essential for the treatment of breast cancer (BC). However, adverse effects may occur in healthy tissue, during treatment and even after several months. Although it is known that this clinical radiosensitivity is multifactorial, the factors involved are unknown yet. In this study, we evaluated the effect of these factors on the development of radiodermatitis in patients undergoing radiotherapy. Materials and Methods Demographic and lifestyle data collected during face-to-face interviews of 122 BC patients and data from clinical records were investigated. Most patients underwent conventional three-dimensional radiotherapy treatment. A total dose of 50 Gy was administered (2 Gy/day), followed by a boost in a tumor bed with a total dose of 18 Gy (2 Gy/day). Radiotoxicity was evaluated weekly using the Radiation Therapy Oncology Group classification system (range, 0 to 4, according to the severity). Results In the present study, 75.4% of patients presented acute skin toxic effects with different degrees of severity. In 25% of cases, these effects manifested at the end of the fourth week at a cumulative dose of 40 Gy. The association of grade ≥2 acute skin reactions with body mass index (BMI) and breast size and between grade 3–4 and age was positive compared with controls. However, the role of the other factors could not be confirmed. Conclusion Analysis of the factors related to individual radiosensitivity suggests that age, BMI and breast size play an important role in the development of acute skin toxicity during treatment. Particular attention to patients who present these characteristics would help to control treatment effectiveness and therefore optimize their quality of life.
Collapse
Affiliation(s)
- Elisa Eugenia Córdoba
- Department of Physics, School of Exact Sciences, National University of La Plata, Argentina.,Veterinary Genetics Institute (National Scientific and Technical Research Council-National University of La Plata) School of Veterinary Sciences, La Plata, Argentina
| | - Ezequiel Lacunza
- Basic and Applied Immunological Research Center, School of Medicine, National University of La Plata, Argentina
| | - Alba Mabel Güerci
- Department of Physics, School of Exact Sciences, National University of La Plata, Argentina.,Veterinary Genetics Institute (National Scientific and Technical Research Council-National University of La Plata) School of Veterinary Sciences, La Plata, Argentina
| |
Collapse
|
22
|
Zhang R, Cai Z, Luo Y, Wang Z, Wang W. Preliminary exploration of response the course of radiotherapy for stage III non-small cell lung cancer based on longitudinal CT radiomics features. Eur J Radiol Open 2022; 9:100391. [PMID: 34977279 PMCID: PMC8688890 DOI: 10.1016/j.ejro.2021.100391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/28/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Explore the longitudinal CT-based radiomics to demonstrate the changing trend of radiotherapy response and to determine at which point after the onset of treatment radiomics exhibit the greatest change for stage III NSCLC patients. Methods and materials Ten stage III NSCLC patients in line with inclusion criteria were enrolled retrospectively, each of whom received radiotherapy or concurrent chemo-radiotherapy and performed eight series of follow-up CT imaging. Longitudinal radiomics were extracted on region of interest from the eight registered images, then two steps were conducted to select significant features as indicators of tumor change: 1) stable features were selected by Kendall rank correlation; 2) texture feature types with a steadily changing trend were retained and intensity features with stable change trends were selected to represent the large number of them. Next, the trend and rate of tumor change were analyzed using the Delta method and Curve-fitting method. Finally, the statistics in the distribution of stable features in patients were calculated. Results 675 stable features were selected from a total number of 1371 radiomics features, then 12 texture features types were retained and three intensity features were chosen to represent their own category. Among the final selected feature types, it was found that the two time points were weeks 1 and 3 with the higher rate of change. One patient had very few stable tumor features out of a total of 101 features, and the rate of change of features of another patient was conspicuously higher than the average level with number of 301 features. Conclusion The longitudinal CT radiomics could demonstrate the change trend of tumor and at which point exhibit the greatest change during radiotherapy, and potentially be used for treatment decisions concerning adaptive radiotherapy.
Collapse
Key Words
- CBCT, Cone-beam Computed Tomography
- CT, Computed Tomography
- Computed tomography
- GLCM25/GLCM3, Gray Level Co-occurrence Matrix25/Gray Level Co-occurrence Matrix3
- GLRLM25, Gray Level Run Length Matrix25
- GTV, Gross Tumor Volume
- HU, Hounsfield Units
- IBEX, Imaging Biomarker Explorer
- LASSO, Least Absolute Shrinkage and Selection Operator
- Longitudinal radiomics features
- NID25/NID3, Neighborhood Intensity Difference25/Neighborhood Intensity Difference3
- NSCLC, Non-small cell lung carcinoma
- Non-small cell lung cancer
- PCA, Principle Component Analysis
- ROI, Region of Interest
- Radiation therapy
- VMAT, Volumetric Modulated Arc Therapy
Collapse
Affiliation(s)
- Ruiping Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin 300060, China
| | - Zhengting Cai
- School of Automation (Artificial Intelligence), Hangzhou Dianzi University, Xiasha Higher Education Zone, Hangzhou, Zhejiang Province 310018, China
| | - Yan'an Luo
- Department of Physics, Nankai University, Weijin Road, Nankai District, Tianjin 300071, China
| | - Zhizhen Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin 300060, China
| | - Wei Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin 300060, China
| |
Collapse
|
23
|
Stanić J, Stanković V, Voštinić S, Nikitović M. Genetic predictors of radiation-induced morbidity in prostate cancer patients. MEDICINSKI PODMLADAK 2022. [DOI: 10.5937/mp73-32951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Cancer survivors often face adverse effects of treatment, which have a significant impact on morbidity and mortality. Normal-tissue side effects following radiotherapy (RT), as one of therapeutic modalities, are common and may seriously affect quality of life which is especially important in long-term prostate cancer (PC) survivors. Upgrading in our knowledge in radiation biology have led to the better understanding that genetics plays a significant role in determining a patient's predisposition to developing late RT toxicity, leading to the new field of research called "radiogenomics". With the evolution of DNA sequencing technologies and genomic analysis, radiogenomics made an appearance as a state-of-the-art science in the field of personalized medicine with the goal of detection the genetic determinants RT adverse reactions. A single-nucleotide polymorphism (SNPs) - based assay could be used to predict the risk of RT side effects along with clinical features and treatment factors. Several SNPs have been identified that are associated with late radiation-induced morbidity in PC patients. Most importantly, these SNPs make up genes expressed in the tissues that are likely at the root of these symptoms, including the bladder, rectum, and small intestine, which are most exposed in PC RT. Furthermore, genome-wide association studies are likely to lead to an increasing number of genetic polymorphisms that can predict long-term RT complications. Finally, radiogenomics attempts to predict which PC patients will show radiosensitivity, so that radiation oncologists, as well as surgeons, can change treatment accordingly in order to reduce side effects or increase the RT effectiveness.
Collapse
|
24
|
Corrias G, Micheletti G, Barberini L, Suri JS, Saba L. Texture analysis imaging "what a clinical radiologist needs to know". Eur J Radiol 2021; 146:110055. [PMID: 34902669 DOI: 10.1016/j.ejrad.2021.110055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/09/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Texture analysis has arisen as a tool to explore the amount of data contained in images that cannot be explored by humans visually. Radiomics is a method that extracts a large number of features from radiographic medical images using data-characterisation algorithms. These features, termed radiomic features, have the potential to uncover disease characteristics. The goal of both radiomics and texture analysis is to go beyond size or human-eye based semantic descriptors, to enable the non-invasive extraction of quantitative radiological data to correlate them with clinical outcomes or pathological characteristics. In the latest years there has been a flourishing sub-field of radiology where texture analysis and radiomics have been used in many settings. It is difficult for the clinical radiologist to cope with such amount of data in all the different radiological sub-fields and to identify the most significant papers. The aim of this review is to provide a tool to better understand the basic principles underlining texture analysis and radiological data mining and a summary of the most significant papers of the latest years.
Collapse
Affiliation(s)
| | | | | | - Jasjit S Suri
- Stroke Diagnosis and Monitoring Division, AtheroPoint™, Roseville, CA, USA and Knowledge Engineering Center, Global Biomedical Technologies, Inc, Roseville, CA, USA
| | - Luca Saba
- Department of Radiology, University of Cagliari, Italy.
| |
Collapse
|
25
|
Naderi E, Crijns APG, Steenbakkers RJHM, van den Hoek JGM, Boezen HM, Alizadeh BZ, Langendijk JA. A two-stage genome-wide association study of radiation-induced acute toxicity in head and neck cancer. J Transl Med 2021; 19:481. [PMID: 34838041 PMCID: PMC8626989 DOI: 10.1186/s12967-021-03145-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Most head and neck cancer (HNC) patients receive radiotherapy (RT) and develop toxicities. This genome-wide association study (GWAS) was designed to identify single nucleotide polymorphisms (SNPs) associated with common acute radiation-induced toxicities (RITs) in an HNC cohort. METHODS A two-stage GWAS was performed in 1279 HNC patients treated with RT and prospectively scored for mucositis, xerostomia, sticky saliva, and dysphagia. The area under the curve (AUC) was used to estimate the average load of toxicity during RT. At the discovery study, multivariate linear regression was used in 957 patients, and the top-ranking SNPs were tested in 322 independent replication cohort. Next, the discovery and the replication studies were meta-analyzed. RESULTS A region on 5q21.3 containing 16 SNPs showed genome-wide (GW) significance association at P-value < 5.0 × 10-8 with patient-rated acute xerostomia in the discovery study. The top signal was rs35542 with an adjusted effect size of 0.17*A (95% CI 0.12 to 0.23; P-value < = 3.78 × 10-9). The genome wide significant SNPs were located within three genes (EFNA5, FBXL17, and FER). In-silico functional analysis showed these genes may be involved in DNA damage response and co-expressed in minor salivary glands. We found 428 suggestive SNPs (P-value < 1.0 × 10-5) for other toxicities, taken to the replication study. Eleven of them showed a nominal association (P-value < 0.05). CONCLUSIONS This GWAS suggested novel SNPs for patient-rated acute xerostomia in HNC patients. If validated, these SNPs and their related functional pathways could lead to a predictive assay to identify sensitive patients to radiation, which may eventually allow a more individualized RT treatment.
Collapse
Affiliation(s)
- Elnaz Naderi
- Department of Radiation Oncology, University Medical Center Groningen, Hanzeplein 1, HPC; DA 30, P.O. Box 30 001, 9700 RB, Groningen, The Netherlands.
- Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands.
| | - Anne Petra Gerarda Crijns
- Department of Radiation Oncology, University Medical Center Groningen, Hanzeplein 1, HPC; DA 30, P.O. Box 30 001, 9700 RB, Groningen, The Netherlands
| | | | - Johanna Geertruida Maria van den Hoek
- Department of Radiation Oncology, University Medical Center Groningen, Hanzeplein 1, HPC; DA 30, P.O. Box 30 001, 9700 RB, Groningen, The Netherlands
| | - Hendrika Marike Boezen
- Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Behrooz Ziad Alizadeh
- Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Johannes Albertus Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, Hanzeplein 1, HPC; DA 30, P.O. Box 30 001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
26
|
Jiang H, Swacha P, Gekara NO. Nuclear AIM2-Like Receptors Drive Genotoxic Tissue Injury by Inhibiting DNA Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102534. [PMID: 34658166 PMCID: PMC8596118 DOI: 10.1002/advs.202102534] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Radiation is an essential preparative procedure for bone marrow (BM) transplantation and cancer treatment. The therapeutic efficacy of radiation and associated toxicity varies from patient to patient, making it difficult to prescribe an optimal patient-specific irradiation dose. The molecular determinants of radiation response remain unclear. AIM2-like receptors (ALRs) are key players in innate immunity and determine the course of infections, inflammatory diseases, senescence, and cancer. Here it is reported that mice lacking ALRs are resistant to irradiation-induced BM injury. It is shown that nuclear ALRs are inhibitors of DNA repair, thereby accelerate genome destabilization, micronuclei generation, and cell death, and that this novel function is uncoupled from their role in innate immunity. Mechanistically, ALRs bind to and interfere with chromatin decompaction vital for DNA repair. The finding uncovers ALRs as targets for new interventions against genotoxic tissue injury and as possible biomarkers for predicting the outcome of radio/chemotherapy.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholm106 91Sweden
| | - Patrycja Swacha
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholm106 91Sweden
| | - Nelson O. Gekara
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholm106 91Sweden
| |
Collapse
|
27
|
Nuijens AC, Oei AL, van Oorschot B, Visser J, van Os RM, Moerland PD, Franken NAP, Rasch CRN, Stalpers LJA. Gamma-H2AX Foci Decay Ratio as a Stronger Predictive Factor of Late Radiation Toxicity Than Dose-Volume Parameters in a Prospective Cohort of Prostate Cancer Patients. Int J Radiat Oncol Biol Phys 2021; 112:212-221. [PMID: 34419566 DOI: 10.1016/j.ijrobp.2021.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Late radiation toxicity is a major dose-limiting factor in curative cancer radiation therapy. Previous studies identified several risk factors for late radiation toxicity, including both dose-volume factors and genetic predisposition. Herein, we investigated the contribution of genetic predisposition, particularly compared with dose-volume factors, to the risk of late radiation toxicity in patients treated with highly conformal radiation therapy. METHODS AND MATERIALS We included 179 patients with prostate cancer who underwent treatment with curative external beam radiation therapy between 2009 and 2013. Toxicity was graded according to the Common Terminology Criteria for Adverse Events version 4.0. Transcriptional responsiveness of homologous recombination repair genes and γ-H2AX foci decay ratios (FDRs) were determined in ex vivo irradiated lymphocytes in a previous analysis. Dose-volume parameters were retrieved by delineating the organs at risk (OARs) on CT planning images. Associations between risk factors and grade ≥2 urinary and bowel late radiation toxicities were assessed using univariable and multivariable logistic regression analyses. The analyses were performed using the highest toxicity grade recorded during the follow-up per patient. RESULTS The median follow-up period was 31 months. One hundred and one patients (56%) developed grade ≥2 late radiation toxicity. Cumulative rates for urinary and bowel grade ≥2 late toxicities were 46% and 17%, respectively. In the multivariable analysis, factors significantly associated with grade ≥2 late toxicity were transurethral resection of the prostate (P = .013), γ-H2AX FDR <3.41 (P = .008), and rectum V70 >11.52% (P = .017). CONCLUSIONS Our results suggest that impaired DNA double-strand break repair in lymphocytes, as quantified by γ-H2AX FDR, is the most critical determining factor of late radiation toxicity. The limited influence of dose-volume parameters could be due to the use of increasingly conformal techniques, leading to improved dose-volume parameters of the organs at risk.
Collapse
Affiliation(s)
- Anna C Nuijens
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands; Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef, Amsterdam, the Netherlands
| | - Arlene L Oei
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands; Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef, Amsterdam, the Netherlands
| | - Bregje van Oorschot
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands; Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef, Amsterdam, the Netherlands
| | - Jorrit Visser
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands
| | - Rob M van Os
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands
| | - Perry D Moerland
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands
| | - Nicolaas A P Franken
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands; Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef, Amsterdam, the Netherlands
| | - Coen R N Rasch
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands.
| |
Collapse
|
28
|
Petrović N, Stanojković TP, Nikitović M. MicroRNAs in prostate cancer following radiotherapy: Towards predicting response to radiation treatment. Curr Med Chem 2021; 29:1543-1560. [PMID: 34348602 DOI: 10.2174/0929867328666210804085135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/10/2021] [Accepted: 06/19/2021] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa) is the second most frequently diagnosed male cancer worldwide. Early diagnosis of PCa, response to therapy and prognosis still represent a challenge. Nearly 60% of PCa patients undergo radiation therapy (RT) which might cause side effects. In spite of numerous researches in this field, predictive biomarkers for radiation toxicity are still not elucidated. MicroRNAs as posttranscriptional regulators of gene expression are shown to be changed during and after irradiation. Manipulation with miRNA levels might be used to modulate response to RT-to reverse radioresistance-to induce radiosensitivity, or if needed, to reduce sensitivity to treatment to avoid side effects. In this review we have listed and described miRNAs involved in response to RT in PCa, and highlighted potential candidates for future biological tests predicting radiation response to RT, with the special focus on side effects of RT. Individual radiation response is a result of the interactions between physical characteristics of radiation treatment and biological background of each patient, and miRNA expression changes among others. According to described literature we concluded that let-7, miR-21, miR-34a, miR-146a, miR-155, and members of miR-17/92 cluster might be promising candidates for biological tests predicting radiosensitivity of PCa patients undergoing radiation treatment, and as future agents for modulation of radiation response. Predictive miRNA panels, especially for acute and late side effects of RT can serve as a starting point for decisions for individualized RT planning. We believe that this review might be one step closer to understanding molecular mechanisms underlying individual radiation response of patients with PCa.
Collapse
Affiliation(s)
- Nina Petrović
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade. Serbia
| | - Tatjana P Stanojković
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade. Serbia
| | - Marina Nikitović
- Department of Radiation Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia, Pasterova 14, 11000 Belgrade. Serbia
| |
Collapse
|
29
|
Smith AO, Ju W, Adzraku SY, Wenyi L, Yuting C, Qiao J, Xu K, Zeng L. Gamma Radiation Induce Inflammasome Signaling and Pyroptosis in Microvascular Endothelial Cells. J Inflamm Res 2021; 14:3277-3288. [PMID: 34290514 PMCID: PMC8289370 DOI: 10.2147/jir.s318812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/01/2021] [Indexed: 02/03/2023] Open
Abstract
Introduction The extend to the clinical benefit of radiation therapy is the inability to eliminate only cancer cells and destroy normal cells such as microvascular endothelial in the vascular niche and turn induced-inflammasome signaling and cell death. These unfortunate injuries generated by ionizing radiation alter the therapeutic window and result in the re-occurrence of the malignancy. Therefore, we engaged in vitro studies by demonstrating radiation-induced inflammasome and cell death in endothelial cells. Methods The microvascular endothelial cells were cultured in a sterile dish, then kept in a humidifier of 5% at 37°C for 12 hours/more to attain confluence, and exposed at a dose of 1.8Gy/min achieve the coveted amounts except for the control. The cells were harvested 24 hours post-irradiation. Results Our findings indicate that gamma radiation activates the NOD-like receptor (NLR) family of NLRP1 and NLRP3 complex in microvascular endothelial cells. These complexes activate the inactive precursor of caspase-1, which cleaved to bioactive caspase −1 and enhances the production of pro-inflammatory cytokines of interleukin-1β and interleukin-18 that induce the dependent pyroptotic, which results in the production of chemokines, tumor necrosis factor-alpha (TNF-α), and high-mobility group protein-1 (HMGB-1). We also discovered the radiation could directly prompt caspase −1, which auto-cleaved to activate gasdermin D to potentiate pyroptosis independently. Discussion Overall, these findings suggested that reducing the unfavorable effect of radiation injuries could be challenging since gamma radiation induces the microvascular endothelial cells to cell death and activates the inflammasome signaling via different pathways.
Collapse
Affiliation(s)
- Alhaji Osman Smith
- Department of Blood Diseases Institute, Xuzhou Medical University, Xuzhou City, 221002, Jiangsu Province, People's Republic of China.,Department of Key Laboratory of the Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou City, 221002, Jiangsu Province, People's Republic of China
| | - Wen Ju
- Department of Blood Diseases Institute, Xuzhou Medical University, Xuzhou City, 221002, Jiangsu Province, People's Republic of China.,Department of Key Laboratory of the Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou City, 221002, Jiangsu Province, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou City, 221002, Jiangsu Province, People's Republic of China
| | - Seyram Yao Adzraku
- Department of Blood Diseases Institute, Xuzhou Medical University, Xuzhou City, 221002, Jiangsu Province, People's Republic of China.,Department of Key Laboratory of the Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou City, 221002, Jiangsu Province, People's Republic of China
| | - Lu Wenyi
- Department of Blood Diseases Institute, Xuzhou Medical University, Xuzhou City, 221002, Jiangsu Province, People's Republic of China.,Department of Key Laboratory of the Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou City, 221002, Jiangsu Province, People's Republic of China
| | - Chen Yuting
- Department of Blood Diseases Institute, Xuzhou Medical University, Xuzhou City, 221002, Jiangsu Province, People's Republic of China.,Department of Key Laboratory of the Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou City, 221002, Jiangsu Province, People's Republic of China
| | - Jianlin Qiao
- Department of Blood Diseases Institute, Xuzhou Medical University, Xuzhou City, 221002, Jiangsu Province, People's Republic of China.,Department of Key Laboratory of the Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou City, 221002, Jiangsu Province, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou City, 221002, Jiangsu Province, People's Republic of China
| | - Kailin Xu
- Department of Blood Diseases Institute, Xuzhou Medical University, Xuzhou City, 221002, Jiangsu Province, People's Republic of China.,Department of Key Laboratory of the Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou City, 221002, Jiangsu Province, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou City, 221002, Jiangsu Province, People's Republic of China
| | - Lingyu Zeng
- Department of Blood Diseases Institute, Xuzhou Medical University, Xuzhou City, 221002, Jiangsu Province, People's Republic of China.,Department of Key Laboratory of the Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou City, 221002, Jiangsu Province, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou City, 221002, Jiangsu Province, People's Republic of China
| |
Collapse
|
30
|
Gorbunov NV, Kiang JG. Brain Damage and Patterns of Neurovascular Disorder after Ionizing Irradiation. Complications in Radiotherapy and Radiation Combined Injury. Radiat Res 2021; 196:1-16. [PMID: 33979447 PMCID: PMC8297540 DOI: 10.1667/rade-20-00147.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 04/02/2021] [Indexed: 12/31/2022]
Abstract
Exposure to ionizing radiation, mechanical trauma, toxic chemicals or infections, or combinations thereof (i.e., combined injury) can induce organic injury to brain tissues, the structural disarrangement of interactive networks of neurovascular and glial cells, as well as on arrays of the paracrine and systemic destruction. This leads to subsequent decline in cognitive capacity and decompensation of mental health. There is an ongoing need for improvement in mitigating and treating radiation- or combined injury-induced brain injury. Cranial irradiation per se can cause a multifactorial encephalopathy that occurs in a radiation dose- and time-dependent manner due to differences in radiosensitivity among the various constituents of brain parenchyma and vasculature. Of particular concern are the radiosensitivity and inflammation susceptibility of: 1. the neurogenic and oligodendrogenic niches in the subependymal and hippocampal domains; and 2. the microvascular endothelium. Thus, cranial or total-body irradiation can cause a plethora of biochemical and cellular disorders in brain tissues, including: 1. decline in neurogenesis and oligodendrogenesis; 2. impairment of the blood-brain barrier; and 3. ablation of vascular capillary. These changes, along with cerebrovascular inflammation, underlie different stages of encephalopathy, from the early protracted stage to the late delayed stage. It is evident that ionizing radiation combined with other traumatic insults such as penetrating wound, burn, blast, systemic infection and chemotherapy, among others, can exacerbate the radiation sequelae (and vice versa) with increasing severity of neurogenic and microvascular patterns of radiation brain damage.
Collapse
Affiliation(s)
| | - Juliann G. Kiang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
31
|
Petrović N, Nakashidze I, Nedeljković M. Breast Cancer Response to Therapy: Can microRNAs Lead the Way? J Mammary Gland Biol Neoplasia 2021; 26:157-178. [PMID: 33479880 DOI: 10.1007/s10911-021-09478-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/17/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer (BC) is a leading cause of death among women with malignant diseases. The selection of adequate therapies for highly invasive and metastatic BCs still represents a major challenge. Novel combinatorial therapeutic approaches are urgently required to enhance the efficiency of BC treatment. Recently, microRNAs (miRNAs) emerged as key regulators of the complex mechanisms that govern BC therapeutic resistance and susceptibility. In the present review we aim to critically examine how miRNAs influence BC response to therapies, or how to use miRNAs as a basis for new therapeutic approaches. We summarized recent findings in this rapidly evolving field, emphasizing the challenges still ahead for the successful implementation of miRNAs into BC treatment while providing insights for future BC management.The goal of this review was to propose miRNAs, that might simultaneously improve the efficacy of all four therapies that are the backbone of current BC management (radio-, chemo-, targeted, and hormone therapy). Among the described miRNAs, miR-21 and miR-16 emerged as the most promising, closely followed by miR-205, miR-451, miR-182, and miRNAs from the let-7 family. miR-21 inhibition might be the best choice for future improvement of invasive BC treatment.New therapeutic strategies of miRNA-based agents alongside current standard treatment modalities could greatly benefit BC patients. This review represents a guideline on how to navigate this elaborate puzzle.
Collapse
Affiliation(s)
- Nina Petrović
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001, Belgrade, Serbia.
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| | - Irina Nakashidze
- Department of Biology, Natural Science and Health Care, Batumi Shota Rustaveli State University, Ninoshvili str. 35, 6010, Batumi, Georgia
| | - Milica Nedeljković
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia
| |
Collapse
|
32
|
Sumner W, Ray X, Sutton L, Rebibo D, Marincola F, Sanghvi P, Moiseenko V, Deichaite I. Gene alterations as predictors of radiation-induced toxicity in head and neck squamous cell carcinoma. J Transl Med 2021; 19:212. [PMID: 34001187 PMCID: PMC8130372 DOI: 10.1186/s12967-021-02876-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/05/2021] [Indexed: 01/02/2023] Open
Abstract
Background Optimizing the therapeutic ratio for radiation therapy (RT) in head and neck squamous cell carcinoma (HNSCC) is uniquely challenging owing to high rates of early and late toxicity involving nearby organs at risk. These toxicities have a profound impact on treatment compliance and quality of life. Emerging evidence suggests that RT dose alone cannot fully account for the variable severity of RT-related adverse events (rtAEs) observed in HNSCC patients. Next-generation sequencing has become an increasingly valuable tool with widespread use in the oncology field and is being robustly explored for predicting rtAEs beyond dosimetric data. Methods Patients who had Foundation Medicine sequencing data and received RT for primary or locally recurrent HNSCC were selected for this study. Early and late toxicity data were collected and reported based on Common Terminology Criteria for Adverse Events version 5.0. Dosimetric parameters were collected for pertinent structures. Results A total of HNSCC 37 patients were analyzed in this study. Genetic alterations in BRCA2, ERBB3, NOTCH1 and CCND1 were all associated with higher mean grade of toxicity with BRCA2 alteration implicated in all toxicity parameters evaluated including mucositis, early dysphagia, xerostomia and to a lesser extent, late dysphagia. Interestingly, patients who exhibited alterations in both BRCA2 and ERBB3 experienced a twofold or greater increase in early dysphagia, early xerostomia and late dysphagia compared to ERBB3 alteration alone. Furthermore, several gene alterations were associated with improved toxicity outcomes. Within an RT supersensitive patient subset, alterations were found in TNFAIP3, HNF1A, SPTA1 and CASP8. All of these alterations were not found in the RT insensitive patient subset. We found 17 gene alterations in the RT insensitive patient subset that were not found in the RT supersensitive patient subset. Conclusion Despite consistent RT dosimetric parameters, patients with HNSCC experience heterogeneous patterns of rtAEs. Identifying factors associated with toxicity outcomes offers a new avenue for personalized precision RT therapy and prophylactic management. Here, next-generation sequencing in a population of HNSCC patients correlates several genetic alterations with severity of rtAEs. Further analysis is urgently needed to identify genetic patterns associated with rtAEs in order to reduce harmful outcomes in this challenging population. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02876-5.
Collapse
Affiliation(s)
- Whitney Sumner
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Xenia Ray
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Leisa Sutton
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Daniel Rebibo
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | | | - Parag Sanghvi
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ida Deichaite
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA. .,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
33
|
Chour T, Tian L, Lau E, Thomas D, Itzhaki I, Malak O, Zhang JZ, Qin X, Wardak M, Liu Y, Chandy M, Black KE, Lam MP, Neofytou E, Wu JC. Method for selective ablation of undifferentiated human pluripotent stem cell populations for cell-based therapies. JCI Insight 2021; 6:142000. [PMID: 33830086 PMCID: PMC8119193 DOI: 10.1172/jci.insight.142000] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/18/2021] [Indexed: 02/05/2023] Open
Abstract
Human pluripotent stem cells (PSCs), which are composed of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), provide an opportunity to advance cardiac cell therapy-based clinical trials. However, an important hurdle that must be overcome is the risk of teratoma formation after cell transplantation due to the proliferative capacity of residual undifferentiated PSCs in differentiation batches. To tackle this problem, we propose the use of a minimal noncardiotoxic doxorubicin dose as a purifying agent to selectively target rapidly proliferating stem cells for cell death, which will provide a purer population of terminally differentiated cardiomyocytes before cell transplantation. In this study, we determined an appropriate in vitro doxorubicin dose that (a) eliminates residual undifferentiated stem cells before cell injection to prevent teratoma formation after cell transplantation and (b) does not cause cardiotoxicity in ESC-derived cardiomyocytes (CMs) as demonstrated through contractility analysis, electrophysiology, topoisomerase activity assay, and quantification of reactive oxygen species generation. This study establishes a potentially novel method for tumorigenic-free cell therapy studies aimed at clinical applications of cardiac cell transplantation.
Collapse
Affiliation(s)
- Tony Chour
- Stanford Cardiovascular Institute
- Department of Medicine, Division of Cardiology, and
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Lei Tian
- Stanford Cardiovascular Institute
- Department of Medicine, Division of Cardiology, and
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Edward Lau
- Stanford Cardiovascular Institute
- Department of Medicine, Division of Cardiology, and
| | - Dilip Thomas
- Stanford Cardiovascular Institute
- Department of Medicine, Division of Cardiology, and
| | - Ilanit Itzhaki
- Stanford Cardiovascular Institute
- Department of Medicine, Division of Cardiology, and
| | - Olfat Malak
- Stanford Cardiovascular Institute
- Department of Medicine, Division of Cardiology, and
| | - Joe Z. Zhang
- Stanford Cardiovascular Institute
- Department of Medicine, Division of Cardiology, and
| | - Xulei Qin
- Stanford Cardiovascular Institute
- Department of Medicine, Division of Cardiology, and
| | - Mirwais Wardak
- Stanford Cardiovascular Institute
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Yonggang Liu
- Stanford Cardiovascular Institute
- Department of Medicine, Division of Cardiology, and
| | - Mark Chandy
- Stanford Cardiovascular Institute
- Department of Medicine, Division of Cardiology, and
| | - Katelyn E. Black
- Stanford Cardiovascular Institute
- Department of Medicine, Division of Cardiology, and
| | - Maggie P.Y. Lam
- Department of Medicine, Division of Cardiology, University of Colorado, Aurora, Colorado, USA
| | - Evgenios Neofytou
- Stanford Cardiovascular Institute
- Department of Medicine, Division of Cardiology, and
| | - Joseph C. Wu
- Stanford Cardiovascular Institute
- Department of Medicine, Division of Cardiology, and
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
34
|
Lumniczky K, Impens N, Armengol G, Candéias S, Georgakilas AG, Hornhardt S, Martin OA, Rödel F, Schaue D. Low dose ionizing radiation effects on the immune system. ENVIRONMENT INTERNATIONAL 2021; 149:106212. [PMID: 33293042 PMCID: PMC8784945 DOI: 10.1016/j.envint.2020.106212] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 05/03/2023]
Abstract
Ionizing radiation interacts with the immune system in many ways with a multiplicity that mirrors the complexity of the immune system itself: namely the need to maintain a delicate balance between different compartments, cells and soluble factors that work collectively to protect, maintain, and restore tissue function in the face of severe challenges including radiation damage. The cytotoxic effects of high dose radiation are less relevant after low dose exposure, where subtle quantitative and functional effects predominate that may go unnoticed until late after exposure or after a second challenge reveals or exacerbates the effects. For example, low doses may permanently alter immune fitness and therefore accelerate immune senescence and pave the way for a wide spectrum of possible pathophysiological events, including early-onset of age-related degenerative disorders and cancer. By contrast, the so called low dose radiation therapy displays beneficial, anti-inflammatory and pain relieving properties in chronic inflammatory and degenerative diseases. In this review, epidemiological, clinical and experimental data regarding the effects of low-dose radiation on the homeostasis and functional integrity of immune cells will be discussed, as will be the role of immune-mediated mechanisms in the systemic manifestation of localized exposures such as inflammatory reactions. The central conclusion is that ionizing radiation fundamentally and durably reshapes the immune system. Further, the importance of discovery of immunological pathways for modifying radiation resilience amongst other research directions in this field is implied.
Collapse
Affiliation(s)
- Katalin Lumniczky
- National Public Health Centre, Department of Radiation Medicine, Budapest, Albert Florian u. 2-6, 1097, Hungary.
| | - Nathalie Impens
- Belgian Nuclear Research Centre, Biosciences Expert Group, Boeretang 200, 2400 Mol, Belgium.
| | - Gemma Armengol
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Catalonia, Spain.
| | - Serge Candéias
- Université Grenoble-Alpes, CEA, CNRS, IRIG-LCBM, 38000 Grenoble, France.
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou 15780, Athens, Greece.
| | - Sabine Hornhardt
- Federal Office for Radiation Protection (BfS), Ingolstaedter Landstr.1, 85764 Oberschleissheim, Germany.
| | - Olga A Martin
- Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne 3052, Victoria, Australia.
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA 90095-1714, USA.
| |
Collapse
|
35
|
Ykema BLM, Hoefnagel SJM, Rigter LS, Kodach LL, Meijer GA, van Leeuwen FE, Khan HN, Snaebjornsson P, Aleman BMP, Broeks A, Meijer SL, Wang KK, Carvalho B, Krishnadath KK, van Leerdam ME. Gene expression profiles of esophageal squamous cell cancers in Hodgkin lymphoma survivors versus sporadic cases. PLoS One 2020; 15:e0243178. [PMID: 33347497 PMCID: PMC7751872 DOI: 10.1371/journal.pone.0243178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Hodgkin lymphoma (HL) survivors are at increased risk of developing second primary esophageal squamous cell cancer (ESCC). We aimed to gain insight in the driving events of ESCC in HL survivors (hESCC) by using RNA sequencing and NanoString profiling. Objectives were to investigate differences in RNA signaling between hESCC and sporadic ESCC (sESCC), and to look for early malignant changes in non-neoplastic esophageal tissue of HL survivors (hNN-tissue). We analyzed material of 26 hESCC cases, identified via the Dutch pathology registry (PALGA) and 17 sESCC cases from one academic institute and RNA sequencing data of 44 sESCC cases from TCGA. Gene expression profiles for the NanoString panel PanCancer IO 360 were obtained from 16/26 hESCC and four hNN-tissue, while non-neoplastic squamous tissue of four sporadic cases (sNN-tissue) served as reference profile. Hierarchical clustering, differential expression and pathway analyses were performed. Overall, the molecular profiles of hESCC and sESCC were similar. There was increased immune, HMGB1 and ILK signaling compared to sNN-tissue. The profiles of hNN-tissue were distinct from sNN-tissue, indicating early field effects in the esophagus of HL survivors. The BRCA1 pathway was upregulated in hESCC tissue, compared to hNN tissue. Analysis of expression profiles reveals overlap between hESCC and sESCC, and differences between hESCC and its surrounding hNN-tissue. Further research is required to validate our results and to investigate whether the changes observed in hNN-tissue are already detectable before development of hESCC. In the future, our findings could be used to improve hESCC patient management.
Collapse
Affiliation(s)
- Berbel L M Ykema
- Department of Gastroenterology and Hepatology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sanne J M Hoefnagel
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands.,Center for Experimental and Molecular Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Lisanne S Rigter
- Department of Gastroenterology and Hepatology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Liudmila L Kodach
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gerrit A Meijer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Flora E van Leeuwen
- Department of Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hina N Khan
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Petur Snaebjornsson
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Berthe M P Aleman
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Annegien Broeks
- Core Facility Molecular Pathology and Biobanking, Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sybren L Meijer
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Kenneth K Wang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Beatriz Carvalho
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kausilia K Krishnadath
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands.,Center for Experimental and Molecular Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Monique E van Leerdam
- Department of Gastroenterology and Hepatology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
36
|
Vinnikov V, Hande MP, Wilkins R, Wojcik A, Zubizarreta E, Belyakov O. Prediction of the Acute or Late Radiation Toxicity Effects in Radiotherapy Patients Using Ex Vivo Induced Biodosimetric Markers: A Review. J Pers Med 2020; 10:E285. [PMID: 33339312 PMCID: PMC7766345 DOI: 10.3390/jpm10040285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
A search for effective methods for the assessment of patients' individual response to radiation is one of the important tasks of clinical radiobiology. This review summarizes available data on the use of ex vivo cytogenetic markers, typically used for biodosimetry, for the prediction of individual clinical radiosensitivity (normal tissue toxicity, NTT) in cells of cancer patients undergoing therapeutic irradiation. In approximately 50% of the relevant reports, selected for the analysis in peer-reviewed international journals, the average ex vivo induced yield of these biodosimetric markers was higher in patients with severe reactions than in patients with a lower grade of NTT. Also, a significant correlation was sometimes found between the biodosimetric marker yield and the severity of acute or late NTT reactions at an individual level, but this observation was not unequivocally proven. A similar controversy of published results was found regarding the attempts to apply G2- and γH2AX foci assays for NTT prediction. A correlation between ex vivo cytogenetic biomarker yields and NTT occurred most frequently when chromosome aberrations (not micronuclei) were measured in lymphocytes (not fibroblasts) irradiated to relatively high doses (4-6 Gy, not 2 Gy) in patients with various grades of late (not early) radiotherapy (RT) morbidity. The limitations of existing approaches are discussed, and recommendations on the improvement of the ex vivo cytogenetic testing for NTT prediction are provided. However, the efficiency of these methods still needs to be validated in properly organized clinical trials involving large and verified patient cohorts.
Collapse
Affiliation(s)
- Volodymyr Vinnikov
- S.P. Grigoriev Institute for Medical Radiology and Oncology, National Academy of Medical Science of Ukraine, 61024 Kharkiv, Ukraine
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore 117593, Singapore;
| | - Ruth Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa, ON K1A 1C1, Canada;
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Svante Arrhenius väg 20C, Room 515, 10691 Stockholm, Sweden;
| | - Eduardo Zubizarreta
- Section of Applied Radiation Biology and Radiotherapy, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| | - Oleg Belyakov
- Section of Applied Radiation Biology and Radiotherapy, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| |
Collapse
|
37
|
Dong Y, Kumar H, Tawhai M, Veiga C, Szmul A, Landau D, McClelland J, Lao L, Burrowes KS. In Silico Ventilation Within the Dose-Volume is Predictive of Lung Function Post-radiation Therapy in Patients with Lung Cancer. Ann Biomed Eng 2020; 49:1416-1431. [PMID: 33258090 PMCID: PMC8058012 DOI: 10.1007/s10439-020-02697-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is a leading cause of death worldwide. Radiation therapy (RT) is one method to treat this disease. A common side effect of RT for lung cancer is radiation-induced lung damage (RILD) which leads to loss of lung function. RILD often compounds pre-existing smoking-related regional lung function impairment. It is difficult to predict patient outcomes due to large variability in individual response to RT. In this study, the capability of image-based modelling of regional ventilation in lung cancer patients to predict lung function post-RT was investigated. Twenty-five patient-based models were created using CT images to define the airway geometry, size and location of tumour, and distribution of emphysema. Simulated ventilation within the 20 Gy isodose volume showed a statistically significant negative correlation with the change in forced expiratory volume in 1 s 12-months post-RT (p = 0.001, R = - 0.61). Patients with higher simulated ventilation within the 20 Gy isodose volume had a greater loss in lung function post-RT and vice versa. This relationship was only evident with the combined impact of tumour and emphysema, with the location of the emphysema relative to the dose-volume being important. Our results suggest that model-based ventilation measures can be used in the prediction of patient lung function post-RT.
Collapse
Affiliation(s)
- Yu Dong
- Department of Chemical and Materials Engineering, University of Auckland, Auckland, New Zealand
| | - H Kumar
- Auckland Bioengineering Institute, Level 6, 70 Symonds Street, Auckland, 1010, New Zealand
| | - M Tawhai
- Auckland Bioengineering Institute, Level 6, 70 Symonds Street, Auckland, 1010, New Zealand
| | - C Veiga
- Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| | - A Szmul
- Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| | - D Landau
- Department of Oncology, University College London Hospital, London, UK
| | - J McClelland
- Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| | - L Lao
- Auckland District Health Board, Auckland, New Zealand
| | - K S Burrowes
- Department of Chemical and Materials Engineering, University of Auckland, Auckland, New Zealand. .,Auckland Bioengineering Institute, Level 6, 70 Symonds Street, Auckland, 1010, New Zealand.
| |
Collapse
|
38
|
Evaluation of cytokine expression and circulating immune cell subsets as potential parameters of acute radiation toxicity in prostate cancer patients. Sci Rep 2020; 10:19002. [PMID: 33149212 PMCID: PMC7643057 DOI: 10.1038/s41598-020-75812-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/09/2020] [Indexed: 01/02/2023] Open
Abstract
One of the challenges of radiation oncology in the era of personalized medicine is identification of biomarkers associated with individual radiosensitivity. The aim of research was to evaluate the possible clinical value of the associations between clinical, physical, and biological factors, and risk for development of acute radiotoxicity in patients with prostate cancer. The study involved forty four patients treated with three-dimensional conformal radiotherapy. The concentrations of IL-1β, IL-2, IL-6, IFN-γ and TGF-β1 were assessed before radiotherapy, after 5th, 15th and 25th radiotherapy fractions, at the end, and 1 month after the end of radiotherapy. Cytokine gene expression was determined in peripheral blood mononuclear cells. The univariate analysis of circulating cytokine levels during radiotherapy showed that increased serum concentrations of IL-6 were significantly associated with higher grade of acute genitourinary toxicity. The multivariate analysis demonstrated that increased level of IL-6 during the radiotherapy was significantly associated with higher grade of acute genitourinary toxicity across treatment. TGF-β expression levels significantly decreased during course of radiotherapy. Research indicates that changes in circulating cytokine levels might be important parameter of radiotoxicity in patients with prostate cancer. These findings suggest that future studies based on multi-parameter examination are necessary for prediction of individual radiosensitivity.
Collapse
|
39
|
Tonorezos ES, Friedman DN, Barnea D, Bosscha MI, Chantada G, Dommering CJ, de Graaf P, Dunkel IJ, Fabius AWM, Francis JH, Greer MLC, Kleinerman RA, Kors WA, Laughlin S, Moll AC, Morton LM, Temming P, Tucker MA, van Leeuwen FE, Walsh MF, Oeffinger KC, Abramson DH. Recommendations for Long-Term Follow-up of Adults with Heritable Retinoblastoma. Ophthalmology 2020; 127:1549-1557. [PMID: 32422154 PMCID: PMC7606265 DOI: 10.1016/j.ophtha.2020.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To generate recommendations for long-term follow-up of adult survivors of heritable retinoblastoma. DESIGN We convened a meeting of providers from retinoblastoma centers around the world to review the state of the science and to evaluate the published evidence. PARTICIPANTS Retinoblastoma is a rare childhood cancer of the retina. Approximately 40% of retinoblastoma cases are heritable, resulting from a germline mutation in RB1. Dramatic improvements in treatment and supportive care have resulted in a growing adult survivor population. However, survivors of heritable retinoblastoma have a significantly increased risk of subsequent malignant neoplasms, particularly bone and soft tissue sarcomas, uterine leiomyosarcoma, melanomas, and radiotherapy-related central nervous system tumors, which are associated with excess morbidity and mortality. Despite these risks, no surveillance recommendations for this population currently are in place, and surveillance practices vary widely by center. METHODS Following the Institute of Medicine procedure for clinical practice guideline development, a PubMed, EMBASE, and Web of Science search was performed, resulting in 139 articles; after abstract and full-text review, 37 articles underwent detailed data abstraction to quantify risk and evidence regarding surveillance, if available. During an in-person meeting, evidence was presented and discussed, resulting in consensus recommendations. MAIN OUTCOME MEASURES Diagnosis and mortality from subsequent neoplasm. RESULTS Although evidence for risk of subsequent neoplasm, especially sarcoma and melanoma, was significant, evidence supporting routine testing of asymptomatic survivors was not identified. Skin examination for melanoma and prompt evaluation of signs and symptoms of head and neck disease were determined to be prudent. CONCLUSIONS This review of the literature confirmed some of the common second cancers in retinoblastoma survivors but found little evidence for a benefit from currently available surveillance for these malignancies. Future research should incorporate international partners, patients, and family members.
Collapse
Affiliation(s)
- Emily S Tonorezos
- Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York.
| | | | - Dana Barnea
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | | | - Pim de Graaf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ira J Dunkel
- Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Armida W M Fabius
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | | | - Ruth A Kleinerman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Wijnanda A Kors
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Suzanne Laughlin
- Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Annette C Moll
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Lindsay M Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | | - David H Abramson
- Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| |
Collapse
|
40
|
Pathak GA, Polimanti R, Silzer TK, Wendt FR, Chakraborty R, Phillips NR. Genetically-regulated transcriptomics & copy number variation of proctitis points to altered mitochondrial and DNA repair mechanisms in individuals of European ancestry. BMC Cancer 2020; 20:954. [PMID: 33008348 PMCID: PMC7530964 DOI: 10.1186/s12885-020-07457-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/23/2020] [Indexed: 02/08/2023] Open
Abstract
Background Proctitis is an inflammation of the rectum and may be induced by radiation treatment for cancer. The genetic heritability of developing radiotoxicity and prior role of genetic variants as being associated with side-effects of radiotherapy necessitates further investigation for underlying molecular mechanisms. In this study, we investigated gene expression regulated by genetic variants, and copy number variation in prostate cancer survivors with radiotoxicity. Methods We investigated proctitis as a radiotoxic endpoint in prostate cancer patients who received radiotherapy (n = 222). We analyzed the copy number variation and genetically regulated gene expression profiles of whole-blood and prostate tissue associated with proctitis. The SNP and copy number data were genotyped on Affymetrix® Genome-wide Human SNP Array 6.0. Following QC measures, the genotypes were used to obtain gene expression by leveraging GTEx, a reference dataset for gene expression association based on genotype and RNA-seq information for prostate (n = 132) and whole-blood tissue (n = 369). Results In prostate tissue, 62 genes were significantly associated with proctitis, and 98 genes in whole-blood tissue. Six genes - CABLES2, ATP6AP1L, IFIT5, ATRIP, TELO2, and PARD6G were common to both tissues. The copy number analysis identified seven regions associated with proctitis, one of which (ALG1L2) was also associated with proctitis based on transcriptomic profiles in the whole-blood tissue. The genes identified via transcriptomics and copy number variation association were further investigated for enriched pathways and gene ontology. Some of the enriched processes were DNA repair, mitochondrial apoptosis regulation, cell-to-cell signaling interaction processes for renal and urological system, and organismal injury. Conclusions We report gene expression changes based on genetic polymorphisms. Integrating gene-network information identified these genes to relate to canonical DNA repair genes and processes. This investigation highlights genes involved in DNA repair processes and mitochondrial malfunction possibly via inflammation. Therefore, it is suggested that larger studies will provide more power to infer the extent of underlying genetic contribution for an individual’s susceptibility to developing radiotoxicity.
Collapse
Affiliation(s)
- Gita A Pathak
- Department of Microbiology, Immunology & Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, USA.,Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Talisa K Silzer
- Department of Microbiology, Immunology & Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Frank R Wendt
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, USA.,Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Ranajit Chakraborty
- Department of Microbiology, Immunology & Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Nicole R Phillips
- Department of Microbiology, Immunology & Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
41
|
Gamma Knife Radiosurgery does not alter the copy number aberration profile in sporadic vestibular schwannoma. J Neurooncol 2020; 149:373-381. [PMID: 32980934 PMCID: PMC7609431 DOI: 10.1007/s11060-020-03631-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/03/2022]
Abstract
Introduction Ionizing radiation is a known etiologic factor in tumorigenesis and its role in inducing malignancy in the treatment of vestibular schwannoma has been debated. The purpose of this study was to identify a copy number aberration (CNA) profile or specific CNAs associated with radiation exposure which could either implicate an increased risk of malignancy or elucidate a mechanism of treatment resistance. Methods 55 sporadic VS, including 18 treated with Gamma Knife Radiosurgery (GKRS), were subjected to DNA whole-genome microarray and/or whole-exome sequencing. CNAs were called and statistical tests were performed to identify any association with radiation exposure. Hierarchical clustering was used to identify CNA profiles associated with radiation exposure. Results
A median of 7 (0–58) CNAs were identified across the 55 VS. Chromosome 22 aberration was the only recurrent event. A median aberrant cell fraction of 0.59 (0.25–0.94) was observed, indicating several genetic clones in VS. No CNA or CNA profile was associated with GKRS. Conclusion
GKRS is not associated with an increase in CNAs or alteration of the CNA profile in VS, lending support to its low risk. This also implies that there is no major issue with GKRS treatment failure being due to CNAs. In agreement with previous studies, chromosome 22 aberration is the only recurrent CNA. VS consist of several genetic clones, addressing the need for further studies on the composition of cells in this tumor.
Collapse
|
42
|
Plasma antioxidant substances apparently do not influence the radiodermatitis occurrence. SCIENTIA MEDICA 2020. [DOI: 10.15448/1980-6108.2020.1.35844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIMS: Radiation affects not only tumors but also healthy tissues through the increment of oxidative stress. Thus, this study aimed to evaluate the oxidative stress degree as well as non-enzymatic antioxidant defenses in the plasma of patients submitted to radiotherapy and to verify if these parameters are modified in those patients who develop radiodermatitis.METHODS: Forty-one patients submitted to radiotherapy for treatment of breast cancer were followed. From these patients, plasma samples were obtained at the beginning, in the middle and at the end of the treatment, for analysis of thiobarbituric acid reactive substances (TBARS) and ferric reducing ability of plasma (FRAP).RESULTS: No significant differences were observed in terms of TBARS and FRAP in plasma harvested from these patients at the beginning and at the middle of the treatment. There was lower incidence of grade two radiodermatitis among patients undergoing radiotherapy with hypofractionated doses. There were no differences in FRAP or TBARS among patients who developed radiodermatitis of any degree in relation to those who did not develop this side effect. No differences of FRAP or TBARS were observed between patients that presented grade two radiodermatitis regarding to the others studied.CONCLUSION: There was no clear relationship between changes in TBARS or FRAP with the occurrence or severity of radiodermatitis.
Collapse
|
43
|
Baker S, Logie N, Paulson K, Duimering A, Murtha A. Radiotherapy for Brain Tumors: Current Practice and Future Directions. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394715666181129105542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Radiotherapy is an important component of the treatment for primary and metastatic
brain tumors. Due to the close proximity of critical structures and normal brain parenchyma, Central
Nervous System (CNS) radiotherapy is associated with adverse effects such as neurocognitive
deficits, which must be weighed against the benefit of improved tumor control. Advanced radiotherapy
technology may help to mitigate toxicity risks, although there is a paucity of high-level
evidence to support its use. Recent advances have been made in the treatment for gliomas, meningiomas,
benign tumors, and metastases, although outcomes remain poor for many high grade
tumors. This review highlights recent developments in CNS radiotherapy, discusses common
treatment toxicities, critically reviews advanced radiotherapy technologies, and highlights promising
treatment strategies to improve clinical outcomes in the future.
Collapse
Affiliation(s)
- Sarah Baker
- Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| | - Natalie Logie
- University of Florida Proton Therapy Institute, Jacksonville, FL, United States
| | - Kim Paulson
- Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| | - Adele Duimering
- Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| | - Albert Murtha
- Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| |
Collapse
|
44
|
Chargari C, Supiot S, Hennequin C, Chapel A, Simon JM. [Treatment of radiation-induced late effects: What's new?]. Cancer Radiother 2020; 24:602-611. [PMID: 32855027 DOI: 10.1016/j.canrad.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023]
Abstract
Mechanisms of late radio-induced lesions are the result of multiple and complex phenomena, with many entangled cellular and tissue factors. The biological continuum between acute and late radio-induced effects will be described, with firstly a break in homeostasis that leads to cellular redistributions. New insights into late toxicity will finally be addressed. Individual radiosensitivity is a primary factor for the development of late toxicity, and clinicians urgently need predictive tests to offer truly personalized radiation therapy. An update will be made on the various functional and genetic tests currently being validated. The management of radio-induced side effects remains a frequent issue for radiation oncologists, and an update will be made for certain specific clinical situations. Finally, an innovative management for patients with significant side effects after pelvic radiotherapy will be developed, involved mesenchymal stem cell transplantation, with the presentation of the "PRISME" protocol currently open to patients recruitment.
Collapse
Affiliation(s)
- C Chargari
- Département de radiothérapie, Gustave-Roussy Cancer Campus, 114, rue Édouard-Vaillant, 94800 Villejuif France
| | - S Supiot
- Département d'oncologie radiothérapie, institut de cancérologie de l'ouest - centre René-Gauducheau, boulevard Jacques-Monod, 44805 Saint-Herblain cedex, France; Institut de recherche en santé de l'université de Nantes, université de Nantes, 8, quai Moncousu, BP 70721, 44007 Nantes cedex 1, France; Inserm, U1232 Centre de recherche en cancérologie et immunologie de Nantes - Angers (CRCINA), 8, quai Moncousu, BP 70721, 44007 Nantes cedex 1, France; CNRS, ERL 6001, 8, quai Moncousu, BP 70721, 44007 Nantes cedex 1, France
| | - C Hennequin
- Service de cancérologie-radiothérapie, hôpital Saint-Louis, 1, avenue Claude-Vellefeaux, 75475 Paris, France
| | - A Chapel
- Service de recherche en radiobiologie et en médecine régénérative, laboratoire de radiobiologie des expositions médicales, Institut de radioprotection et de sûreté nucléaire (IRSN), 31, avenue de la Division-Leclerc, 92260 Fontenay-aux-Roses, France
| | - J-M Simon
- Sorbonne université, 21, rue de l'École-de-Médecine, 75006 Paris, France; Service d'oncologie radiothérapie, hôpital Pitié-Salpêtrière, AP-HP, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France.
| |
Collapse
|
45
|
Morton LM, Karyadi DM, Hartley SW, Frone MN, Sampson JN, Howell RM, Neglia JP, Arnold MA, Hicks BD, Jones K, Zhu B, Dagnall CL, Karlins E, Yeager MS, Leisenring WM, Yasui Y, Turcotte LM, Smith SA, Weathers RE, Miller J, Sigel BS, Merino DM, Berrington de Gonzalez A, Bhatia S, Robison LL, Tucker MA, Armstrong GT, Chanock SJ. Subsequent Neoplasm Risk Associated With Rare Variants in DNA Damage Response and Clinical Radiation Sensitivity Syndrome Genes in the Childhood Cancer Survivor Study. JCO Precis Oncol 2020; 4:PO.20.00141. [PMID: 32923912 PMCID: PMC7469586 DOI: 10.1200/po.20.00141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Radiotherapy for childhood cancer is associated with elevated subsequent neoplasm (SN) risk, but the contribution of rare variants in DNA damage response and radiation sensitivity genes to SN risk is unknown. PATIENTS AND METHODS We conducted whole-exome sequencing in a cohort of childhood cancer survivors originally diagnosed during 1970 to 1986 (mean follow-up, 32.7 years), with reconstruction of doses to body regions from radiotherapy records. We identified patients who developed SN types previously reported to be related to radiotherapy (RT-SNs; eg, basal cell carcinoma [BCC], breast cancer, meningioma, thyroid cancer, sarcoma) and matched controls (sex, childhood cancer type/diagnosis, age, SN location, radiation dose, survival). Conditional logistic regression assessed SN risk associated with potentially protein-damaging rare variants (SnpEff, ClinVar) in 476 DNA damage response or radiation sensitivity genes with exact permutation-based P values using a Bonferroni-corrected significance threshold of P < 8.06 × 10-5. RESULTS Among 5,105 childhood cancer survivors of European descent, 1,108 (21.7%) developed at least 1 RT-SN. Out-of-field RT-SN risk, excluding BCC, was associated with homologous recombination repair (HRR) gene variants (patient cases, 23.2%; controls, 10.8%; odds ratio [OR], 2.6; 95% CI, 1.7 to 3.9; P = 4.79 × 10-5), most notably but nonsignificantly for FANCM (patient cases, 4.0%; matched controls, 0.6%; P = 9.64 × 10-5). HRR variants were not associated with likely in/near-field RT-SNs, excluding BCC (patient cases, 12.7%; matched controls, 12.9%; P = .92). Irrespective of radiation dose, risk for RT-SNs was also associated with EXO1 variants (patient cases, 1.8%; controls, 0.4%; P = 3.31 × 10-5), another gene implicated in DNA double-strand break repair. CONCLUSION In this large-scale discovery study, we identified novel associations between RT-SN risk after childhood cancer and potentially protein-damaging rare variants in genes involved in DNA double-strand break repair, particularly HRR. With replication, these results could affect screening recommendations for childhood cancer survivors and risk-benefit assessments of treatment approaches.
Collapse
Affiliation(s)
- Lindsay M. Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Danielle M. Karyadi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Stephen W. Hartley
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Megan N. Frone
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Joshua N. Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Rebecca M. Howell
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Joseph P. Neglia
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Michael A. Arnold
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH
| | - Belynda D. Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Casey L. Dagnall
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Eric Karlins
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Meredith S. Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Wendy M. Leisenring
- Cancer Prevention and Clinical Statistics Programs, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
| | | | - Susan A. Smith
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rita E. Weathers
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Byron S. Sigel
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Diana M. Merino
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Amy Berrington de Gonzalez
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
| | - Margaret A. Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Gregory T. Armstrong
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
46
|
Liu J, Bi K, Yang R, Li H, Nikitaki Z, Chang L. Role of DNA damage and repair in radiation cancer therapy: a current update and a look to the future. Int J Radiat Biol 2020; 96:1329-1338. [PMID: 32776818 DOI: 10.1080/09553002.2020.1807641] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Radiation Therapy (RT), a widely used modality against cancer, depends its effectiveness on three pillars: tumor targeting precision, minimum dose determination and co-administrated agents. The underlying biological processes of the latter two pillars are DNA damage and repair. Hopefully, Radiation treatment has nowadays been improved a lot, in terms of tumor targeting precision as well as in minimization of side effects, by reducing normal tissue radiation exposure and therefore its occurred toxicity. Normal tissue toxicity is a major risk factor for induction of genomic instability which may lead to secondary cancer development, due to the radiation therapy itself. We discuss, in this review, the biological significance of IR-induced complex DNA damage, which is currently accepted as the definite regulator of biological response to radiation, as well as the regulator of the implications of this IR signature in radiation therapy. We unite accumulating evidence and knowledge over the last 20 years or so on the importance of radiation treatment of cancer. This radiation-based therapy comes unfortunately with a deficit and this is the radiation-induced genetic instability which can fuel radiation toxicity, even several years after the initial treatment on patients through the activation of DNA damage response (DDR) and the immune system.
Collapse
Affiliation(s)
- Jingya Liu
- Department of Community Medicine, Tangshan Workers' Hospital, Tangshan, China
| | - Kun Bi
- Department of Neurosurgery, Tangshan Workers' Hospital, Tangshan, China
| | - Run Yang
- Department of Preventive Healthcare, Qishan Hospital, Yantai, China
| | - Hongxia Li
- Department of Interventional Medicine, Yantaishan Hospital, Yantai, China
| | - Zacharenia Nikitaki
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematics and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Li Chang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
47
|
Cullen D, Bryant J, Maguire A, Medipally D, McClean B, Shields L, Noone E, Bradshaw S, Finn M, Dunne M, Shannon AM, Armstrong J, Howe O, Meade AD, Lyng FM. Raman spectroscopy of lymphocytes for the identification of prostate cancer patients with late radiation toxicity following radiotherapy. TRANSLATIONAL BIOPHOTONICS 2020. [DOI: 10.1002/tbio.201900035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Daniel Cullen
- Radiation and Environmental Science Centre Focas Research Institute, Technological University Dublin Dublin Ireland
- School of Physics and Clinical and Optometric Sciences Technological University Dublin Dublin Ireland
| | - Jane Bryant
- Radiation and Environmental Science Centre Focas Research Institute, Technological University Dublin Dublin Ireland
| | - Adrian Maguire
- Radiation and Environmental Science Centre Focas Research Institute, Technological University Dublin Dublin Ireland
- School of Physics and Clinical and Optometric Sciences Technological University Dublin Dublin Ireland
| | - Dinesh Medipally
- Radiation and Environmental Science Centre Focas Research Institute, Technological University Dublin Dublin Ireland
- School of Physics and Clinical and Optometric Sciences Technological University Dublin Dublin Ireland
| | - Brendan McClean
- Department of Medical Physics Saint Luke's Radiation Oncology Network Dublin Ireland
| | - Laura Shields
- Department of Medical Physics Saint Luke's Radiation Oncology Network Dublin Ireland
| | - Emma Noone
- Clinical Trials Unit Saint Luke's Radiation Oncology Network at St Luke's Hospital Dublin Ireland
| | - Shirley Bradshaw
- Clinical Trials Unit Saint Luke's Radiation Oncology Network at St Luke's Hospital Dublin Ireland
| | - Marie Finn
- Clinical Trials Unit Saint Luke's Radiation Oncology Network at St Luke's Hospital Dublin Ireland
| | - Mary Dunne
- Clinical Trials Unit Saint Luke's Radiation Oncology Network at St Luke's Hospital Dublin Ireland
| | | | - John Armstrong
- Cancer Trials Ireland Dublin Ireland
- Department of Radiation Oncology Saint Luke's Radiation Oncology Network at St Luke's Hospital Dublin Ireland
| | - Orla Howe
- Radiation and Environmental Science Centre Focas Research Institute, Technological University Dublin Dublin Ireland
- School of Biological and Health Sciences Technological University Dublin Dublin Ireland
| | - Aidan D. Meade
- Radiation and Environmental Science Centre Focas Research Institute, Technological University Dublin Dublin Ireland
- School of Physics and Clinical and Optometric Sciences Technological University Dublin Dublin Ireland
| | - Fiona M. Lyng
- Radiation and Environmental Science Centre Focas Research Institute, Technological University Dublin Dublin Ireland
- School of Physics and Clinical and Optometric Sciences Technological University Dublin Dublin Ireland
| |
Collapse
|
48
|
Kang J, Coates JT, Strawderman RL, Rosenstein BS, Kerns SL. Genomics models in radiotherapy: From mechanistic to machine learning. Med Phys 2020; 47:e203-e217. [PMID: 32418335 PMCID: PMC8725063 DOI: 10.1002/mp.13751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 12/28/2022] Open
Abstract
Machine learning (ML) provides a broad framework for addressing high-dimensional prediction problems in classification and regression. While ML is often applied for imaging problems in medical physics, there are many efforts to apply these principles to biological data toward questions of radiation biology. Here, we provide a review of radiogenomics modeling frameworks and efforts toward genomically guided radiotherapy. We first discuss medical oncology efforts to develop precision biomarkers. We next discuss similar efforts to create clinical assays for normal tissue or tumor radiosensitivity. We then discuss modeling frameworks for radiosensitivity and the evolution of ML to create predictive models for radiogenomics.
Collapse
Affiliation(s)
- John Kang
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - James T. Coates
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Robert L. Strawderman
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY 14642, USA
| | - Barry S. Rosenstein
- Department of Radiation Oncology and the Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah L. Kerns
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
49
|
Mosley M, Baguña Torres J, Allen D, Cornelissen B. Immuno-imaging of ICAM-1 in tumours by SPECT. Nucl Med Biol 2020; 84-85:73-79. [PMID: 32135474 PMCID: PMC7294224 DOI: 10.1016/j.nucmedbio.2020.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Molecular imaging of cancer cells' reaction to radiation damage can provide a non-invasive measure of tumour response to treatment. The cell surface glycoprotein ICAM-1 (CD54) was identified as a potential radiation response marker. SPECT imaging using an 111In-radiolabelled anti-ICAM-1 antibody was explored. METHODS PSN-1 cells were irradiated (10 Gy), and protein expression changes were investigated using an antibody array on cell lysates 24 h later. Results were confirmed by western blot, flow cytometry and immunofluorescence. We confirmed the affinity of an 111In-labelled anti-ICAM-1 antibody in vitro, and in vivo, in PSN-1-xenograft bearing mice. The xenografts were irradiated (0 or 10 Gy), and [111In]In-anti-ICAM-1 SPECT/CT images were acquired 24, 48 and 72 h after intravenous administration. RESULTS ICAM-1 was identified as a potential marker of radiation treatment using an antibody array in PSN-1 cell lysates following irradiation, showing a significant increase in ICAM-1 signal compared to non-irradiated cells. Western blot and immunohistochemistry confirmed this upregulation, with an up to 20-fold increase in ICAM-1 signal. Radiolabelled anti-ICAM-1 bound to ICAM-1 expressing cells with good affinity (Kd = 24.0 ± 4.0 nM). [111In]In-anti-ICAM-1 uptake in tumours at 72 h post injection was approximately 3-fold higher than non-specific isotype-matched [111In]In-mIgG2a control (19.3 ± 2.5%ID/g versus 6.3 ± 2.2%ID/g, P = 0.0002). However, ICAM1 levels, and [111In]In-anti-ICAM-1 uptake in tumours was no different after irradiation (uptake 9.2%ID/g versus 14.8%ID/g). Western blots of the xenograft lysates showed no significant differences, confirming these results. CONCLUSION Imaging of ICAM-1 is feasible in mouse models of pancreatic cancer. Although ICAM-1 is upregulated post-irradiation in in vitro models of pancreatic cancer, it shows little change in expression in an in vivo mouse xenograft model.
Collapse
Affiliation(s)
- Michael Mosley
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom of Great Britain and Northern Ireland
| | - Julia Baguña Torres
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom of Great Britain and Northern Ireland
| | - Danny Allen
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom of Great Britain and Northern Ireland
| | - Bart Cornelissen
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW As cancer treatments improve more patients than ever are living for longer with the side effects of these treatments. Radiation enteritis is a heterogenous condition with significant morbidity. The present review aims to provide a broad overview of the condition with particular attention to the diagnosis and management of the condition. RECENT FINDINGS Radiation enteritis appears to be more prevalent than originally thought because of patient underreporting and a lack of clinician awareness. Patient-related and treatment-related risk factors have now been identified and should be modified where possible. Medical and surgical factors have been explored, but manipulation of the gut microbiota offers one of the most exciting recent developments in disease prevention. Diagnosis and treatment are best approached in a systematic fashion with particular attention to the exclusion of recurrent malignancy and other gastrointestinal conditions. Surgery and endoscopy both offer opportunities for management of the complications of radiation enteritis. Experimental therapies offer hope for future management of radiation enteritis but large-scale human trials are needed. SUMMARY Radiation enteritis is an important clinical problem, but awareness is lacking amongst patients and physicians. Clinical guidelines would allow standardised management which may improve the burden of the disease for patients.
Collapse
|