1
|
Yang J, Jiang T, Lu X, Li X, Zhou X, Guo X, Ma C, Xie X, Li D, Yu S, An J, Zhao B, Li H. METTL14 downregulates GLUT9 through m6A methylation and attenuates hyperuricemia-induced fibrosis in mouse renal tubular epithelial cells. Int Immunopharmacol 2024; 143:113308. [PMID: 39393275 DOI: 10.1016/j.intimp.2024.113308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/13/2024]
Abstract
Hyperuricemia is a known risk factor for chronic kidney disease (CKD) and subsequent renal fibrosis. N6-methyladenosine (m6A) is the most prevalent chemical modification in eukaryotic mRNAs and has been implicated in various diseases. However, its role in hyperuricemic nephropathy (HN) remains unclear. This study investigated the involvement of the methylase METTL14 in HN pathogenesis. Our in vitro and in vivo function experiments demonstrated that METTL14 plays a crucial role in HN. In mouse models of uric acid (UA)-induced renal injury, we detected impaired kidney function, increased renal interstitial fibrosis, and significantly decreased m6A methylation levels in renal tissues. Treatment with benzbromarone, a UA-lowering drug, alleviated renal injury, restored m6A methylation levels, and upregulated METTL14 expression. Cellular experiments showed that METTL14 overexpression attenuated high UA-induced fibrosis in renal tubular epithelial cells. This overexpression significantly decreases the expression of GLUT9, a key protein involved in UA transport, leading to reduced UA reabsorption. Additionally, MeRIP-qPCR and dual-luciferase reporter gene experiments further demonstrated that METTL14 overexpression enhanced Glut9 mRNA m6A methylation modification, accelerating its degradation and decreasing expression levels. Thus, METTL14-mediated RNA m6A modification plays a role in the renal tubular epithelial cell damage induced by high UA, by regulating Glut9 mRNA post-transcriptionally. These findings provide valuable insights for the diagnosis and development of therapeutic drugs for HN.
Collapse
Affiliation(s)
- Jianan Yang
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China; Department of Clinical Laboratory, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Tonglian Jiang
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China
| | - Xun Lu
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China
| | - Xiang Li
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China; Jilin Province Science and Technology Innovation Center of Kidney Disease Precision Medicine Based on Gene Sequencing, Beihua University, Jilin 132011, Jilin, China
| | - Xuling Zhou
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China
| | - Xinxin Guo
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China
| | - Chengxin Ma
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China
| | - Xiaobei Xie
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China
| | - Dongxiao Li
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China
| | - Siqi Yu
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China
| | - Jiayi An
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China
| | - Binghai Zhao
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China; Jilin Province Science and Technology Innovation Center of Kidney Disease Precision Medicine Based on Gene Sequencing, Beihua University, Jilin 132011, Jilin, China.
| | - Hongzhi Li
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China; Jilin Province Science and Technology Innovation Center of Kidney Disease Precision Medicine Based on Gene Sequencing, Beihua University, Jilin 132011, Jilin, China.
| |
Collapse
|
2
|
Liang Y, Liu Y, Tan Q, Zhou K, Wu Y, Yu L. Systemic immune-inflammation mediates the association between Klotho protein and metabolic syndrome: findings from a large-scale population-based study. Lipids Health Dis 2024; 23:360. [PMID: 39501238 PMCID: PMC11536849 DOI: 10.1186/s12944-024-02339-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/22/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND This study utilized large-scale population data from the National Health and Nutrition Examination Survey (NHANES) to elucidate the relationship between the Klotho protein and metabolic syndrome along with its components. We further investigated the possible mediating effect of inflammation on these relationships. Our objective was to identify biomarkers for risk stratification and potential therapeutic targets for metabolic syndrome. METHODS This study enrolled 13,119 participants aged 40-79 years, spanning five NHANES cycles from 2007 to 2016, with complete information on metabolic syndrome and the Klotho protein. The definition of metabolic syndrome followed the criteria of the National Cholesterol Education Program-Adult Treatment Panel III. Survey-weighted logistic regression and subgroup analysis were used to explore the associations between serum Klotho protein levels and metabolic syndrome, along with its components. Mediation analysis was performed to investigate the mediating effects of inflammation-related markers, including white blood cells, neutrophils, lymphocytes, monocytes, the neutrophil-to-lymphocyte ratio (NLR), the platelet-to-lymphocyte ratio (PLR), the systemic immune-inflammation index (SII) and the monocyte-to-HDL ratio (MHR), with the aim of elucidating how the Klotho protein influences the onset and progression of metabolic syndrome. RESULTS The study participants had an average age of 56.06 years (95% CI: 55.76-56.37), with a Klotho protein concentration of 798.10 pg/ml (95% CI: 656.50-980.50) and a 43.77% prevalence of metabolic syndrome (n = 5742). In the crude model, Klotho was negatively correlated with metabolic syndrome and its components, including central obesity, hypertension, and hypertriglyceridemia. After adjusting for all confounding factors, Klotho was demonstrated to be negatively associated only with metabolic syndrome (OR: 0.82, 95% CI: 0.70-0.97), hypertension (OR: 0.83, 95% CI: 0.70-0.98), and hypertriglyceridemia (OR: 0.78, 95% CI: 0.67-0.91). Subgroup and interaction analyses revealed significant interactions between age, sex, race/ethnicity, body mass index, and Klotho. Additionally, mediation analysis demonstrated that leukocytes, neutrophils and monocytes accounted for 34.78%, 31.91% and 7.13%, respectively, of the associations between Klotho and metabolic syndrome. CONCLUSION The serum concentration of Klotho protein was negatively associated with metabolic syndrome, with the relationship being partly mediated by systemic immune inflammation. The findings of this research revealed that the Klotho protein may be a valuable biomarker for risk stratification and a potential therapeutic target for metabolic syndrome.
Collapse
Affiliation(s)
- Yongzhou Liang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ying Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qin Tan
- Department of Endocrine, Mianzhu People's Hospital, Mianzhu, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yurong Wu
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, 1665 Kongjiang Road, 200092, 200092, Shanghai, China.
| | - Li Yu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China.
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Yi Z, Liu P, Zhang Y, Mamuti D, Zhou W, Liu Z, Chen Z. METTL3 aggravates renal fibrogenesis in obstructive nephropathy via the miR-199a-3p/PAR4 axis. Eur J Pharmacol 2024; 982:176931. [PMID: 39182553 DOI: 10.1016/j.ejphar.2024.176931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/11/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Renal fibrosis is among the major factors contributing to the development of chronic kidney disease. In this regard, although N6-methyladenosine (m6A) modification and micro-RNAs (miRNAs) have been established to play key roles in diverse physiological processes and disease/disorder development, further research is required to identify the probable mechanisms and processes associated with their involvement in renal fibrosis. In this study, we show that transforming growth factor β1 (TGF-β1)-induced human proximal tubule epithelial cells (HK2) are characterized by dose-dependently higher methyltransferase-like 3 (METTL3) expression. Furthermore, METTL3 was found to enhance pri-miR-199a-3p maturation and miR-199a-3p expression in an m6A-dependent manner, whereas miR-199a-3p sponges prostate apoptotic response 4 (Par4), thereby regulating its expression. Collectively, our findings in this study indicate that the METTL3/miR-199a-3p/Par4 axis plays a key role in the development of obstructive nephrogenic fibrosis.
Collapse
Affiliation(s)
- Zhenglin Yi
- Departments of Urology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Peihua Liu
- Departments of Urology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yinfan Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China; Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Dilishati Mamuti
- The Sixth Clinical Medical College Hospital, Xinjiang Medical University, Urumchi, China
| | - Weimin Zhou
- Departments of Urology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Zhi Liu
- Departments of Urology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Zhi Chen
- Departments of Urology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
4
|
Li Q, Mu S. FTO mediates the diabetic kidney disease progression through regulating the m 6A modification of NLRP3. BMC Nephrol 2024; 25:345. [PMID: 39390397 PMCID: PMC11468296 DOI: 10.1186/s12882-024-03741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND The objective of our research was to investigate the specific mechanism of FTO in diabetic kidney disease (DKD) progression. METHODS The DKD model was established with renal tubular epithelial HK-2 cells and mice in vitro and in vivo. The N6-methyladenosine (m6A) content in cells was detected using dot plot assay and the m6A levels of NLRP3 was detected with the MeRIP assay. The mRNA and protein levels were tested with real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and western blot. The IL-1β and IL-18 levels were assessed with enzyme-linked immunosorbent assay (ELISA). The cell viability was measured by cell counting kit (CCK)-8 assay and cell pyroptosis was determined with Annexin V and propidium iodide (PI) double staining followed by flow cytometry analysis. RNA-binding protein immunoprecipitation (RIP) and dual luciferase reporter assays were conducted to detect the interaction between FTO and NLRP3. m6A levels were detected by Me-RIP assay. The renal injury was measured by observing the renal morphology and urine and blood levels of relevant indicators. RESULTS The results indicated that high glucose treatment induced HK-2 cell pyroptosis. m6A levels were prominently elevated in high glucose treated HK-2 cells while FTO expression were significantly down-regulated. FTO over-expression promoted cell viability but inhibited pyroptosis of HK-2 cells under high glucose (HG) treatment. Moreover, FTO could inhibit NLRP3 expression. RIP and Me-RIP assays indicated that FTO could bind with NLRP3 and regulate its m6A modification level. Further luciferase assay confirmed that FTO binds with the 233-237 bp region of NLRP3. NLRP3 neutralized the function of FTO in the HG stimulated HK-2 cells. In vivo, the H&E staining showed that FTO over-expression alleviated the kidney injury and suppressed the pyroptosis induced by DKD. CONCLUSION We found that FTO could inhibit the DKD progression in vivo and in vitro by regulated the m6A modification of NLRP3.
Collapse
Affiliation(s)
- Qiang Li
- Department of Nephrology, Guang'anmen Hospital South Campus, China Academy of Chinese Medical Sciences, No.138, Xingfeng Street, Huangcun Village, DaXing District, Beijing, 102600, China
| | - Shujuan Mu
- Department of Nephrology, Guang'anmen Hospital South Campus, China Academy of Chinese Medical Sciences, No.138, Xingfeng Street, Huangcun Village, DaXing District, Beijing, 102600, China.
| |
Collapse
|
5
|
Wang Y, Zou J, Zhou H. N6-methyladenine RNA methylation epigenetic modification and diabetic microvascular complications. Front Endocrinol (Lausanne) 2024; 15:1462146. [PMID: 39296713 PMCID: PMC11408340 DOI: 10.3389/fendo.2024.1462146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
N6-methyladensine (m6A) has been identified as the best-characterized and the most abundant mRNA modification in eukaryotes. It can be dynamically regulated, removed, and recognized by its specific cellular components (respectively called "writers," "erasers," "readers") and have become a hot research field in a variety of biological processes and diseases. Currently, the underlying molecular mechanisms of m6A epigenetic modification in diabetes mellitus (DM) and diabetic microvascular complications have not been extensively clarified. In this review, we focus on the effects and possible mechanisms of m6A as possible potential biomarkers and therapeutic targets in the treatment of DM and diabetic microvascular complications.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiayun Zou
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Fu K, Jing C, Shi J, Mao S, Lu R, Yang M, Chen Y, Qian B, Wang Y, Li L. WTAP and METTL14 regulate the m6A modification of DKK3 in renal tubular epithelial cells of diabetic nephropathy. Biochem Biophys Res Commun 2024; 738:150524. [PMID: 39151294 DOI: 10.1016/j.bbrc.2024.150524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Diabetic nephropathy (DN) is an important cause of death in diabetes patients, which is mainly due to its complex pathogenesis. Here, we explored the role of N6-methyladenosine (m6A) RNA methylation in DN development. Renal tubular epithelial cells from DN patients and experimental DN mice treated with streptozotocin (STZ) exhibited a considerable increase in METTL14 and WTAP expression as well as overall m6A methylation. Knocking down the expression of METTL14 and WTAP inhibited the migration and proliferation of tubular epithelial cells. MeRIP-seq analysis of the renal tissues of DN patients revealed that the genes with elevated m6A methylation were concentrated in the Wnt/β-Catenin signaling pathway. Dickkopf homolog 3 (DKK3) was screened out as the gene with the most significant increase in m6A methylation. In addition, the expression change pattern of DKK3 under DN circumstances is in line with those of METTL14 and WTAP. DKK3's m6A methylation sites were confirmed to be located in the 3'UTR region, which is how METTL14 and WTAP improved DKK3's mRNA stability. Finally, YTHDF1, a m6A reader, was demonstrated to recognize m6A-methylated DKK3 and promote DKK3 expression.
Collapse
Affiliation(s)
- Kang Fu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Chenyang Jing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Jinsong Shi
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China
| | - Shuya Mao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Rui Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Miao Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yang Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Bin Qian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yu Wang
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China.
| | - Limin Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
7
|
Chen G, Wang Y, Zhang L, Yang K, Wang X, Chen X. Research progress on miR-124-3p in the field of kidney disease. BMC Nephrol 2024; 25:252. [PMID: 39112935 PMCID: PMC11308398 DOI: 10.1186/s12882-024-03688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs (miRNAs) are 18-25 nucleotides long, single-stranded, non-coding RNA molecules that regulate gene expression. They play a crucial role in maintaining normal cellular functions and homeostasis in organisms. Studies have shown that miR-124-3p is highly expressed in brain tissue and plays a significant role in nervous system development. It is also described as a tumor suppressor, regulating biological processes like cancer cell proliferation, apoptosis, migration, and invasion by controlling multiple downstream target genes. miR-124-3p has been found to be involved in the progression of various kidney diseases, including diabetic kidney disease, calcium oxalate kidney stones, acute kidney injury, lupus nephritis, and renal interstitial fibrosis. It mediates these processes through mechanisms like oxidative stress, inflammation, autophagy, and ferroptosis. To lay the foundation for future therapeutic strategies, this research group reviewed recent studies on the functional roles of miR-124-3p in renal diseases and the regulation of its downstream target genes. Additionally, the feasibility, limitations, and potential application of miR-124-3p as a diagnostic biomarker and therapeutic target were thoroughly investigated.
Collapse
Affiliation(s)
- Guanting Chen
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China.
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China.
| | - Linqi Zhang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China.
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China.
| | - Kang Yang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Xixi Wang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Xu Chen
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| |
Collapse
|
8
|
Li Y, Jin H, Li Q, Shi L, Mao Y, Zhao L. The role of RNA methylation in tumor immunity and its potential in immunotherapy. Mol Cancer 2024; 23:130. [PMID: 38902779 PMCID: PMC11188252 DOI: 10.1186/s12943-024-02041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
RNA methylation, a prevalent post-transcriptional modification, has garnered considerable attention in research circles. It exerts regulatory control over diverse biological functions by modulating RNA splicing, translation, transport, and stability. Notably, studies have illuminated the substantial impact of RNA methylation on tumor immunity. The primary types of RNA methylation encompass N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G), and 3-methylcytidine (m3C). Compelling evidence underscores the involvement of RNA methylation in regulating the tumor microenvironment (TME). By affecting RNA translation and stability through the "writers", "erasers" and "readers", RNA methylation exerts influence over the dysregulation of immune cells and immune factors. Consequently, RNA methylation plays a pivotal role in modulating tumor immunity and mediating various biological behaviors, encompassing proliferation, invasion, metastasis, etc. In this review, we discussed the mechanisms and functions of several RNA methylations, providing a comprehensive overview of their biological roles and underlying mechanisms within the tumor microenvironment and among immunocytes. By exploring how these RNA modifications mediate tumor immune evasion, we also examine their potential applications in immunotherapy. This review aims to provide novel insights and strategies for identifying novel targets in RNA methylation and advancing cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Haoer Jin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qingling Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liangrong Shi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Ageeli Hakami M. Diabetes and diabetic associative diseases: An overview of epigenetic regulations of TUG1. Saudi J Biol Sci 2024; 31:103976. [PMID: 38510528 PMCID: PMC10951089 DOI: 10.1016/j.sjbs.2024.103976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
The epigenetic regulation of lncRNA TUG1 has garnered significant attention in the context of diabetes and its associated disorders. TUG1's multifaceted roles in gene expression modulation, and cellular differentiation, and it plays a major role in the growth of diabetes and the issues that are related to it due to pathological processes. In diabetes, aberrant epigenetic modifications can lead to dysregulation of TUG1 expression, contributing to disrupted insulin signaling, impaired glucose metabolism, and beta-cell dysfunction. Moreover, it has been reported that TUG1 contributes to the development of problems linked to diabetes, such as nephropathy, retinopathy, and cardiovascular complications, through epigenetically mediated mechanisms. Understanding the epigenetic regulations of TUG1 offers novel insights into the primary molecular mechanisms of diabetes and provides a possible path for healing interventions. Targeting epigenetic modifications associated with TUG1 holds promise for restoring proper gene expression patterns, ameliorating insulin sensitivity, and mitigating the inception and development of diabetic associative diseases. This review highlights the intricate epigenetic landscape that governs TUG1 expression in diabetes, encompassing DNA methylation and alterations in histone structure, as well as microRNA interactions.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Xu B, Cheng F, Xue X. Klotho-mediated activation of the anti-oxidant Nrf2/ARE signal pathway affects cell apoptosis, senescence and mobility in hypoxic human trophoblasts: involvement of Klotho in the pathogenesis of preeclampsia. Cell Div 2024; 19:13. [PMID: 38632651 PMCID: PMC11025225 DOI: 10.1186/s13008-024-00120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
The anti-aging gene Klotho is implicated in the pathogenesis of preeclampsia (PE), which is a pregnancy disease characterized by hypertension and proteinuria. Oxidative stress is closely associated with the worse outcomes in PE, and Klotho can eliminate Reactive Oxygen Species (ROS), but it is still unclear whether Klotho regulates PE pathogenesis through modulating oxidative damages. Here, by analyzing the clinical data, we found that Klotho was aberrantly downregulated in PE umbilical cord serum and placental tissues, compared to their normal counterparts. In in vitro experiments, the human trophoblasts were subjected to hypoxic pressure to establish the PE models, and we confirmed that hypoxia also decreased the expression levels of Klotho in those trophoblasts. In addition, through performing functional experiments, we confirmed that hypoxia promoted oxidative damages, cell apoptosis and senescence, whereas suppressed cell invasion in human trophoblasts, which were all reversed overexpressing Klotho. The following mechanical experiments verified that Klotho increased the levels of nuclear Nrf2, total Nrf2, SOD2 and NQO1 to activate the anti-oxidant Nrf2/ARE signal pathway, and silencing of Nrf2 abrogated the protective effects of Klotho overexpression on hypoxic human trophoblasts. Consistently, in in vivo experiments, Klotho overexpression restrained oxidative damages and facilitated cell mitosis in PE rats' placental tissues. In conclusion, this study validated that Klotho activated the Nrf2/ARE signal pathway to eliminate hypoxia-induced oxidative damages, cell apoptosis and senescence to recover normal cellular functions in human trophoblasts, and our data supported that Klotho could be used as novel biomarker for PE diagnosis and treatment.
Collapse
Affiliation(s)
- Baomei Xu
- Obstetrical Department, The Fifth Affiliated Hospital of Xinjiang Medical University, Henan Road No. 118, Urumqi, 830000, Xinjiang, China
| | - Fang Cheng
- Obstetrical Department, The Fifth Affiliated Hospital of Xinjiang Medical University, Henan Road No. 118, Urumqi, 830000, Xinjiang, China
| | - Xiaolei Xue
- Obstetrical Department, The Fifth Affiliated Hospital of Xinjiang Medical University, Henan Road No. 118, Urumqi, 830000, Xinjiang, China.
| |
Collapse
|
11
|
Jin J, Liu XM, Shao W, Meng XM. Nucleic acid and protein methylation modification in renal diseases. Acta Pharmacol Sin 2024; 45:661-673. [PMID: 38102221 PMCID: PMC10943093 DOI: 10.1038/s41401-023-01203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Although great efforts have been made to elucidate the pathological mechanisms of renal diseases and potential prevention and treatment targets that would allow us to retard kidney disease progression, we still lack specific and effective management methods. Epigenetic mechanisms are able to alter gene expression without requiring DNA mutations. Accumulating evidence suggests the critical roles of epigenetic events and processes in a variety of renal diseases, involving functionally relevant alterations in DNA methylation, histone methylation, RNA methylation, and expression of various non-coding RNAs. In this review, we highlight recent advances in the impact of methylation events (especially RNA m6A methylation, DNA methylation, and histone methylation) on renal disease progression, and their impact on treatments of renal diseases. We believe that a better understanding of methylation modification changes in kidneys may contribute to the development of novel strategies for the prevention and management of renal diseases.
Collapse
Affiliation(s)
- Juan Jin
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xue-Mei Liu
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
12
|
Wang F, Bai J, Zhang X, Wang D, Zhang X, Xue J, Chen H, Wang S, Chi B, Li J, Ma X. METTL3/YTHDF2 m6A axis mediates the progression of diabetic nephropathy through epigenetically suppressing PINK1 and mitophagy. J Diabetes Investig 2024; 15:288-299. [PMID: 38013600 PMCID: PMC10906015 DOI: 10.1111/jdi.14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/22/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
AIMS This research aimed to investigate the specific mechanism of methyltransferase like 3 (METTL3) in the progression of diabetic kidney disease (DKD). MATERIALS AND METHODS The model of diabetic kidney disease was established with HK-2 cells and mice in vitro and in vivo. The N6 methyladenosine (m6A) contents in the cells and tissues were detected with a commercial kit and the m6A levels of PTEN induced putative kinase 1 (PINK2) were detected with a MeRIP kit. The mRNA and protein levels were determined with RT-qPCR and western blot. The ROS, TNF-α, and IL-6 levels were assessed with ELISA. The cell proliferative ability was measured by a CCK-8 assay and cell apoptosis was determined with TUNEL staining. The HE and Masson staining was performed to observe the renal morphology. The RIP assay was conducted to detect the interaction between METTL3/YTHDF2 and PINK1. RESULTS The m6A content and METTL3 levels were prominently elevated in diabetic kidney disease. METTL3 silencing promoted the cell growth and the expression of LC3 II, PINK1, and Parkin, while inhibiting the cell apoptosis and the expression of LC3 I and p62 in the high glucose (HG) stimulated HK-2 cells. METTL3 silencing also decreased the ROS, TNF-α, and IL-6 levels in diabetic kidney disease. PINK1 silencing neutralized the function of sh-METTL3 in the HG stimulated HK-2 cells. The HE and Masson staining showed that METTL3 silencing alleviated the kidney injury induced by DKD. METTL3 silencing decreased the m6A levels of PINK1, while increased the mRNA levels of PINK1 which depended on YTHDF2. CONCLUSIONS METTL3 silencing could inhibit the progression of diabetic nephropathy in vivo and in vitro by regulating the m6A modification of PINK1, which depends on YTHDF2. Our research lays the theoretical foundation for the precise treatment of diabetic kidney disease and the development of targeted drugs in the future.
Collapse
Affiliation(s)
- Fangfang Wang
- Department of Functional Medicine, School of Basic Medical SciencesJiamusi UniversityJiamusiChina
- Key Laboratory of Microecology‐Immune Regulatory Network and Related Diseases School of Basic MedicineJiamusi UniversityJiamusiChina
| | - Juan Bai
- Department of Anesthesiology and Center for Brain ScienceThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Xin Zhang
- First Affiliated Hospital of Jiamusi UniversityJiamusiChina
- Department of EndocrinologyAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Dali Wang
- Department of OphthalmologyThe First Affiliated Hospital of Jiamusi UniversityJiamusiChina
| | - Xin Zhang
- Department of Pathophysiology, School of Basic Medical SciencesJiamusi UniversityJiamusiChina
| | - Jingwen Xue
- Department of Pathophysiology, School of Basic Medical SciencesJiamusi UniversityJiamusiChina
| | - Haoyang Chen
- First Affiliated Hospital of Jiamusi UniversityJiamusiChina
| | - Shuxiang Wang
- Department of Functional Medicine, School of Basic Medical SciencesJiamusi UniversityJiamusiChina
| | - Baojin Chi
- Department of UrologyFirst Affiliated Hospital of Jiamusi UniversityJiamusiChina
| | - Jing Li
- Department of Functional Medicine, School of Basic Medical SciencesJiamusi UniversityJiamusiChina
| | - Xiaoru Ma
- Department of Functional Medicine, School of Basic Medical SciencesJiamusi UniversityJiamusiChina
- Key Laboratory of Microecology‐Immune Regulatory Network and Related Diseases School of Basic MedicineJiamusi UniversityJiamusiChina
| |
Collapse
|
13
|
Han F. N6-methyladenosine modification in ischemic stroke: Functions, regulation, and therapeutic potential. Heliyon 2024; 10:e25192. [PMID: 38317953 PMCID: PMC10840115 DOI: 10.1016/j.heliyon.2024.e25192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/09/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
N6-methyladenosine (m6A) modification is the most frequently occurring internal modification in eukaryotic RNAs. By modulating various aspects of the RNA life cycle, it has been implicated in a wide range of pathological and physiological processes associated with human diseases. Ischemic stroke is a major cause of death and disability worldwide with few treatment options and a narrow therapeutic window, and accumulating evidence has indicated the involvement of m6A modifications in the development and progression of this type of stroke. In this review, which provides insights for the prevention and clinical treatment of stroke, we present an overview of the roles played by m6A modification in ischemic stroke from three main perspectives: (1) the association of m6A modification with established risk factors for stroke, including hypertension, diabetes mellitus, hyperlipidemia, obesity, and heart disease; (2) the roles of m6A modification regulators and their functional regulation in the pathophysiological injury mechanisms of stroke, namely oxidative stress, mitochondrial dysfunction, endothelial dysfunction, neuroinflammation, and cell death processes; and (3) the diagnostic and therapeutic potential of m6A regulators in the treatment of stroke.
Collapse
Affiliation(s)
- Fei Han
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
14
|
Zheng H, Wu D, Chen X, He W, Hua J, Li Q, Ji Y. Endothelial downregulation of nuclear m6A reader YTHDC1 promotes pulmonary vascular remodeling in sugen hypoxia model of pulmonary hypertension. Heliyon 2024; 10:e24963. [PMID: 38318069 PMCID: PMC10838804 DOI: 10.1016/j.heliyon.2024.e24963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Background Pulmonary hypertension (PH) is characterized with vascular remodeling, which is intiated by vascular endothelial dysfunction. N6-methyladenosine (m6A) modification mediates gene expression in many ways including mediating RNA degradation, splicing, nuclear export et al. m6A modification have been found to be associated with the development of PH. However, the role of m6A regulators in pulmonary artery endothelial cells (PAECs) dysfunction of PH is still under research. Methods The expression levels of m6A regulators in PAECs were analyzed with the single-cell sequencing Data(scRNA). Next, the target differentially expressed genes (DEGs) of m6A regulators in PAECs were functionally annotated. The analysis of cellular interactions included the examination of receptor-ligand pairs regulated by m6A regulators. Pseudo-time trajectory analyses and a ceRNA network involving lncRNAs, miRNAs, and mRNAs were conducted in PAECs. Furthermore, microarray data (GSE180169) for Sugen Hypoxia PH (SuHx PH) mouse models was screened for DEGs and m6A regulators in PAECs. Moreover, the expression of YTHDC1 in the lung samples of SuHx PH models was determined using immunofluorescence. In vitro, the mRNA expression of YTHDC1 in HPAECs under hypoxia conditions was detected. The effect of YTHDC1 recombinant protein on HPAEC proliferation was detected by Cell Counting Kit-8 (CCK8). Results Dysregulation of m6A regulators was observed in mouse PAECs. The m6A reader of YTHDC1 was decreased in PAECs in scRNA data and RNAseq data of isolated PAECs of SuHx PH models. Downregulation of YTHDC1 was caused by hypoxia in PAECs in vitro and similar results was observed in PAECs of SuHx PH mouse models. Next, YTHDC1 recombinant protein was found to inhibit HPAECs proliferation. The DEGs targeted by YTHDC1 were enriched in angiogenesis, endothelial cell migration, fluid shear stress, and stem cell maintenance. Analysis indicates that interactions among endothelial cells, smooth muscle cells, fibroblasts, and immune cells, mediated by specific YTHDC1 target genes (e.g., PTPRC-MRC1, ITBG2-ICAM1, COL4A1-CD44), contribute to PH development. Also, the YTHDC1 expression were consistent with Thioredoxin interacting protein (TXNIP). What's more, the predicted transcription factors showed that NFKB1, Foxd3 may be involved in the regulation of YTHDC1. Lastly, our data suggest that YTHDC1 may be involved in regulating PAECs dysfunction through lncRNA/miRNA/mRNA network. Conclusion For the first time, we analyzed changes in the expression and biological functions of m6A regulators in SuHx PH mouse models. We causatively linked YTHDC1 to PAECs dysfunction, providing novel insight into and opportunities to diagnose and treat PH.
Collapse
Affiliation(s)
| | | | - Xiangyu Chen
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Wenjuan He
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Jing Hua
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Qiang Li
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - YingQun Ji
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing, 210009, China
| |
Collapse
|
15
|
Jin J, Shang Y, Zheng S, Dai L, Tang J, Bian X, He Q. Exosomes as nanostructures deliver miR-204 in alleviation of mitochondrial dysfunction in diabetic nephropathy through suppressing methyltransferase-like 7A-mediated CIDEC N6-methyladenosine methylation. Aging (Albany NY) 2024; 16:3302-3331. [PMID: 38334961 PMCID: PMC10929828 DOI: 10.18632/aging.205535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVE The exosomal cargo mainly comprises proteins, lipids, and microRNAs (miRNAs). Among these, miRNAs undertake multiple biological effects of exosomes (Exos). Some stem cell-derived exosomal miRNAs have shown the potential to treat diabetic nephropathy (DN). However, there is little research into the therapeutic effects of adipose-derived stem cell (ADSC)-derived exosomal miRNAs on DN. We aimed to explore the potential of miR-204-modified ADSC-derived Exos to mitigate DN. METHODS Exos were extracted and identified from ADSCs. Histopathological injury, oxidative stress (OS), mitochondrial function, cell viability, and apoptosis were assessed to explore the effects of ADSC-derived Exos on DN. For mechanism exploration, quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to measure miR-204, methyltransferase (METTL3, METTL14, and METTL7A), and CIDEC. Also, CIDEC m6A methylation and miR-204-METTL7A, and METTL7A-CIDEC interactions were determined. RESULTS Initially, OS-induced mitochondrial dysfunction was observed in DN rats. ADSC-derived Exos inhibited histopathological injury, cell apoptosis, OS, and mitochondrial dysfunction in DN rats. The similar therapeutic effects of ADSC-derived Exos were detected in the in vitro model. Intriguingly, miR-204 was released by ADSC-derived Exos and its upregulation enhanced the anti-DN effects of Exos. Mechanically, miR-204 reduced METTL7A expression to CIDEC m6A methylation, thus suppressing OS and mitochondrial dysfunction. CONCLUSIONS ADSC-derived exosomal miR-204 rescued OS-induced mitochondrial dysfunction by inhibiting METTL7A-mediated CIDEC m6A methylation. This study first revealed the significant role of ADSC-derived exosomal miR-204 in DN, paving the way for the development of novel therapeutic strategies to improve the clinical outcomes of DN patients.
Collapse
Affiliation(s)
- Juan Jin
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| | - Yiwei Shang
- Clinical School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310004, China
| | - Siqiang Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| | - Limiao Dai
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| | - Jiyu Tang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| | - Xueyan Bian
- Department of Nephrology, Ningbo First Hospital, Ningbo, Zhejiang 315010, China
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| |
Collapse
|
16
|
Huang J, Yang F, Liu Y, Wang Y. N6-methyladenosine RNA methylation in diabetic kidney disease. Biomed Pharmacother 2024; 171:116185. [PMID: 38237350 DOI: 10.1016/j.biopha.2024.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes, and hyperglycemic memory associated with diabetes carries the risk of disease occurrence, even after the termination of blood glucose injury. The existence of hyperglycemic memory supports the concept of an epigenetic mechanism involving n6-methyladenosine (m6A) modification. Several studies have shown that m6A plays a key role in the pathogenesis of DKD. This review addresses the role and mechanism of m6A RNA modification in the progression of DKD, including the regulatory role of m6A modification in pathological processes, such as inflammation, oxidative stress, fibrosis, and non-coding (nc) RNA. This reveals the importance of m6A in the occurrence and development of DKD, suggesting that m6A may play a role in hyperglycemic memory phenomenon. This review also discusses how some gray areas, such as m6A modified multiple enzymes, interact to affect the development of DKD and provides countermeasures. In conclusion, this review enhances our understanding of DKD from the perspective of m6A modifications and provides new targets for future therapeutic strategies. In addition, the insights discussed here support the existence of hyperglycemic memory effects in DKD, which may have far-reaching implications for the development of novel treatments. We hypothesize that m6A RNA modification, as a key factor regulating the development of DKD, provides a new perspective for the in-depth exploration of DKD and provides a novel option for the clinical management of patients with DKD.
Collapse
Affiliation(s)
- Jiaan Huang
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, NO.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China
| | - Fan Yang
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, NO.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China
| | - Yan Liu
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, NO.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China
| | - Yuehua Wang
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, NO.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China.
| |
Collapse
|
17
|
Lang Y, Wang Q, Sheng Q, Lu S, Yang M, Kong Z, Gao Y, Fan X, Shen N, Wang R, Lv Z. FTO-mediated m6A modification of serum amyloid A2 mRNA promotes podocyte injury and inflammation by activating the NF-κB signaling pathway. FASEB J 2024; 38:e23409. [PMID: 38193628 DOI: 10.1096/fj.202301419rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Diabetic kidney disease (DKD) is one of the severe complications of diabetes mellitus, yet there is no effective treatment. Exploring the development of DKD is essential to treatment. Podocyte injury and inflammation are closely related to the development of DKD. However, the mechanism of podocyte injury and progression in DKD remains largely unclear. Here, we observed that FTO expression was significantly upregulated in high glucose-induced podocytes and that overexpression of FTO promoted podocyte injury and inflammation. By performing RNA-seq and MeRIP-seq with control podocytes and high glucose-induced podocytes with or without FTO knockdown, we revealed that serum amyloid A2 (SAA2) is a target of FTO-mediated m6A modification. Knockdown of FTO markedly increased SAA2 mRNA m6A modification and decreased SAA2 mRNA expression. Mechanistically, we demonstrated that SAA2 might participate in podocyte injury and inflammation through activation of the NF-κB signaling pathway. Furthermore, by generating podocyte-specific adeno-associated virus 9 (AAV9) to knockdown SAA2 in mice, we discovered that the depletion of SAA2 significantly restored podocyte injury and inflammation. Together, our results suggested that upregulation of SAA2 promoted podocyte injury through m6A-dependent regulation, thus suggesting that SAA2 may be a therapeutic target for diabetic kidney disease.
Collapse
Affiliation(s)
- Yating Lang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qimeng Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
18
|
Chen Y, Li P, Lin M, Jiang Y, Tan G, Huang L, Song D. Silencing of METTL3 prevents the proliferation, migration, epithelial-mesenchymal transition, and renal fibrosis of high glucose-induced HK2 cells by mediating WISP1 in m6A-dependent manner. Aging (Albany NY) 2024; 16:1237-1248. [PMID: 38289593 PMCID: PMC10866449 DOI: 10.18632/aging.205401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/13/2023] [Indexed: 02/06/2024]
Abstract
Diabetic nephropathy (DN) is one of the most serious complications in diabetic patients. And m6A modifications mediated by METTL3 are involved multiple biological processes. However, the specific function and mechanism of METTL3 in DN remains unclear. DN model mice were first established with streptozotocin, and WISP1 expression was confirmed by qRT-PCR. Then the influences of WISP1 or/and METTL3 on the proliferation, migration, and epithelial-mesenchymal transition (EMT) and fibrosis-related proteins of high glucose (HG)-induced HK2 cells or HK2 cells were tested through CCK-8, wound healing, and western blot. We first revealed that WISP1 was highly expressed in renal tissues of DN model mice and HG-induced HK2 cells. Functionally, WISP1 or METTL3 silencing could weaken the proliferation, migration, EMT, and fibrosis of HG-treated HK2 cells, and WISP1 or METTL3 overexpression could induce the proliferation, migration, EMT, and fibrosis of HK2 cells. Additionally, METTL3 silencing could decrease WISP1 m6A modification, and silencing of METTL3 also could notably suppress the biological functions of HG-induced HK2 cells by downregulating WISP1. Silencing of METTL3 prevents DN development process by decreasing WISP1 with m6A modification pattern. Therefore, we suggest that METTL3/WISP1 axis might be a novel therapeutic target for DN.
Collapse
Affiliation(s)
- Yuanzhen Chen
- Department of Nephrology, Shenzhen Guangming District People’s Hospital, Guangming, Shenzhen 518000, China
| | - Ping Li
- Department of Nephrology, Shenzhen Guangming District People’s Hospital, Guangming, Shenzhen 518000, China
| | - Mei Lin
- Department of Nephrology, Shenzhen Guangming District People’s Hospital, Guangming, Shenzhen 518000, China
| | - Ying Jiang
- Department of Nephrology, Shenzhen Guangming District People’s Hospital, Guangming, Shenzhen 518000, China
| | - Guiping Tan
- Department of Nephrology, Shenzhen Guangming District People’s Hospital, Guangming, Shenzhen 518000, China
| | - Lianfang Huang
- Department of Nephrology, Shenzhen Guangming District People’s Hospital, Guangming, Shenzhen 518000, China
| | - Dan Song
- Department of Nephrology, Shenzhen Guangming District People’s Hospital, Guangming, Shenzhen 518000, China
| |
Collapse
|
19
|
Xu C, Song C, Wang W, Liu B, Li G, Fu T, Hao B, Li N, Geng Q. Comprehensive analysis of m6A modification in lipopolysaccharide-induced acute lung injury in mice. Mol Med 2024; 30:14. [PMID: 38254010 PMCID: PMC10804706 DOI: 10.1186/s10020-024-00782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND N6-Methyladenosine (m6A) methylation is the most prevalent post-transcriptional modification in mRNA, and plays significant roles in various diseases. Nevertheless, the precise functions of m6A modification in the formation of ALI remain unclear. In this study we explore the transcriptome distribution of m6A methylation and its probable roles of in ALI. METHODS Lipopolysaccharide (LPS) was utilized to establish an ALI mouse model. Real-time qPCR, Western blotting and m6A dot blot were utilized to assess m6A methylation level and the expression of m6A methylation enzymes. MeRIP-Seq and RNA-seq were utilized to explore differential m6A modifications and differentially expressed genes in ALI mice. The hub genes and enriched pathways were assessed by Real-time qPCR and Western blotting. RESULTS Our findings showed that overall m6A methylation level was increased in ALI mice lung tissues, accompanied by lower levels of METTL3 and FTO. Notably, the protein expression of these methylases were different in various cells. There were 772 differently expressed m6A peaks in ALI as compared to the control group, with 316 being hypermethylated and 456 being hypomethylated. GO and KEGG analyses demonstrated these differentially methylated genes were associated with the calcium signaling pathway and cAMP signaling pathway. Furthermore, we identified 50 genes with distinct m6A peaks and mRNA expressions by combined analysis of MeRIP-Seq and RNA-Seq. KEGG analysis also demonstrated that these overlapped genes were closely associated with the calcium signaling pathway, cGMP-PKG signaling pathway, etc. Besides, Western blotting results demonstrated that the protein expression of Fibronectin leucine-rich transmembrane protein 3 (Flrt3) as well as the calcium signaling pathway and cGMP-PKG signaling pathway, increased significantly after ALI. CONCLUSIONS m6A modification was paramount in the pathogenesis of ALI, and provided a foundation for the further investigation in the prevention and treatment of ALI.
Collapse
Affiliation(s)
- Chenzhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wenjie Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo Hao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
20
|
Poursistany H, Azar ST, Azar MT, Raeisi S. The current and emerging Klotho-enhancement strategies. Biochem Biophys Res Commun 2024; 693:149357. [PMID: 38091839 DOI: 10.1016/j.bbrc.2023.149357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Klotho is well known as a gene with antiaging properties. It has membrane and soluble forms, providing a unique system that controls various metabolic processes essential to health and disease. Klotho deficiency has been revealed to be associated with various aging-related disorders. Based on its various known and unknown protective properties, upregulating the Klotho gene may be a possible therapeutic and/or preventive approach in aging-related complications. Some agents, such as hormonal compounds, renin-angiotensin system inhibitors, antioxidants, peroxisome proliferator-activated receptor gamma (PPAR-γ) agonists, statins, vitamin D receptor agonists, antioxidants, anti-inflammatory agents, mammalian target of rapamycin (mTOR) signaling inhibitors, and receptor-interacting serine/threonine-protein kinase 1 (RIPK1) inhibitors, can possibly lead to the upregulation and elevation of Klotho levels. Demethylation and deacetylation of the Klotho gene can also be considered other possible Klotho-enhancement methods. Some emerging techniques, such as RNA modifications, gene therapy, gene editing, and exosome therapy, probably have the potential to be applied for increasing Klotho. In the present study, these current and emerging Klotho-enhancement strategies and their underlying mechanisms were comprehensively reviewed, which could highlight some potential avenues for future research.
Collapse
Affiliation(s)
- Haniyeh Poursistany
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Tabibi Azar
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mahsan Tabibi Azar
- Student Research Committee, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Sina Raeisi
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Sun YH, Zhao TJ, Li LH, Wang Z, Li HB. Emerging role of N6-methyladenosine in the homeostasis of glucose metabolism. Am J Physiol Endocrinol Metab 2024; 326:E1-E13. [PMID: 37938178 DOI: 10.1152/ajpendo.00225.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent post-transcriptional internal RNA modification, which is involved in the regulation of diverse physiological processes. Dynamic and reversible m6A modification has been shown to regulate glucose metabolism, and dysregulation of m6A modification contributes to glucose metabolic disorders in multiple organs and tissues including the pancreas, liver, adipose tissue, skeletal muscle, kidney, blood vessels, and so forth. In this review, the role and molecular mechanism of m6A modification in the regulation of glucose metabolism were summarized, the potential therapeutic strategies that improve glucose metabolism by targeting m6A modifiers were outlined, and feasible directions of future research in this field were discussed as well, providing clues for translational research on combating metabolic diseases based on m6A modification in the future.
Collapse
Affiliation(s)
- Yuan-Hai Sun
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Teng-Jiao Zhao
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ling-Huan Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Han-Bing Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Section of Endocrinology, School of Medicine, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
22
|
Qi S, Song J, Chen L, Weng H. The role of N-methyladenosine modification in acute and chronic kidney diseases. Mol Med 2023; 29:166. [PMID: 38066436 PMCID: PMC10709953 DOI: 10.1186/s10020-023-00764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
N6-methyladenosine (m6A) modification is a kind of RNA modification in which methylation occurs at the sixth N position in adenosine in RNA, which can occur in various RNAs such as mRNAs, lncRNAs and miRNAs. This is one of the most prominent and frequent posttranscriptional modifications within organisms and has been shown to function dynamically and reversibly in a variety of ways, including splicing, export, attenuation and translation initiation efficiency to regulate RNA expression. There are three main enzymes associated with m6A modification: writers, readers and erasers. Increasing evidence has shown that m6A modification is associated with the onset and development of kidney disease. In this article, we address the important physiological and pathological roles of m6A modification in kidney diseases (uremia, ischemia-reperfusion kidney injury, drug-induced kidney injury, and diabetic nephropathy) and its molecular mechanisms to provide reference for the diagnosis and clinical management of kidney diseases.
Collapse
Affiliation(s)
- Saiqi Qi
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, People's Republic of China
| | - Jie Song
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, People's Republic of China
| | - Linjun Chen
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, People's Republic of China.
| | - Huachun Weng
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, People's Republic of China.
| |
Collapse
|
23
|
Sun Y, Jin D, Zhang Z, Ji H, An X, Zhang Y, Yang C, Sun W, Zhang Y, Duan Y, Kang X, Jiang L, Zhao X, Lian F. N6-methyladenosine (m6A) methylation in kidney diseases: Mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194967. [PMID: 37553065 DOI: 10.1016/j.bbagrm.2023.194967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The N6-methyladenosine (m6A) modification is regulated by methylases, commonly referred to as "writers," and demethylases, known as "erasers," leading to a dynamic and reversible process. Changes in m6A levels have been implicated in a wide range of cellular processes, including nuclear RNA export, mRNA metabolism, protein translation, and RNA splicing, establishing a strong correlation with various diseases. Both physiologically and pathologically, m6A methylation plays a critical role in the initiation and progression of kidney disease. The methylation of m6A may also facilitate the early diagnosis and treatment of kidney diseases, according to accumulating research. This review aims to provide a comprehensive overview of the potential role and mechanism of m6A methylation in kidney diseases, as well as its potential application in the treatment of such diseases. There will be a thorough examination of m6A methylation mechanisms, paying particular attention to the interplay between m6A writers, m6A erasers, and m6A readers. Furthermore, this paper will elucidate the interplay between various kidney diseases and m6A methylation, summarize the expression patterns of m6A in pathological kidney tissues, and discuss the potential therapeutic benefits of targeting m6A in the context of kidney diseases.
Collapse
Affiliation(s)
- Yuting Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hangyu Ji
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuedong An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cunqing Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
24
|
Zheng Y, Zhang Z, Zheng D, Yi P, Wang S. METTL14 promotes the development of diabetic kidney disease by regulating m 6A modification of TUG1. Acta Diabetol 2023; 60:1567-1580. [PMID: 37428236 DOI: 10.1007/s00592-023-02145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Diabetic kidney disease (DKD) is one of the most common diabetic complications. Endoplasmic reticulum stress (ERS) is an important step for renal tubular epithelial cell apoptosis during DKD progression. Herein, the role and regulatory mechanism of METTL14 in ERS during DKD progression were investigated. METHODS DKD animal and cell models were established by streptozotocin (STZ) and high glucose (HG), respectively. HE and Masson staining were performed to analyze renal lesions in DKD mouse. Cell viability and proliferation were determined by MTT and EdU staining, respectively. HK2 cell apoptosis was analyzed by flow cytometry. TUG1 m6A level was determined by Me-RIP. The interaction between TUG1, LIN28B and MAPK1 was analyzed by RIP and RNA pull-down assays. RESULTS HG stimulation promoted apoptosis and increased ERS marker proteins (GRP78, CHOP and caspase12) expression in HK2 cells, while these changes were reversed by METTL14 knockdown. METTL14 inhibited TUG1 stability and expression level in an m6A-dependent manner. As expected, TUG1 knockdown abrogated METTL14 knockdown's inhibition on HG-induced HK2 cell apoptosis and ERS. In addition, TUG1 inactivated MAPK1/ERK signaling by binding with LIN28B. And TUG1 overexpression's repression on HG-induced HK2 cell apoptosis and ERS was abrogated by MAPK1 signaling activation. Meanwhile, METTL14 knockdown or TUG1 overexpression protected against STZ-induced renal lesions and renal fibrosis in DKD mouse. CONCLUSION METTL14 promoted renal tubular epithelial cell apoptosis and ERS by activating MAPK/ERK pathway through m6A modification of TUG1, thereby accelerating DKD progression.
Collapse
Affiliation(s)
- Yingying Zheng
- Health Management Center, Weifang People's Hospital, Weifang Medical University, Weifang, 261041, Shandong Province, People's Republic of China
| | - Zhengjun Zhang
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong Province, People's Republic of China
| | - Dejie Zheng
- Health Management Center, Weifang People's Hospital, Weifang Medical University, Weifang, 261041, Shandong Province, People's Republic of China
| | - Pengfei Yi
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong Province, People's Republic of China
| | - Shaoqiang Wang
- Department of Thoracic Surgery, Weifang People's Hospital, Weifang Medical University, Kuiwen District, No. 151, Guangwen Street, Weifang, 261041, Shandong Province, People's Republic of China.
- Department of Scientific Research Management, Weifang People's Hospital, Weifang Medical University, Weifang, 261041, Shandong Province, People's Republic of China.
| |
Collapse
|
25
|
Qin Y, Wu S, Zhang F, Zhou X, You C, Tan F. N6-methyladenosine methylation regulator RBM15 promotes the progression of diabetic nephropathy by regulating cell proliferation, inflammation, oxidative stress, and pyroptosis through activating the AGE-RAGE pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:2772-2782. [PMID: 37551785 DOI: 10.1002/tox.23917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a major cause of end-stage renal disease throughout the world, and m6A modification plays a critical role in the progression of DN. We aimed to find m6A-related genes and their regulatory mechanisms in DN. METHODS The expression levels of four important m6A-related genes (METTL16, RBM15, IGF2BP1, and ALKBH5) were detected by quantitative real-time PCR (RT-qPCR). RBM15 was chosen and its function was explored. The downstream pathway of RBM15 was screened by transcriptome sequencing. The levels of AGE, inflammation, and oxidative stress were determined with enzyme-linked immunosorbent assay, and the expression of AGE-RAGE pathway-related proteins were detected by Western blot (WB). Cell proliferation was assessed by Cell counting Kit-8 (CCK-8). The levels of pyroptosis-related proteins were evaluated by RT-qPCR or WB. RESULTS METTL16 and RBM15 were up regulated in the mouse model of DN, in which RBM15 was more significant. Silencing RBM15 recovered cell proliferation, reduced the levels of inflammation factors, and inhibited cell pyroptosis in high glucose-induced HK-2 cells. Transcriptome sequencing suggested that the AGE-RAGE pathway might be downstream of RBM15. RBM15 knockdown reduced AGE level and the expression of AGE-RAGE pathway-related proteins. After silencing RBM15, we found that activating the AGE-RAGE pathway inhibited cell proliferation, increased the levels of inflammation factors, promoted oxidative stress, and induced cell pyroptosis in HK-2 cell model of DN. CONCLUSION The m6A-related gene RBM15 inhibited cell proliferation, promoted inflammation, oxidative stress, and cell pyroptosis, thereby facilitating the progression of DN through the activation of the AGE-RAGE pathway.
Collapse
Affiliation(s)
- Yongzhang Qin
- Department of Endocrinology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Thyroid Cancer, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Thyroid Diseases, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Suzhen Wu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fengxia Zhang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xueyan Zhou
- Department of Endocrinology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Cong You
- Department of Dermatology and Venereology, Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fei Tan
- Department of Nephrology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
26
|
Liu J, Gu X, Guan Z, Huang D, Xing H, Zheng L. Role of m6A modification in regulating the PI3K/AKT signaling pathway in cancer. J Transl Med 2023; 21:774. [PMID: 37915034 PMCID: PMC10619263 DOI: 10.1186/s12967-023-04651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway plays a crucial role in the pathogenesis of cancer. The dysregulation of this pathway has been linked to the development and initiation of various types of cancer. Recently, epigenetic modifications, particularly N6-methyladenosine (m6A), have been recognized as essential contributors to mRNA-related biological processes and translation. The abnormal expression of m6A modification enzymes has been associated with oncogenesis, tumor progression, and drug resistance. Here, we review the role of m6A modification in regulating the PI3K/AKT pathway in cancer and its implications in the development of novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Jie Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Zhenjie Guan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Huiwu Xing
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Lian Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
27
|
Lin LC, Liu ZY, Yang JJ, Zhao JY, Tao H. m6A epitranscriptomic modification in diabetic microvascular complications. Trends Pharmacol Sci 2023; 44:S0165-6147(23)00215-8. [PMID: 39492320 DOI: 10.1016/j.tips.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 11/05/2024]
Abstract
N6-methyladenosine (m6A) modifications are modulated by m6A methyltransferases, m6A demethylases, and m6A-binding proteins. The dynamic and reversible patterns of m6A modification control cell fate programming by regulating RNA splicing, translation, and decay. Emerging evidence demonstrates that m6A modification of coding and noncoding RNAs exerts crucial effects that influence the pathogenesis of diabetic microvascular complications that include diabetic cardiomyopathy, diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, and diabetic dermatosis. In this review, we summarize the roles of m6A modification and m6A modification-related enzymes in diabetic microvascular complications and discuss potential m6A modification-related enzyme-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
28
|
Wang Q, Fan X, Sheng Q, Yang M, Zhou P, Lu S, Gao Y, Kong Z, Shen N, Lv Z, Wang R. N6-methyladenosine methylation in kidney injury. Clin Epigenetics 2023; 15:170. [PMID: 37865763 PMCID: PMC10590532 DOI: 10.1186/s13148-023-01586-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
Multiple mechanisms are involved in kidney damage, among which the role of epigenetic modifications in the occurrence and development of kidney diseases is constantly being revealed. However, N6-methyladenosine (M6A), a well-known post-transcriptional modification, has been regarded as the most prevalent epigenetic modifications in higher eukaryotic, which is involved in various biological processes of cells such as maintaining the stability of mRNA. The role of M6A modification in the mechanism of kidney damage has attracted widespread attention. In this review, we mainly summarize the role of M6A modification in the progression of kidney diseases from the following aspects: the regulatory pattern of N6-methyladenosine, the critical roles of N6-methyladenosine in chronic kidney disease, acute kidney injury and renal cell carcinoma, and then reveal its potential significance in the diagnosis and treatment of various kidney diseases. A better understanding of this field will be helpful for future research and clinical treatment of kidney diseases.
Collapse
Affiliation(s)
- Qimeng Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ping Zhou
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
29
|
You L, Han Z, Chen H, Chen L, Lin Y, Wang B, Fan Y, Zhang M, Luo J, Peng F, Ma Y, Wang Y, Yuan L, Han Z. The role of N6-methyladenosine (m 6A) in kidney diseases. Front Med (Lausanne) 2023; 10:1247690. [PMID: 37841018 PMCID: PMC10569431 DOI: 10.3389/fmed.2023.1247690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Chemical modifications are a specific and efficient way to regulate the function of biological macromolecules. Among them, RNA molecules exhibit a variety of modifications that play important regulatory roles in various biological processes. More than 170 modifications have been identified in RNA molecules, among which the most common internal modifications include N6-methyladenine (m6A), n1-methyladenosine (m1A), 5-methylcytosine (m5C), and 7-methylguanine nucleotide (m7G). The most widely affected RNA modification is m6A, whose writers, readers, and erasers all have regulatory effects on RNA localization, splicing, translation, and degradation. These functions, in turn, affect RNA functionality and disease development. RNA modifications, especially m6A, play a unique role in renal cell carcinoma disease. In this manuscript, we will focus on the biological roles of m6A in renal diseases such as acute kidney injury, chronic kidney disease, lupus nephritis, diabetic kidney disease, and renal cancer.
Collapse
Affiliation(s)
- Luling You
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital, Chengdu, China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Binjian Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiyue Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ji Luo
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Ma
- School of Clinical Medicine, Southeast University, Nanjing, China
| | - Yanmei Wang
- Institute of Traditional Chinese Medicine, Sichuan College of Traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
30
|
Cheng ZY, Chen PK, Feng YZ, Chen XQ, Qian L, Cai XR. Preliminary Feasibility Study on Diffusion Kurtosis Imaging to Monitor the Early Functional Alterations of Kidneys in Streptozocin-Induced Diabetic Rats. Acad Radiol 2023; 30:1544-1551. [PMID: 36244869 DOI: 10.1016/j.acra.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/30/2022]
Abstract
RATIONALE AND OBJECTIVES The aim of this study was to investigate the potential of diffusion kurtosis imaging (DKI) to assess the early renal functional undulation of diabetic mellitus (DM). MATERIALS AND METHODS Fifty-seven Sprague-Dawley (SD) rats were randomly divided into two groups and eventually 48 rats were included in this study: the normal control (CON) group and diabetic mellitus (DM) group. Weeks 0, 4, 8, and 12 after the diabetes model was successfully established, all the rats were scanned on the 3.0T MRI. The DKI derived parameters of renal parenchyma, including fractional anisotropy (FAco, FAme), mean diffusivity (MDco, MDme), and mean kurtosis (MKco, MKme) were measured. Their alteration over time was analyzed and then correlated with urine volume (UV), blood urea nitrogen (BUN), and serum creatinine (Scr) using Pearson correlation analysis. Finally, hematoxylin and eosin (H&E) staining was performed on the kidneys of the two groups. RESULT There was a decreasing trend in FA, MK, and MD values over time in diabetic rats. Also, the gradually worsening histological damage of kidneys was noted over time in diabetic rats. The cortical FA and MK values and medullary FA, MK and MD values of diabetic rats were significantly lower than those of controls at most time points after DM induction. In addition, negative correlations were revealed between the BUN and FAco (r = -0.43, p = 0.03) or FAme value (r = -0.49, p = 0.01). The cortical MK value was moderately correlated with UV (r = -0.46, p = 0.03) and BUN (r = -0.55, p = 0.01). CONCLUSION The preliminary findings suggest that DKI might be an effective and sensitive tool to assess the early changes of renal function impairment in diabetic rats. The FA values of the cortex and medulla and the MK value of the cortex are sensitive markers in detecting renal injury in diabetic rats.
Collapse
Affiliation(s)
- Zhong-Yuan Cheng
- Medical Imaging Center, Jinan University First Affiliated Hospital, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong 510630, China
| | - Ping-Kang Chen
- Medical Imaging Center, Jinan University First Affiliated Hospital, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong 510630, China
| | - You-Zhen Feng
- Medical Imaging Center, Jinan University First Affiliated Hospital, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong 510630, China
| | - Xiao-Qiao Chen
- Radiology Department, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Long Qian
- Department of Biomedical Engineering, Peking University, Beijing, 100871, China
| | - Xiang-Ran Cai
- Medical Imaging Center, Jinan University First Affiliated Hospital, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
31
|
Wang Y, Liu J, Wang Y. Role of TNF-α-induced m6A RNA methylation in diseases: a comprehensive review. Front Cell Dev Biol 2023; 11:1166308. [PMID: 37554306 PMCID: PMC10406503 DOI: 10.3389/fcell.2023.1166308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023] Open
Abstract
Tumor Necrosis Factor-alpha (TNF-α) is ubiquitous in the human body and plays a significant role in various physiological and pathological processes. However, TNF-α-induced diseases remain poorly understood with limited efficacy due to the intricate nature of their mechanisms. N6-methyladenosine (m6A) methylation, a prevalent type of epigenetic modification of mRNA, primarily occurs at the post-transcriptional level and is involved in intranuclear and extranuclear mRNA metabolism. Evidence suggests that m6A methylation participates in TNF-α-induced diseases and signaling pathways associated with TNF-α. This review summarizes the involvement of TNF-α and m6A methylation regulators in various diseases, investigates the impact of m6A methylation on TNF-α-induced diseases, and puts forth potential therapeutic targets for treating TNF-α-induced diseases.
Collapse
Affiliation(s)
- Youlin Wang
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jing Liu
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongchen Wang
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- General Practice Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
32
|
Benak D, Benakova S, Plecita-Hlavata L, Hlavackova M. The role of m 6A and m 6Am RNA modifications in the pathogenesis of diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1223583. [PMID: 37484960 PMCID: PMC10360938 DOI: 10.3389/fendo.2023.1223583] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
The rapidly developing research field of epitranscriptomics has recently emerged into the spotlight of researchers due to its vast regulatory effects on gene expression and thereby cellular physiology and pathophysiology. N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am) are among the most prevalent and well-characterized modified nucleosides in eukaryotic RNA. Both of these modifications are dynamically regulated by a complex set of epitranscriptomic regulators called writers, readers, and erasers. Altered levels of m6A and also several regulatory proteins were already associated with diabetic tissues. This review summarizes the current knowledge and gaps about m6A and m6Am modifications and their respective regulators in the pathophysiology of diabetes mellitus. It focuses mainly on the more prevalent type 2 diabetes mellitus (T2DM) and its treatment by metformin, the first-line antidiabetic agent. A better understanding of epitranscriptomic modifications in this highly prevalent disease deserves further investigation and might reveal clinically relevant discoveries in the future.
Collapse
Affiliation(s)
- Daniel Benak
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Stepanka Benakova
- Laboratory of Pancreatic Islet Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Lydie Plecita-Hlavata
- Laboratory of Pancreatic Islet Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Marketa Hlavackova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
33
|
Luo XY, Fu X, Liu F, Luo JY, Chen AF. Sema3G activates YAP and promotes VSMCs proliferation and migration via Nrp2/PlexinA1. Cell Signal 2023; 105:110613. [PMID: 36720439 DOI: 10.1016/j.cellsig.2023.110613] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/05/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Diabetes exacerbates neointima formation after vascular procedures, manifested by accelerated proliferation and migration of vascular smooth muscle cells (VSMCs). Semaphorin 3G (Sema3G), secreted mainly from endothelial cells (ECs), regulates various cellular functions and vascular pathologies. However, the function and potential mechanism of ECs-derived Sema3G in VSMCs under diabetic condition remain unclear. OBJECTIVE To investigate the role and the mechanism of ECs-derived Sema3G in the regulation of VSMCs proliferation and migration. RESULTS ECs-derived Sema3G promoted human aortic SMCs (HASMCs) cell cycle progression and proliferation. Sema3G upregulated the expression of MMP2 and MMP9, which might explain the increased HASMCs migration by Sema3G. Inhibition of Nrp2/PlexinA1 mitigated the effect of Sema3G on promoting HASMCs proliferation and migration. Mechanistically, Sema3G inhibited LATS1 and activated YAP via Nrp2/PlexinA1. Verteporfin, an FDA-approved YAP pathway inhibitor, counteracted Sema3G-induced cyclin E and cyclin D1 expression. Besides, Sema3G expression was upregulated in ECs of diabetic mouse aortas. Serum Sema3G level was increased in type 2 diabetic patients and mice. Moreover, compared to chow diet-fed mice, high-fat diet (HFD)-fed obese mice showed thicker neointima and higher Sema3G expression in vasculature after femoral injury. CONCLUSIONS Our results indicated that ECs-derived Sema3G under diabetic condition activated YAP and promoted HASMCs proliferation and migration via Nrp2/PlexinA1. Thus, inhibition of Sema3G may hold therapeutic potential against diabetes-associated intimal hyperplasia.
Collapse
Affiliation(s)
- Xue-Yang Luo
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Fu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Liu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Endocrinology & Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Key Laboratory of Diabetes, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Shanghai Institute for Diabetes, Shanghai, China
| | - Jiang-Yun Luo
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
34
|
Hashemi M, Zandieh MA, Ziaolhagh S, Mojtabavi S, Sadi FH, Koohpar ZK, Ghanbarirad M, Haghighatfard A, Behroozaghdam M, Khorrami R, Nabavi N, Ren J, Reiter RJ, Salimimoghadam S, Rashidi M, Hushmandi K, Taheriazam A, Entezari M. Nrf2 signaling in diabetic nephropathy, cardiomyopathy and neuropathy: Therapeutic targeting, challenges and future prospective. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166714. [PMID: 37028606 DOI: 10.1016/j.bbadis.2023.166714] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Western lifestyle contributes to an overt increase in the prevalence of metabolic anomalies including diabetes mellitus (DM) and obesity. Prevalence of DM is rapidly growing worldwide, affecting many individuals in both developing and developed countries. DM is correlated with the onset and development of complications with diabetic nephropathy (DN), diabetic cardiomyopathy (DC) and diabetic neuropathy being the most devastating pathological events. On the other hand, Nrf2 is a regulator for redox balance in cells and accounts for activation of antioxidant enzymes. Dysregulation of Nrf2 signaling has been shown in various human diseases such as DM. This review focuses on the role Nrf2 signaling in major diabetic complications and targeting Nrf2 for treatment of this disease. These three complications share similarities including the presence of oxidative stress, inflammation and fibrosis. Onset and development of fibrosis impairs organ function, while oxidative stress and inflammation can evoke damage to cells. Activation of Nrf2 signaling significantly dampens inflammation and oxidative damage, and is beneficial in retarding interstitial fibrosis in diabetic complications. SIRT1 and AMPK are among the predominant pathways to upregulate Nrf2 expression in the amelioration of DN, DC and diabetic neuropathy. Moreover, certain therapeutic agents such as resveratrol and curcumin, among others, have been employed in promoting Nrf2 expression to upregulate HO-1 and other antioxidant enzymes in the combat of oxidative stress in the face of DM.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Zeinab Khazaei Koohpar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Maryam Ghanbarirad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arvin Haghighatfard
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 77030, United States
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
35
|
Li Z, Meng X, Chen Y, Xu X, Guo J. N 6-methyladenosine (m 6A) writer METTL3 accelerates the apoptosis of vascular endothelial cells in high glucose. Heliyon 2023; 9:e13721. [PMID: 36873555 PMCID: PMC9976308 DOI: 10.1016/j.heliyon.2023.e13721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Recent studies have shown that N6-methyladenosine (m6A) methylation, one of the most prevalent epigenetic modifications, is involved in diabetes mellitus. However, whether m6A regulates diabetic vascular endothelium injury is still elusive. Present research aimed to investigate the regulation and mechanism of m6A on vascular endothelium injury. Upregulation of METTL3 was observed in the high glucose (HG)-induced human umbilical vein endothelial cells (HUVECs), following with the upregulation of m6A methylation level. Functionally, METTL3 silencing repressed the apoptosis and recovered the proliferation of HUVECs disposed by HG. Moreover, HG exposure upregulated the expression of suppressor of cytokine signaling3 (SOCS3). Mechanistically, METTL3 targeted the m6A site on SOCS3 mRNA, which positively regulated the mRNA stability of SOCS3. In conclusion, METTL3 silencing attenuated the HG-induced vascular endothelium cells injury via promoting SOCS3 stability. In conclusion, this research expands the understanding of m6A on vasculopathy in diabetes mellitus and provides a potential strategy for the protection of vascular endothelial injury.
Collapse
Affiliation(s)
- Zhenjin Li
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xuying Meng
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yu Chen
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xiaona Xu
- Department of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jianchao Guo
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| |
Collapse
|
36
|
Ni WJ, Lu H, Ma NN, Hou BB, Zeng J, Zhou H, Shao W, Meng XM. RNA N 6 -methyladenosine modifications and potential targeted therapeutic strategies in kidney disease. Br J Pharmacol 2023; 180:5-24. [PMID: 36196023 DOI: 10.1111/bph.15968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
Epigenetic modifications have received increasing attention and have been shown to be extensively involved in kidney development and disease progression. Among them, the most common RNA modification, N6 -methyladenosine (m6 A), has been shown to dynamically and reversibly exert its functions in multiple ways, including splicing, export, decay and translation initiation efficiency to regulate mRNA fate. Moreover, m6 A has also been reported to exert biological effects by destabilizing base pairing to modulate various functions of RNAs. Most importantly, an increasing number of kidney diseases, such as renal cell carcinoma, acute kidney injury and chronic kidney disease, have been found to be associated with aberrant m6 A patterns. In this review, we comprehensively review the critical roles of m6 A in kidney diseases and discuss the possibilities and relevance of m6 A-targeted epigenetic therapy, with an integrated comprehensive description of the detailed alterations in specific loci that contribute to cellular processes that are associated with kidney diseases.
Collapse
Affiliation(s)
- Wei-Jian Ni
- Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China.,Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001, China
| | - Hao Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Nan-Nan Ma
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Bing-Bing Hou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jing Zeng
- Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001, China
| | - Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
37
|
Tang A, Zhang Y, Wu L, Lin Y, Lv L, Zhao L, Xu B, Huang Y, Li M. Klotho's impact on diabetic nephropathy and its emerging connection to diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1180169. [PMID: 37143722 PMCID: PMC10151763 DOI: 10.3389/fendo.2023.1180169] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease worldwide and is a significant burden on healthcare systems. α-klotho (klotho) is a protein known for its anti-aging properties and has been shown to delay the onset of age-related diseases. Soluble klotho is produced by cleavage of the full-length transmembrane protein by a disintegrin and metalloproteases, and it exerts various physiological effects by circulating throughout the body. In type 2 diabetes and its complications DN, a significant decrease in klotho expression has been observed. This reduction in klotho levels may indicate the progression of DN and suggest that klotho may be involved in multiple pathological mechanisms that contribute to the onset and development of DN. This article examines the potential of soluble klotho as a therapeutic agent for DN, with a focus on its ability to impact multiple pathways. These pathways include anti-inflammatory and oxidative stress, anti-fibrotic, endothelial protection, prevention of vascular calcification, regulation of metabolism, maintenance of calcium and phosphate homeostasis, and regulation of cell fate through modulation of autophagy, apoptosis, and pyroptosis pathways. Diabetic retinopathy shares similar pathological mechanisms with DN, and targeting klotho may offer new insights into the prevention and treatment of both conditions. Finally, this review assesses the potential of various drugs used in clinical practice to modulate klotho levels through different mechanisms and their potential to improve DN by impacting klotho levels.
Collapse
Affiliation(s)
- Anqi Tang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Yu Zhang
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Ling Wu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Yong Lin
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Lizeyu Lv
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Liangbin Zhao
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Bojun Xu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Youqun Huang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Mingquan Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
- *Correspondence: Mingquan Li,
| |
Collapse
|
38
|
Zhang Z, Huang Q, Zhao D, Lian F, Li X, Qi W. The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications. Front Endocrinol (Lausanne) 2023; 14:1112363. [PMID: 36824356 PMCID: PMC9941188 DOI: 10.3389/fendo.2023.1112363] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycaemia, with absolute insulin deficiency or insulin resistance as the main cause, and causes damage to various target organs including the heart, kidney and neurovascular. In terms of the pathological and physiological mechanisms of DM, oxidative stress is one of the main mechanisms leading to DM and is an important link between DM and its complications. Oxidative stress is a pathological phenomenon resulting from an imbalance between the production of free radicals and the scavenging of antioxidant systems. The main site of reactive oxygen species (ROS) production is the mitochondria, which are also the main organelles damaged. In a chronic high glucose environment, impaired electron transport chain within the mitochondria leads to the production of ROS, prompts increased proton leakage and altered mitochondrial membrane potential (MMP), which in turn releases cytochrome c (cyt-c), leading to apoptosis. This subsequently leads to a vicious cycle of impaired clearance by the body's antioxidant system, impaired transcription and protein synthesis of mitochondrial DNA (mtDNA), which is responsible for encoding mitochondrial proteins, and impaired DNA repair systems, contributing to mitochondrial dysfunction. This paper reviews the dysfunction of mitochondria in the environment of high glucose induced oxidative stress in the DM model, and looks forward to providing a new treatment plan for oxidative stress based on mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Fengmei Lian
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| | - Wenxiu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| |
Collapse
|
39
|
The Role of N 6-Methyladenosine in Inflammatory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9744771. [PMID: 36578520 PMCID: PMC9792239 DOI: 10.1155/2022/9744771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
N6-Methyladenosine (m6A) is the most abundant epigenetic RNA modification in eukaryotes, regulating RNA metabolism (export, stability, translation, and decay) in cells through changes in the activity of writers, erasers, and readers and ultimately affecting human life or disease processes. Inflammation is a response to infection and injury in various diseases and has therefore attracted significant attention. Currently, extensive evidence indicates that m6A plays an essential role in inflammation. In this review, we focus on the mechanisms of m6A in inflammatory autoimmune diseases, metabolic disorder, cardio-cerebrovascular diseases, cancer, and pathogen-induced inflammation, as well as its possible role as targets for clinical diagnosis and treatment.
Collapse
|
40
|
The Effect of Allograft Inflammatory Factor-1 on Inflammation, Oxidative Stress, and Autophagy via miR-34a/ATG4B Pathway in Diabetic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1668000. [PMID: 36345369 PMCID: PMC9637042 DOI: 10.1155/2022/1668000] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022]
Abstract
Increasing evidence suggests that disorders of inflammation, oxidative stress, and autophagy contribute to the pathogenesis of diabetic kidney disease (DKD). This study attempted to clarify the effect of allograft inflammatory factor-1 (AIF-1), miR-34a, and ATG4B on inflammation, oxidative stress, and autophagy in DKD both in vitro and in vivo experiments. In vivo, it was found that the levels of AIF-1, miR-34a, oxidative stress, and inflammatory factors were significantly increased in blood and urine samples of DKD patients and mouse models and correlated with the level of urinary protein. In vitro, it was also found that the expressions of AIF-1, miR-34a, ROS, and inflammatory factors were increased, while ATG4B and other autophagy related proteins were decreased in human renal glomerular endothelial cells (HRGECs) cultured with high concentration glucose medium (30 mmol/L). When AIF-1 gene was overexpressed, the levels of miR-34a, ROS, and inflammatory factors were significantly upregulated, and autophagy-related proteins such as ATG4B were downregulated, while downregulation of AIF-1 gene had the opposite effect. In addition, miR-34a inhibited the expression of ATG4B and autophagy-related proteins and increased the levels of ROS and inflammation. Furthermore, the result of luciferase reporter assay suggested that ATG4B was the target gene of miR-34a. When ATG4B gene was overexpressed, the level of autophagy was upregulated, and inflammatory factors were downregulated. Conversely, when ATG4B gene was inhibited, the level of autophagy was downregulated, and inflammatory factors were upregulated. Then, autophagy inducers inhibited the levels of inflammation and ROS, whereas autophagy inhibitors had the opposite function in HRGECs induced by glucose (30 mmol/L). In conclusion, the above data suggested that AIF-1 regulated the levels of inflammation, oxidative stress, and autophagy in HRGECs via miR-34a/ATG4B pathway to contribute to the pathogenesis of diabetic kidney disease.
Collapse
|
41
|
Luan J, Kopp JB, Zhou H. N6-methyladenine RNA Methylation Epigenetic Modification and Kidney Diseases. Kidney Int Rep 2022; 8:36-50. [PMID: 36644366 PMCID: PMC9831943 DOI: 10.1016/j.ekir.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
RNA methylation modification is a rapidly developing field in epigenetics. N6-methyladensine (m6A) is the most common internal modification in eukaryotic mRNA. m6A group regulates RNA splicing, stability, translocation, and translation. Enzymes catalyzing this process were termed as writers, erasers, and readers. Recent studies have focused on exploring the role of RNA methylation in human diseases. RNA methylation modifications, particularly m6A, play important roles in the pathogenesis of kidney diseases. In this review, we provide a brief description of m6A and summarize the impact of m6A on acute and chronic kidney disease (CKD) and possible future study directions for this research.
Collapse
Affiliation(s)
- Junjun Luan
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jeffrey B. Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases/National Institutes of Health, Bethesda, Maryland, USA,Jeffrey B. Kopp, Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases/National Institutes of Health, 10 Center Drive, 3N116, Bethesda, Maryland 20892-1268, USA.
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China,Correspondence: Hua Zhou, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning 110004, China.
| |
Collapse
|
42
|
Wan J, Liu D, Pan S, Zhou S, Liu Z. NLRP3-mediated pyroptosis in diabetic nephropathy. Front Pharmacol 2022; 13:998574. [PMID: 36304156 PMCID: PMC9593054 DOI: 10.3389/fphar.2022.998574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the main cause of end-stage renal disease (ESRD), which is characterized by a series of abnormal changes such as glomerulosclerosis, podocyte loss, renal tubular atrophy and excessive deposition of extracellular matrix. Simultaneously, the occurrence of inflammatory reaction can promote the aggravation of DN-induced kidney injury. The most important processes in the canonical inflammasome pathway are inflammasome activation and membrane pore formation mediated by gasdermin family. Converging studies shows that pyroptosis can occur in renal intrinsic cells and participate in the development of DN, and its activation mechanism involves a variety of signaling pathways. Meanwhile, the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome can not only lead to the occurrence of inflammatory response, but also induce pyroptosis. In addition, a number of drugs targeting pyroptosis-associated proteins have been shown to have potential for treating DN. Consequently, the pathogenesis of pyroptosis and several possible activation pathways of NLRP3 inflammasome were reviewed, and the potential drugs used to treat pyroptosis in DN were summarized in this review. Although relevant studies are still not thorough and comprehensive, these findings still have certain reference value for the understanding, treatment and prognosis of DN.
Collapse
Affiliation(s)
- Jiayi Wan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| |
Collapse
|
43
|
The Role of N6-Methyladenosine Modification in Microvascular Dysfunction. Cells 2022; 11:cells11203193. [PMID: 36291060 PMCID: PMC9600171 DOI: 10.3390/cells11203193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Microvascular dysfunction (MVD) has long plagued the medical field despite improvements in its prevention, diagnosis, and intervention. Microvascular lesions from MVD increase with age and further lead to impaired microcirculation, target organ dysfunction, and a mass of microvascular complications, thus contributing to a heavy medical burden and rising disability rates. An up-to-date understanding of molecular mechanisms underlying MVD will facilitate discoveries of more effective therapeutic strategies. Recent advances in epigenetics have revealed that RNA methylation, an epigenetic modification, has a pivotal role in vascular events. The N6-methylation of adenosine (m6A) modification is the most prevalent internal RNA modification in eukaryotic cells, which regulates vascular transcripts through splicing, degradation, translation, as well as translocation, thus maintaining microvascular homeostasis. Conversely, the disruption of the m6A regulatory network will lead to MVD. Herein, we provide a review discussing how m6A methylation interacts with MVD. We also focus on alterations of the m6A regulatory network under pathological conditions. Finally, we highlight the value of m6A regulators as prognostic biomarkers and novel therapeutic targets, which might be a promising addition to clinical medicine.
Collapse
|
44
|
Gao D, Hu B, Ding B, Zhao Q, Zhang Y, Xiao L. N6-Methyladenosine-induced miR-143-3p promotes intervertebral disc degeneration by regulating SOX5. Bone 2022; 163:116503. [PMID: 35878746 DOI: 10.1016/j.bone.2022.116503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/18/2022] [Accepted: 07/19/2022] [Indexed: 11/02/2022]
Abstract
Intervertebral disc degeneration is the basic cause of lumbocrural pain, which not only causes pain and but also serious economic burdens on patients. Increasingly more evidence has shown that tumor necrosis factor-α (TNF-α) is involved in the pathological process of intervertebral disc degeneration, but the specific molecular mechanism is still unclear. This study investigated the potential mechanism and function of methyltransferase-like 3 (METTL3)/miR-143-3p/SOX5 regulatory axis in nucleus pulposus cells under the action of TNF-α. Human nucleus pulposus cells were treated with TNF-α to construct an in vitro model of intervertebral disc degeneration. Flow cytometry, quantitative reverse-transcription PCR (RT-qPCR), Western blot (WB) and luciferase assays were used to identify the mechanism of action of miR-143-3p in the course of intervertebral disc degeneration in vitro and the downstream targeted regulatory molecules. The role of miR-143-3p in intervertebral disc degeneration was also validated by in vivo. RT-qPCR, WB, coimmunoprecipitation (Co-IP) and flow cytometry were used to verify the regulatory effect of METTL3 on miR-143-3p maturation. RT-qPCR and WB were adopted to detect differences in METTL3, miR-143-3p and SOX5 expression in human nucleus pulposus tissue. miR-143-3p in nucleus pulposus cells was involved in the regulation of extracellular matrix metabolism and apoptosis after TNF-α stimulation, and intervertebral disc degeneration was relieved by effectively regulating miR-143-3p expression. Subsequent experiments showed that the downstream direct target gene of miR-143-3p was SOX5 and that miR-143-3p negatively regulated the expression of SOX5. In addition, METTL3 promoted miR-143-3p maturation, and METTL3 and miR-143-3p were significantly upregulated in degenerative nucleus pulposus, an effect that was significantly negatively correlated with low SOX5 expression. In conclusion, TNF-α upregulates METTL3, METTL3 promotes miR-143-3p maturation, and miR-143-3p inhibits the transcriptional activity of SOX5 through targeted binding, thereby inducing intervertebral disc degeneration. The inhibition of METTL3 or miR-143-3p expression may be an effective way to treat intervertebral disc degeneration.
Collapse
Affiliation(s)
- Daokuan Gao
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu 241001, Anhui, China
| | - Bo Hu
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu 241001, Anhui, China
| | - Baiyang Ding
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu 241001, Anhui, China
| | - Quanlai Zhao
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu 241001, Anhui, China
| | - Yu Zhang
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu 241001, Anhui, China
| | - Liang Xiao
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, No. 2 Zheshan West Road, Wuhu 241001, Anhui, China.
| |
Collapse
|
45
|
Zheng H, Hua J, Li H, He W, Chen X, Ji Y, Li Q. Comprehensive analysis of the expression of N6-methyladenosine RNA methylation regulators in pulmonary artery hypertension. Front Genet 2022; 13:974740. [PMID: 36171892 PMCID: PMC9510777 DOI: 10.3389/fgene.2022.974740] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Background: Pulmonary arterial hypertension (PAH) is a progressive disease characterized by pulmonary vascular remodeling. The development of PAH involves N6-methyladenosine (m6A) modification. However, the functional role of m6A regulators in PAH and the underlying regulatory mechanisms remain unknown so far. Methods: Microarray data (GSE149713) for monocrotaline induced PAH (MCT-PAH) rat models were downloaded and screened for differentially expressed genes (DEGs) and m6A regulators. Next, we screened for differentially expressed m6A regulators in endothelial cells (ECs), smooth muscle cells (SMCs), fibroblasts, interstitial macrophages, NK cells, B cells, T cells, regulatory T cells (Tregs) using scRNA sequencing data. The target DEGs of m6A regulators in ECs, SMCs, fibroblasts, and Tregs were functionally annotated using the Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. In addition, the cellular interaction analysis was performed to reveal the receptor—ligand pairs regulated by m6A regulators. Pseudo-time trajectory analyses were performed and a ceRNA network of lncRNAs-miRNAs-mRNAs was constructed in SMCs. Furthermore, the RNA transcriptome sequencing data for the SMCs isolated from idiopathic PAH (IPAH) patients (GSE144274) were validated for differentially expressed m6A regulators. Moreover, the HNRNPA2B1 levels in the lung samples from PAH patients and MCT-PAH were determined using immunohistochemistry. Results: The m6A regulators were observed to be dysregulated in PAH. HNRNPA2B1expression level was increased in the PASMCs of scRNAs and IPAH patients. The target DEGs of HNRNPA2B1 were enriched in the regulation of muscle cell differentiation and vasculature development in PASMCs. The HNRNPA2B1 expression levels determined were consistent with the proliferation-related and collagen synthesis-related gene COL4A1. Moreover, the predicted transcription factors (TFs) foxd2/3 and NFκB could be involved in the regulation of HNRNPA2B1. HNRNPA2B1 might be regulating SMCs proliferation and phenotypic transition via rno-miR-330–3p/TGFβR3 and rno-miR-125a-3p/slc39a1. In addition, HNRNPA2B1 was observed to be highly expressed in the lung samples from MCT-PAH rat models and patients with PAH. Conclusion: In summary, the present study identified certain key functional m6A regulators that are involved in pulmonary vascular remodeling. The investigation of m6A patterns might be promising and provide biomarkers for diagnosis and treatment of PAH in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Yingqun Ji
- *Correspondence: Yingqun Ji, ; Qiang Li,
| | - Qiang Li
- *Correspondence: Yingqun Ji, ; Qiang Li,
| |
Collapse
|
46
|
Feng J, Zhang Y, Wen J, Chen Y, Tao J, Yu S, Zhu Z, Dong B, Liu Y, Fan Y, Lv L, Zhang X. Alteration of N6-methyladenosine epitranscriptome profiles in bilateral ureteral obstruction-induced obstructive nephropathy in juvenile rats. Pediatr Res 2022; 93:1509-1518. [PMID: 35986151 DOI: 10.1038/s41390-022-02228-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Urinary tract obstruction is a common cause of renal failure in children and infants, and the pathophysiological mechanisms of obstructive nephropathy are largely unclear. It has been reported that m6A modulation is involved in renal injury. However, whether m6A RNA modulation is associated with obstructive nephropathy has not yet been reported. The aim of this study was to investigate the m6A epitranscriptome profiles in the kidneys of bilateral ureteral obstruction (BUO) in young rats. METHODS The total level of m6A in the kidneys was measured by liquid chromatography-tandem mass spectrometry. The mRNAs of related genes were detected by real-time PCR. Methylated RNA immunoprecipitation sequencing was performed to map the epitranscriptome-wide m6A profile. RESULTS Global m6A levels were increased after BUO, and the mRNA expression levels of m6A methyltransferases and demethylases were significantly decreased in BUO group rat kidneys; the expression levels of EGFR and Brcal were significantly upregulated, while the mRNA expression levels of Notch1 were downregulated (P < 0.05). A total of 154 genes associated with 163 m6A peaks were identified. CONCLUSION The m6A epitranscriptome was significantly altered in BUO rat kidneys, which is potentially implicated in the pathophysiological processes of obstructive nephropathy. IMPACT The m6A RNA modification was associated with the process of renal injury in ureteral obstructive nephropathy by participating in multiple dimensions. The dysregulation of m6A methyltransferases and demethylases may be related to the pathophysiological changes of BUO-induced obstructive nephropathy. The m6A RNA modulation of the genes EGFR, Brca1, and Notch1 that were related to the regulation of aquaporin2 might be the potential mechanism for the polyuresis after ureteral obstruction.
Collapse
Affiliation(s)
- Jinjin Feng
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yanping Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jianguo Wen
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Chen
- Department of Center for Translational Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jin Tao
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shuanbao Yu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhaowei Zhu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Biao Dong
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yunlong Liu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yafeng Fan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lei Lv
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xuepei Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
47
|
Lan J, Xu B, Shi X, Pan Q, Tao Q. WTAP-mediated N 6-methyladenosine modification of NLRP3 mRNA in kidney injury of diabetic nephropathy. Cell Mol Biol Lett 2022; 27:51. [PMID: 35761192 PMCID: PMC9235192 DOI: 10.1186/s11658-022-00350-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/26/2022] [Indexed: 12/18/2022] Open
Abstract
Background Diabetic nephropathy (DN) is prevalent in patients with diabetes. N6-methyladenosine (m6A) methylation has been found to cause modification of nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing (NLRP) 3, which is involved in cell pyroptosis and inflammation. WTAP is a key gene in modulating NLRP3 m6A. Methods In this study, WTAP was silenced or overexpressed in high glucose (HG)-treated HK-2 cells to determine its influence on pyroptosis, NLRP3 inflammasome-related proteins, and the release of pro-inflammatory cytokines. NLRP3 expression and m6A levels were assessed in the presence of WTAP shRNA (shWTAP). WTAP expression in HK-2 cells was examined with the introduction of C646, a histone acetyltransferase p300 inhibitor. Results We found that WTAP expression was enhanced in patients with DN and in HG-treated HK-2 cells. Knockdown of WTAP attenuated HG-induced cell pyroptosis and NLRP3-related pro-inflammatory cytokines in both HK-2 cells and db/db mice, whereas WTAP overexpression promoted these cellular processes in HK-2 cells. WTAP mediated the m6A of NLRP3 mRNA that was stabilized by insulin-like growth factor 2 mRNA binding protein 1. Histone acetyltransferase p300 regulated WTAP expression. WTAP mRNA levels were positively correlated with NLRP3 inflammasome components and pro-inflammatory cytokines. Conclusion Taken together, WTAP promotes the m6A methylation of NLRP3 mRNA to upregulate NLRP3 inflammasome activation, which further induces cell pyroptosis and inflammation. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00350-8.
Collapse
Affiliation(s)
- Jianzi Lan
- Department of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Pudong District, Shanghai, 200120, China.
| | - Bowen Xu
- Department of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Pudong District, Shanghai, 200120, China
| | - Xin Shi
- Department of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Pudong District, Shanghai, 200120, China
| | - Qi Pan
- Department of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Pudong District, Shanghai, 200120, China
| | - Qing Tao
- Department of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Pudong District, Shanghai, 200120, China
| |
Collapse
|
48
|
Geng X, Li Z, Yang Y. Emerging Role of Epitranscriptomics in Diabetes Mellitus and Its Complications. Front Endocrinol (Lausanne) 2022; 13:907060. [PMID: 35692393 PMCID: PMC9184717 DOI: 10.3389/fendo.2022.907060] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 01/13/2023] Open
Abstract
Diabetes mellitus (DM) and its related complications are among the leading causes of disability and mortality worldwide. Substantial studies have explored epigenetic regulation that is involved in the modifications of DNA and proteins, but RNA modifications in diabetes are still poorly investigated. In recent years, posttranscriptional epigenetic modification of RNA (the so-called 'epitranscriptome') has emerged as an interesting field of research. Numerous modifications, mainly N6 -methyladenosine (m6A), have been identified in nearly all types of RNAs and have been demonstrated to have an indispensable effect in a variety of human diseases, such as cancer, obesity, and diabetes. Therefore, it is particularly important to understand the molecular basis of RNA modifications, which might provide a new perspective for the pathogenesis of diabetes mellitus and the discovery of new therapeutic targets. In this review, we aim to summarize the recent progress in the epitranscriptomics involved in diabetes and diabetes-related complications. We hope to provide some insights for enriching the understanding of the epitranscriptomic regulatory mechanisms of this disease as well as the development of novel therapeutic targets for future clinical benefit.
Collapse
Affiliation(s)
- Xinqian Geng
- Department of Endocrinology, The Affiliated Hospital of Yunnan University and the Second People’s Hospital of Yunnan Province, Kunming, China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Yang
- Department of Endocrinology, The Affiliated Hospital of Yunnan University and the Second People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
49
|
Yin S, Li W, Wang J, Wu H, Hu J, Feng Y. Screening of key genes associated with m6A methylation in diabetic nephropathy patients by CIBERSORT and weighted gene coexpression network analysis. Am J Transl Res 2022; 14:2280-2290. [PMID: 35559414 PMCID: PMC9091087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes. Due to its complex pathogenesis, there is no effective treatment. M6A is a newly discovered epigenetic mechanism that may be involved in the development of diabetic nephropathy. In this study, we analyzed differentially expressed genes (DEG) in the GEO database (GSE96804) and paid attention to genes with m6A methylation. 623 DEGs in glomerular tissue were identified by comparing diabetic nephropathy with normal. Correlation analysis with 21 genes involved in m6A modification showed that 492 genes were associated with m6A methylation. According to the CIBERSORT algorithm, the infiltration of M1 macrophages in DN patients was significantly higher than that in normal samples. Weighted gene coexpression network analysis (WGCNA) was used to screen for the modules most correlated with the clinical features of M1 macrophages. The genes in the selected modules and 492 m6A-related DEGs were intersected by a Venn diagram, and 43 key genes were obtained. GO and KEGG analyses showed that these genes were mainly related to the positive regulation of protein aggregation and the transforming growth factor β receptor signaling pathway. According to a literature review, among the top 10 genes, HSPA1A, HSPA1B, CHI3L1, TYRO3 and PTH1R are markers in diabetic nephropathy, and their abnormal expression is associated with renal hypertrophy, proteinuria and glomerulosclerosis. These findings may provide evidence for the diagnosis and treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Shaohua Yin
- Department of Endocrinology, The Second Affiliated Hospital of Soochow UniversitySuzhou, China
- Department of Biochemistry and Molecular Biology, Medical College, Soochow UniversitySuzhou, China
| | - Wen Li
- The Cath Lab of Interventional Radiology, The Second Affiliated Hospital of Soochow UniversitySuzhou, China
| | - Junjie Wang
- Department of Biochemistry and Molecular Biology, Medical College, Soochow UniversitySuzhou, China
| | - Han Wu
- Department of Biochemistry and Molecular Biology, Medical College, Soochow UniversitySuzhou, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow UniversitySuzhou, China
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow UniversitySuzhou, China
| |
Collapse
|
50
|
Ouyang M, Fang J, Wang M, Huang X, Lan J, Qu Y, Lai W, Xu Q. Advanced glycation end products alter the m 6A-modified RNA profiles in human dermal fibroblasts. Epigenomics 2022; 14:431-449. [PMID: 35285253 DOI: 10.2217/epi-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: To explore advanced glycation end products (AGEs)-induced m6A modification in fibroblasts and its potential role in photoaging. Methods: We studied m6A modification in AGEs-bovine serum albumin-treated fibroblasts with m6A-mRNA & lncRNA epitranscriptomic microarray and bioinformatics analysis. The m6A modification level was also investigated in skin samples. Results: m6A methylation microarray analysis revealed m6A modification profiles in AGEs-treated fibroblasts. Gene ontology, Kyoto Encyclopedia of Genes and Genomes, protein-protein interaction and competing endogenous RNA network analysis indicated that the genes of differentially methylated mRNAs and lncRNAs were mainly related to inflammation processes. We also found that AGEs-bovine serum albumin dose-dependently increased the m6A level and METTL14 expression in both fibroblasts and sun-exposed skin. Conclusion: Our study provided novel information regarding alterations of m6A modifications in AGEs-induced dermal fibroblasts and potential targets for treatment of photoaging.
Collapse
Affiliation(s)
- Mengting Ouyang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiaqi Fang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Mengyao Wang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xianyin Huang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jingjing Lan
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yingying Qu
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Wei Lai
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Qingfang Xu
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|