1
|
Hussain MK, Khatoon S, Khan MF, Akhtar MS, Ahamad S, Saquib M. Coumarins as versatile therapeutic phytomolecules: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155972. [PMID: 39265442 DOI: 10.1016/j.phymed.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Coumarins, abundantly distributed in a plethora of biologically active compounds, serve as a fundamental motif in numerous natural products, drugs, and therapeutic leads. Despite their small size, they exhibit a diverse range of biological activities, intriguing researchers with their immense pharmacological potential. PURPOSE This study consolidates the evidence regarding the essential role of coumarins in modern drug discovery, exploring their broad-spectrum pharmaceutical effects, structural versatility, and mechanisms of action across various domains. METHODS For literature search, we utilized PubMed, Google scholar, and SciFinder databases. Keyword and keyword combinations such as "coumarins", "natural coumarins", "specific natural coumarins for particular diseases", and "therapeutic effects" were employed to retrieve relevant studies. The search encompassed articles published between 2005 and 2023. Selection criteria included studies reporting on the pharmacological activities of natural coumarins against various diseases. RESULTS The results highlight the therapeutic potential of natural coumarins against various diseases, demonstrating anti-cancer, anti-oxidant, and anti-inflammatory activities. They also act as monoamine oxidase inhibitors and phosphodiesterase inhibitors, and as anti-thrombotic, anti-diabetic, and hepatoprotective agents. They also show efficacy against diabetic nephropathy, neurodegenerative diseases, microbial infections and many other diseases. CONCLUSION This review underscores the significant role of natural coumarins in medicinal chemistry and drug discovery. Their diverse biological activities and structural versatility make them promising therapeutic agents. This study serves as a catalyst for further research in the field, aiming to address emerging challenges and opportunities in drug development.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur 244901, M.J.P Rohil Khand University, Bareilly, India.
| | | | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Lucknow 226003, India
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur 242001, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, India.
| |
Collapse
|
2
|
Chen PK, Tang KT, Chen DY. The NLRP3 Inflammasome as a Pathogenic Player Showing Therapeutic Potential in Rheumatoid Arthritis and Its Comorbidities: A Narrative Review. Int J Mol Sci 2024; 25:626. [PMID: 38203796 PMCID: PMC10779699 DOI: 10.3390/ijms25010626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease characterized by chronic synovitis and the progressive destruction of cartilage and bone. RA is commonly accompanied by extra-articular comorbidities. The pathogenesis of RA and its comorbidities is complex and not completely elucidated. The assembly of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activates caspase-1, which induces the maturation of interleukin (IL)-1β and IL-18 and leads to the cleavage of gasdermin D with promoting pyroptosis. Accumulative evidence indicates the pathogenic role of NLRP3 inflammasome signaling in RA and its comorbidities, including atherosclerotic cardiovascular disease, osteoporosis, and interstitial lung diseases. Although the available therapeutic agents are effective for RA treatment, their high cost and increased infection rate are causes for concern. Recent evidence revealed the components of the NLRP3 inflammasome as potential therapeutic targets in RA and its comorbidities. In this review, we searched the MEDLINE database using the PubMed interface and reviewed English-language literature on the NLRP3 inflammasome in RA and its comorbidities from 2000 to 2023. The current evidence reveals that the NLRP3 inflammasome contributes to the pathogenesis of RA and its comorbidities. Consequently, the components of the NLRP3 inflammasome signaling pathway represent promising therapeutic targets, and ongoing research might lead to the development of new, effective treatments for RA and its comorbidities.
Collapse
Affiliation(s)
- Po-Ku Chen
- Rheumatology and Immunology Center, China Medical University Hospital, No. 2, Yude Road, Taichung 40447, Taiwan;
- College of Medicine, China Medical University, Taichung 40447, Taiwan
- Translational Medicine Laboratory, Rheumatology and Immunology Center, Taichung 40447, Taiwan
| | - Kuo-Tung Tang
- College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan;
- Division of Allergy, Immunology, and Rheumatology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei 112304, Taiwan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, No. 2, Yude Road, Taichung 40447, Taiwan;
- College of Medicine, China Medical University, Taichung 40447, Taiwan
- Translational Medicine Laboratory, Rheumatology and Immunology Center, Taichung 40447, Taiwan
- College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan;
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
3
|
Rana N, Gupta P, Singh H, Nagarajan K. Role of Bioactive Compounds, Novel Drug Delivery Systems, and Polyherbal Formulations in the Management of Rheumatoid Arthritis. Comb Chem High Throughput Screen 2024; 27:353-385. [PMID: 37711009 DOI: 10.2174/1386207326666230914103714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023]
Abstract
Rheumatoid Arthritis (RA) is an autoimmune disorder that generally causes joint synovial inflammation as well as gradual cartilage and degenerative changes, resulting in progressive immobility. Cartilage destruction induces synovial inflammation, including synovial cell hyperplasia, increased synovial fluid, and synovial pane development. This phenomenon causes articular cartilage damage and joint alkalosis. Traditional medicinal system exerts their effect through several cellular mechanisms, including inhibition of inflammatory mediators, oxidative stress suppression, cartilage degradation inhibition, increasing antioxidants and decreasing rheumatic biomarkers. The medicinal plants have yielded a variety of active constituents from various chemical categories, including alkaloids, triterpenoids, steroids, glycosides, volatile oils, flavonoids, lignans, coumarins, terpenes, sesquiterpene lactones, anthocyanins, and anthraquinones. This review sheds light on the utilization of medicinal plants in the treatment of RA. It explains various phytoconstituents present in medicinal plants and their mechanism of action against RA. It also briefs about the uses of polyherbal formulations (PHF), which are currently in the market and the toxicity associated with the use of medicinal plants and PHF, along with the limitations and research gaps in the field of PHF. This review paper is an attempt to understand various mechanistic approaches employed by several medicinal plants, their possible drug delivery systems and synergistic effects for curing RA with minimum side effects.
Collapse
Affiliation(s)
- Neha Rana
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| | - Piyush Gupta
- Department of Chemistry, SRM Institute of Science and Technology, Faculty of Engineering and Technology, NCR Campus, Delhi-NCR Campus, Delhi-Meerut Road, Modinagar, 201204, Ghaziabad, Uttar Pradesh, India
| | - Hridayanand Singh
- Dr. K. N. Modi Institute of Pharmaceutical Education and Research, Modinagar, 201204, Uttar Pradesh, India
| | - Kandasamy Nagarajan
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| |
Collapse
|
4
|
Tong Y, Li X, Deng Q, Shi J, Feng Y, Bai L. Advances of the small molecule drugs regulating fibroblast-like synovial proliferation for rheumatoid arthritis. Front Pharmacol 2023; 14:1230293. [PMID: 37547337 PMCID: PMC10400780 DOI: 10.3389/fphar.2023.1230293] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is a type of chronic autoimmune and inflammatory disease. In the pathological process of RA, the alteration of fibroblast-like synoviocyte (FLS) and its related factors is the main influence in the clinic and fundamental research. In RA, FLS exhibits a uniquely aggressive phenotype, leading to synovial hyperplasia, destruction of the cartilage and bone, and a pro-inflammatory environment in the synovial tissue for perpetuation and progression. Evidently, it is a highly promising way to target the pathological function of FLS for new anti-RA drugs. Based on this, we summed up the pathological mechanism of RA-FLS and reviewed the recent progress of small molecule drugs, including the synthetic small molecule compounds and natural products targeting RA-FLS. In the end, there were some views for further action. Compared with MAPK and NF-κB signaling pathways, the JAK/STAT signaling pathway has great potential for research as targets. A small number of synthetic small molecule compounds have entered the clinic to treat RA and are often used in combination with other drugs. Meanwhile, most natural products are currently in the experimental stage, not the clinical trial stage, such as triptolide. There is an urgent need to unremittingly develop new agents for RA.
Collapse
Affiliation(s)
- Yitong Tong
- Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Xinyu Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qichuan Deng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Song Y, Xing X, Shen J, Chen G, Zhao L, Tian L, Ying J, Yu Y. Anti-inflammatory effect of glycyrrhetinic acid in IL-1β-induced SW982 cells and adjuvant-induced arthritis. Heliyon 2023; 9:e15588. [PMID: 37180904 PMCID: PMC10172753 DOI: 10.1016/j.heliyon.2023.e15588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/09/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
Influences of Glycyrrhetinic acid on expression of inflammatory factors in interleukin (IL)-1β-induced SW982 cells and its anti-inflammatory effects were discussed in this study. MTT results showed that Glycyrrhetinic acid (≤80 μmol·L-1) almost has no toxicity on SW982 cells. The results of ELISA and real-time PCR showed that Glycyrrhetinic acid (10, 20 and 40 μmol · L-1) can significantly inhibit the expression of inflammatory factors such as IL-6, IL-8 and matrix metalloproteinase-1 (MMP-1). Western blot analysis showed that Glycyrrhetinic acid remarkably blocked the NF-κB signaling pathway in vitro. Molecule docking showed that Glycyrrhetinic acid could bind to the active site (NLS Polypeptide) of NF-κB p65. Furthermore, observation of rat foot swelling proved that Glycyrrhetinic acid had a significant therapeutic effect on adjuvant-induced arthritis (AIA) in rats in vivo. Collectively, all these findings suggested that Glycyrrhetinic acid might be a promising lead compound worthy of further pursuit as anti-inflammation agent.
Collapse
Affiliation(s)
- Yang Song
- Department of Pain, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230022, China
| | - Xinyu Xing
- Department of Pain, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jing Shen
- Department of Pain, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Guo Chen
- Department of Gynecology, Maternity and Child Health Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Health Hospital, No. 15 Yimin Street, Hefei 230001, Anhui, China
| | - Li Zhao
- Department of Pain, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Lu Tian
- Department of Gynecology, Maternity and Child Health Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Health Hospital, No. 15 Yimin Street, Hefei 230001, Anhui, China
| | - Jie Ying
- Department of Gynecology, Maternity and Child Health Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Health Hospital, No. 15 Yimin Street, Hefei 230001, Anhui, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230032, Anhui, China
- Corresponding author.
| |
Collapse
|
6
|
Lin X, Chen J, Tao C, Luo L, He J, Wang Q. Osthole regulates N6-methyladenosine-modified TGM2 to inhibit the progression of rheumatoid arthritis and associated interstitial lung disease. MedComm (Beijing) 2023; 4:e219. [PMID: 36845072 PMCID: PMC9945862 DOI: 10.1002/mco2.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease, and RA interstitial lung disease (ILD) is a severe complication of RA. This investigation aims to determine the effect and underlying mechanism of osthole (OS), which could be extracted from Cnidium, Angelica, and Citrus plants and evaluate the role of transglutaminase 2 (TGM2) in RA and RA-ILD. In this work, OS downregulated TGM2 to exert its additive effect with methotrexate and suppress the proliferation, migration, and invasion of RA-fibroblast-like synoviocytes (FLS) by attenuating NF-κB signaling, resulting in the suppression of RA progression. Interestingly, WTAP-mediated N6-methyladenosine modification of TGM2 and Myc-mediated WTAP transcription cooperatively contributed to the formation of a TGM2/Myc/WTAP-positive feedback loop through upregulating NF-κB signaling. Moreover, OS could downregulate the activation of the TGM2/Myc/WTAP-positive feedback circuit. Furthermore, OS restrained the proliferation and polarization of M2 macrophages to inhibit the aggregation of lung interstitial CD11b+ macrophages, and the effectiveness and non-toxicity of OS in suppressing RA and RA-ILD progression were verified in vivo. Finally, bioinformatics analyses validated the importance and the clinical significance of the OS-regulated molecular network. Taken together, our work emphasized OS as an effective drug candidate and TGM2 as a promising target for RA and RA-ILD treatment.
Collapse
Affiliation(s)
- Xian Lin
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenChina
- Institute of Immunology and Inflammatory DiseasesShenzhen Peking University‐The Hong Kong University of Science and Technology Medical Center; Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenChina
| | - Jian Chen
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenChina
- Institute of Immunology and Inflammatory DiseasesShenzhen Peking University‐The Hong Kong University of Science and Technology Medical Center; Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenChina
| | - Cheng Tao
- School of PharmacyGuangdong Medical UniversityDongguanChina
| | - Lianxiang Luo
- The Marine Biomedical Research InstituteGuangdong Medical UniversityZhanjiangChina
- The Marine Biomedical Research Institute of Guangdong ZhanjiangZhanjiangChina
| | - Juan He
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenChina
- Institute of Immunology and Inflammatory DiseasesShenzhen Peking University‐The Hong Kong University of Science and Technology Medical Center; Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenChina
| | - Qingwen Wang
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenChina
- Institute of Immunology and Inflammatory DiseasesShenzhen Peking University‐The Hong Kong University of Science and Technology Medical Center; Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenChina
| |
Collapse
|
7
|
Jiang X, Lu Z, Zhang Q, Yu J, Han D, Liu J, Li P, Li F. Osthole: A potential AMPK agonist that inhibits NLRP3 inflammasome activation by regulating mitochondrial homeostasis for combating rheumatoid arthritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154640. [PMID: 36608498 DOI: 10.1016/j.phymed.2022.154640] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Osthole (OST), a characteristic coumarin compound in Angelicae pubescentis radix (APR), has shown potent efficacy in the treatment of rheumatoid arthritis (RA), but its specific targets and potential mechanism are limited. PURPOSE This study aimed to explore the potential targets and molecular mechanisms of OST against RA using computer-assisted techniques in combination with RA fibroblast-like synoviocytes (FLS) inflammation model and CIA rat model. METHODS Network pharmacology and molecular docking were applied to initially predict the potential targets of OST for the treatment of RA. Thereafter, TNFα was used to stimulate FLS to build an in vitro model of inflammation, combined with RNA-seq technology and molecular biology such as qPCR to investigate the anti-inflammatory effects and related mechanisms of OST. Finally, the anti-RA effect of OST was demonstrated by establishing a CIA rat model. RESULTS The network model results showed that the anti-RA effect of OST was mainly related to its anti-inflammatory effect, and AMPK was identified as a potential target for the potency of OST. In the TNFα-induced FLS cells, OST inhibited the secretion of FLS inflammatory factors, which was attributed to the ability of OST to activate AMPK to inhibit the activation of the NLRP3 inflammasome. Further, it was observed that the activation of AMPK by OST facilitated mitochondrial biogenesis, and corrected abnormal mitochondrial dynamics in FLS, which was favoured to the restoration of mitochondrial homeostasis, and further promoted the occurrence of apoptosis and the decrease of ROS in FLS. Consistent with in vivo studies, administration of OST significantly improved joint deformity and toe erythema, reduced arthritis index scores and inhibited synovial inflammation in CIA rats. CONCLUSION Our study proposed for the first time that AMPK, served as a potential target of OST, positively participated in the anti-RA therapeutic effect of OST. By regulating mitochondrial homeostasis and function, OST can effectively inhibit the activation of inflammasome and the secretion of inflammatory factors in vitro and in vivo, and finally achieve beneficial effects in the treatment of RA, which provides support and greater possibility to make further efforts on pharmacological research and clinical application of OST.
Collapse
Affiliation(s)
- Xiaoli Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zhuojian Lu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Qian Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Jialin Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Dong Han
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Jinhong Liu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China; College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
8
|
Osthole Alleviates D-Galactose-Induced Liver Injury In Vivo via the TLR4/MAPK/NF-κB Pathways. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010443. [PMID: 36615637 PMCID: PMC9824625 DOI: 10.3390/molecules28010443] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 01/06/2023]
Abstract
Osthole, a coumarin derivative, is found in several medicinal herbs. However, the protective effects of osthole against D-galactose (D-Gal)-induced liver injury still remain unclear. In this study, osthole treatment effectively reversed D-Gal-induced liver injury, according to the results of liver HE staining, and improved ALT and AST activities. Feeding with D-Gal significantly increased MDA content, and reduced the level or activity of SOD, CAT and GSH-Px, which were all alleviated by osthole intervention. Meanwhile, osthole treatment significantly inhibited the D-Gal-induced secretion of pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6, in both serum and liver tissue. Investigations revealed that osthole ameliorated the D-Gal-induced activation of TLR4, MYD88 and its downstream signaling pathways of MAPK (p38 and JNK) and NF-κB (nucleus p65). Therefore, osthole mediates a protective effect against D-Gal-induced liver injury via the TLR4/MAPK/NF-κB pathways, and this coumarin derivative could be developed as a candidate bioactive component for functional food.
Collapse
|
9
|
Chen J, Chen N, Zhang T, Lin J, Huang Y, Wu G. Rongjin Niantong Fang ameliorates cartilage degeneration by regulating the SDF-1/CXCR4-p38MAPK signalling pathway. PHARMACEUTICAL BIOLOGY 2022; 60:2253-2265. [PMID: 36428240 PMCID: PMC10013506 DOI: 10.1080/13880209.2022.2143533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Rongjin Niantong Fang (RJNTF) is a Traditional Chinese Medicine formulation with a good therapeutic effect on osteoarthritis (OA). However, the underlying mechanisms remain unclear. OBJECTIVE This study investigates whether RJNTF could delay OA cartilage degeneration by regulating the SDF-1/CXCR4-p38MAPK signalling pathway. MATERIALS AND METHODS The Sprague-Dawley (SD) rats were used to establish the OA model by a modified Hulth's method. SD rats were divided into three groups (n = 10): blank group, model group (0.9% saline, 10 mL/kg/day), and treatment group (RJNTF, 4.5 g/kg/day). After 12 weeks of treatment, each group was analysed by H&E, Safranine-O solid green, ELISA, Immunohistochemistry, and Western blot. An in vitro model was induced with 100 ng/mL SDF-1 by ELISA, the blank group, model group, RJNTF group, and inhibitor group with intervention for 12 h, each group was analysed by Immunofluorescence staining and Western blot. RESULTS SDF-1 content in the synovium was reduced in RJNTF treatment group compared to non-treatment model group (788.10 vs. 867.32 pg/mL) and down-regulation of CXCR4, MMP-3, MMP-9, MMP-13 protein expression, along with p38 protein phosphorylated were observed in RJNTF treatment group. In vitro results showed that RJNTF (IC50 = 8.925 mg/mL) intervention could down-regulate SDF-1 induced CXCR4 and p38 protein phosphorylated and reduce the synthesis of MMP-3, MMP-9, and MMP-13 proteins of chondrocytes from SD rat cartilage tissues. DISCUSSION AND CONCLUSION RJNTF alleviates OA cartilage damage by SDF-1/CXCR4-p38MAPK signalling pathway inhibition. Our ongoing research focuses on Whether RJNTF treats OA through alternative pathways.
Collapse
Affiliation(s)
- Jun Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Nan Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ting Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jie Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yunmei Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Guangwen Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation (Fujian University of Traditional Chinese Medicine), Ministry of Education, China
| |
Collapse
|
10
|
Ageing and Osteoarthritis Synergically Affect Human Synoviocyte Cells: An In Vitro Study on Sex Differences. J Clin Med 2022; 11:jcm11237125. [PMID: 36498698 PMCID: PMC9739144 DOI: 10.3390/jcm11237125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Osteoarthritis is a chronic inflammatory disease that affects all of the joints, especially those of the elderly. Aging is a natural and irreversible biological process implicated in the pathophysiology of many chronic diseases, such as osteoarthritis. Inflammation and oxidative stress are the main factors involved in osteoarthritis and aging, respectively, with the production of several pro-inflammatory cytokines such as Interleukin 1β (IL1β) and reactive oxygen species. The aim of the study was to set-up an in vitro model of osteoarthritis and aging, focusing on the sex differences by culturing male and female fibroblast-like synoviocytes (FLSs) with IL1β, hydrogen peroxide (H2O2), IL1β+H2O2 or a growth medium (control). IL1β+H2O2 reduced the cell viability and microwound healing potential, increased Caspase-3 expression and reactive oxygen species and IL6 production; IL1β increased IL6 production more than the other conditions did; H2O2 increased Caspase-3 expression and reactive oxygen species production; Klotho expression showed no differences among the treatments. The FLSs from female donors demonstrated a better response capacity in unfavorable conditions of inflammation and oxidative stress than those from the male donors did. This study developed culture conditions to mimic the aging and osteoarthritis microenvironment to evaluate the behavior of the FLSs which play a fundamental role in joint homeostasis, focusing on the sex-related aspects that are relevant in the osteoarthritis pathophysiology.
Collapse
|
11
|
Lin Y, Wang D, Zhao H, Li D, Li X, Lin L. Pou3f1 mediates the effect of Nfatc3 on ulcerative colitis-associated colorectal cancer by regulating inflammation. Cell Mol Biol Lett 2022; 27:75. [PMID: 36064319 PMCID: PMC9446766 DOI: 10.1186/s11658-022-00374-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022] Open
Abstract
Background Ulcerative colitis-associated colorectal cancer (UC-CRC) is an important complication of ulcerative colitis. Pou3f1 (POU class 3 homeobox 1) is a critical regulator for developmental events and cellular biological processes. However, the role of Pou3f1 in the development of UC-CRC is unclear. Methods In vivo, a UC-CRC mouse model was induced by azoxymethane (AOM) and dextran sulfate sodium (DSS). Body weight, colon length, mucosal damage, tumor formation, and survival rate were assessed to determine the progression of UC-CRC. Western blot, quantitative real-time PCR, ELISA, immunohistochemistry, immunofluorescence and TUNEL were performed to examine the severity of inflammation and tumorigenesis. In vitro, LPS-treated mouse bone marrow-derived macrophages (BMDMs) and RAW264.7 cells were used to study the role of Pou3f1 in inflammation. ChIP and luciferase reporter assays were used to confirm the interaction between Nfatc3 and Pou3f1. Results Pou3f1 expression was increased in the colons of UC-CRC mice, and its inhibition attenuated mucosal injury, reduced colon tumorigenesis and increased survival ratio. Knockdown of Pou3f1 suppressed cell proliferation and increased cell death in colon tumors. Both the in vivo and in vitro results showed that Pou3f1 depletion reduced the production of proinflammation mediators. In addition, ChIP and luciferase reporter assays demonstrated that Nfatc3 directly bound with the Pou3f1 promoter to induce its expression. The effect of Nfatc3 on the inflammatory response in macrophages was suppressed by Pou3f1 knockdown. Conclusion Overall, it outlines that Pou3f1 mediates the role of Nfatc3 in regulating macrophage inflammation and carcinogenesis in UC-CRC development. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00374-0.
Collapse
Affiliation(s)
- Yan Lin
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China
| | - Dongxu Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China
| | - Hong Zhao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China.,Department of Gastroenterology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, China
| | - Dongyue Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China.,Department of Respiratory, Ansteel Group General Hospital, Anshan, China
| | - Xinning Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China.,Medical Oncology Ward, Tieling Central Hospital, Tieling, China
| | - Lianjie Lin
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China.
| |
Collapse
|
12
|
Wu SS, Xu XX, Shi YY, Chen Y, Li YQ, Jiang SQ, Wang T, Li P, Li F. System pharmacology analysis to decipher the effect and mechanism of active ingredients combination from herb couple on rheumatoid arthritis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114969. [PMID: 34999146 DOI: 10.1016/j.jep.2022.114969] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional herb couple Angelicae pubescentis radix (APR) and Notopterygii rhizoma et radix (NRR), composition of two traditional Chinese medicinal herbs, has been used clinically in China for the treatment of rheumatoid arthritis (RA) over years. APR and NRR contain coumarins and phenolic acids, which have been reported to have analgesic and anti-inflammatory activities. AIM OF THE STUDY The active ingredients combination (AIC) and potential therapeutic mechanism of APR and NRR (AN) herb couple remain unclear. Therefore, the present study aimed to identify the AIC and elucidate the underlying mechanism of AIC on RA. MATERIALS AND METHODS Firstly, a novel strategy of in vitro experiments, computational analysis, UPLC-QTOF-MS and UPLC-QQQ-MS was established to confirm the optimum ratio of AN herb couple samples and identified the AIC. Then, the anti-arthritis effects of the optimal herb couple and AIC were studied with Collagen II induced rheumatoid arthritis (CIA) rats in vivo. Finally, an integrated model of network pharmacology, metabolomics, gut microbiota analysis and biological techniques were applied to clarify the underlying mechanism through a comprehensive perspective. RESULTS AN7:3 herb couple was regarded as the optimal ratio of AN herbal samples, and AIC was screened as osthole, columbianadin, notopterol, isoimperatorin, psoralen, xanthotoxin, bergapten, nodakenin and bergaptol respectively. Additionally, AIC exerted similar therapeutic effects as AN 7:3 in CIA rats. Moreover, AIC ameliorated RA might via regulating MAPK signaling pathway, altering metabolic disorders and gut microbiome involved autoimmunity. CONCLUSIONS our findings provided scientific evidence to support that AIC of AN herb couple could be used as a prebiotic agent for RA. Importantly, this research provided a systematic and feasible strategy to optimize the proportion of medicinal materials and screen AIC from multi-component traditional Chinese herb couples or Chinese medicine formulae. Moreover, it provided a comprehensive perspective to discover AIC, clarify the overall effects and understand the mechanisms for natural products through the perspective of database and multi-omics integration.
Collapse
Affiliation(s)
- Shan-Shan Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xi-Xi Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuan-Yuan Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Yi Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying-Qi Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Si-Qi Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ting Wang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650000, PR China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
13
|
Li R, Wang F, Dang S, Yao M, Zhang W, Wang J. Integrated 16S rRNA Gene Sequencing and Metabolomics Analysis to Investigate the Important Role of Osthole on Gut Microbiota and Serum Metabolites in Neuropathic Pain Mice. Front Physiol 2022; 13:813626. [PMID: 35197864 PMCID: PMC8860327 DOI: 10.3389/fphys.2022.813626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence suggests that neuropathic pain (NP) is closely connected to the metabolic disorder of gut microbiota, and natural products could relieve NP by regulating gut microbiota. The purpose of this study is to investigate the important regulatory effects of osthole on gut microbiota and serum metabolites in mice with chronic constriction injury (CCI). Mice's intestinal contents and serum metabolites were collected from the sham group, CCI group, and osthole treatment CCI group. The 16S rRNA gene sequencing was analyzed, based on Illumina NovaSeq platform, and ANOVA analysis were used to analyze the composition variety and screen differential expression of intestinal bacteria in the three groups. Ultra-high-performance liquid chromatography-quadrupole time of flight-tandem mass spectrometry (UHPLC-Q-TOF-MS) was used for analyzing the data obtained from serum specimens, and KEGG enrichment analysis was used to identify pathways of differential metabolites in the treatment of neuralgia mice. Furthermore, the Pearson method and Cytoscape soft were used to analyze the correlation network of differential metabolites, gut microbiota, and disease genes. The analysis results of 16S rRNA gene sequencing displayed that Bacteroidetes, Firmicutes, and Verrucomicrobia were highly correlated with NP after osthole treatment at the phylum level. Akkermansia, Lachnospiraceae_unclassified, Lachnospiraceae_NK4A136_group, Bacteroides, Lactobacillus, and Clostridiales_unclassified exhibited higher relative abundance and were considered important microbial members at genus level in neuralgia mice. Serum metabolomics results showed that 131 metabolites were considered to be significantly different in the CCI group compared to the sham group, and 44 metabolites were significantly expressed between the osthole treatment group and the CCI group. At the same time, we found that 29 differential metabolites in the two comparison groups were overlapping. Integrated analysis results showed that many intestinal microorganisms and metabolites have a strong positive correlation. The correlation network diagram displays that 10 genes were involved in the process of osthole alleviating NP through a metabolic pathway and gut microbiota, including IGF2, GDAP1, MYLK, IL18, CD55, MIR331, FHIT, F3, ERBB4, and ITGB3. Our findings have preliminarily confirmed that NP is closely related to metabolism and intestinal microbial imbalance, and osthole can improve the metabolic disorder of NP by acting on gut microbiota.
Collapse
Affiliation(s)
- Ruili Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fan Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shajie Dang
- Department of Anesthesiology, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Minna Yao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
14
|
Li Y, Yang C, Jia K, Wang J, Wang J, Ming R, Xu T, Su X, Jing Y, Miao Y, Liu C, Lin N. Fengshi Qutong capsule ameliorates bone destruction of experimental rheumatoid arthritis by inhibiting osteoclastogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114602. [PMID: 34492323 DOI: 10.1016/j.jep.2021.114602] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bone destruction plays a key role in damaging the joint function of rheumatoid arthritis (RA). Fengshi Qutong capsule (FSQTC) consisting of 19 traditional Chinese medicines has been used for treating RA in China for many years. Preliminary studies show that FSQTC has analgesic activity and inhibits synovial angiogenesis of collagen-induced arthritis (CIA), but its role on bone destruction of RA is still unclear. AIM OF THE STUDY To explore the effect of FSQTC on bone destruction of RA and the possible mechanism of osteoclastogenesis in vivo and in vitro. MATERIALS AND METHODS LC-MS system was used to detect the quality control components of FSQTC. The anti-arthritic effect of FSQTC on CIA rats was evaluated by arthritis score, arthritis incidence and histopathology evaluation of inflamed joints. The effect of treatment with FSQTC on bone destruction of joint tissues was determined with X-ray and micro-CT quantification, and on bone resorption marker CTX-I and formation marker osteocalcin in sera were detected by ELISA. Then, osteoclast differentiation and mature were evaluated by TRAP staining, actin ring immunofluorescence and bone resorption assay both in joints and RANKL-induced RAW264.7 cells. In addition, RANKL, OPG, IL-1β and TNFα in sera were evaluated by ELISA. The molecular mechanisms of the inhibitions were elucidated by analyzing the protein and gene expression of osteoclastic markers CTSK, MMP-9 and β3-Integrin, transcriptional factors c-Fos and NFATc1, as well as phosphorylation of ERK1/2, JNK and P38 in joints and in RANKL-induced RAW264.7 cells using western blot and/or qPCR. RESULTS In this study, 12 major quality control components were identified. Our data showed that FSQTC significantly increased bone mineral density, volume fraction, trabecular thickness, and decreased trabecular separation of inflamed joints both at periarticular and extra-articular locations in CIA rats. FSQTC also diminished the level of CTX-I and simultaneously increased osteocalcin in sera of CIA rats. The effects were accompanied by reductions of osteoclast differentiation, bone resorption, and expression of osteoclastic markers (CTSK, MMP-9 and β3-Integrin) in joints. Interestingly, FSQTC treatment could reduce the protein level of RANKL, increase the expression of OPG, and decrease the ratio of RANKL to OPG in inflamed joints and sera of CIA rats. In addition, FSQTC inhibited the levels of pro-inflammatory cytokines implicated in bone resorption, such as IL-1β and TNFα in sera. When RAW264.7 cells were treated with RANKL, FSQTC inhibited the formation of TRAP + multinucleated cells, actin ring and the bone-resorbing activity in dose-dependent manners. Furthermore, FSQTC reduced the RANKL-induced expression of osteoclastic genes and proteins and transcriptional factors (c-Fos and NFATc1), as well as phosphorylation of mitogen-activated protein kinases (MAPKs). CONCLUSION FSQTC may inhibit bone destruction of RA by its anti-osteoclastogenic activity both in vivo and in vitro.
Collapse
Affiliation(s)
- Yiqun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chao Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Kexin Jia
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinxia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingxia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ruirui Ming
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tengteng Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Jing
- Tonghua Golden-Horse Pharmaceutical Industry Co.,Ltd, Beijing, 100028, China
| | - Yandong Miao
- Tonghua Golden-Horse Pharmaceutical Industry Co.,Ltd, Beijing, 100028, China
| | - Chunfang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
15
|
Wang Y, Chen S, Du K, Liang C, Wang S, Owusu Boadi E, Li J, Pang X, He J, Chang YX. Traditional herbal medicine: Therapeutic potential in rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114368. [PMID: 34197960 DOI: 10.1016/j.jep.2021.114368] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease influenced by diverse endogenous and exogenous factors. It is characterized by cartilage and bone destruction. The current conventional allopathic therapy is expensive and carries adverse side effects. Recently, there were some ethnopharmacological studies on RA including anti-RA effects and therapeutic targets of distinct dosage forms of traditional herbal medicines (THMs). AIM OF THE REVIEW This review provides a brief overview of the current understanding of the potential pharmacological mechanisms of THMs (active constituents, extracts and prescriptions) in RA. This study is intended to provide comprehensive information and reference for exploring new therapeutic strategies of THMs in the RA treatment. MATERIALS AND METHODS This review captured scientific literatures invivo and vitro experiments on effects of anti-RA THMs published between 2016 and 2021 from journals and electronic databases (e.g. PubMed, Elsevier, Science Direct, Web of Science and Google Scholar). Relevant literatures were searched and analyzed by using keywords such as 'rheumatoid arthritis AND traditional herbal medicines', 'rheumatoid arthritis AND immune cells', 'rheumatoid arthritis AND inflammation', 'rheumatoid arthritis AND miRNA', 'rheumatoid arthritis AND Angiogenesis', 'rheumatoid arthritis AND oxidative stress', 'rheumatoid arthritis AND osteoclasts', 'rheumatoid arthritis AND CIA model', 'rheumatoid arthritis AND AA model' AND 'rheumatoid arthritis herbal prescription'. RESULTS Experiments in vitro and in vivo jointly demonstrated the potential of THMs in the RA treatment. There are plentiful therapeutic targets in RA. THMs and active ingredients could alleviate RA symptoms through different therapeutic targets, such as immunoregulation, inflammation, fibroblast-like synoviocytes (FLSs), microRNAs (miRNAs), angiogenesis, oxidative stress, osteoclasts and multiple targets interaction. Anti-RA THMs, active ingredients and prescriptions through corresponding therapeutic targets were summarized and classified. CONCLUSIONS Flavonoids, phenolic acids, alkaloids and triterpenes of THMs are identified as the main components to ameliorate RA. Regulation of different and multiple related therapeutic targets by THMs and their active ingredients were associated with greater therapeutic benefits, among which inflammation is the main therapeutic target. Nonetheless, further studies are required to unravel the complexities and in-depth mechanisms of THMs in alleviating RA.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chunxiao Liang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangqi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Evans Owusu Boadi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaoli Pang
- Academy of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yan-Xu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
16
|
Osthole: an overview of its sources, biological activities, and modification development. Med Chem Res 2021; 30:1767-1794. [PMID: 34376964 PMCID: PMC8341555 DOI: 10.1007/s00044-021-02775-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022]
Abstract
Osthole, also known as osthol, is a coumarin derivative found in several medicinal plants such as Cnidium monnieri and Angelica pubescens. It can be obtained via extraction and separation from plants or total synthesis. Plenty of experiments have suggested that osthole exhibited multiple biological activities covering antitumor, anti-inflammatory, neuroprotective, osteogenic, cardiovascular protective, antimicrobial, and antiparasitic activities. In addition, there has been some research done on the optimization and modification of osthole. This article summarizes the comprehensive information regarding the sources and modification progress of osthole. It also introduces the up-to-date biological activities of osthole, which could be of great value for its use in future research. ![]()
Collapse
|
17
|
Liu T, Zhao M, Zhang Y, Qiu Z, Zhang Y, Zhao C, Wang M. Pharmacokinetic-pharmacodynamic modeling analysis and anti-inflammatory effect of Wangbi capsule in the treatment of adjuvant-induced arthritis. Biomed Chromatogr 2021; 35:e5101. [PMID: 33625739 DOI: 10.1002/bmc.5101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 11/12/2022]
Abstract
Clinically, Wangbi Capsule (WBC) is widely used in the treatment of Rheumatoid arthritis (RA) because of its remarkable therapeutic effect. To reveal the mechanism, a pharmacokinetic-pharmacodynamic (PK-PD) model was developed for the first time to assess the relationship between time-concentration (dose)-effect. Freund's Complete Adjuvant was used to induce the adjuvant-induced arthritis model. Multi-indices were used to evaluate the therapeutic effect and an S-Imax PK-PD model was established based on the concentrations of osthole, 5-O-methylvisamminoside, cimifugin, albiflorin, paeoniflorin and icariin and the levels of interleukin-1β and prostaglandin E2 using a two-compartment PK model together with a PD model with an effect-site compartment. The results suggest that WBC can treat RA by regulating the levels of prostaglandin E2 and interleukin-1β. For the PK-PD model, the parameters indicated that WBC had a large safety margin and all six bioactive ingredients of WBC have therapeutic effects on RA. Among them icariin, osthole and 5-O-methylvisamminoside may be the main effective substances. This study provided a scientific basis for further study of population pharmacokinetics / population pharmacodynamics (PPK/PPD), to develop a reasonable administration plan and improve individualized drug therapy.
Collapse
Affiliation(s)
- Tingting Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Yumeng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Zhaozhao Qiu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Yixin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| |
Collapse
|
18
|
Effects of Osthole on Progesterone Secretion in Chicken Preovulatory Follicles Granulosa Cells. Animals (Basel) 2020; 10:ani10112027. [PMID: 33158008 PMCID: PMC7693773 DOI: 10.3390/ani10112027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Progesterone produced by granulosa cells regulates the diverse reproductive events in poultry. Osthole is a natural compound extracted from Cnidium. In this study, we confirmed Osthole up-regulated the progesterone secretion though elevating the expression of key proteins in the process of progesterone synthesis. These results indicate Osthole could be used in the pre-peak phase and (or) the peak phase to maximize the output of egg production in laying hens. Moreover, it provided a new idea that natural compounds may be the target library to screen the potential drugs used in poultry to increase the egg quality and yield. Abstract Osthole (Ost) is an active constituent of Cnidium monnieri (L.) Cusson which possesses anti-inflammatory and anti-oxidative properties. It also has estrogen-like activity and can stimulate corticosterone secretion. The present study was aimed to check the role of Ost on progesterone (P4) secretion in cultured granulosa cells obtained from hen preovulatory follicles. Different concentrations (5, 2.5, and 1.25 µg/mL) of Ost was added to granulosa cells for 6, 12, 18, and 24 h to investigate the level of progesterone secretions using enzyme linked immunosorbent assay (ELISA). The results showed that progesterone secretion was significantly increased in cells treated with Ost at 2.5 μg/mL. Also, qRT-PCR showed that mRNA expression of steroidogenic acute regulatory protein (StAR) was significantly up-regulated by Ost at 2.5 μg/mL concentration. Cytochrome P450 side-chain cleavage (P450scc) and 3β-hydroxysteroid dehydrogenase (3β-HSD) was significantly up-regulated by Ost. However, no significant differences were observed for the expression of proliferating cell nuclear antigen (PCNA). The protein expression of StAR, P450scc and 3β-HSD were significantly up-regulated by Ost treatment. The concentration of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) in cell lysates showed no change with Ost treatment at 2.5 μg/mL by ELISA. An ROS kit showed non-significant difference in the level of reactive oxygen species (ROS). In conclusion, Ost treatment at a concentration of 2.5 μg/mL for 24 h had significantly up-regulated P4 secretion by elevating P450scc, 3β-HSD and StAR at both gene and protein level in granulosa cells obtained from hen preovulatory follicles.
Collapse
|
19
|
Fu X, Hong C. Osthole attenuates mouse atopic dermatitis by inhibiting thymic stromal lymphopoietin production from keratinocytes. Exp Dermatol 2020; 28:561-567. [PMID: 30825337 DOI: 10.1111/exd.13910] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/07/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022]
Abstract
Atopic dermatitis is one of the most common skin diseases. Dysregulation of immune system and chronic inflammation were believed to be associated with atopic dermatitis. Osthole was reported to play important roles in antitumor and anti-inflammation. However, whether osthole has effects on atopic dermatitis remains unclear. In this present study, we explored the biological role of osthole in atopic dermatitis and the molecular mechanism. Atopic dermatitis was induced by 2,4-dinitrochlorobenzene. Pathological damage of ear was detected by H&E staining. IgE level in serum or thymic stromal lymphopoietin (TSLP) level in supernatant was detected by ELISA. Interleukin (IL)-4 expression and IL-13 expression in CD4+ T cells were detected using flow cytometry. The expression levels of mRNA or protein levels were detected by RT-PCR or Western blot. Osthole attenuated atopic dermatitis development in mouse model. Osthole inhibits Th2 cell response, but have on influence on Th1 or Th17 cell response in the skin. In mouse model, osthole treatment significantly inhibited atopic dermatitis via directly inhibiting TLSP expression levels in keratinocytes. Osthole treatment alleviates atopic dermatitis through directly down-regulating TSLP production from keratinocytes. Osthole may serve as a potential choice for atopic dermatitis treatment in clinic.
Collapse
Affiliation(s)
- Xiangping Fu
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Chaohui Hong
- Quanzhou Medical College People's Hospital Affiliated, Quanzhou, Fujian, China
| |
Collapse
|
20
|
Mullen L, Mengozzi M, Hanschmann EM, Alberts B, Ghezzi P. How the redox state regulates immunity. Free Radic Biol Med 2020; 157:3-14. [PMID: 31899344 DOI: 10.1016/j.freeradbiomed.2019.12.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/05/2019] [Accepted: 12/19/2019] [Indexed: 12/30/2022]
Abstract
Oxidative stress is defined as an imbalance between the levels of reactive oxygen species (ROS) and antioxidant defences. The view of oxidative stress as a cause of cell damage has evolved over the past few decades to a much more nuanced view of the role of oxidative changes in cell physiology. This is no more evident than in the field of immunity, where oxidative changes are now known to regulate many aspects of the immune response, and inflammatory pathways in particular. Our understanding of redox regulation of immunity now encompasses not only increases in reactive oxygen and nitrogen species, but also changes in the activities of oxidoreductase enzymes. These enzymes are important regulators of immune pathways both via changes in their redox activity, but also via other more recently identified cytokine-like functions. The emerging picture of redox regulation of immune pathways is one of increasing complexity and while therapeutic targeting of the redox environment to treat inflammatory disease is a possibility, any such strategy is likely to be more nuanced than simply inhibiting ROS production.
Collapse
Affiliation(s)
- Lisa Mullen
- Brighton and Sussex Medical School, Falmer, Brighton, UK
| | | | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Ben Alberts
- Brighton and Sussex Medical School, Falmer, Brighton, UK
| | - Pietro Ghezzi
- Brighton and Sussex Medical School, Falmer, Brighton, UK.
| |
Collapse
|
21
|
Callahan BN, Kammala AK, Syed M, Yang C, Occhiuto CJ, Nellutla R, Chumanevich AP, Oskeritzian CA, Das R, Subramanian H. Osthole, a Natural Plant Derivative Inhibits MRGPRX2 Induced Mast Cell Responses. Front Immunol 2020; 11:703. [PMID: 32391014 PMCID: PMC7194083 DOI: 10.3389/fimmu.2020.00703] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Mast cells are tissue-resident innate immune cells known for their prominent role in mediating allergic reactions. MAS-related G-protein coupled receptor-X2 (MRGPRX2) is a promiscuous G-protein coupled receptor (GPCR) expressed on mast cells that is activated by several ligands that share cationic and amphipathic properties. Interestingly, MRGPRX2 ligands include certain FDA-approved drugs, antimicrobial peptides, and neuropeptides. Consequently, this receptor has been implicated in causing mast cell-dependent pseudo-allergic reactions to these drugs and chronic inflammation associated with asthma, urticaria and rosacea in humans. In the current study we examined the role of osthole, a natural plant coumarin, in regulating mast cell responses when activated by the MRGPRX2 ligands, including compound 48/80, the neuropeptide substance P, and the cathelicidin LL-37. We demonstrate that osthole attenuates both the early (Ca2+ mobilization and degranulation) and delayed events (chemokine/cytokine production) of mast cell activation via MRGPRX2 in vitro. Osthole also inhibits MrgprB2- (mouse ortholog of human MRGPRX2) dependent inflammation in in vivo mouse models of pseudo-allergy. Molecular docking analysis suggests that osthole does not compete with the MRGPRX2 ligands for interaction with the receptor, but rather regulates MRGPRX2 activation via allosteric modifications. Furthermore, flow cytometry and confocal microscopy experiments reveal that osthole reduces both surface and intracellular expression levels of MRGPRX2 in mast cells. Collectively, our data demonstrate that osthole inhibits MRGPRX2/MrgprB2-induced mast cell responses and provides a rationale for the use of this natural compound as a safer alternative treatment for pseudo-allergic reactions in humans.
Collapse
MESH Headings
- Animals
- Calcium Signaling/drug effects
- Cell Degranulation/drug effects
- Cell Line, Tumor
- Coumarins/administration & dosage
- Disease Models, Animal
- Edema/drug therapy
- Edema/immunology
- Female
- Humans
- Male
- Mast Cells/drug effects
- Mast Cells/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Molecular Docking Simulation
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/metabolism
- Phytotherapy/methods
- Plant Extracts/administration & dosage
- Rats
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Neuropeptide/chemistry
- Receptors, Neuropeptide/metabolism
- Tissue Donors
- Treatment Outcome
Collapse
Affiliation(s)
- Brianna N. Callahan
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Ananth K. Kammala
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Meesum Syed
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Canchai Yang
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | | | - Rithvik Nellutla
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Alena P. Chumanevich
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Carole A. Oskeritzian
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Rupali Das
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Hariharan Subramanian
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
22
|
He H, Zhang Y, Zhao D, Jiang J, Xie B, Ma L, Liu X, Yu C. Osthole inhibited the activity of CYP2C9 in human liver microsomes and influenced indomethacin pharmacokinetics in rats. Xenobiotica 2020; 50:939-946. [PMID: 32238050 DOI: 10.1080/00498254.2020.1734882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Osthol, a pharmacologically active ingredient in various traditional Chinese medicines, is predominantly metabolized by CYP2C9. It may be co-administered with other drugs which are metabolized by CYP2C9 in clinical medicine. However, CYP2C9*1/*2/*3 genotype on the pharmacokinetics of osthole and its metabolic diversity between rat and human are unclear.In this study, we investigated the effects of osthole on enzyme activity of CYP2C11/CYP2C9 in rat liver microsomes (RLMs) and human liver microsomes (HLMs), to distinguish metabolic manner of osthole in different species. Interestingly, we found that osthole inhibits the activity of CYP2C11 in a non-competitive manner in RLMs, while inhibits CYP2C9 activity in a competitive manner in pooled HLMs. Then, the effects of CYP2C9*1/*2/*3 allele on the pharmacokinetics of osthole were identified. In human CYP2C9 isoform, the Ki value of 21.93 μM (CYP2C9*1), 18.10 μM (CYP2C9*2), 13.12 μM (CYP2C9*3) indicate that there are individual differences in the inhibition of osthole on CYP2C9 activity.We investigated how the indomethacin pharmacokinetics was affected by osthole in SD rat. To estimate the area under the curve (AUC), maximum plasma concentration (Cmax) and apparent clearance (CL/F), indomethacin (10 mg/kg) was given orally combined with osthole (20 mg/kg) in adult SD rat. We found the value of PK on indomethacin, such as the AUC0-∞, was from 176.40 ± 17.29 to 173.74 ± 27.69 μg/ml h-1, Cmax from 9.02 ± 1.24 to 9.89 ± 0.82 μg/ml and CL/F from 0.11 ± 0.01 to 0.12 ± 0.04 mg/kg/h which were unsignificantly changed compared with the control groups. However, the Tmax was prolonged from 2.00 ± 0.00 h to 7.33 ± 1.15 h, and T1/2 increased from 8.38 ± 2.30 h to 11.37 ± 2.11 h. These results indicate that osthole could potentially affect the metabolism of indomethacin in vivo.
Collapse
Affiliation(s)
- Hui He
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, PR China.,Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, PR China
| | - Yuandong Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, PR China.,Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, PR China
| | - Dezhang Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, PR China.,Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, PR China
| | - Junhao Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, PR China.,Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, PR China
| | - Baogang Xie
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, PR China.,Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, PR China
| | - Limei Ma
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, PR China.,Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, PR China
| | - Xueqing Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, PR China.,Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, PR China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, PR China.,Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, PR China
| |
Collapse
|
23
|
Wang T, Jia Q, Chen T, Yin H, Tian X, Lin X, Liu Y, Zhao Y, Wang Y, Shi Q, Huang C, Xu H, Liang Q. Alleviation of Synovial Inflammation of Juanbi-Tang on Collagen-Induced Arthritis and TNF-Tg Mice Model. Front Pharmacol 2020; 11:45. [PMID: 32116720 PMCID: PMC7033619 DOI: 10.3389/fphar.2020.00045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that is primarily characterized by synovial inflammation. In this study, we found that a traditional Chinese decoction, Juanbi-Tang (JBT), JBT attenuated the symptoms of collagen-induced arthritis (CIA) mice and in tumor necrosis factor transgenic (TNF-Tg) mice by attenuating the arthritis index and hind paw thickness. According to histopathological staining of ankle sections, JBT significantly decreased the area of inflammation and reduced bone destruction of ankle joints in both these two types of mice. Moreover, decreased tartaric acid phosphatase-positive osteoclasts were observed in the JBT group compared with those found in the control group. We also revealed that JBT suppressed monocytes and T cells as well as the production of CCL2, CCR6, and CXCR3 ligands. We next used high-performance liquid chromatography to investigate the components and pharmacological properties of this classical herbal medicine in traditional Chinese medicine. Based on network pharmacology, we performed computational prediction simulation of the potential targets of JBT, which indicated the NF-kappa B pathway as its target, which was confirmed in vitro. JBT suppressed the production of pro-inflammatory cytokines including interleukin-6 (IL-6) and IL-8, and inhibited the expression of matrix metalloproteinase 1 in fibroblast-like synoviocytes derived from RA patients (MH7A cells). Furthermore, JBT also suppressed the phosphorylation of p38, JNK, and p65 in TNF-α-treated MH7A cells. In summary, this study proved that JBT could inhibit synovial inflammation and bone destruction, possibly by blocking the phosphorylation of NF-kappa B pathway-mediated production of proinflammatory effectors.
Collapse
Affiliation(s)
- Tengteng Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingyun Jia
- Second Ward of Trauma Surgery Department, Linyi People's Hospital, Linyi, China
| | - Tao Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Yin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoting Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xi Lin
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, United States
| | - Yang Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongjian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenggang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Do Different Species of Sargassum in Haizao Yuhu Decoction Cause Different Effects in a Rat Goiter Model? EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5645620. [PMID: 30723515 PMCID: PMC6339761 DOI: 10.1155/2019/5645620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/25/2018] [Accepted: 12/02/2018] [Indexed: 01/30/2023]
Abstract
Sargassum species combined with Glycyrrhiza uralensis is a famous herbal pair in traditional Chinese medicine, as one of the so-called “eighteen antagonistic medicaments.” In the Chinese Pharmacopoeia, two different species of Sargassum, Sargassum pallidum and Sargassum fusiforme, are recorded but they are not clearly differentiated in clinical use. In this study, we aimed to determine whether the two species of Sargassum could result in different effects when combined with G. uralensis in Haizao Yuhu Decoction (HYD), which is used for treating thyroid-related diseases, especially goiter. HYD containing S. pallidum or S. fusiforme was administered to rats with propylthiouracil-induced goiter. After 4 weeks, pathological changes in the thyroid tissue and the relative thyroid weight indicated that HYD containing S. pallidum or S. fusiforme protected thyroid tissues from propylthiouracil damage. Neither species increased the propylthiouracil-induced decrease in serum levels of thyroid hormones. However, there were some differences in their actions, and only HYD containing S. fusiforme abated the propylthiouracil-induced elevation of serum thyroid-stimulating hormone levels and activated thyroglobulin mRNA expression.
Collapse
|