1
|
Vasukutty A, Jang Y, Han D, Park H, Park IK. Navigating Latency-Inducing Viral Infections: Therapeutic Targeting and Nanoparticle Utilization. Biomater Res 2024; 28:0078. [PMID: 39416703 PMCID: PMC11480834 DOI: 10.34133/bmr.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 08/10/2024] [Indexed: 10/19/2024] Open
Abstract
The investigation into viral latency illuminates its pivotal role in the survival strategies of diverse viruses, including herpesviruses, HIV, and HPV. This underscores the delicate balance between dormancy and the potential for reactivation. The study explores the intricate mechanisms governing viral latency, encompassing episomal and proviral forms, and their integration with the host's genetic material. This integration provides resilience against cellular defenses, substantially impacting the host-pathogen dynamic, especially in the context of HIV, with implications for clinical outcomes. Addressing the challenge of eradicating latent reservoirs, this review underscores the potential of epigenetic and genetic interventions. It highlights the use of innovative nanocarriers like nanoparticles and liposomes for delivering latency-reversing agents. The precision in delivery, capacity to navigate biological barriers, and sustained drug release by these nanocarriers present a promising strategy to enhance therapeutic efficacy. The review further explores nanotechnology's integration in combating latent viral infections, leveraging nanoparticle-based platforms for drug delivery, gene editing, and vaccination. Advances in lipid-based nanocarriers, polymeric nanoparticles, and inorganic nanoparticles are discussed, illustrating their potential for targeted, efficient, and multifunctional antiviral therapy. By merging a deep understanding of viral latency's molecular underpinnings with nanotechnology's transformative capabilities, this review underscores the promise of novel therapeutic interventions. These interventions have great potential for managing persistent viral infections, heralding a new era in the fight against diseases such as neuroHIV/AIDS, herpes, and HPV.
Collapse
Affiliation(s)
- Arathy Vasukutty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP),
Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| | - Yeonwoo Jang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dongwan Han
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP),
Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| |
Collapse
|
2
|
Truong N, Cottingham AL, Dharmaraj S, Shaw JR, Lasola JJM, Goodis CC, Fletcher S, Pearson RM. Multimodal nanoparticle-containing modified suberoylanilide hydroxamic acid polymer conjugates to mitigate immune dysfunction in severe inflammation. Bioeng Transl Med 2024; 9:e10611. [PMID: 38193117 PMCID: PMC10771562 DOI: 10.1002/btm2.10611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/04/2023] [Accepted: 10/01/2023] [Indexed: 01/10/2024] Open
Abstract
Excessive immune activation and immunosuppression are opposing factors that contribute to the dysregulated innate and adaptive immune responses seen in severe inflammation and sepsis. Here, a novel analog of the histone deacetylase inhibitor (HDACi), suberoylanilide hydroxamic acid (SAHA-OH), was incorporated into immunomodulatory poly(lactic acid)-based nanoparticles (iNP-SAHA) by employing a prodrug approach through the covalent modification of poly(lactic-co-glycolic acid) (PLGA) with SAHA-OH. iNP-SAHA formulation allowed for controlled incorporation and delivery of SAHA-OH from iNP-SAHA and treatment led to multimodal biological responses including significant reductions in proinflammatory cytokine secretions and gene expression, while increasing the survival of primary macrophages under lipopolysaccharide (LPS) challenge. Using a lethal LPS-induced endotoxemia mouse model of sepsis, iNP-SAHA administration improved the survival of mice in a dose-dependent manner and tended to improve survival at the lowest doses compared to iNP control. Further, iNP-SAHA reduced the levels of plasma proinflammatory cytokines and chemokines associated with sepsis more significantly than iNP and similarly improved inflammation-induced spleen and liver toxicity as iNP, supporting its potential polypharmacological activity. Collectively, iNP-SAHA offers a potential drug delivery approach to modulate the multifaceted inflammatory responses observed in diseases such as sepsis.
Collapse
Affiliation(s)
- Nhu Truong
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Andrea L. Cottingham
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Shruti Dharmaraj
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Jacob R. Shaw
- Department of Microbiology and ImmunologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | | | - Christopher C. Goodis
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Steven Fletcher
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Ryan M. Pearson
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
- Department of Microbiology and ImmunologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
3
|
Ghosh A, Himaja A, Biswas S, Kulkarni O, Ghosh B. Advances in the Delivery and Development of Epigenetic Therapeutics for the Treatment of Cancer. Mol Pharm 2023; 20:5981-6009. [PMID: 37899551 DOI: 10.1021/acs.molpharmaceut.3c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Gene expression at the transcriptional level is altered by epigenetic modifications such as DNA methylation, histone methylation, and acetylation, which can upregulate, downregulate, or entirely silence genes. Pathological dysregulation of epigenetic processes can result in the development of cancer, neurological problems, metabolic disorders, and cardiovascular diseases. It is of promising therapeutic interest to find medications that target these epigenetic alterations. Despite the enormous amount of work that has been done in this area, very few molecules have been approved for clinical purposes. This article provides a comprehensive review of recent advances in epigenetic therapeutics for cancer, with a specific focus on emerging delivery and development strategies. Various delivery systems, including pro-drugs, conjugated molecules, nanoparticles (NPs), and liposomes, as well as remedial strategies such as combination therapies, and epigenetic editing, are being investigated to improve the efficacy and specificity of epigenetic drugs (epi-drugs). Furthermore, the challenges associated with available epi-drugs and the limitations of their translation into clinics have been discussed. Target selection, isoform selectivity, physiochemical properties of synthesized molecules, drug screening, and scalability of epi-drugs from preclinical to clinical fields are the major shortcomings that are addressed. This Review discusses novel strategies for the identification of new biomarkers, exploration of the medicinal chemistry of epigenetic modifiers, optimization of the dosage regimen, and design of proper clinical trials that will lead to better utilization of epigenetic modifiers over conventional therapies. The integration of these approaches holds great potential for improving the efficacy and precision of epigenetic treatments, ultimately benefiting cancer patients.
Collapse
Affiliation(s)
- Aparajita Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science- Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
- Pharmacology Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Ambati Himaja
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science- Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Onkar Kulkarni
- Pharmacology Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science- Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| |
Collapse
|
4
|
A Machine Learning Approach for PLGA Nanoparticles in Antiviral Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15020495. [PMID: 36839817 PMCID: PMC9966002 DOI: 10.3390/pharmaceutics15020495] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
In recent years, nanoparticles have been highly investigated in the laboratory. However, only a few laboratory discoveries have been translated into clinical practice. These findings in the laboratory are limited by trial-and-error methods to determine the optimum formulation for successful drug delivery. A new paradigm is required to ease the translation of lab discoveries to clinical practice. Due to their previous success in antiviral activity, it is vital to accelerate the discovery of novel drugs to treat and manage viruses. Machine learning is a subfield of artificial intelligence and consists of computer algorithms which are improved through experience. It can generate predictions from data inputs via an algorithm which includes a method built from inputs and outputs. Combining nanotherapeutics and well-established machine-learning algorithms can simplify antiviral-drug development systems by automating the analysis. Other relationships in bio-pharmaceutical networks would eventually aid in reaching a complex goal very easily. From previous laboratory experiments, data can be extracted and input into machine learning algorithms to generate predictions. In this study, poly (lactic-co-glycolic acid) (PLGA) nanoparticles were investigated in antiviral drug delivery. Data was extracted from research articles on nanoparticle size, polydispersity index, drug loading capacity and encapsulation efficiency. The Gaussian Process, a form of machine learning algorithm, could be applied to this data to generate graphs with predictions of the datasets. The Gaussian Process is a probabilistic machine learning model which defines a prior over function. The mean and variance of the data can be calculated via matrix multiplications, leading to the formation of prediction graphs-the graphs generated in this study which could be used for the discovery of novel antiviral drugs. The drug load and encapsulation efficiency of a nanoparticle with a specific size can be predicted using these graphs. This could eliminate the trial-and-error discovery method and save laboratory time and ease efficiency.
Collapse
|
5
|
Zhao L, Lai Y. Monoclonal CCR5 Antibody: A Promising Therapy for HIV. Curr HIV Res 2023; 21:91-98. [PMID: 36927434 DOI: 10.2174/1570162x21666230316110830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 03/18/2023]
Abstract
HIV is one of the world's most devastating viral infections and has claimed tens of millions of lives worldwide since it was first identified in the 1980s. There is no cure for HIV infection. However, with tremendous progress in HIV diagnosis, prevention, and treatment, HIV has become a manageable chronic health disease. CCR5 is an important coreceptor used by HIV to infect target cells, and genetic deficiency of the chemokine receptor CCR5 confers a significant degree of protection against HIV infection. In addition, since CCR5 deficiency does not appear to cause any adverse health effects, targeting this coreceptor is a promising strategy for the treatment and prevention of HIV. Monoclonal antibodies are frequently used as therapeutics for many diseases and therefore are being used as a potential therapy for HIV-1 infection. This review reports on CCR5 antibody research in detail and describes the role and advantages of CCR5 antibodies in HIV prevention or treatment, introduces several main CCR5 antibodies, and discusses the future strategy of antibody-conjugated nanoparticles including the potential challenges. CCR5 antibodies may be a novel therapy for treating HIV infection effectively and could overcome the limitations of the currently available options.
Collapse
Affiliation(s)
- Li Zhao
- Acupunture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Balakrishnan PB, Holmberg CS, Ledezma DK, Bosque A, Fernandes R. PolyIC-coated Prussian blue nanoparticles as a dual-mode HIV latency reversing agent. Nanomedicine (Lond) 2022; 17:2159-2171. [PMID: 36734362 PMCID: PMC10061244 DOI: 10.2217/nnm-2022-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Aim: To investigate Prussian blue nanoparticles (PBNPs) coated with the synthetic analog of dsRNA polyinosinic-polycytidylic acid (polyIC) for their ability to function as HIV latency reversing agents. Methods: A layer-by-layer method was used to synthesize polyIC-coated PBNPs (polyIC-PBNPs). PolyIC-PBNPs were stable and monodisperse, maintained the native absorbance properties of both polyIC and PBNPs and were obtained with high nanoparticle collection yield and polyIC attachment efficiencies. Results: PolyIC-PBNPs were more effective in reactivating latent HIV than free polyIC in a cell model of HIV latency. Furthermore, polyIC-PBNPs were more effective in promoting immune activation than free polyIC in CD4 and CD8 T cells. Conclusion: PBNPs function as efficient carriers of nucleic acids to directly reverse HIV latency and enhance immune activation.
Collapse
Affiliation(s)
- Preethi B Balakrishnan
- Department of Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA
- The George Washington Cancer Center, The George Washington University, Science & Engineering Hall, Ste 8300, Washington, DC 20052, USA
| | - Carissa S Holmberg
- The Institute for Biomedical Sciences, The George Washington University, 2300 I Street NW, Ross Hall, Room 561, Washington, DC 20037, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA
| | - Debbie K Ledezma
- Department of Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA
- The George Washington Cancer Center, The George Washington University, Science & Engineering Hall, Ste 8300, Washington, DC 20052, USA
- The Institute for Biomedical Sciences, The George Washington University, 2300 I Street NW, Ross Hall, Room 561, Washington, DC 20037, USA
| | - Alberto Bosque
- The Institute for Biomedical Sciences, The George Washington University, 2300 I Street NW, Ross Hall, Room 561, Washington, DC 20037, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA
| | - Rohan Fernandes
- Department of Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA
- The George Washington Cancer Center, The George Washington University, Science & Engineering Hall, Ste 8300, Washington, DC 20052, USA
- The Institute for Biomedical Sciences, The George Washington University, 2300 I Street NW, Ross Hall, Room 561, Washington, DC 20037, USA
| |
Collapse
|
7
|
Jitta SR, Salwa, Bhaskaran NA, Marques SM, Kumar L. Recent advances in nanoformulation development of Ritonavir, a key protease inhibitor used in the treatment of HIV-AIDS. Expert Opin Drug Deliv 2022; 19:1133-1148. [PMID: 36063032 DOI: 10.1080/17425247.2022.2121817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION AIDS is one of the world's most serious public health challenges. Protease inhibitors are key components of AIDS treatment regimen. Ritonavir is a well-known protease inhibitor with low aqueous solubility belonging to BCS class II category. Some of the severe adverse effects associated with this drug restricted its use in the treatment of AIDS. However, several attempts were made by researchers in the past to enhance the oral bioavailability of Ritonavir. AREAS COVERED The current review mainly focuses on the adverse effects of Ritonavir and recent approaches followed by researchers on the development of nanoformulations of Ritonavir. Further, various patents filed on Ritonavir have also been discussed in the current review. EXPERT OPINION Most research on nanoformulation development for Ritonavir is mainly focused on enhancing the solubility and oral bioavailability of the drug. Some of the researchers focused on the lymphatic targeting of the drug in order to bypass the hepatic metabolism of the drug. However, most of the research topics did not cover the toxicity evaluation of the developed formulation. Since the major issue of Ritonavir is not only oral bioavailability but also drug-induced toxicity, this area needs to be considered during the formulation development.
Collapse
Affiliation(s)
- Srinivas Reddy Jitta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, India
| | - Salwa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, India
| | - Navya Ajitkumar Bhaskaran
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, India
| | - Shirleen Miriam Marques
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, India.,Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, Government of NCT of Delhi, New Delhi, India
| |
Collapse
|
8
|
Tanaka K, Kim Y, Roche M, Lewin SR. The role of latency reversal in HIV cure strategies. J Med Primatol 2022; 51:278-283. [PMID: 36029233 PMCID: PMC9514955 DOI: 10.1111/jmp.12613] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 12/03/2022]
Abstract
One strategy to eliminate latently infected cells that persist in people with HIV on antiretroviral therapy is to activate virus transcription and virus production to induce virus or immune‐mediated cell death. This is called latency reversal. Despite clear activity of multiple latency reversal agents in vitro, clinical trials of latency‐reversing agents have not shown significant reduction in latently infected cells. We review new insights into the biology of HIV latency and discuss novel approaches to enhance the efficacy of latency reversal agents.
Collapse
Affiliation(s)
- Kiho Tanaka
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Youry Kim
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michael Roche
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Victorian Infectious Diseases Service, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Huang X, Zhang Y, Zhang W, Qin C, Zhu Y, Fang Y, Wang Y, Tang C, Cao F. Osteopontin-Targeted and PPARδ-Agonist-Loaded Nanoparticles Efficiently Reduce Atherosclerosis in Apolipoprotein E -/- Mice. ACS OMEGA 2022; 7:28767-28778. [PMID: 36033674 PMCID: PMC9404512 DOI: 10.1021/acsomega.2c00575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Atherosclerosis is the leading cause of vascular pathologies and acute cardiovascular events worldwide. Early theranostics of atherosclerotic plaque formation is critical for the prevention of associated cardiovascular complications. Osteopontin (OPN) expression in vascular smooth muscle cells (VSMCs) has been reported as a promising molecular target for the diagnosis and treatment of atherosclerotic plaques. The PPARδ agonist GW1516 has been shown to inhibit VSMC migration and apoptosis. However, GW1516 has low aqueous solubility and poor oral bioavailability, which are major obstacles to its broad development and application. In this study, GW1516@NP-OPN, which is anti-OPN-targeted and loaded with the PPARδ agonist GW1516, was synthesized using a nanoprecipitation method. The uptake of GW1516@NP-OPN was examined using fluorescence microscopy and flow cytometry assay in VSMC in vitro models. Using the Transwell assay and acridine orange/ethidium bromide staining methods, we observed that the inhibition of VSMCS migration and apoptosis was significantly higher in cells treated with GW1516@NP-OPN than those treated with free GW1516. The western blot assay further confirmed that GW1516@NP-OPN can increase FAK phosphorylation and TGF-βprotein expression. The effect of NPs was further tested in vivo. The atherosclerotic lesion areas were greatly decreased by GW1516@NP-OPN compared with the free drug treatment in apolipoprotein E-/- mice models. Consequently, our results showed that GW1516@NP-OPN stabilizes the PPARδ agonist aqueous formulation, improves its anti-plaque formation activities in vivo and in vitro, and can therefore be recommended for further development as a potential anti-atherosclerotic nanotherapy.
Collapse
Affiliation(s)
- Xu Huang
- Department
of Geriatric Cardiology, National Clinical Research Center for Geriatric
Diseases, 2nd Medical Center, Chinese PLA
General Hospital, Beijing 100853, China
- Department
of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yang Zhang
- Department
of Geriatric Cardiology, National Clinical Research Center for Geriatric
Diseases, 2nd Medical Center, Chinese PLA
General Hospital, Beijing 100853, China
| | - Weiwei Zhang
- Nankai
University School of Medicine, Nankai University, Tianjin 300073, China
| | - Cheng Qin
- Department
of Geriatric Cardiology, National Clinical Research Center for Geriatric
Diseases, 2nd Medical Center, Chinese PLA
General Hospital, Beijing 100853, China
| | - Yan Zhu
- Nankai
University School of Medicine, Nankai University, Tianjin 300073, China
| | - Yan Fang
- Department
of Geriatric Cardiology, National Clinical Research Center for Geriatric
Diseases, 2nd Medical Center, Chinese PLA
General Hospital, Beijing 100853, China
| | - Yabin Wang
- Department
of Geriatric Cardiology, National Clinical Research Center for Geriatric
Diseases, 2nd Medical Center, Chinese PLA
General Hospital, Beijing 100853, China
| | - Chengchun Tang
- Department
of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Feng Cao
- Department
of Geriatric Cardiology, National Clinical Research Center for Geriatric
Diseases, 2nd Medical Center, Chinese PLA
General Hospital, Beijing 100853, China
| |
Collapse
|
10
|
Jitta SR, Bhaskaran NA, Salwa, Kumar L. Anti-oxidant Containing Nanostructured Lipid Carriers of Ritonavir: Development, Optimization, and In Vitro and In Vivo Evaluations. AAPS PharmSciTech 2022; 23:88. [PMID: 35296970 DOI: 10.1208/s12249-022-02240-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/20/2022] [Indexed: 11/30/2022] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) is a condition caused by the infection of a retrovirus namely, human immunodeficiency virus (HIV). Currently, highly active anti-retroviral therapy (HAART), a combination of anti-viral drugs belonging to different classes is considered to be effective in the management of HIV. Ritonavir, a protease inhibitor (PI), is one of the most important components of the HAART regimen. Because of its lower bioavailability and severe side effects, presently, ritonavir is not being used as a PI. However, this drug is being used as a pharmacokinetic boosting agent for other PIs such as lopinavir and in lower doses. The current study aimed to develop nanostructured lipid carriers (NLCs) encapsulating ritonavir to reduce its side effects and enhance oral bioavailability. Ritonavir-loaded NLCs were developed using a combination of two different solid lipids and liquid lipids. Alpha-tocopherol, a well-known anti-oxidant, was used as an excipient (liquid lipid) in the development of NLCs which were prepared using a simple hot-emulsion and ultrasonication method. Drug-excipient studies were performed using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). QbD approach was followed for the screening and optimization of different variables. The developed NLCs were characterized for their particle size (PS), polydispersity index (PDI), zeta potential (ZP), and entrapment efficiency (EE). Furthermore, NLCs were studied for their in vitro drug release profile, and finally, pharmacokinetic parameters were determined using in vivo pharmacokinetic studies. The optimized NLC size was in the range of 273.9 to 458.7 nm, PDI of 0.314 to 0.480, ZP of -52.2 to - 40.9 mV, and EE in the range of 47.37 to 74.51%. From in vitro drug release, it was found that the release of drug in acidic medium was higher than phosphate buffer pH 6.8. Finally, in vivo pharmacokinetic studies revealed a 7-fold enhancement in the area under the curve (AUC) and more than 10-fold higher Cmax with the optimized formulation in comparison to pure drug suspension. Graphical Abstract.
Collapse
|
11
|
Daśko M, de Pascual-Teresa B, Ortín I, Ramos A. HDAC Inhibitors: Innovative Strategies for Their Design and Applications. Molecules 2022; 27:molecules27030715. [PMID: 35163980 PMCID: PMC8837987 DOI: 10.3390/molecules27030715] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylases (HDACs) are a large family of epigenetic metalloenzymes that are involved in gene transcription and regulation, cell proliferation, differentiation, migration, and death, as well as angiogenesis. Particularly, disorders of the HDACs expression are linked to the development of many types of cancer and neurodegenerative diseases, making them interesting molecular targets for the design of new efficient drugs and imaging agents that facilitate an early diagnosis of these diseases. Thus, their selective inhibition or degradation are the basis for new therapies. This is supported by the fact that many HDAC inhibitors (HDACis) are currently under clinical research for cancer therapy, and the Food and Drug Administration (FDA) has already approved some of them. In this review, we will focus on the recent advances and latest discoveries of innovative strategies in the development and applications of compounds that demonstrate inhibitory or degradation activity against HDACs, such as PROteolysis-TArgeting Chimeras (PROTACs), tumor-targeted HDACis (e.g., folate conjugates and nanoparticles), and imaging probes (positron emission tomography (PET) and fluorescent ligands).
Collapse
Affiliation(s)
- Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland;
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain;
| | - Beatriz de Pascual-Teresa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain;
| | - Irene Ortín
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain;
- Correspondence: (I.O.); (A.R.)
| | - Ana Ramos
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain;
- Correspondence: (I.O.); (A.R.)
| |
Collapse
|
12
|
Amani A, Dustparast M, Noruzpour M, Zakaria RA, Ebrahimi HA. Design and Invitro Characterization of Green Synthesized Magnetic Nanoparticles Conjugated with Multitargeted Poly Lactic Acid Copolymers for Co-delivery of siRNA and Paclitaxel. Eur J Pharm Sci 2021; 167:106007. [PMID: 34520835 DOI: 10.1016/j.ejps.2021.106007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/21/2021] [Accepted: 09/10/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The self-assembling of various amphipathic copolymers is a simple method that allows the preparation of complex nanoparticles with several useful properties. In the present study, the polylactic acid-polyethylene glycol-folate (PLA-PEG-FA) (PPF), PLA-PEG-T7 peptide (PPT) and PLA-Chitosan-Spermine (PCS) copolymers were synthesized separately. METHODS These copolymers combined with Fe3O4 magnetic core and loaded with paclitaxel (PTX)/siRNA-FAM to form magnetic PCS/PPF/PPT/PTX/siRNA micelles (MPCSFT/PTX/siRNA) and were characterized using physicochemical and biological analysis. RESULTS The results revealed that the MPCSPFT/PTX/siRNA had spherical morphology with particle size and zeta potential about 197 nm and -7.8 mV, respectively. Release assay was determined under neutral (pH=7.4) and acidic pH (pH=6) conditions to simulate PTX and siRNA release profile from MPCSPFT/PTX/siRNA micelles in normal and cancerous tissues. The ability of MPCSPFT for co-delivery of PTX and siRNA into MCF-7 cells was determined by MTT and flow cytometry tests, respectively. The results revealed that the release rate of siRNA and PTX from MPCSPFT/PTX/siRNA nanoparticles under an acidic environment (pH=6) was significantly higher than that of their release rate in a neutral medium (pH=7.4). CONCLUSION Conjugation of both folic acid and T7-peptide on the surface of micelles compared to separate conjugation of one of these ligands, increased the efficiency of drug and siRNA delivery to breast cancer cells.
Collapse
Affiliation(s)
- Amin Amani
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mohammad Dustparast
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehran Noruzpour
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rasool Asghari Zakaria
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hossein Ali Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
13
|
Rejinold NS, Piao H, Jin GW, Choi G, Choy JH. Injectable niclosamide nanohybrid as an anti-SARS-CoV-2 strategy. Colloids Surf B Biointerfaces 2021; 208:112063. [PMID: 34482191 PMCID: PMC8383483 DOI: 10.1016/j.colsurfb.2021.112063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 01/04/2023]
Abstract
COVID-19 is a rapidly evolving emergency, which necessitates scientific community to come up with novel formulations that could find quick relief to the millions affected around the globe. Remdesivir being the only injectable drug by FDA for COVID-19, it initially showed promising results, however, later on failed to retain its claims, hence rejected by the WHO. Therefore, it is important to develop injectable formulation that are effective and affordable. Here in this work, we formulated poly ethylene glycol (PEG) coated bovine serum albumin (BSA) stabilized Niclosamide (NIC) nanoparticles (NPs) (∼BSA-NIC-PEG NPs) as an effective injectable formulation. Here, serum albumin mediated strategy was proposed as an effective strategy to specifically target SARS-CoV-2, the virus that causes COVID-19. The in-vitro results showed that the developed readily water dispersible formulation with a particle size <120 nm size were well stable even after 3 weeks. Even though the in-vitro studies showed promising results, the in-vivo pharmaco-kinetic (PK) study in rats demands the need of conducting further experiments to specifically target the SARS-CoV-2 in the virus infected model. We expect that this present formulation would be highly preferred for targeting hypoalbuminemia conditions, which was often reported in elderly COVID-19 patients. Such studies are on the way to summarize its potential applications in the near future.
Collapse
Affiliation(s)
- N Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Huiyan Piao
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Geun-Woo Jin
- R&D Center, CnPharm Co., LTD., Seoul, 03759, Republic of Korea
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Pre-Medical Course, College of Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.
| |
Collapse
|
14
|
Pradhan R, Chatterjee S, Hembram KC, Sethy C, Mandal M, Kundu CN. Nano formulated Resveratrol inhibits metastasis and angiogenesis by reducing inflammatory cytokines in oral cancer cells by targeting tumor associated macrophages. J Nutr Biochem 2021; 92:108624. [PMID: 33705943 DOI: 10.1016/j.jnutbio.2021.108624] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 01/02/2021] [Accepted: 02/27/2021] [Indexed: 12/27/2022]
Abstract
Tumor associated macrophages in the tumor microenvironment secrete multiple cytokines, which regulate cancer cells growth and invasiveness. We systematically studied the role of cytokines in the induction of cancer stem like cells (CSCs) in oral cancer cells niche and evaluated the mechanism of Resveratrol nanoparticle (Res-Nano) mediated-reduction of CSCs properties in cells. A highly M1-like macrophages-enriched conditioned medium (CM) was generated by treating fixed doses of PMA and LPS in THP-1 cells alone as well as co-cultured of H-357 plus THP-1 cells. These M1-like macrophages increased the production of cytokines (e.g., TNF-α, IL-6, IL-1β, etc.). A CSCs populated environment was created after addition of cytokine-enriched-CM of co-culture of H-357 and THP-1 cells to cancer cells and cytokine enriched CM of THP-1 cells to patient derived primary oral cancer cells, respectively. After incubation with CM, enhancement of stemness, angiogenic and metastatic properties of both H-357 and primary oral cancer cells were noted. Res-NP decreased the cytokines level in CSCs-enriched cells and reduced the invasion, proliferation and growth of CSCs. Representative metastatic (CD133, ALDH1, CXCR4, etc.) and angiogenic markers (MMPs, iNOS, VEGF-A, etc.) were decreased after Res-NP treatment in CSCs enriched oral cancer cells niche. It also disrupted angiogenesis, depleted nitric oxide production in fertilized chick embryos and reduced the expression of metastatic and angiogenic markers in xenograft mice model system. Thus, this study concluded that CSCs-mediated stemness is a cytokine dependent phenomena and treatment of Res-NP inhibit this process in in vitro, in vivo and ex vivo systems.
Collapse
Affiliation(s)
- Rajalaxmi Pradhan
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar-751024, Odisha, India
| | - Subhajit Chatterjee
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar-751024, Odisha, India
| | - Krushna Chandra Hembram
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar-751024, Odisha, India
| | - Chinmayee Sethy
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar-751024, Odisha, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur-721302, West Bengal, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar-751024, Odisha, India.
| |
Collapse
|
15
|
Chaudhuri S, Fowler MJ, Baker C, Stopka SA, Regan MS, Sablatura L, Broughton CW, Knight BE, Stabenfeldt SE, Agar NYR, Sirianni RW. β-Cyclodextrin-poly (β-Amino Ester) Nanoparticles Are a Generalizable Strategy for High Loading and Sustained Release of HDAC Inhibitors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20960-20973. [PMID: 33905245 PMCID: PMC8153536 DOI: 10.1021/acsami.0c22587] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Therapeutic development of histone deacetylase inhibitors (HDACi) has been hampered by a number of barriers to drug delivery, including poor solubility and inadequate tissue penetration. Nanoparticle encapsulation could be one approach to improve the delivery of HDACi to target tissues; however, effective and generalizable loading of HDACi within nanoparticle systems remains a long-term challenge. We hypothesized that the common terminally ionizable moiety on many HDACi molecules could be capitalized upon for loading in polymeric nanoparticles. Here, we describe the simple, efficient formulation of a novel library of β-cyclodextrin-poly (β-amino ester) networks (CDN) to achieve this goal. We observed that network architecture was a critical determinant of CDN encapsulation of candidate molecules, with a more hydrophobic core enabling effective self-assembly and a PEGylated surface enabling high loading (up to ∼30% w/w), effective self-assembly of the nanoparticle, and slow release of drug into aqueous media (up to 24 days) for the model HDACi panobinostat. We next constructed a library of CDNs to encapsulate various small, hydrophobic, terminally ionizable molecules (panobinostat, quisinostat, dacinostat, givinostat, bortezomib, camptothecin, nile red, and cytarabine), which yielded important insights into the structural requirements for effective drug loading and CDN self-assembly. Optimized CDN nanoparticles were taken up by GL261 cells in culture and a released panobinostat was confirmed to be bioactive. Panobinostat-loaded CDNs were next administered by convection-enhanced delivery (CED) to mice bearing intracranial GL261 tumors. These studies confirm that CDN encapsulation enables a higher deliverable dose of drug to effectively slow tumor growth. Matrix-assisted laser desorption/ionization (MALDI) analysis on tissue sections confirms higher exposure of tumor to drug, which likely accounts for the therapeutic effects. Taken in sum, these studies present a novel nanocarrier platform for encapsulation of HDACi via both ionic and hydrophobic interactions, which is an important step toward better treatment of disease via HDACi therapy.
Collapse
Affiliation(s)
- Sauradip Chaudhuri
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Martha J. Fowler
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Cassandra Baker
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Sylwia A. Stopka
- Department
of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Michael S. Regan
- Department
of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Lindsey Sablatura
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Colton W. Broughton
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Brandon E. Knight
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Sarah E. Stabenfeldt
- School
of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Nathalie Y. R. Agar
- Department
of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Rachael W. Sirianni
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center at Houston, Houston, Texas 77030, United States
- School
of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
16
|
Yang KC, Lin JC, Tsai HH, Hsu CY, Shih V, Hu CMJ. Nanotechnology advances in pathogen- and host-targeted antiviral delivery: multipronged therapeutic intervention for pandemic control. Drug Deliv Transl Res 2021; 11:1420-1437. [PMID: 33748879 PMCID: PMC7982277 DOI: 10.1007/s13346-021-00965-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 01/18/2023]
Abstract
The COVID-19 pandemic's high mortality rate and severe socioeconomic impact serve as a reminder of the urgent need for effective countermeasures against viral pandemic threats. In particular, effective antiviral therapeutics capable of stopping infections in its tracks is critical to reducing infection fatality rate and healthcare burden. With the field of drug delivery witnessing tremendous advancement in the last two decades owing to a panoply of nanotechnology advances, the present review summarizes and expounds on the research and development of therapeutic nanoformulations against various infectious viral pathogens, including HIV, influenza, and coronaviruses. Specifically, nanotechnology advances towards improving pathogen- and host-targeted antiviral drug delivery are reviewed, and the prospect of achieving effective viral eradication, broad-spectrum antiviral effect, and resisting viral mutations are discussed. As several COVID-19 antiviral clinical trials are met with lackluster treatment efficacy, nanocarrier strategies aimed at improving drug pharmacokinetics, biodistributions, and synergism are expected to not only contribute to the current disease treatment efforts but also expand the antiviral arsenal against other emerging viral diseases.
Collapse
Affiliation(s)
- Kai-Chieh Yang
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 112304, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Jung-Chen Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Hsiao-Han Tsai
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 112304, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Chung-Yao Hsu
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 112304, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Vicky Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Che-Ming Jack Hu
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 112304, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan. .,Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 704017, Taiwan.
| |
Collapse
|
17
|
Zhou J, Krishnan N, Jiang Y, Fang RH, Zhang L. Nanotechnology for virus treatment. NANO TODAY 2021; 36:101031. [PMID: 33519948 PMCID: PMC7836394 DOI: 10.1016/j.nantod.2020.101031] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 04/14/2023]
Abstract
The continued emergence of novel viruses poses a significant threat to global health. Uncontrolled outbreaks can result in pandemics that have the potential to overburden our healthcare and economic systems. While vaccination is a conventional modality that can be employed to promote herd immunity, antiviral vaccines can only be applied prophylactically and do little to help patients who have already contracted viral infections. During the early stages of a disease outbreak when vaccines are unavailable, therapeutic antiviral drugs can be used as a stopgap solution. However, these treatments do not always work against emerging viral strains and can be accompanied by adverse effects that sometimes outweigh the benefits. Nanotechnology has the potential to overcome many of the challenges facing current antiviral therapies. For example, nanodelivery vehicles can be employed to drastically improve the pharmacokinetic profile of antiviral drugs while reducing their systemic toxicity. Other unique nanomaterials can be leveraged for their virucidal or virus-neutralizing properties. In this review, we discuss recent developments in antiviral nanotherapeutics and provide a perspective on the application of nanotechnology to the SARS-CoV-2 outbreak and future virus pandemics.
Collapse
Affiliation(s)
- Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yao Jiang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
18
|
Nasrollahzadeh M, Sajjadi M, Soufi GJ, Iravani S, Varma RS. Nanomaterials and Nanotechnology-Associated Innovations against Viral Infections with a Focus on Coronaviruses. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1072. [PMID: 32486364 PMCID: PMC7352498 DOI: 10.3390/nano10061072] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022]
Abstract
Viral infections have recently emerged not only as a health threat to people but rapidly became the cause of universal fatality on a large scale. Nanomaterials comprising functionalized nanoparticles (NPs) and quantum dots and nanotechnology-associated innovative detection methods, vaccine design, and nanodrug production have shown immense promise for interfacing with pathogenic viruses and restricting their entrance into cells. These viruses have been scrutinized using rapid diagnostic detection and therapeutic interventional options against the caused infections including vaccine development for prevention and control. Coronaviruses, namely SARS-CoV, MERS-CoV, and SARS-CoV-2, have endangered human life, and the COVID-19 (caused by SARS-CoV-2) outbreak has become a perilous challenge to public health globally with huge accompanying morbidity rates. Thus, it is imperative to expedite the drug and vaccine development efforts that would help mitigate this pandemic. In this regard, smart and innovative nano-based technologies and approaches encompassing applications of green nanomedicine, bio-inspired methods, multifunctional bioengineered nanomaterials, and biomimetic drug delivery systems/carriers can help resolve the critical issues regarding detection, prevention, and treatment of viral infections. This perspective review expounds recent nanoscience advancements for the detection and treatment of viral infections with focus on coronaviruses and encompasses nano-based formulations and delivery platforms, nanovaccines, and promising methods for clinical diagnosis, especially regarding SARS-CoV-2.
Collapse
Affiliation(s)
| | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran;
| | - Ghazaleh Jamalipour Soufi
- Radiology Department, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran;
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71, CZ-779 00 Olomouc, Czech Republic
| |
Collapse
|
19
|
Bowen A, Sweeney EE, Fernandes R. Nanoparticle-Based Immunoengineered Approaches for Combating HIV. Front Immunol 2020; 11:789. [PMID: 32425949 PMCID: PMC7212361 DOI: 10.3389/fimmu.2020.00789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) serves as an effective strategy to combat HIV infections by suppressing viral replication in patients with HIV/AIDS. However, HAART does not provide HIV/AIDS patients with a sterilizing or functional cure, and introduces several deleterious comorbidities. Moreover, the virus is able to persist within latent reservoirs, both undetected by the immune system and unaffected by HAART, increasing the risk of a viral rebound. The field of immunoengineering, which utilizes varied bioengineering approaches to interact with the immune system and potentiate its therapeutic effects against HIV, is being increasingly investigated in HIV cure research. In particular, nanoparticle-based immunoengineered approaches are especially attractive because they offer advantages including the improved delivery and functionality of classical HIV drugs such as antiretrovirals and experimental drugs such as latency-reversing agents (LRAs), among others. Here, we present and discuss the current state of the field in nanoparticle-based immunoengineering approaches for an HIV cure. Specifically, we discuss nanoparticle-based methods for improving HAART as well as latency reversal, developing vaccines, targeting viral fusion, enhancing gene editing approaches, improving adoptively transferred immune-cell mediated reservoir clearance, and other therapeutic and prevention approaches. Although nanoparticle-based immunoengineered approaches are currently at the stage of preclinical testing, the promising findings obtained in these studies demonstrate the potential of this emerging field for developing an HIV cure.
Collapse
Affiliation(s)
- Allan Bowen
- The George Washington Cancer Center, The George Washington University, Washington, DC, United States
| | - Elizabeth E. Sweeney
- The George Washington Cancer Center, The George Washington University, Washington, DC, United States
| | - Rohan Fernandes
- The George Washington Cancer Center, The George Washington University, Washington, DC, United States
- Department of Medicine, The George Washington University, Washington, DC, United States
| |
Collapse
|
20
|
Halling Folkmar Andersen A, Tolstrup M. The Potential of Long-Acting, Tissue-Targeted Synthetic Nanotherapy for Delivery of Antiviral Therapy Against HIV Infection. Viruses 2020; 12:E412. [PMID: 32272815 PMCID: PMC7232358 DOI: 10.3390/v12040412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022] Open
Abstract
Oral administration of a combination of two or three antiretroviral drugs (cART) has transformed HIV from a life-threatening disease to a manageable infection. However, as the discontinuation of therapy leads to virus rebound in plasma within weeks, it is evident that, despite daily pill intake, the treatment is unable to clear the infection from the body. Furthermore, as cART drugs exhibit a much lower concentration in key HIV residual tissues, such as the brain and lymph nodes, there is a rationale for the development of drugs with enhanced tissue penetration. In addition, the treatment, with combinations of multiple different antiviral drugs that display different pharmacokinetic profiles, requires a strict dosing regimen to avoid the emergence of drug-resistant viral strains. An intriguing opportunity lies within the development of long-acting, synthetic scaffolds for delivering cART. These scaffolds can be designed with the goal to reduce the frequency of dosing and furthermore, hold the possibility of potential targeting to key HIV residual sites. Moreover, the synthesis of combinations of therapy as one molecule could unify the pharmacokinetic profiles of different antiviral drugs, thereby eliminating the consequences of sub-therapeutic concentrations. This review discusses the recent progress in the development of long-acting and tissue-targeted therapies against HIV for the delivery of direct antivirals, and examines how such developments fit in the context of exploring HIV cure strategies.
Collapse
Affiliation(s)
- Anna Halling Folkmar Andersen
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark;
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark;
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
21
|
Nanomaterials Designed for Antiviral Drug Delivery Transport across Biological Barriers. Pharmaceutics 2020; 12:pharmaceutics12020171. [PMID: 32085535 PMCID: PMC7076512 DOI: 10.3390/pharmaceutics12020171] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022] Open
Abstract
Viral infections are a major global health problem, representing a significant cause of mortality with an unfavorable continuously amplified socio-economic impact. The increased drug resistance and constant viral replication have been the trigger for important studies regarding the use of nanotechnology in antiviral therapies. Nanomaterials offer unique physico-chemical properties that have linked benefits for drug delivery as ideal tools for viral treatment. Currently, different types of nanomaterials namely nanoparticles, liposomes, nanospheres, nanogels, nanosuspensions and nanoemulsions were studied either in vitro or in vivo for drug delivery of antiviral agents with prospects to be translated in clinical practice. This review highlights the drug delivery nanosystems incorporating the major antiviral classes and their transport across specific barriers at cellular and intracellular level. Important reflections on nanomedicines currently approved or undergoing investigations for the treatment of viral infections are also discussed. Finally, the authors present an overview on the requirements for the design of antiviral nanotherapeutics.
Collapse
|
22
|
Abstract
HIV is one of the most devastating viral infections the world has ever encountered. Ever since HIV was first identified in the 1980s, it has claimed millions of lives worldwide. There has been tremendous research and development in the diagnosis, prevention and treatment of HIV. Small molecules have been shown to reduce the virus to nondetectable level in human plasma, however, there are reservoirs of latent virus that reemerge if antiretroviral therapy is stopped. There is no vaccine to prevent or cure HIV. A significant amount of research has been reported in the literature regarding antibodies for CCR5, a HIV entry host receptor. This report describes the role of CCR5 antibody in HIV prevention/treatment and how antibody-conjugated nanoparticles could be a future strategy with the potential to effectively eradicate the virus from the human system.
Collapse
|
23
|
Cao S, Woodrow KA. Nanotechnology approaches to eradicating HIV reservoirs. Eur J Pharm Biopharm 2019; 138:48-63. [PMID: 29879528 PMCID: PMC6279622 DOI: 10.1016/j.ejpb.2018.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/29/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
Abstract
The advent of combination antiretroviral therapy (cART) has transformed HIV-1 infection into a controllable chronic disease, but these therapies are incapable of eradicating the virus to bring about an HIV cure. Multiple strategies have been proposed and investigated to eradicate latent viral reservoirs from various biological sanctuaries. However, due to the complexity of HIV infection and latency maintenance, a single drug is unlikely to eliminate all HIV reservoirs and novel strategies may be needed to achieve better efficacy while limiting systemic toxicity. In this review, we describe HIV latency in cellular and anatomical reservoirs, and present an overview of current strategies for HIV cure with a focus on their challenges for clinical translation. Then we provide a summary of nanotechnology solutions that have been used to address challenges in HIV cure by delivering physicochemically diverse agents for combination therapy or targeting HIV reservoir sites. We also review nanocarrier-based gene delivery and immunotherapy used in cancer treatment but may have potential applications in HIV cure.
Collapse
Affiliation(s)
- Shijie Cao
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
24
|
Cao S, Slack SD, Levy CN, Hughes SM, Jiang Y, Yogodzinski C, Roychoudhury P, Jerome KR, Schiffer JT, Hladik F, Woodrow KA. Hybrid nanocarriers incorporating mechanistically distinct drugs for lymphatic CD4 + T cell activation and HIV-1 latency reversal. SCIENCE ADVANCES 2019; 5:eaav6322. [PMID: 30944862 PMCID: PMC6436934 DOI: 10.1126/sciadv.aav6322] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/06/2019] [Indexed: 05/10/2023]
Abstract
A proposed strategy to cure HIV uses latency-reversing agents (LRAs) to reactivate latent proviruses for purging HIV reservoirs. A variety of LRAs have been identified, but none has yet proven effective in reducing the reservoir size in vivo. Nanocarriers could address some major challenges by improving drug solubility and safety, providing sustained drug release, and simultaneously delivering multiple drugs to target tissues and cells. Here, we formulated hybrid nanocarriers that incorporate physicochemically diverse LRAs and target lymphatic CD4+ T cells. We identified one LRA combination that displayed synergistic latency reversal and low cytotoxicity in a cell model of HIV and in CD4+ T cells from virologically suppressed patients. Furthermore, our targeted nanocarriers selectively activated CD4+ T cells in nonhuman primate peripheral blood mononuclear cells as well as in murine lymph nodes, and substantially reduced local toxicity. This nanocarrier platform may enable new solutions for delivering anti-HIV agents for an HIV cure.
Collapse
Affiliation(s)
- Shijie Cao
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Sarah D. Slack
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Claire N. Levy
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Sean M. Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Yonghou Jiang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kim A. Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
25
|
Tang X, Xie C, Jiang Z, Li A, Cai S, Hou C, Wang J, Liang Y, Ma D. Rituximab (anti-CD20)-modified AZD-2014-encapsulated nanoparticles killing of B lymphoma cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1063-1073. [PMID: 30198340 DOI: 10.1080/21691401.2018.1478844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mTOR signal pathway is often highly activated in B-cell non-Hodgkin's lymphoma (NHL) and promotes cancer progression and chemo-resistance. Therefore, the pathways of mTOR are an important target for drug development in this disease. In the current study, we developed a rituximab (anti-CD20)-modified mTOR inhibitor, AZD-2014, loaded into nanoparticles (Ab-NPs-AZD-2014) for trial of its anti-NHL effect. In a cultured NHL cell line, Ab-NPs-AZD-2014 inhibited cancer cell growth, induced cell apoptosis, and blocked activation of mTORC1 and mTORC2 in Raji cells. These results indicate that antibody modification and nanomaterial loading of AZD-2014 with anti-CD20 significantly improved efficacy of AZD-2014 against NHL cells. This approach may ultimately deserve testing in therapy against NHL.
Collapse
Affiliation(s)
- Xiaolong Tang
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Chunmei Xie
- b Department of Laboratory Medicine , Guangzhou 8th People's Hospital, Guangzhou Medical University , Guangzhou , China
| | - Zhenyou Jiang
- c Departments of Microbiology and Immunology , Jinan University , Guangzhou , China
| | - Amin Li
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Shiyu Cai
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Changhao Hou
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Jian Wang
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Yong Liang
- d Huai'an Hospital Afliated of Xuzhou Medical College and Huai'an Second Hospital , Huai'an , China
| | - Dong Ma
- e Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou , China
| |
Collapse
|
26
|
Cao S, Jiang Y, Zhang H, Kondza N, Woodrow KA. Core-shell nanoparticles for targeted and combination antiretroviral activity in gut-homing T cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2143-2153. [PMID: 29964219 DOI: 10.1016/j.nano.2018.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023]
Abstract
A major sanctuary site for HIV infection is the gut-associated lymphoid tissue (GALT). The α4β7 integrin gut homing receptor is a promising therapeutic target for the virus reservoir because it leads to migration of infected cells to the GALT and facilitates HIV infection. Here, we developed a core-shell nanoparticle incorporating the α4β7 monoclonal antibody (mAb) as a dual-functional ligand for selectively targeting a protease inhibitor (PI) to gut-homing T cells in the GALT while simultaneously blocking HIV infection. Our nanoparticles significantly reduced cytotoxicity of the PI and enhanced its in vitro antiviral activity in combination with α4β7 mAb. We demonstrate targeting function of our nanocarriers in a human T cell line and primary cells isolated from macaque ileum, and observed higher in vivo biodistribution to the murine small intestines where they accumulate in α4β7+ cells. Our LCNP shows the potential to co-deliver ARVs and mAbs for eradicating HIV reservoirs.
Collapse
Affiliation(s)
- Shijie Cao
- Department of Bioengineering, University of Washington, Seattle, USA
| | - Yonghou Jiang
- Department of Bioengineering, University of Washington, Seattle, USA
| | - Hangyu Zhang
- Department of Bioengineering, University of Washington, Seattle, USA; Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology 116023, Dalian, China; Research Center for the Control Engineering of Translational Precision Medicine, Dalian University of Technology 116023, Dalian, China
| | - Nina Kondza
- Department of Bioengineering, University of Washington, Seattle, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, USA.
| |
Collapse
|
27
|
Huang X, Xu MQ, Zhang W, Ma S, Guo W, Wang Y, Zhang Y, Gou T, Chen Y, Liang XJ, Cao F. ICAM-1-Targeted Liposomes Loaded with Liver X Receptor Agonists Suppress PDGF-Induced Proliferation of Vascular Smooth Muscle Cells. NANOSCALE RESEARCH LETTERS 2017; 12:322. [PMID: 28472871 PMCID: PMC5415450 DOI: 10.1186/s11671-017-2097-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/20/2017] [Indexed: 05/05/2023]
Abstract
The proliferation of vascular smooth muscle cells (VSMCs) is one of the key events during the progress of atherosclerosis. The activated liver X receptor (LXR) signalling pathway is demonstrated to inhibit platelet-derived growth factor BB (PDGF-BB)-induced VSMC proliferation. Notably, following PDGF-BB stimulation, the expression of intercellular adhesion molecule-1 (ICAM-1) by VSMCs increases significantly. In this study, anti-ICAM-1 antibody-conjugated liposomes were fabricated for targeted delivery of a water-insoluble LXR agonist (T0901317) to inhibit VSMC proliferation. The liposomes were prepared by filming-rehydration method with uniform size distribution and considerable drug entrapment efficiency. The targeting effect of the anti-ICAM-T0901317 liposomes was evaluated by confocal laser scanning microscope (CLSM) and flow cytometry. Anti-ICAM-T0901317 liposomes showed significantly higher inhibition effect of VSMC proliferation than free T0901317 by CCk8 proliferation assays and BrdU staining. Western blot assay further confirmed that anti-ICAM-T0901317 liposomes inhibited retinoblastoma (Rb) phosphorylation and MCM6 expression. In conclusion, this study identified anti-ICAM-T0901317 liposomes as a promising nanotherapeutic approach to overcome VSMC proliferation during atherosclerosis progression.
Collapse
Affiliation(s)
- Xu Huang
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Meng-Qi Xu
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wei Zhang
- Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Sai Ma
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Weisheng Guo
- Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yabin Wang
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yan Zhang
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Tiantian Gou
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yundai Chen
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xing-Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Feng Cao
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
28
|
Zhang J, Shi Y, Zheng Y, Pan C, Yang X, Dou T, Wang B, Lu W. Homing in on an intracellular target for delivery of loaded nanoparticles functionalized with a histone deacetylase inhibitor. Oncotarget 2017; 8:68242-68251. [PMID: 28978112 PMCID: PMC5620252 DOI: 10.18632/oncotarget.20021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/26/2017] [Indexed: 12/31/2022] Open
Abstract
Functionalized nanoparticles (NPs) are usually used to enhance cellular penetration for targeted drug delivery that can improve efficacy and reduce side effects. However, it is difficult to exploit intracellular targets for similar delivery applications. Herein we describe the targeted delivery of functionalized NPs by homing in on an intracellular target, histone deacetylases (HDACs). Specifically, a modified poly-lactide-co-glycolideacid (FPLGA) was yielded by conjugation with an HDAC inhibitor. Subsequently, FPLGA was used to prepare functionalized FPLGA NPs. Compared to unmodified NPs, FPLGA NPs were more efficiently uptaken or retained by MCF-7 cells and showed longer retention time intracellular. In vivo fluorescence imaging also revealed that they had a higher accumulation and a slower elimination than unmodified NPs. FPLGA NPs loaded with paclitaxel exhibited superior anticancer efficacy compared with unmodified NPs. These results offer a promising approach for intracellular drug delivery through elevating the concentration of NPs.
Collapse
Affiliation(s)
- Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Yaling Shi
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Yueqin Zheng
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA
| | - Chengcheng Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Xiaoying Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Taoyan Dou
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA
| | - Wen Lu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| |
Collapse
|