1
|
Ashina H, Christensen RH, Hay DL, Pradhan AA, Hoffmann J, Reglodi D, Russo AF, Ashina M. Pituitary adenylate cyclase-activating polypeptide signalling as a therapeutic target in migraine. Nat Rev Neurol 2024; 20:660-670. [PMID: 39256637 DOI: 10.1038/s41582-024-01011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 09/12/2024]
Abstract
Migraine is a disabling neurological disorder that affects more than one billion people worldwide. The clinical presentation is characterized by recurrent headache attacks, which are often accompanied by photophobia, phonophobia, nausea and vomiting. Although the pathogenesis of migraine remains incompletely understood, mounting evidence suggests that specific signalling molecules are involved in the initiation and modulation of migraine attacks. These signalling molecules include pituitary adenylate cyclase-activating polypeptide (PACAP), a vasoactive peptide that is known to induce migraine attacks when administered by intravenous infusion to people with migraine. Discoveries linking PACAP to migraine pathogenesis have led to the development of drugs that target PACAP signalling, and a phase II trial has provided evidence that a monoclonal antibody against PACAP is effective for migraine prevention. In this Review, we explore the molecular and cellular mechanisms of PACAP signalling, shedding light on its role in the trigeminovascular system and migraine pathogenesis. We then discuss emerging therapeutic strategies that target PACAP signalling for the treatment of migraine and consider the research needed to translate the current knowledge into a treatment for migraine in the clinic.
Collapse
Affiliation(s)
- Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Translational Research Center, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Rune H Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Translational Research Center, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Amynah A Pradhan
- Center for Clinical Pharmacology, Department of Anaesthesiology, Washington University in St Louis, St Louis, MO, USA
| | - Jan Hoffmann
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dora Reglodi
- Department of Anatomy, Centre for Neuroscience, University of Pécs Medical School, Pécs, Hungary
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Veterans Affairs Healthcare System, Iowa City, IA, USA
- Department of Neurology, University of Iowa, Veterans Affairs Healthcare System, Iowa City, IA, USA
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Cao W, Jiao L, Zhou H, Zhong J, Wang N, Yang J. Right-to-left shunt-associated brain functional changes in migraine: evidences from a resting-state FMRI study. Front Hum Neurosci 2024; 18:1432525. [PMID: 39281370 PMCID: PMC11392749 DOI: 10.3389/fnhum.2024.1432525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Background Migraine, a neurological condition perpetually under investigation, remains shrouded in mystery regarding its underlying causes. While a potential link to Right-to-Left Shunt (RLS) has been postulated, the exact nature of this association remains elusive, necessitating further exploration. Methods The amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo) and functional connectivity (FC) were employed to investigate functional segregation and functional integration across distinct brain regions. Graph theory-based network analysis was utilized to assess functional networks in migraine patients with RLS. Pearson correlation analysis further explored the relationship between RLS severity and various functional metrics. Results Compared with migraine patients without RLS, patients with RLS exhibited a significant increase in the ALFF within left middle occipital and superior occipital gyrus; In migraine patients with RLS, significantly reduced brain functional connectivity was found, including the connectivity between default mode network and visual network, ventral attention network, as well as the intra-functional connectivity of somatomotor network and its connection with the limbic network, and also the connectivity between the left rolandic operculum and the right middle cingulate gyrus. Notably, a significantly enhanced functional connectivity between the frontoparietal network and the ventral attention network was found in migraine with RLS; Patients with RLS displayed higher values of the normalized clustering coefficient and greater betweenness centrality in specific regions, including the left precuneus, right insula, and right inferior temporal gyrus. Additionally, these patients displayed a diminished nodal degree in the occipital lobe and reduced nodal efficiency within the fusiform gyrus; Further, the study found positive correlations between ALFF in the temporal lobes, thalamus, left middle occipital, and superior occipital gyrus and RLS severity. Conversely, negative correlations emerged between ALFF in the right inferior frontal gyrus, middle frontal gyrus, and insula and RLS grading. Finally, the study identified a positive correlation between angular gyrus betweenness centrality and RLS severity. Conclusion RLS-associated brain functional alterations in migraine consisted of local brain regions, connectivity, and networks involved in pain conduction and regulation did exist in migraine with RLS.
Collapse
Affiliation(s)
- Wenfei Cao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Jiao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huizhong Zhou
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqi Zhong
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nizhuan Wang
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Jiajun Yang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Daou M, Vgontzas A. Sleep Symptoms in Migraine. Curr Neurol Neurosci Rep 2024; 24:245-254. [PMID: 38864968 DOI: 10.1007/s11910-024-01346-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE OF REVIEW To review replicated and highlight novel studies of sleep in children and adults with episodic and chronic migraine. RECENT FINDINGS Attack-related sleep symptoms are most common in the prodrome and may represent early activation of the hypothalamus rather than migraine triggers. Interictally, patients with migraine report poor sleep quality and high rates of insomnia symptoms. Cognitive behavioral therapy for insomnia in adults and adolescents with chronic migraine and comorbid insomnia results in significant improvement on their headache burden. Thus far, objective studies report that migraine per se is a not associated with sleep apnea. At the present time, there is minimal evidence that migraine is under circadian influence. The current body of evidence suggests that the insomnia symptoms and poor sleep quality commonly reported by patients with migraine are not attack-related but occur interictally and are a marker of worsening disease. The development of clinical guidelines to approach sleep symptoms and expansion of CBT-I trials in those with episodic migraine would be clinically valuable.
Collapse
Affiliation(s)
- Marc Daou
- Department of Neurology, Tufts Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Angeliki Vgontzas
- Division of Headache Medicine, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Graham Headache Center, Department of Neurology, Brigham and Women's Faulkner Hospital, 1153 Centre Street Suite 4H, 02130, Boston, MA, USA.
| |
Collapse
|
4
|
Karsan N, Edvinsson L, Vecsei L, Goadsby PJ. Pituitary cyclase-activating polypeptide targeted treatments for the treatment of primary headache disorders. Ann Clin Transl Neurol 2024; 11:1654-1668. [PMID: 38887982 PMCID: PMC11251486 DOI: 10.1002/acn3.52119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE Migraine is a complex and disabling neurological disorder. Recent years have witnessed the development and emergence of novel treatments for the condition, namely those targeting calcitonin gene-related peptide (CGRP). However, there remains a substantial need for further treatments for those unresponsive to current therapies. Targeting pituitary adenylate cyclase-activating polypeptide (PACAP) as a possible therapeutic strategy in the primary headache disorders has gained interest over recent years. METHODS This review will summarize what we know about PACAP to date: its expression, receptors, roles in migraine and cluster headache biology, insights gained from preclinical and clinical models of migraine, and therapeutic scope. RESULTS PACAP shares homology with vasoactive intestinal polypeptide (VIP) and is one of several vasoactive neuropeptides along with CGRP and VIP, which has been implicated in migraine neurobiology. PACAP is widely expressed in areas of interest in migraine pathophysiology, such as the thalamus, trigeminal nucleus caudalis, and sphenopalatine ganglion. Preclinical evidence suggests a role for PACAP in trigeminovascular sensitization, while clinical evidence shows ictal release of PACAP in migraine and intravenous infusion of PACAP triggering attacks in susceptible individuals. PACAP leads to dural vasodilatation and secondary central phenomena via its binding to different G-protein-coupled receptors, and intracellular downstream effects through cyclic adenosine monophosphate (cAMP) and phosphokinase C (PKC). Targeting PACAP as a therapeutic strategy in headache has been explored using monoclonal antibodies developed against PACAP and against the PAC1 receptor, with initial positive results. INTERPRETATION Future clinical trials hold considerable promise for a new therapeutic approach using PACAP-targeted therapies in both migraine and cluster headache.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, The Wolfson Sensory, Pain and Regeneration Centre (SPaRC), NIHR King's Clinical Research Facility and SLaM Biomedical Research CentreInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Lars Edvinsson
- Department of Medicine, Institute of Clinical SciencesLund University221 84LundSweden
| | - Laszlo Vecsei
- Department of Neurology, Albert Szent‐Györgyi Medical School, and HUN‐REN‐SZTE Neuroscience Research Group, Hungarian Research NetworkUniversity of SzegedSemmelweis u. 6SzegedH‐6725Hungary
| | - Peter J Goadsby
- Headache Group, The Wolfson Sensory, Pain and Regeneration Centre (SPaRC), NIHR King's Clinical Research Facility and SLaM Biomedical Research CentreInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- Department of NeurologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
5
|
Haddad M, Khazali H, Janahmadi M, Ghanbarian H. The differential effects of blocking retinal orexin receptors on the expression of retinal c-fos and hypothalamic Vip, PACAP, Bmal1, and c-fos in Male Wistar Rats. Exp Eye Res 2024; 244:109943. [PMID: 38797259 DOI: 10.1016/j.exer.2024.109943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Orexin A and B (OXA and OXB) and their receptors are expressed in the majority of retinal neurons in humans, rats, and mice. Orexins modulate signal transmission between the different layers of the retina. The suprachiasmatic nucleus (SCN) and the retina are central and peripheral components of the body's biological clocks; respectively. The SCN receives photic information from the retina through the retinohypothalamic tract (RHT) to synchronize bodily functions with environmental changes. In present study, we aimed to investigate the impact of inhibiting retinal orexin receptors on the expression of retinal Bmal1 and c-fos, as well as hypothalamic c-fos, Bmal1, Vip, and PACAP at four different time-points (Zeitgeber time; ZT 3, 6, 11, and ZT-0). The intravitreal injection (IVI) of OX1R antagonist (SB-334867) and OX2R antagonist (JNJ-10397049) significantly up-regulated c-fos expression in the retina. Additionally, compared to the control group, the combined injection of SB-334867 and JNJ-10397049 showed a greater increase in retinal expression of this gene. Moreover, the expression of hypothalamic Vip and PACAP was significantly up-regulated in both the SB-334867 and JNJ-10397049 groups. In contrast, the expression of Bmal1 was down-regulated. Furthermore, the expression of hypothalamic c-fos was down-regulated in all groups treated with SB-334867 and JNJ-10397049. Additionally, the study demonstrated that blocking these receptors in the retina resulted in alterations in circadian rhythm parameters such as mesor, amplitude, and acrophase. Finally, it affected the phase of gene expression rhythms in both the retina and hypothalamus, as identified through cosinor analysis and the zero-amplitude test. This study represents the initial exploration of how retinal orexin receptors influence expression of rhythmic genes in the retina and hypothalamus. These findings could provide new insights into how the retina regulates the circadian rhythm in both regions and illuminate the role of the orexinergic system expression within the retina.
Collapse
Affiliation(s)
- Muhammad Haddad
- Department of Zoology, Faculty of Sciences, Aleppo University, Aleppo, Syria; Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Homayoun Khazali
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mahyar Janahmadi
- Department of Physiology and Neuroscience, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Dagnew B, Laslett LL, Honan CA, Blizzard L, Winzenberg T, Taylor BV, van der Mei I. The association of comorbidities with sleep quality among Australians with multiple sclerosis: Insights from the Australian Multiple Sclerosis Longitudinal Study. Mult Scler 2024; 30:877-887. [PMID: 38738517 PMCID: PMC11134972 DOI: 10.1177/13524585241248278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Comorbidities and poor sleep quality are prevalent among individuals with multiple sclerosis (MS). Our understanding of the effects of comorbidities on sleep quality in MS remains limited. OBJECTIVES The objectives were to investigate whether the number and presence of specific comorbidities have associations with sleep quality and to assess the relative contribution of comorbidity groups to sleep quality. METHODS We collected data on sleep quality (using Pittsburgh Sleep Quality Index (PSQI)) and presence of comorbidities in people with MS (n = 1597). Associations between comorbidities and sleep quality were examined using linear regression and dominance analysis. RESULTS Having more comorbidities was associated with poorer sleep quality (p for trend < 0.001). All 13 groups of comorbidities explained 12.9% of the variance in PSQI from which half of the variance was contributed by mental health disorders. In total, 16 of the 28 comorbidities were associated with significantly worse sleep quality, with the strongest associations seen for 'other autoimmune diseases' (β = 1.98), depression (β = 1.76), anxiety (β = 1.72) and rheumatoid arthritis (β = 1.62). CONCLUSIONS Many individual comorbidities are associated with poorer sleep quality, with mental health disorders making the largest relative contribution. Optimal management of comorbidities that make the greatest contributions could have the largest benefit for improving sleep in MS.
Collapse
Affiliation(s)
- Baye Dagnew
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Laura L Laslett
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Cynthia A Honan
- School of Psychological Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Leigh Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Tania Winzenberg
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Ingrid van der Mei
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
7
|
Gonzalez-Aponte MF, Damato AR, Simon T, Aripova N, Darby F, Rubin JB, Herzog ED. Daily glucocorticoids promote glioblastoma growth and circadian synchrony to the host. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592418. [PMID: 38766060 PMCID: PMC11100585 DOI: 10.1101/2024.05.03.592418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults with a poor prognosis despite aggressive therapy. A recent, retrospective clinical study found that administering Temozolomide in the morning increased patient overall survival by 6 months compared to evening. Here, we tested the hypothesis that daily host signaling regulates tumor growth and synchronizes circadian rhythms in GBM. We found daily Dexamethasone promoted or suppressed GBM growth depending on time of day of administration and on the clock gene, Bmal1. Blocking circadian signals, like VIP or glucocorticoids, dramatically slowed GBM growth and disease progression. Finally, mouse and human GBM models have intrinsic circadian rhythms in clock gene expression in vitro and in vivo that entrain to the host through glucocorticoid signaling, regardless of tumor type or host immune status. We conclude that GBM entrains to the circadian circuit of the brain, which modulates its growth through clockcontrolled cues, like glucocorticoids.
Collapse
Affiliation(s)
- Maria F. Gonzalez-Aponte
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Anna R. Damato
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Tatiana Simon
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Nigina Aripova
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Fabrizio Darby
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Joshua B. Rubin
- Department of Pediatrics, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Erik D. Herzog
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
8
|
Liang L, Chen S, Su W, Zhang H, Yu R. Integrated Transcriptomic and Proteomic Study of the Mechanism of Action of the Novel Small-Molecule Positive Allosteric Modulator 1 in Targeting PAC1-R for the Treatment of D-Gal-Induced Aging Mice. Int J Mol Sci 2024; 25:3872. [PMID: 38612681 PMCID: PMC11011505 DOI: 10.3390/ijms25073872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Small-molecule positive allosteric modulator 1 (SPAM1), which targets pituitary adenylate cyclase-activating polypeptide receptor 1 (PAC1-R), has been found to have a neuroprotective effect, and the underlying mechanism was explored in this study. First, using a D-galactose (D-gal)-induced aging mouse model, we confirmed that SPAM1 improves the structure of the hippocampal dentate gyrus and restores the number of neurons. Compared with D-gal model mice, SPAM1-treated mice showed up-regulated expression of Sirtuin 6 (SIRT6) and Lamin B1 and down-regulated expression of YinYang 1 (YY1) and p16. A similar tendency was observed in senescent RGC-5 cells induced by long-term culture, indicating that SPAM1 exhibits significant in vitro and in vivo anti-senescence activity in neurons. Then, using whole-transcriptome sequencing and proteomic analysis, we further explored the mechanism behind SPAM1's neuroprotective effects and found that SPAM is involved in the longevity-regulating pathway. Finally, the up-regulation of neurofilament light and medium polypeptides indicated by the proteomics results was further confirmed by Western blotting. These results help to lay a pharmacological network foundation for the use of SPAM1 as a potent anti-aging therapeutic drug to combat neurodegeneration with anti-senescence, neuroprotective, and nerve regeneration activity.
Collapse
Affiliation(s)
- Lili Liang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shang Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wanlin Su
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huahua Zhang
- Department of Medical Genetics, Guangdong Medical University, Dongguan 523808, China
| | - Rongjie Yu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| |
Collapse
|
9
|
Wu CH, Chang FC, Wang YF, Lirng JF, Wu HM, Pan LLH, Wang SJ, Chen SP. Impaired Glymphatic and Meningeal Lymphatic Functions in Patients with Chronic Migraine. Ann Neurol 2024; 95:583-595. [PMID: 38055324 DOI: 10.1002/ana.26842] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
OBJECTIVE This study was undertaken to investigate migraine glymphatic and meningeal lymphatic vessel (mLV) functions. METHODS Migraine patients and healthy controls (HCs) were prospectively recruited between 2020 and 2023. Diffusion tensor image analysis along the perivascular space (DTI-ALPS) index for glymphatics and dynamic contrast-enhanced magnetic resonance imaging parameters (time to peak [TTP]/enhancement integral [EI]/mean time to enhance [MTE]) for para-superior sagittal (paraSSS)-mLV or paratransverse sinus (paraTS)-mLV in episodic migraine (EM), chronic migraine (CM), and CM with and without medication-overuse headache (MOH) were analyzed. DTI-ALPS correlations with clinical parameters (migraine severity [numeric rating scale]/disability [Migraine Disability Assessment (MIDAS)]/bodily pain [Widespread Pain Index]/sleep quality [Pittsburgh Sleep Quality Index (PSQI)]) were examined. RESULTS In total, 175 subjects (112 migraine + 63 HCs) were investigated. DTI-ALPS values were lower in CM (median [interquartile range] = 0.64 [0.12]) than in EM (0.71 [0.13], p = 0.005) and HCs (0.71 [0.09], p = 0.004). CM with MOH (0.63 [0.07]) had lower DTI-ALPS values than CM without MOH (0.73 [0.12], p < 0.001). Furthermore, CM had longer TTP (paraSSS-mLV: 55.8 [12.9] vs 40.0 [7.6], p < 0.001; paraTS-mLV: 51.2 [8.1] vs 44.0 [3.3], p = 0.002), EI (paraSSS-mLV: 45.5 [42.0] vs 16.1 [9.2], p < 0.001), and MTE (paraSSS-mLV: 253.7 [6.7] vs 248.4 [13.8], p < 0.001; paraTS-mLV: 252.0 [6.2] vs 249.7 [1.2], p < 0.001) than EM patients. The MIDAS (p = 0.002) and PSQI (p = 0.002) were negatively correlated with DTI-ALPS index after Bonferroni corrections (p < q = 0.01). INTERPRETATION CM patients, particularly those with MOH, have glymphatic and meningeal lymphatic dysfunctions, which are highly clinically relevant and may implicate pathogenesis for migraine chronification. ANN NEUROL 2024;95:583-595.
Collapse
Grants
- MOHW 108-TDU-B-211-133001 Ministry of Health and Welfare, Taiwan
- MOHW107-TDU-B-211-123001 Ministry of Health and Welfare, Taiwan
- MOHW112-TDU-B-211-144001 Ministry of Health and Welfare, Taiwan
- N/A Professor Tsuen CHANG's Scholarship Program from Medical Scholarship Foundation In Memory Of Professor Albert Ly-Young Shen
- V109B-009 Taipei Veterans General Hospital
- V110C-102 Taipei Veterans General Hospital
- V111B-032 Taipei Veterans General Hospital
- V112B-007 Taipei Veterans General Hospital
- V112C-053 Taipei Veterans General Hospital
- V112C-059 Taipei Veterans General Hospital
- V112C-113 Taipei Veterans General Hospital
- V112D67-001-MY3-1 Taipei Veterans General Hospital
- V112D67-002-MY3-1 Taipei Veterans General Hospital
- V112E-004-1 Taipei Veterans General Hospital
- VGH-111-C-158 Taipei Veterans General Hospital
- The Brain Research Center, National Yang Ming Chiao Tung University from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan
- 110-2314-B-075-005 The National Science and Technology Council, Taiwan
- 110-2314-B-075-032 The National Science and Technology Council, Taiwan
- 110-2321-B-010-005- The National Science and Technology Council, Taiwan
- 110-2326-B-A49A-501-MY3 The National Science and Technology Council, Taiwan
- 111-2314-B-075 -086-MY3 The National Science and Technology Council, Taiwan
- 111-2314-B-075-025 -MY3 The National Science and Technology Council, Taiwan
- 111-2314-B-A49-069-MY3 The National Science and Technology Council, Taiwan
- 111-2321-B-A49-004 The National Science and Technology Council, Taiwan
- 111-2321-B-A49-011 The National Science and Technology Council, Taiwan
- 112-2314-B-075-066- The National Science and Technology Council, Taiwan
- 112-2314-B-A49-037 -MY3 The National Science and Technology Council, Taiwan
- 112-2321-B-075-007 The National Science and Technology Council, Taiwan
- NSTC 108-2314-B-010-022 -MY3 The National Science and Technology Council, Taiwan
- 109V1-5-2 Veterans General Hospitals and University System of Taiwan Joint Research Program
- 110-G1-5-2 Veterans General Hospitals and University System of Taiwan Joint Research Program
- VGHUST-112-G1-2-1 Veterans General Hospitals and University System of Taiwan Joint Research Program
- Vivian W. Yen Neurological Foundation
- CI-109-3 Yen Tjing Ling Medical Foundation
- CI-111-2 Yen Tjing Ling Medical Foundation
- CI-112-2 Yen Tjing Ling Medical Foundation
Collapse
Affiliation(s)
- Chia-Hung Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Feng-Chi Chang
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Feng Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiing-Feng Lirng
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiu-Mei Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Ling Hope Pan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shuu-Jiun Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Pin Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
10
|
Estiasari R, Tiksnadi A, Tunjungsari D, Maharani K, Aninditha T, Sofyan HR, Savitri I, Pangeran D, Jeremia I, Widhani A, Ariane A. Effectiveness of transcranial direct current stimulation (tDCS) as adjunctive treatment for chronic headache in adults with clinically stable systemic lupus erythematosus (SHADE): a randomised double-blind multiarm sham controlled clinical trial. BMJ Open 2023; 13:e076713. [PMID: 38101851 PMCID: PMC10729133 DOI: 10.1136/bmjopen-2023-076713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Chronic headache is a 'silent' neuropsychiatric systemic lupus erythematosus symptom with heterogeneous prevalence, potentially reaching 54.4%. It may reduce quality of life by increasing the likelihood of depression and sleep disturbance. While pharmacotherapy remains the first-line treatment, the current management is still challenging and needs other non-invasive modalities. An effective, tolerable and disease-specific treatment modality including transcranial direct current stimulation (tDCS) is considered to reduce the frequency of chronic headaches, including in SLE. Until recently, there was no standard protocol for tDCS in treating headaches. METHODS AND ANALYSIS SHADE is a single-centre randomised double-blind multiarm sham-controlled trial for adults with clinically stable SLE, chronic headaches and without history of traumatic brain injury, brain infection, stroke or brain tumour. Random allocation is conducted to 88 subjects into 3 treatment groups (administration at primary motor, primary sensory and dorsolateral prefrontal cortex) and control group in 1:1:1:1 ratio. The primary endpoint is reduced number of headache days after adjunctive tDCS. The secondary endpoints are reduced headache intensity, increased quality of life, increased sleep quality, decreased depression and reduced analgesics use. The outcome is measured monthly until 3-month postintervention using headache diary, 36-Item Short Form Survey, Chronic Headache Quality of Life Questionnaire, Pittsburgh Sleep Quality Index and Mini International Neuropsychiatry Interview version 10 (MINI ICD 10). Intention-to-treat analysis will be performed to determine the best tDCS electrode placement. ETHICS AND DISSEMINATION Ethical approval had been obtained from the local Institutional Review Board of Faculty of Medicine Universitas Indonesia. Results will be published through scientific relevant peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT05613582.
Collapse
Affiliation(s)
- Riwanti Estiasari
- Department of Neurology, Cipto Mangunkusumo National General Hospital, DKI Jakarta, Indonesia
- Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Amanda Tiksnadi
- Department of Neurology, Cipto Mangunkusumo National General Hospital, DKI Jakarta, Indonesia
- Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Dyah Tunjungsari
- Department of Neurology, Cipto Mangunkusumo National General Hospital, DKI Jakarta, Indonesia
- Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Kartika Maharani
- Department of Neurology, Cipto Mangunkusumo National General Hospital, DKI Jakarta, Indonesia
- Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Tiara Aninditha
- Department of Neurology, Cipto Mangunkusumo National General Hospital, DKI Jakarta, Indonesia
- Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Henry Riyanto Sofyan
- Department of Neurology, Cipto Mangunkusumo National General Hospital, DKI Jakarta, Indonesia
- Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Irma Savitri
- Department of Neurology, Cipto Mangunkusumo National General Hospital, DKI Jakarta, Indonesia
- Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - David Pangeran
- Department of Neurology, Cipto Mangunkusumo National General Hospital, DKI Jakarta, Indonesia
- Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Ivan Jeremia
- Department of Neurology, Cipto Mangunkusumo National General Hospital, DKI Jakarta, Indonesia
| | - Alvina Widhani
- Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Departement of Internal Medicine Allergy Immunology Division, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Anna Ariane
- Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Department of Internal Medicine Rheumatology Division, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| |
Collapse
|
11
|
Tanaka M, Szabó Á, Körtési T, Szok D, Tajti J, Vécsei L. From CGRP to PACAP, VIP, and Beyond: Unraveling the Next Chapters in Migraine Treatment. Cells 2023; 12:2649. [PMID: 37998384 PMCID: PMC10670698 DOI: 10.3390/cells12222649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Migraine is a neurovascular disorder that can be debilitating for individuals and society. Current research focuses on finding effective analgesics and management strategies for migraines by targeting specific receptors and neuropeptides. Nonetheless, newly approved calcitonin gene-related peptide (CGRP) monoclonal antibodies (mAbs) have a 50% responder rate ranging from 27 to 71.0%, whereas CGRP receptor inhibitors have a 50% responder rate ranging from 56 to 71%. To address the need for novel therapeutic targets, researchers are exploring the potential of another secretin family peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), as a ground-breaking treatment avenue for migraine. Preclinical models have revealed how PACAP affects the trigeminal system, which is implicated in headache disorders. Clinical studies have demonstrated the significance of PACAP in migraine pathophysiology; however, a few clinical trials remain inconclusive: the pituitary adenylate cyclase-activating peptide 1 receptor mAb, AMG 301 showed no benefit for migraine prevention, while the PACAP ligand mAb, Lu AG09222 significantly reduced the number of monthly migraine days over placebo in a phase 2 clinical trial. Meanwhile, another secretin family peptide vasoactive intestinal peptide (VIP) is gaining interest as a potential new target. In light of recent advances in PACAP research, we emphasize the potential of PACAP as a promising target for migraine treatment, highlighting the significance of exploring PACAP as a member of the antimigraine armamentarium, especially for patients who do not respond to or contraindicated to anti-CGRP therapies. By updating our knowledge of PACAP and its unique contribution to migraine pathophysiology, we can pave the way for reinforcing PACAP and other secretin peptides, including VIP, as a novel treatment option for migraines.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (Á.S.); (D.S.); (J.T.)
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Tamás Körtési
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31, H-6726 Szeged, Hungary;
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
| | - Délia Szok
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (Á.S.); (D.S.); (J.T.)
| | - János Tajti
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (Á.S.); (D.S.); (J.T.)
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (Á.S.); (D.S.); (J.T.)
| |
Collapse
|
12
|
Belin AC, Barloese MC. The genetics and chronobiology of cluster headache. Cephalalgia 2023; 43:3331024231208126. [PMID: 37851671 DOI: 10.1177/03331024231208126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
BACKGROUND/HYPOTHESIS Cluster headache displays uniquely rhythmic patterns in its attack manifestation. This strong chronobiological influence suggests that part of the pathophysiology of cluster headache is distinctly different from migraine and has prompted genetic investigations probing these systems. METHODS This is a narrative overview of the cluster headache chronobiological phenotype from the point of view of genetics covering existing knowledge, highlighting the specific challenges in cluster headache and suggesting novel research approaches to overcome these. RESULTS The chronobiological features of cluster headache are a hallmark of the disorder and while discrepancies between study results do exist, the main findings are highly reproducible across populations and time. Particular findings in subgroups indicate that the heritability of the disorder is linked to chronobiological systems. Meanwhile, genetic markers of circadian rhythm genes have been implicated in cluster headache, but with conflicting results. However, in two recently published genome wide association studies two of the identified four loci include genes with an involvement in circadian rhythm, MER proto-oncogene, tyrosine kinase and four and a half LIM domains 5. These findings strengthen the involvement of circadian rhythm in cluster headache pathophysiology. CONCLUSION/INTERPRETATION Studying chronobiology and genetics in cluster headache presents challenges unique to the disorder. Researchers are overcoming these challenges by pooling various data from different cohorts and performing meta-analyses providing novel insights into a classically enigmatic disorder. Further progress can likely be made by combining deep pheno- and genotyping.
Collapse
Affiliation(s)
- Andrea Carmine Belin
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mads Christian Barloese
- Department of Functional and Diagnostic Imaging, Hvidovre Hospital, Hvidovre, Denmark
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
13
|
Paulson OB, Schousboe A, Hultborn H. The history of Danish neuroscience. Eur J Neurosci 2023; 58:2893-2960. [PMID: 37477973 DOI: 10.1111/ejn.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 05/29/2023] [Indexed: 07/22/2023]
Abstract
The history of Danish neuroscience starts with an account of impressive contributions made at the 17th century. Thomas Bartholin was the first Danish neuroscientist, and his disciple Nicolaus Steno became internationally one of the most prominent neuroscientists in this period. From the start, Danish neuroscience was linked to clinical disciplines. This continued in the 19th and first half of the 20th centuries with new initiatives linking basic neuroscience to clinical neurology and psychiatry in the same scientific environment. Subsequently, from the middle of the 20th century, basic neuroscience was developing rapidly within the preclinical university sector. Clinical neuroscience continued and was even reinforced during this period with important translational research and a close co-operation between basic and clinical neuroscience. To distinguish 'history' from 'present time' is not easy, as many historical events continue in present time. Therefore, we decided to consider 'History' as new major scientific developments in Denmark, which were launched before the end of the 20th century. With this aim, scientists mentioned will have been born, with a few exceptions, no later than the early 1960s. However, we often refer to more recent publications in documenting the developments of initiatives launched before the end of the last century. In addition, several scientists have moved to Denmark after the beginning of the present century, and they certainly are contributing to the present status of Danish neuroscience-but, again, this is not the History of Danish neuroscience.
Collapse
Affiliation(s)
- Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, 9 Blegdamsvej, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Hultborn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Zhao J, Cen Y, Yang J, Liu C, Li Y, Ren Z, Xiao Y, He J, Luo J, Zhong Y, Luo W, Wu J, Luo J. Prevalence and correlates of sleep quality in the Chinese college students with migraine: a cross-sectional study. Front Behav Neurosci 2022; 16:1037103. [PMID: 36386779 PMCID: PMC9663843 DOI: 10.3389/fnbeh.2022.1037103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Background: Migraineurs are often plagued by sleep disorders. The university student population is high in number and is more vulnerable to migraines. However, no study has analyzed the sleep quality of students with migraine and related contributing factors. Objective: We used the Pittsburgh Sleep Quality Index (PSQI) scale to assess the sleep of migraine patients among college students and to explore the influencing factors of sleep quality. Methods: We performed primary screening for migraine using the ID-migraine screening, and further assessed headache characteristics, sleep, anxiety, depression, and mobile phone addiction in college students with positive primary screening, then diagnosed migraine according to the third edition of the International Classification of Headache Disorders (ICHD-3). Finally, we analyzed the factors influencing sleep quality using Binary Logistic Regression Analysis. Those with scores greater than 5 points on the PSQI scale were believed to have poor sleep quality. Results: The prevalence of migraine was 6.6%. A total of 545 migraineurs were eventually included in the analysis, the incidence of poor sleep quality was 64.04%. The three factors of experiencing aura (OR = 2.966, 95%CI = 1.756-5.010, P < 0.05), anxiety (OR = 2.778, 95%CI = 1.434-5.382, P < 0.05), and high Mobile phone addiction index (MPAI) score (OR = 1.025, 95%CI = 1.002-1.049, P < 0.05) contributed enormously to poor sleep quality. Moreover, the factors of aura symptoms (OR = 3.796, 95%CI = 2.041-7.058, P < 0.05), anxiety (OR = 3.146, 95%CI = 1.473-6.719, P < 0.05), and MPAI score (OR = 1.028, 95%CI = 1.002-1.054, P < 0.05) influenced the sleep quality of female migraineurs rather than male migraineurs. Conclusions: The incidence of poor sleep quality is high among university students with migraine. Aura symptoms, anxiety, and high MPAI score influence the sleep quality of migraineurs, especially females. The proposal of prevention and intervention measures is of great importance to the physical and mental health of students with migraine. Clinical Trial Registration: identifier ChiCTR1800014343.
Collapse
Affiliation(s)
- Jiayu Zhao
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yu Cen
- School of Psychiatry, North Sichuan Medical College, Nanchong, China
| | - Jiaming Yang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chang Liu
- School of Psychiatry, North Sichuan Medical College, Nanchong, China
| | - Yajie Li
- School of Psychiatry, North Sichuan Medical College, Nanchong, China
| | - Zhen Ren
- School of Psychiatry, North Sichuan Medical College, Nanchong, China
| | - Yun Xiao
- School of Psychiatry, North Sichuan Medical College, Nanchong, China
| | - JinLong He
- School of Psychiatry, North Sichuan Medical College, Nanchong, China
| | - Jing Luo
- School of Psychiatry, North Sichuan Medical College, Nanchong, China
| | - Yunling Zhong
- School of Psychiatry, North Sichuan Medical College, Nanchong, China
| | - Wenxiu Luo
- Mental Health Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing Wu
- Mental Health Center, Southwest Petroleum University, Nanchong, China
| | - Jiaming Luo
- School of Psychiatry, North Sichuan Medical College, Nanchong, China
- Mental Health Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
15
|
Torlak MS, Atıcı E, Cıbık M. Effects of Transcutaneous Occipital Nerve Stimulation and Instrument-Assisted Soft Tissue Mobilization in Chronic Migraine. J Manipulative Physiol Ther 2022. [DOI: 10.1016/j.jmpt.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Kopruszinski CM, Vizin R, Watanabe M, Martinez AL, de Souza LHM, Dodick DW, Porreca F, Navratilova E. Exploring the neurobiology of the premonitory phase of migraine preclinically - a role for hypothalamic kappa opioid receptors? J Headache Pain 2022; 23:126. [PMID: 36175828 PMCID: PMC9524131 DOI: 10.1186/s10194-022-01497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Background The migraine premonitory phase is characterized in part by increased thirst, urination and yawning. Imaging studies show that the hypothalamus is activated in the premonitory phase. Stress is a well know migraine initiation factor which was demonstrated to engage dynorphin/kappa opioid receptors (KOR) signaling in several brain regions, including the hypothalamus. This study proposes the exploration of the possible link between hypothalamic KOR and migraine premonitory symptoms in rodent models. Methods Rats were treated systemically with the KOR agonist U-69,593 followed by yawning and urination monitoring. Apomorphine, a dopamine D1/2 agonist, was used as a positive control for yawning behaviors. Urination and water consumption following systemic administration of U-69,593 was also assessed. To examine if KOR activation specifically in the hypothalamus can promote premonitory symptoms, AAV8-hSyn-DIO-hM4Di (Gi-DREADD)-mCherry viral vector was microinjected into the right arcuate nucleus (ARC) of female and male KORCRE or KORWT mice. Four weeks after the injection, clozapine N-oxide (CNO) was administered systemically followed by the assessment of urination, water consumption and tactile sensory response. Results Systemic administration of U-69,593 increased urination but did not produce yawning in rats. Systemic KOR agonist also increased urination in mice as well as water consumption. Cell specific Gi-DREADD activation (i.e., inhibition through Gi-coupled signaling) of KORCRE neurons in the ARC also increased water consumption and the total volume of urine in mice but did not affect tactile sensory responses. Conclusion Our studies in rodents identified the KOR in a hypothalamic region as a mechanism that promotes behaviors consistent with clinically-observed premonitory symptoms of migraine, including increased thirst and urination but not yawning. Importantly, these behaviors occurred in the absence of pain responses, consistent with the emergence of the premonitory phase before the headache phase. Early intervention for preventive treatment even before the headache phase may be achievable by targeting the hypothalamic KOR. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01497-7.
Collapse
Affiliation(s)
| | - Robson Vizin
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Moe Watanabe
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Ashley L Martinez
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | | | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Collaborative Research, Mayo Clinic, Scottsdale, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA. .,Department of Collaborative Research, Mayo Clinic, Scottsdale, USA.
| |
Collapse
|
17
|
An YC, Tsai CL, Liang CS, Lin YK, Lin GY, Tsai CK, Liu Y, Chen SJ, Tsai SH, Hung KS, Yang FC. Identification of Novel Genetic Variants Associated with Insomnia and Migraine Comorbidity. Nat Sci Sleep 2022; 14:1075-1087. [PMID: 35698589 PMCID: PMC9188338 DOI: 10.2147/nss.s365988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Although insomnia and migraine are often comorbid, the genetic association between insomnia and migraine remains unclear. This study aimed to identify susceptibility loci associated with insomnia and migraine comorbidity. Patients and Methods We performed a genome-wide association study (GWAS) involving 1063 clinical outpatients at a tertiary hospital in Taiwan. Migraineurs with and without insomnia were genotyped using the Affymetrix Axiom Genome-Wide TWB 2.0. We performed association analyses for the entire cohort and stratified patients into the following subgroups: episodic migraine (EM), chronic migraine (CM), migraine with aura (MA), and migraine without aura (MoA). Potential correlations between SNPs and clinical indices in migraine patients with insomnia were examined using multivariate regression analysis. Results The SNP rs1178326 in the gene HDAC9 was significantly associated with insomnia. In the EM, CM, MA, and MoA subgroups, we identified 30 additional susceptibility loci. Multivariate regression analysis showed that SNP rs1178326 also correlated with higher migraine frequency and the Migraine Disability Assessment (MIDAS) questionnaire score. Finally, two SNPs that had been previously reported in a major insomnia GWAS were also significant in our migraineurs, showing a concordant effect. Conclusion In this GWAS, we identified several novel loci associated with insomnia in migraineurs in a Han Chinese population in Taiwan. These results provide insights into the possible genetic basis of insomnia and migraine comorbidity.
Collapse
Affiliation(s)
- Yu-Chin An
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yu-Kai Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Guan-Yu Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yi Liu
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Sy-Jou Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Kuo-Sheng Hung
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
18
|
Damato AR, Herzog ED. Circadian clock synchrony and chronotherapy opportunities in cancer treatment. Semin Cell Dev Biol 2022; 126:27-36. [PMID: 34362656 PMCID: PMC8810901 DOI: 10.1016/j.semcdb.2021.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/09/2021] [Accepted: 07/27/2021] [Indexed: 01/29/2023]
Abstract
Cell-autonomous, tissue-specific circadian rhythms in gene expression and cellular processes have been observed throughout the human body. Disruption of daily rhythms by mistimed exposure to light, food intake, or genetic mutation has been linked to cancer development. Some medications are also more effective at certain times of day. However, a limited number of clinical studies have examined daily rhythms in the patient or drug timing as treatment strategies. This review highlights advances and challenges in cancer biology as a function of time of day. Recent evidence for daily rhythms and their entrainment in tumors indicate that personalized medicine should include understanding and accounting for daily rhythms in cancer patients.
Collapse
Affiliation(s)
- Anna R Damato
- Department of Biology, Washington University, Box 1137, St. Louis, MO 63130, USA
| | - Erik D Herzog
- Department of Biology, Washington University, Box 1137, St. Louis, MO 63130, USA.
| |
Collapse
|
19
|
Pellitteri G, Pez S, Nilo A, Surcinelli A, Gigli GL, Lettieri C, Valente M. Erenumab Impact on Sleep Assessed With Questionnaires and Home-Polysomnography in Patients With Migraine: The ERESON Study. Front Neurol 2022; 13:869677. [PMID: 35645951 PMCID: PMC9136084 DOI: 10.3389/fneur.2022.869677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Migraine and sleep share a complex and unclear relationship. Poor sleep may trigger migraine attacks; migraine, in turn, is frequently associated with sleep disorders. Few previous studies used questionnaires to assess sleep changes in patients who were treated with migraine-preventive medications (MPMs). More extensive polysomnography (PSG)-based studies for this purpose were not available. Objective To investigate possible sleep changes in patients with migraine treated with erenumab, using validated sleep questionnaires and home-PSG. Methods This observational, prospective, open-label pilot study was conducted at the Clinical Neurology Unit Headache Center of Udine University Hospital from 2020 to 2021. Patients were treated with erenumab as monotherapy or add-on treatment for migraine prevention. Sleep changes were evaluated with questionnaires and polysomnographic recordings at baseline, after 3 and 12 months of treatment. Erenumab efficacy and safety in migraine prophylaxis were also investigated. Results Twenty-nine patients completed 3 months of follow-up, whereas 15 patients completed 12 months. We found a weak trend of improvement in daytime somnolence after 3 months of treatment, with stronger results after 12 months (median Epworth Sleepiness Scale (ESS) score from 6.0 to 4.0, p = 0.015); a significant improvement in subjective sleep quality (median Pittsburgh Sleep Quality Index (PSQI) total score from 7 to 5; p = 0.001) was also observed. Home-PSG showed a significant increase in objective sleep efficiency (SE), both after 3 (from 88.1 to 91.0, p = 0.006) and 12 months (from 87.1 to 91.0, p = 0.006) of treatment. In addition, our data confirmed erenumab effectiveness and safety in migraine prevention. Conclusion Our study demonstrated an improvement in both subjective and objective sleep quality in patients treated with a migraine-preventive therapy. Erenumab, in particular, does not cross the blood-brain barrier (BBB), thus a direct effect on sleep is unlikely. Future studies are needed to better understand the mutual influence between migraine and sleep disorders.
Collapse
Affiliation(s)
- Gaia Pellitteri
- Clinical Neurology Unit, Santa Maria della Misericordia University Hospital, Udine, Italy
- *Correspondence: Gaia Pellitteri
| | - Sara Pez
- Clinical Neurology Unit, Santa Maria della Misericordia University Hospital, Udine, Italy
- Department of Medical Area (DAME), University of Udine, Udine, Italy
- Sara Pez
| | - Annacarmen Nilo
- Clinical Neurology Unit, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Andrea Surcinelli
- Clinical Neurology Unit, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Gian Luigi Gigli
- Clinical Neurology Unit, Santa Maria della Misericordia University Hospital, Udine, Italy
- Department of Medical Area (DAME), University of Udine, Udine, Italy
| | - Christian Lettieri
- Neurology Unit, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Mariarosaria Valente
- Clinical Neurology Unit, Santa Maria della Misericordia University Hospital, Udine, Italy
- Department of Medical Area (DAME), University of Udine, Udine, Italy
| |
Collapse
|
20
|
Sullivan DP. Furthering the understanding of behavioral aspects of sleep and headaches: another piece of the puzzle. Sleep 2022; 45:zsac012. [PMID: 35554585 DOI: 10.1093/sleep/zsac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Affiliation(s)
- Daniel P Sullivan
- School of Applied Psychology and Menzies Health Institute Queensland, Griffith University, Mount Gravatt, QLD, Australia
- Faculty of Medicine and Child Health Research Centre, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
21
|
Sokolov AY, Osipchuk AV, Skiba IB, Amelin AV. The Role of Pituitary Adenylate Cyclase-Activating Polypeptide and Vasoactive Intestinal Peptide in Migraine Pathogenesis. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Examination of pituitary adenylate cyclase-activating polypeptide in Parkinson’s disease focusing on correlations with motor symptoms. GeroScience 2022; 44:785-803. [PMID: 35220508 PMCID: PMC9135934 DOI: 10.1007/s11357-022-00530-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/15/2022] [Indexed: 12/16/2022] Open
Abstract
The neuroprotective effects of pituitary adenylate cyclase-activating polypeptide (PACAP) have been shown in numerous in vitro and in vivo models of Parkinson’s disease (PD) supporting the theory that PACAP could have an important role in the pathomechanism of the disorder affecting mostly older patients. Earlier studies found changes in PACAP levels in neurological disorders; therefore, the aim of our study was to examine PACAP in plasma samples of PD patients. Peptide levels were measured with ELISA and correlated with clinical parameters, age, stage of the disorder based on the Hoehn and Yahr (HY) scale, subtype of the disease, treatment, and specific scores measuring motor and non-motor symptoms, such as movement disorder society-unified Parkinson’s disease rating scale (MDS-UPDRS), Epworth sleepiness scale (ESS), Parkinson’s disease sleep scale (PDSS-2), and Beck depression inventory (BDI). Our results showed significantly decreased PACAP levels in PD patients without deep brain stimulation (DBS) therapy and in akinetic-rigid subtype; additionally we also observed a further decrease in the HY stage 3 and 4. Elevated PACAP levels were found in patients with DBS. There were no significant correlations between PACAP level with MDS-UPDRS, type of pharmacological treatment, PDSS-2 sleepiness, or depression (BDI) scales, but we found increased PACAP level in patients with more severe sleepiness problems based on the ESS scale. Based on these results, we suggest that following the alterations of PACAP with other frequently used clinical biomarkers in PD patients might improve strategic planning of further therapeutic interventions and help to provide a clearer prognosis regarding the future perspective of the disease.
Collapse
|
23
|
PER Gene Family Polymorphisms in Relation to Cluster Headache and Circadian Rhythm in Sweden. Brain Sci 2021; 11:brainsci11081108. [PMID: 34439727 PMCID: PMC8393578 DOI: 10.3390/brainsci11081108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
The trigeminal autonomic cephalalgia, cluster headache (CH), is one of the most painful disorders known to man. One of the disorder's most striking features is the reported diurnal rhythmicity of the attacks. For a majority of patients, the headache attacks occur at approximately the same time every day. Genetic variants of genes involved in the circadian rhythm such as Period Circadian Regulator 1, 2, and 3 (PER1, 2 and 3) are hypothesized to have an effect on the rhythmicity of the attacks. Six PER1, 2 and 3 genetic markers; the indel rs57875989 and five single nucleotide polymorphisms (SNPs), rs2735611, rs2304672, rs934945, rs10462020, and rs228697, were genotyped, using TaqMan® or regular polymerase chain reaction (PCR), in a Swedish CH case control material. Logistic regression showed no association between CH and any of the six genetic variants; rs57875989, p = 0.523; rs2735611, p = 0.416; rs2304672, p = 0.732; rs934945, p = 0.907; rs10462020, p = 0.726; and rs228697, p = 0.717. Furthermore, no difference in allele frequency was found for patients reporting diurnal rhythmicity of attacks, nor were any of the variants linked to diurnal preference. The results of this study indicate no involvement of these PER genetic variants in CH or diurnal phenotype in Sweden.
Collapse
|
24
|
Stankewitz A, Keidel L, Rehm M, Irving S, Kaczmarz S, Preibisch C, Witkovsky V, Zimmer C, Schulz E, Toelle TR. Migraine attacks as a result of hypothalamic loss of control. NEUROIMAGE-CLINICAL 2021; 32:102784. [PMID: 34425551 PMCID: PMC8379646 DOI: 10.1016/j.nicl.2021.102784] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022]
Abstract
Hypothalamo-limbic connectivity reflects the cyclic nature of migraine. Hypothalamo-limbic connectivity is largest just before the attack. Hypothalamo-limbic connectivity is collapsing during the attack. Limbic perfusion is increasing and has a maximum during the attack. The disrupted connectivity allows high limbic perfusion, resulting in migraine attack.
Migraine is a complex neurological disorder affecting approximately 12% of the population. The pathophysiology is not yet fully understood, however the clinical features of the disease, such as the cyclic behaviour of attacks and vegetative symptoms, suggest a prominent role of the hypothalamus. Previous research has observed neuronal alterations at different time points during the migraine interval, specifically just before the headache is initiated. We therefore aimed to assess the trajectory of migraineurs’ brain activity over an entire migraine cycle. Using functional magnetic resonance imaging (fMRI) with pseudo-continuous arterial spin labelling (ASL), we designed a longitudinal intra-individual study to detect the rhythmicity of (1) the cerebral perfusion and (2) the hypothalamic connectivity over an entire migraine cycle. Twelve episodic migraine patients were examined in 82 sessions during spontaneous headache attacks with follow-up recordings towards the next attack. We detected cyclic changes of brain perfusion in the limbic circuit (insula and nucleus accumbens), with the highest perfusion during the headache attack. In addition, we found an increase of hypothalamic connectivity to the limbic system over the interictal interval towards the attack, then collapsing during the headache phase. The present data provide strong evidence for the predominant role of the hypothalamus in generating migraine attacks. Due to a genetically-determined cortical hyperexcitability, migraineurs are most likely characterised by an increased susceptibility of limbic neurons to the known migraine trigger. The hypothalamus as a metronome of internal processes is suggested to control these limbic circuits: migraine attacks may occur as a result of the hypothalamus losing control over the limbic system. Repetitive psychosocial stress, one of the leading trigger factors reported by patients, might make the limbic system even more vulnerable and lead to a premature triggering of a migraine attack. Potential therapeutic interventions are therefore suggested to strengthen limbic circuits with dedicated medication or psychological approaches.
Collapse
Affiliation(s)
- Anne Stankewitz
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Leonie Keidel
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Department of Ophthalmology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mathias Rehm
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephanie Irving
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephan Kaczmarz
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christine Preibisch
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Viktor Witkovsky
- Department of Theoretical Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Enrico Schulz
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; Department of Medical Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Thomas R Toelle
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
25
|
Abstract
Sleep is a complex brain state with fundamental relevance for cognitive functions, synaptic plasticity, brain resilience, and autonomic balance. Sleep pathologies may interfere with cerebral circuit organization, leading to negative consequences and favoring the development of neurologic disorders. Conversely, the latter can interfere with sleep functions. Accordingly, assessment of sleep quality is always recommended in the diagnosis of patients with neurologic disorders and during neurorehabilitation programs. This review investigates the complex interplay between sleep and brain pathologies, focusing on diseases in which the association with sleep disturbances is commonly overlooked and whereby major benefits may derive from their proper management.
Collapse
Affiliation(s)
- Carlotta Mutti
- Sleep Disorders Center, Department of Medicine and Surgery, Neurology Unit, University of Parma, Via Gramsci 14, Parma 43126, Italy
| | - Francesco Rausa
- Sleep Disorders Center, Department of Medicine and Surgery, Neurology Unit, University of Parma, Via Gramsci 14, Parma 43126, Italy
| | - Liborio Parrino
- Sleep Disorders Center, Department of Medicine and Surgery, Neurology Unit, University of Parma, Via Gramsci 14, Parma 43126, Italy.
| |
Collapse
|
26
|
Petit JM, Eren-Koçak E, Karatas H, Magistretti P, Dalkara T. Brain glycogen metabolism: A possible link between sleep disturbances, headache and depression. Sleep Med Rev 2021; 59:101449. [PMID: 33618186 DOI: 10.1016/j.smrv.2021.101449] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/27/2022]
Abstract
The functions of sleep and its links with neuropsychiatric diseases have long been questioned. Among the numerous hypotheses on sleep function, early studies proposed that sleep helps to replenish glycogen stores consumed during waking. Later studies found increased brain glycogen after sleep deprivation, leading to "glycogenetic" hypothesis, which states that there is a parallel increase in synthesis and utilization of glycogen during wakefulness, whereas decrease in the excitatory transmission creates an imbalance causing accumulation of glycogen during sleep. Glycogen is a vital energy reservoir to match the synaptic demand particularly for re-uptake of potassium and glutamate during intense glutamatergic transmission. Therefore, sleep deprivation-induced transcriptional changes may trigger migraine by reducing glycogen availability, which slows clearance of extracellular potassium and glutamate, hence, creates susceptibility to cortical spreading depolarization, the electrophysiological correlate of migraine aura. Interestingly, chronic stress accompanied by increased glucocorticoid levels and locus coeruleus activity and leading to mood disorders in which sleep disturbances are prevalent, also affects brain glycogen turnover via glucocorticoids, noradrenaline, serotonin and adenosine. These observations altogether suggest that inadequate astrocytic glycogen turnover may be one of the mechanisms linking migraine, mood disorders and sleep.
Collapse
Affiliation(s)
- J-M Petit
- Lausanne University Hospital, Center for Psychiatric Neuroscience, Prilly, Switzerland.
| | - E Eren-Koçak
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, and Faculty of Medicine, Department of Psychiatry, Ankara, Turkey.
| | - H Karatas
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey.
| | - P Magistretti
- King Abdullah University of Science and Technology, Saudi Arabia.
| | - T Dalkara
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey.
| |
Collapse
|
27
|
Barloese M. Current Understanding of the Chronobiology of Cluster Headache and the Role of Sleep in Its Management. Nat Sci Sleep 2021; 13:153-162. [PMID: 33603525 PMCID: PMC7886233 DOI: 10.2147/nss.s278088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cluster headache is uniquely rhythmic in its occurrence both diurnally and annually. This has implications for the clinical approach to the patient but also for our understanding of the role of central structures in its pathological basis. Many intrinsic and extrinsic factors seem to influence CH rhythmicity, including genetics. The proclivity for attacks to occur at night and the possible association with particular sleep phenomena, including sleep apnea, have motivated a number of studies which has improved our understanding but many questions remain unanswered. The sleep-headache interaction seems to be bidirectional and possibly both direct and indirect. The latter could involve more disperse networks of homeostatic regulation, which may better encompass recent observations. Treatment of the headache patient with concurrent sleep problems can be particularly challenging, especially considering side-effects and interactions of commonly used medications. While current treatment guidelines do not incorporate chronotherapeutic thinking, some evidence may suggest that application of such principles on an individual level may be beneficial.
Collapse
Affiliation(s)
- Mads Barloese
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging, Hvidovre Hospital, Hvidovre, Denmark.,Department of Neurology, Danish Headache Center, Rigshospitalet-Glostrup, Glostrup, Denmark
| |
Collapse
|
28
|
Pergolizzi JV, Magnusson P, LeQuang JA, Wollmuth C, Taylor R, Breve F. Exploring the Connection Between Sleep and Cluster Headache: A Narrative Review. Pain Ther 2020; 9:359-371. [PMID: 32382871 PMCID: PMC7648820 DOI: 10.1007/s40122-020-00172-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Cluster headache is a rare form of headache associated with sleep and even speculated to be a manifestation of a sleep disorder rather than a primary headache. Cluster headache exhibits both circadian and circannual rhythmicity. While attacks often occur during sleep, the implication that cluster headaches might be involved with rapid eye movement (REM) sleep phases has neither been fully established nor refuted. The regulatory mechanisms governing sleep including hypothalamic activity and the autonomic nervous system response may play a role. Hypothalamic activation has been observed in cluster headache patients during positron emission tomography testing, but only during attacks. While sleep apnea is associated with morning headaches in general, the link between sleep-disordered respiration and cluster headache remains elusive. Hypoarousal during sleep and periods of hypoxia are associated with cluster headache, the latter likely involving inflammatory processes rather than apnea. Further study is needed, as cluster headaches represent a serious primary cephalgia that is incompletely understood.
Collapse
Affiliation(s)
| | - Peter Magnusson
- Cardiology Research Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Research and Development, Uppsala University/Region Gävleborg, Gävle, Sweden
| | | | | | | | - Frank Breve
- Department of Pharmacy Practice, School of Pharmacy, Temple University, Philadelphia, PA, USA
| |
Collapse
|
29
|
Ashina M, Doležil D, Bonner JH, Zhou L, Klatt J, Picard H, Mikol DD. A phase 2, randomized, double-blind, placebo-controlled trial of AMG 301, a pituitary adenylate cyclase-activating polypeptide PAC1 receptor monoclonal antibody for migraine prevention. Cephalalgia 2020; 41:33-44. [PMID: 33231489 PMCID: PMC7786389 DOI: 10.1177/0333102420970889] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Objective To assess the safety and efficacy of AMG 301, an inhibitor of the pituitary adenylate cyclase-activating polypeptide (PACAP)-1 (PAC1) receptor, for prevention of migraine. Methods In a double-blind trial, patients were randomized 4:3:3 to placebo, AMG 301 210 mg every 4 weeks, or AMG 301 420 mg every 2 weeks for 12 weeks. Effect on monthly migraine days and other secondary measures were assessed over weeks 9–12. Safety and tolerability were assessed. Results Of 343 randomized patients (mean age, 41.8–42.5 years), the majority were women (85.4–90.4%), white (94.1–96.2%), and had episodic migraine (62.5–67.9%). A total of 305 patients completed treatment (placebo, n = 124; AMG 301 210 mg, n = 94; AMG 301 420 mg, n = 87). Least squares mean reduction at week 12 in monthly migraine days from baseline was −2.5 (0.4) days for placebo and −2.2 (0.5) days for both AMG 301 treatment groups. No difference between AMG 301 and placebo on any measure of efficacy was observed; mean (95% confidence interval) treatment difference versus placebo for monthly migraine days for AMG 301 210 mg, 0.3 (−0.9 to 1.4); AMG 301 420 mg, 0.3 (−0.9 to 1.4). The incidence of adverse events was similar across groups. Conclusion AMG 301 offered no benefit over placebo for migraine prevention; further studies may be necessary to fully understand the role of PACAP isoforms and its receptors in migraine pathophysiology. Study Registration ClinicalTrials.gov: NCT03238781
Collapse
Affiliation(s)
- Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Doležil
- Prague Headache Center, DADO MEDICAL sro, Prague, Czech Republic
| | | | | | - Jan Klatt
- Novartis Pharma AG, Basel, Switzerland
| | | | | |
Collapse
|
30
|
Barloese M, Chitgar M, Hannibal J, Møller S. Pituitary adenylate cyclase-activating peptide: Potential roles in the pathophysiology and complications of cirrhosis. Liver Int 2020; 40:2578-2589. [PMID: 32654367 DOI: 10.1111/liv.14602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 12/20/2022]
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a ubiquitous neuropeptide with diverse functions throughout the organism. Most abundantly investigated for its role in several neurological disorders as well as in circadian rhythms, other fields of medicine, including cardiology, have recently shown interest in the role of PACAP and its potential as a biomarker. Timely diagnosis and treatment of cirrhosis and its complications is a considerable challenge for health services world-wide and development of new areas of research is warranted. Direct and indirect evidence exists of PACAP involvement in the cascade of pathological events and processes ultimately leading to cirrhosis and its complications, but its exact role remains to be determined. Studies have documented PACAP involvement in immune function, metabolism, local vasoconstriction and dilatation and systemic vascular decompensation and there is ongoing research of a possible role in liver reperfusion injury. Considering these reports, PACAP could theoretically exude influence on the disease course of cirrhosis through the hypothalamus-pituitary-adrenal axis, chronic inflammation, fibrogenesis, vasodilation and reduced vascular resistance. The paucity of literature on the specific topic of PACAP and cirrhosis reflects complex mechanisms and difficulty in accurate measurements and sample taking. This does not detract from the need to further characterize and elucidate the role PACAP plays in the underdiagnosed and undertreated condition of cirrhosis.
Collapse
Affiliation(s)
- Mads Barloese
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Faculty of Health Sciences Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Mohammadnavid Chitgar
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Faculty of Health Sciences Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Søren Møller
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Faculty of Health Sciences Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| |
Collapse
|
31
|
Tiseo C, Vacca A, Felbush A, Filimonova T, Gai A, Glazyrina T, Hubalek IA, Marchenko Y, Overeem LH, Piroso S, Tkachev A, Martelletti P, Sacco S. Migraine and sleep disorders: a systematic review. J Headache Pain 2020; 21:126. [PMID: 33109076 PMCID: PMC7590682 DOI: 10.1186/s10194-020-01192-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Migraine and sleep disorders are common and often burdensome chronic conditions with a high prevalence in the general population, and with considerable socio-economic impact and costs.The existence of a relationship between migraine and sleep disorders has been recognized from centuries by clinicians and epidemiological studies. Nevertheless, the exact nature of this association, the underlying mechanisms and interactions are complex and not completely understood. Recent biochemical and functional imaging studies identified central nervous system structures and neurotransmitters involved in the pathophysiology of migraine and also important for the regulation of normal sleep architecture, suggesting a possible causative role, in the pathogenesis of both disorders, of a dysregulation in these common nervous system pathways.This systematic review summarizes the existing data on migraine and sleep disorders with the aim to evaluate the existence of a causal relationship and to assess the presence of influencing factors. The identification of specific sleep disorders associated with migraine should induce clinicians to systematically assess their presence in migraine patients and to adopt combined treatment strategies.
Collapse
Affiliation(s)
- Cindy Tiseo
- Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, L'Aquila, Italy
- Regional Referral Headache Centre, S.S. Filippo e Nicola Hospital, Avezzano, L'Aquila, Italy
| | - Alessandro Vacca
- Headache Center, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Anton Felbush
- Pain Treatment Center, OOO "Vertebra", Samara City, Russia
| | - Tamara Filimonova
- Federal State Budget Educational Institution of Higher Education "Academician Ye. A. Vagner Perm State Medical University" of the Ministry of Healthcare of the Russian Federation, Perm, Russia
| | - Annalisa Gai
- Headache Center, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | | | - Irina Anna Hubalek
- Department of Neurology, Headache Center, Charité University Medicine Berlin, Berlin, Germany
| | - Yelena Marchenko
- V. A. Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Lucas Hendrik Overeem
- Charité - Universitätsmedizin Berlin Charité Centrum Neurologie, Neurochirurgie und Psychiatrie CC, Berlin, Germany
| | - Serena Piroso
- Department of Human Neurosciences, Sapienza University of Rome, Roma, Italy
| | - Alexander Tkachev
- Department of Neurology, Neurosurgery, medical genetics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Roma, Italy
- Regional Referral Headache Centre, Sant'Andrea Hospital, Rome, Italy
| | - Simona Sacco
- Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, L'Aquila, Italy.
- Regional Referral Headache Centre, S.S. Filippo e Nicola Hospital, Avezzano, L'Aquila, Italy.
| |
Collapse
|
32
|
Vecchierini MF, Kilic-Huck U, Quera-Salva MA. Melatonin (MEL) and its use in neurological diseases and insomnia: Recommendations of the French Medical and Research Sleep Society (SFRMS). Rev Neurol (Paris) 2020; 177:245-259. [PMID: 32921425 DOI: 10.1016/j.neurol.2020.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/29/2022]
Abstract
The French Medicine and Research Sleep Society had organized a consensus conference about sleep/wake circadian rhythms and their disorders. During this conference a subgroup of 11 sleep doctors/researchers looked specifically at the use of MEL in different pathologies. This article gives a summary of the main results of MEL therapy in some neurological diseases and insomnia approved by this consensus group. Exogenous MEL, which crosses the blood-brain barrier, has been used as a treatment in its two available forms: an immediate release form that principally shows a chronobiotic action and a long release form that mimics the physiological MEL secretion rhythm and is used to replace reduced physiological secretion. MEL secretion decreases frequently with age, mostly in elderly insomniacs and dementia patients. Results of level A studies show that MEL therapy, used as an add-on treatment, has beneficial effects in mild cognitive impairment (MCI) and Alzheimer patients with sleep disorders in improving sleep quality and in regulating the sleep/wake rhythm. MEL has to be prescribed as early as possible and for a long period, at a dose of 2 to 5 or 10 mg. It may have a beneficial effect on cognitive function in MCI but shows no effect in moderate to severe Alzheimer's disease. It should be emphasized that there are no serious side effects with MEL treatment. In these diseases, light therapy used 12 hours before melatonin treatment has a positive synergic effect. In REM sleep behavior disorder, immediate release MEL should be prescribed first as its side effect profile is much better than clonazepam shortly before bedtime. MEL has a good efficacy on clinical symptoms and PSG REM sleep without atonia episodes and is well tolerated. In Parkinson disease with sleep disorders and without REM sleep behavior disorder, MEL seems to improve subjective sleep quality but no conclusions can be drawn. There is insufficient scientific proof for using MEL as a prophylactic treatment in primary headache, migraine and cluster headache. In epileptic patients, MEL can be safely used to regulate the sleep/wake rhythm and to improve insomnia but more randomized controlled studies are necessary. In primary or no-comorbid insomnia, only a 2 mg dose of slow release MEL, 1 to 2 hours before bedtime, over a period of 3 to 12 weeks, is recommended. It decreases sleep onset latency, improves quality of sleep, morning alertness and quality of life without serious side effects and without withdrawal symptoms.
Collapse
Affiliation(s)
- M F Vecchierini
- Sleep Center, Hôtel-Dieu, Paris-Descartes University, 1, place du parvis Jean-Paul II, 75004 Paris, France.
| | - U Kilic-Huck
- Sleep Disorders Center Hôpitaux Universitaires de Strasbourg: Institut des neurosciences cellulaires et intégratives, CNRS-UPR 3212, 5, rue Blaise-Pascal, 67000 Strasbourg, France
| | - M A Quera-Salva
- Sleep disorders Unit, Departement of Physiology, Hôpital Raymond-Poincaré, université de Saclay, EA 4047 AP-HP Saclay University, 92380 Garches, France
| | | |
Collapse
|
33
|
Joshi S. Peptides, MAbs, Molecules, Mechanisms, and More: Taking a Stab at Cluster Headache. Headache 2020; 60:1871-1877. [DOI: 10.1111/head.13909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Shivang Joshi
- Dent Neurologic Institute Amherst NY USA
- University of Buffalo School of Pharmacy Buffalo NY USA
| |
Collapse
|
34
|
Biran J, Gliksberg M, Shirat I, Swaminathan A, Levitas-Djerbi T, Appelbaum L, Levkowitz G. Splice-specific deficiency of the PTSD-associated gene PAC1 leads to a paradoxical age-dependent stress behavior. Sci Rep 2020; 10:9559. [PMID: 32533011 PMCID: PMC7292827 DOI: 10.1038/s41598-020-66447-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023] Open
Abstract
The pituitary adenylate cyclase-activating polypeptide receptor (PAC1, also known as ADCYAP1R1) is associated with post-traumatic stress disorder and modulation of stress response in general. Alternative splicing of PAC1 results in multiple gene products, which differ in their mode of signalling and tissue distribution. However, the roles of distinct splice variants in the regulation of stress behavior is poorly understood. Alternative splicing of a short exon, which is known as the "hop cassette", occurs during brain development and in response to stressful challenges. To examine the function of this variant, we generated a splice-specific zebrafish mutant lacking the hop cassette, which we designated 'hopless'. We show that hopless mutant larvae display increased anxiety-like behavior, including reduced dark exploration and impaired habituation to dark exposure. Conversely, adult hopless mutants displayed superior ability to rebound from an acute stressor, as they exhibited reduced anxiety-like responses to an ensuing novelty stress. We propose that the developmental loss of a specific PAC1 splice variant mimics prolonged mild stress exposure, which in the long term, predisposes the organism's stress response towards a resilient phenotype. Our study presents a unique genetic model demonstrating how early-life state of anxiety paradoxically correlates with reduced stress susceptibility in adulthood.
Collapse
Affiliation(s)
- Jakob Biran
- Department of Poultry and Aquaculture, Agricultural Research Organization, Rishon, Letziyon, 7528809, Israel.
| | - Michael Gliksberg
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel
| | - Ido Shirat
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel
| | - Amrutha Swaminathan
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel
| | - Talia Levitas-Djerbi
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Gil Levkowitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel.
| |
Collapse
|
35
|
Biran J, Gliksberg M, Shirat I, Swaminathan A, Levitas-Djerbi T, Appelbaum L, Levkowitz G. Splice-specific deficiency of the PTSD-associated gene PAC1 leads to a paradoxical age-dependent stress behavior. Sci Rep 2020. [PMID: 32533011 DOI: 10.1038/s41598-020-66447-2.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The pituitary adenylate cyclase-activating polypeptide receptor (PAC1, also known as ADCYAP1R1) is associated with post-traumatic stress disorder and modulation of stress response in general. Alternative splicing of PAC1 results in multiple gene products, which differ in their mode of signalling and tissue distribution. However, the roles of distinct splice variants in the regulation of stress behavior is poorly understood. Alternative splicing of a short exon, which is known as the "hop cassette", occurs during brain development and in response to stressful challenges. To examine the function of this variant, we generated a splice-specific zebrafish mutant lacking the hop cassette, which we designated 'hopless'. We show that hopless mutant larvae display increased anxiety-like behavior, including reduced dark exploration and impaired habituation to dark exposure. Conversely, adult hopless mutants displayed superior ability to rebound from an acute stressor, as they exhibited reduced anxiety-like responses to an ensuing novelty stress. We propose that the developmental loss of a specific PAC1 splice variant mimics prolonged mild stress exposure, which in the long term, predisposes the organism's stress response towards a resilient phenotype. Our study presents a unique genetic model demonstrating how early-life state of anxiety paradoxically correlates with reduced stress susceptibility in adulthood.
Collapse
Affiliation(s)
- Jakob Biran
- Department of Poultry and Aquaculture, Agricultural Research Organization, Rishon, Letziyon, 7528809, Israel.
| | - Michael Gliksberg
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel
| | - Ido Shirat
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel
| | - Amrutha Swaminathan
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel
| | - Talia Levitas-Djerbi
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Gil Levkowitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel.
| |
Collapse
|
36
|
Abstract
INTRODUCTION The involvement of the calcitonin gene-related peptide (CGRP) pathway in primary headache disorders, especially migraine, had led to recent success in the development of new migraine therapies. The CGRP pathway also plays a role in the pathophysiology of cluster headache, so CGRP pathway monoclonal antibodies have been studied in the prevention of cluster headache attacks. AREAS COVERED This review will outline the trials of fremanezumab and galcanezumab, the two CGRP pathway monoclonal antibodies that have undergone trials in cluster headache prevention. This review will highlight key efficacy and safety outcomes from the trials. EXPERT OPINION Galcanezumab was shown to be efficacious, reducing the frequency of attacks in episodic cluster headache, while fremanezumab failed its primary endpoint in episodic cluster headache. Both fremanezumab and galcanezumab trials in chronic cluster headache were terminated after futility analysis predicting the failure of both trials to fulfil their primary endpoint. The role of CGRP in cluster headache supports ongoing trials of the remaining CGRP pathway monoclonal antibodies and gepants for preventive and acute treatment. A broad view would include targeting neuropeptides involved in parasympathetic signaling in cluster headache, such as pituitary adenylate cyclase-activating peptide (PACAP); such targets warrant exploration in the search of new treatments.
Collapse
Affiliation(s)
- Calvin Chan
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London
| | - Peter J Goadsby
- NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College Hospital , London, UK
| |
Collapse
|
37
|
Al-Khudhairy M, Turkistani O, Al-Assaf D, Al-Sahil N, Al-Mutawa Y, Al-Khalaf R, BaHammam A. The association between obstructive sleep apnea and headache in Riyadh, Saudi Arabia: A hospital-based cross-sectional study. J Int Oral Health 2020. [DOI: 10.4103/jioh.jioh_96_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
38
|
Kim KM, Lee DH, Lee EJ, Roh YH, Kim WJ, Cho SJ, Yang KI, Yun CH, Chu MK. Self-reported insomnia as a marker for anxiety and depression among migraineurs: a population-based cross-sectional study. Sci Rep 2019; 9:19608. [PMID: 31863000 PMCID: PMC6925234 DOI: 10.1038/s41598-019-55928-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
Anxiety, depression, and insomnia are highly prevalent among migraineurs and are associated with negative health consequences. Anxiety and depression, however, unlike insomnia, are usually underdiagnosed, due to less self-reporting of these two conditions. The aim of the present study was to evaluate the risk of anxiety and depression in migraineurs with self-reported insomnia, using a general population-based sample. We used data from a nationwide population-based survey on headache and sleep, the Korean Headache-Sleep Study. Of all 2,695 participants, 143 (5.3%), 268 (10.0%), 116 (4.3%), and 290 (10.8%) were classified as having migraine, anxiety, depression, and self-reported insomnia, respectively. The risk of anxiety (odds ratio [OR] = 7.0, 95% confidence interval [CI] = 3.0–16.7) and depression (OR = 3.3, 95% CI = 1.3–8.5) was significantly increased in migraineurs with self-reported insomnia. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for anxiety in migraineurs with self-reported insomnia were 46.5%, 89.0%, 64.5%, and 79.5%, respectively. For depression, the sensitivity, specificity, PPV, and NPV were 41.7%, 82.4%, 32.3%, and 87.5%, respectively. Self-reported insomnia is likely to be comorbid with anxiety and depression in migraineurs and could thus be a useful predictor of anxiety and depression in migraine.
Collapse
Affiliation(s)
- Kyung Min Kim
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Hyun Lee
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Ju Lee
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Ho Roh
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
| | - Won-Joo Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Soo-Jin Cho
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Kwang Ik Yang
- Sleep Disorders Center, Department of Neurology, Soonchunhyang University College of Medicine, Cheonan Hospital, Cheonan, Korea
| | - Chang-Ho Yun
- Department of Neurology, Bundang Clinical Neuroscience Institute, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Min Kyung Chu
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
39
|
Warfvinge K, Edvinsson L. Cellular distribution of PACAP-38 and PACAP receptors in the rat brain: Relation to migraine activated regions. Cephalalgia 2019; 40:527-542. [DOI: 10.1177/0333102419893962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Pituitary adenylate cyclase-activating polypeptide (PACAP) occurs as either a 27- or 38-amino acid neuropeptide and belongs to the vasoactive intestinal polypeptide/glucagon/secretin family of peptides. PACAP and vasoactive intestinal polypeptide have a 68% homology of their amino acid sequences and share three B-type G-protein coupled receptors: VPAC1, VPAC2 and PAC1 receptors. Methods/results The distribution of PACAP-38 and its receptors in the brain is only partly described in the literature. Here, we have performed a study to provide the more general picture of this system in rat brain in order to understand a putative role in primary headaches and partly in relation to the calcitonin gene-related peptide system. We observed a rich expression of PACAP-38 and PAC1 receptor immunoreactivity in many regions throughout the cerebrum, cerebellum and brainstem. The expression pattern points to multiple functions, not least associated with pain and reactions to pain. The expression of VPAC1 and VPAC2 receptor immunoreactivity was very sparse. In several regions such as the cerebral cortex, trigeminal nucleus caudalis, hypothalamus and pons there was a close relation to calcitonin gene-related peptide expression. Conclusion The findings suggest that the rich supply of PACAP-38 and PAC1 receptors is associated with basic functional responses in the central nervous system (CNS), and there are important close anatomical relations with calcitonin gene-related peptide in CNS regions associated with migraine pathophysiology.
Collapse
Affiliation(s)
- Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| |
Collapse
|
40
|
Ciranna L, Costa L. Pituitary Adenylate Cyclase-Activating Polypeptide Modulates Hippocampal Synaptic Transmission and Plasticity: New Therapeutic Suggestions for Fragile X Syndrome. Front Cell Neurosci 2019; 13:524. [PMID: 31827422 PMCID: PMC6890831 DOI: 10.3389/fncel.2019.00524] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) modulates glutamatergic synaptic transmission and plasticity in the hippocampus, a brain area with a key role in learning and memory. In agreement, several studies have demonstrated that PACAP modulates learning in physiological conditions. Recent publications show reduced PACAP levels and/or alterations in PACAP receptor expression in different conditions associated with cognitive disability. It is noteworthy that PACAP administration rescued impaired synaptic plasticity and learning in animal models of aging, Alzheimer's disease, Parkinson's disease, and Huntington's chorea. In this context, results from our laboratory demonstrate that PACAP rescued metabotropic glutamate receptor-mediated synaptic plasticity in the hippocampus of a mouse model of fragile X syndrome (FXS), a genetic form of intellectual disability. PACAP is actively transported through the blood-brain barrier and reaches the brain following intranasal or intravenous administration. Besides, new studies have identified synthetic PACAP analog peptides with improved selectivity and pharmacokinetic properties with respect to the native peptide. Our review supports the shared idea that pharmacological activation of PACAP receptors might be beneficial for brain pathologies with cognitive disability. In addition, we suggest that the effects of PACAP treatment might be further studied as a possible therapy in FXS.
Collapse
Affiliation(s)
- Lucia Ciranna
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lara Costa
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
41
|
Lee MJ, Cho SJ, Park JW, Chu MK, Moon HS, Chung PW, Chung JM, Sohn JH, Kim BK, Kim BS, Kim SK, Song TJ, Choi YJ, Park KY, Oh K, Ahn JY, Woo SY, Kim S, Lee KS, Chung CS. Temporal changes of circadian rhythmicity in cluster headache. Cephalalgia 2019; 40:278-287. [PMID: 31623453 DOI: 10.1177/0333102419883372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the temporal changes of circadian rhythmicity in relation to the disease course in patients with cluster headache. METHODS In this multicenter study, patients with cluster headache were recruited between September 2016 and July 2018. We evaluated the patients for circadian rhythmicity and time of cluster headache attacks in the current bout and any experience of bout-to-bout change in circadian rhythmicity. We analyzed the patterns of circadian rhythmicity in relation to the disease progression (the number of total lifetime bouts, grouped into deciles). RESULTS Of the 175 patients in their active, within-bout period, 86 (49.1%) had circadian rhythmicity in the current bout. The prevalence of circadian rhythmicity in the active period was overall similar regardless of disease progression. Sixty-three (46.3%) out of 136 patients with ≥2 bouts reported bout-to-bout changes in circadian rhythmicity. The most frequent time of cluster headache attacks was distributed evenly throughout the day earlier in the disease course and dichotomized into hypnic and midday as the number of lifetime bouts increased (p = 0.037 for the homogeneity of variance). When grouped into nighttime and daytime, nighttime attacks were predominant early in the disease course, while daytime attacks increased with disease progression (up to 7th deciles of total lifetime bouts, p = 0.001) and decreased in patients with the most advanced disease course (p = 0.013 for the non-linear association). CONCLUSIONS Circadian rhythmicity is not a fixed factor, and changes according to the disease course. Our findings will be valuable in providing a new insight into the stability of functional involvement of the suprachiasmatic nucleus in the pathophysiology of cluster headache.
Collapse
Affiliation(s)
- Mi Ji Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo-Jin Cho
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Jeong Wook Park
- Department of Neurology, Uijeongbu St. Mary's Hospital, Catholic University of Korea College of Medicine, Uijeongbu, Korea
| | - Min Kyung Chu
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Heui-Soo Moon
- Department of Neurology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Pil-Wook Chung
- Department of Neurology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae-Myun Chung
- Department of Neurology, Inje University College of Medicine, Seoul, Korea
| | - Jong-Hee Sohn
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea
| | - Byung-Kun Kim
- Department of Neurology, Eulji University School of Medicine, Seoul, Korea
| | - Byung-Su Kim
- Department of Neurology, Bundang Jesaeng General Hospital, Daejin Medical Center, Seongnam, Korea
| | - Soo-Kyoung Kim
- Department of Neurology and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Tae-Jin Song
- Department of Neurology, Ewha Womans University College of Medicine, Seoul Hospital, Seoul, Korea
| | - Yun-Ju Choi
- Department of Neurology, Presbyterian Medical Center, Jeonju, Korea
| | - Kwang-Yeol Park
- Department of Neurology, Chung-Ang University Hospital, Seoul, Korea
| | - Kyungmi Oh
- Department of Neurology, Korea University College of Medicine, Seoul, Korea
| | - Jin-Young Ahn
- Department of Neurology, Seoul Medical Center, Seoul, Korea
| | - Sook-Young Woo
- Statistics and Data Center, Samsung Medical Center, Seoul, Korea
| | - Seonwoo Kim
- Statistics and Data Center, Samsung Medical Center, Seoul, Korea
| | - Kwang-Soo Lee
- Department of Neurology, Seoul St. Mary's Hospital, Catholic University of Korea College of Medicine, Seoul, Korea
| | - Chin-Sang Chung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
42
|
|
43
|
Vyas DB, Ho AL, Dadey DY, Pendharkar AV, Sussman ES, Cowan R, Halpern CH. Deep Brain Stimulation for Chronic Cluster Headache: A Review. Neuromodulation 2018; 22:388-397. [DOI: 10.1111/ner.12869] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/21/2018] [Accepted: 08/30/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Daivik B. Vyas
- Department of Neurosurgery Stanford University Stanford CA USA
| | - Allen L. Ho
- Department of Neurosurgery Stanford University Stanford CA USA
| | - David Y. Dadey
- Department of Neurosurgery Stanford University Stanford CA USA
| | | | - Eric S. Sussman
- Department of Neurosurgery Stanford University Stanford CA USA
| | - Robert Cowan
- Department of Neurology Stanford University Stanford CA USA
| | | |
Collapse
|
44
|
Ashina M, Martelletti P. Pituitary adenylate-cyclase-activating polypeptide (PACAP): another novel target for treatment of primary headaches? J Headache Pain 2018; 19:33. [PMID: 29740710 PMCID: PMC5940973 DOI: 10.1186/s10194-018-0860-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 12/28/2022] Open
Affiliation(s)
- Messoud Ashina
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy.,Regional Referral Headache Centre, Sant'Andrea Hospital, Rome, Italy
| |
Collapse
|
45
|
Affiliation(s)
- Peter J Goadsby
- NIHR-Wellcome Trust, King's Clinical Research Facility, King's College Hospital, London, UK.
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK.
| | - Philip R Holland
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| |
Collapse
|