1
|
Nussinov R, Yavuz BR, Jang H. Single cell spatial biology over developmental time can decipher pediatric brain pathologies. Neurobiol Dis 2024; 199:106597. [PMID: 38992777 DOI: 10.1016/j.nbd.2024.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024] Open
Abstract
Pediatric low grade brain tumors and neurodevelopmental disorders share proteins, signaling pathways, and networks. They also share germline mutations and an impaired prenatal differentiation origin. They may differ in the timing of the events and proliferation. We suggest that their pivotal distinct, albeit partially overlapping, outcomes relate to the cell states, which depend on their spatial location, and timing of gene expression during brain development. These attributes are crucial as the brain develops sequentially, and single-cell spatial organization influences cell state, thus function. Our underlying premise is that the root cause in neurodevelopmental disorders and pediatric tumors is impaired prenatal differentiation. Data related to pediatric brain tumors, neurodevelopmental disorders, brain cell (sub)types, locations, and timing of expression in the developing brain are scant. However, emerging single cell technologies, including transcriptomic, spatial biology, spatial high-resolution imaging performed over the brain developmental time, could be transformational in deciphering brain pathologies thereby pharmacology.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
2
|
Zhang T, Wei Y, Xu L, Tang X, Hu Y, Liu H, Wang Z, Chen T, Li C, Wang J. Association between serum cytokines and timeframe for conversion from clinical high-risk to psychosis. Psychiatry Clin Neurosci 2024; 78:385-392. [PMID: 38591426 DOI: 10.1111/pcn.13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
AIM Although many studies have explored the link between inflammatory markers and psychosis, there is a paucity of research investigating the temporal progression in individuals at clinical high-risk (CHR) who eventually develop full psychosis. To address this gap, we investigated the correlation between serum cytokine levels and Timeframe for Conversion to Psychosis (TCP) in individuals with CHR. METHODS We enrolled 53 individuals with CHR who completed a 5-year follow-up with a confirmed conversion to psychosis. Granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin (IL)-1β, 2, 6, 8, 10, tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor (VEGF) levels were measured at baseline and 1-year. Correlation and quantile regression analyses were performed. RESULTS The median TCP duration was 14 months. A significantly shorter TCP was associated with higher levels of TNF-α (P = 0.022) and VEGF (P = 0.016). A negative correlation was observed between TCP and TNF-α level (P = 0.006) and VEGF level (P = 0.04). Quantile regression indicated negative associations between TCP and GM-CSF levels below the 0.5 quantile, IL-10 levels below the 0.3 quantile, IL-2 levels below the 0.25 quantile, IL-6 levels between the 0.65 and 0.75 quantiles, TNF-α levels below the 0.8 quantile, and VEGF levels below the 0.7 quantile. A mixed linear effects model identified significant time effects for IL-10 and IL-2, and significant group effects for changes in IL-2 and TNF-α. CONCLUSIONS Our findings underscore that a more pronounced baseline inflammatory state is associated with faster progression of psychosis in individuals with CHR. This highlights the importance of considering individual inflammatory profiles during early intervention and of tailoring preventive measures for risk profiles.
Collapse
Affiliation(s)
- TianHong Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - YanYan Wei
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - LiHua Xu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - XiaoChen Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - YeGang Hu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - HaiChun Liu
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
| | - ZiXuan Wang
- Shanghai Xinlianxin Psychological Counseling Center, Shanghai, China
| | - Tao Chen
- Big Data Research Lab, University of Waterloo, Waterloo, Ontario, Canada
- Labor and Worklife Program, Harvard University, Cambridge, Massachusetts, USA
| | - ChunBo Li
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - JiJun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Lee HY, Lin CH, Wang XA, Tsai JD. Neuropsychiatric comorbidities in tuberous sclerosis complex patients with epilepsy: results of the TAND checklist survey. Acta Neurol Belg 2024; 124:973-979. [PMID: 38523222 DOI: 10.1007/s13760-024-02510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE In addition to epilepsy, individuals with tuberous sclerosis complex (TSC) experience a wide range of behavioral, psychiatric, intellectual, academic, and psychosocial problems. They usually exert a large psychological burden on individuals with these illnesses. METHODS This cross-sectional study used TSC-associated neuropsychiatric disorders (TAND) checklist interviews conducted at a single medical center. The enrollment of all subjects was > 6 years, and the comorbidities of neurodevelopmental disorders were assessed by clinical psychologists before enrollment. To assess the spectrum of TAND, the TAND checklist was applied as stated in the protocol, and the responses to the TAND checklist were evaluated by clinical psychologists. RESULTS In the behavioral concerns of patients with TSC without epilepsy, those with epilepsy had excessive shyness, language delay, lack of eye contact, rigid behavior, inattentiveness, and restlessness. In psychiatric disorders, autism spectrum disorder and attention-deficit/hyperactivity disorder are significantly correlated with epilepsy history. Diminished academic skills, including reading, writing, and mathematics skills, are significantly associated with epilepsy history. For intellectual ability, TSC patients without epilepsy is associated normal intelligence level. Among neuropsychological skills, deficits in attention, dual tasking/multi-tasking, visuospatial tasking, and executive skills are significantly associated with epilepsy history. CONCLUSIONS Epilepsy in patients with TSC contributes to comorbid neuropsychiatric disorders. In addition to epilepsy evaluation, it is crucial to evaluate the heterogeneous spectrum of neuropsychiatric disorders using a standard checklist during the annual clinical follow-up of patients with TSC.
Collapse
Affiliation(s)
- Hom-Yi Lee
- Department of Psychology, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Room of Psychology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Heng Lin
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Paediatrics, China Medical University Hospital, Taichung, Taiwan
| | - Xing-An Wang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Paediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jeng-Dau Tsai
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
- Department of Paediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
4
|
Licchetta L, Bruschi G, Stipa C, Belotti LMB, Ferri L, Mostacci B, Vignatelli L, Minardi R, Di Vito L, Muccioli L, Boni A, Tinuper P, Bisulli F. Tuberous sclerosis complex in adulthood: focus on epilepsy prognosis. Epilepsy Behav 2024; 153:109688. [PMID: 38428171 DOI: 10.1016/j.yebeh.2024.109688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
OBJECTIVE Typically diagnosed in early childhood or adolescence, TSC is a chronic, multisystemic disorder with age-dependent manifestations posing a challenge for transition and for specific surveillance throughout the lifetime. Data on the clinical features and severity of TSC in adults and on the prognosis of epilepsy are scarce. We analyzed the clinical and genetic features of a cohort of adult patients with TSC, to identify the prognostic predictors of seizure remission after a long follow-up. METHOD We conducted a retrospective analysis of patients diagnosed with TSC according to the updated international diagnostic criteria. Pearson's chi-square or Fisher's exact test and Mann Whitney U test were used to compare variables among the Remission (R) and Non-Remission (NR) group. Univariate and multivariate logistic regression analyses were performed. RESULTS We selected 43 patients with TSC and neurological involvement in terms of epilepsy and/or brain lesions, attending the Epilepsy Center of our Institute: of them, 16 (37.2%) were transitioning from the pediatric care and 6 (13.9%) were referred by other specialists. Multiorgan involvement includes cutaneous (86.0%), nephrological (70.7%), hepatic (40.0%), ocular (34.3%), pneumological (28.6%) and cardiac (26.3%) manifestations. Thirty-nine patients (90.7 %) had epilepsy. The mean age at seizure onset was 4 ± 7.3 years: most patients (29, 76.3 %) presented with focal seizures or spasms by age 3 years; only 2 (5.3 %) had seizure onset in adulthood. Twenty-seven patients (69.2 %) experienced multiple seizure types overtime, 23 (59.0 %) had intellectual disability (ID). At last assessment, 14 (35.9 %) were seizure free (R group) and 25 (64.1 %) had drug-resistant seizures (NR group). At logistic regression univariate analysis, ID (OR 7.9, 95 % CI 1.8--34.7), multiple seizure types lifelong (OR 13.2, 95 % CI 2.6- 67.2), spasms/tonic seizures at presentation (OR 6.5, 95 % CI 1.2--35.2), a higher seizure frequency at onset (OR 5.4, 95 % CI 1.2--24.3), abnormal neurological examination (OR 9.8, 95 % CI 1.1--90.6) and pathogenic variants in TSC2 (OR 5.4, 95 % CI 1.2--24.5) were significantly associated with non-remission. In the multivariate analysis, both ID and multiple seizure types lifelong were confirmed as independent predictors of poor seizure outcome. CONCLUSIONS In our cohort of adult patients with TSC, epilepsy remains one of the main neurological challenges with only 5.3% of cases manifesting in adulthood. Approximately 64% of these patients failed to achieve seizure remission. ID and multiple seizure types were the main predictors of poor outcome. Nephrological manifestations require continuous specific follow-up in adults.
Collapse
Affiliation(s)
- Laura Licchetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, European Reference Network for Rare and Complex Epilepsies (EpiCARE), Bologna, Italy
| | - Giulia Bruschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, European Reference Network for Rare and Complex Epilepsies (EpiCARE), Bologna, Italy; Unit of Neurology and Unit of Clinical Neurophysiology, Department of Neuroscience, University of Padua, Padua, Italy
| | - Carlotta Stipa
- IRCCS Istituto delle Scienze Neurologiche di Bologna, European Reference Network for Rare and Complex Epilepsies (EpiCARE), Bologna, Italy
| | - Laura Maria Beatrice Belotti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, European Reference Network for Rare and Complex Epilepsies (EpiCARE), Bologna, Italy
| | - Lorenzo Ferri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna Italy.
| | - Barbara Mostacci
- IRCCS Istituto delle Scienze Neurologiche di Bologna, European Reference Network for Rare and Complex Epilepsies (EpiCARE), Bologna, Italy
| | - Luca Vignatelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, European Reference Network for Rare and Complex Epilepsies (EpiCARE), Bologna, Italy
| | - Raffaella Minardi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, European Reference Network for Rare and Complex Epilepsies (EpiCARE), Bologna, Italy
| | - Lidia Di Vito
- IRCCS Istituto delle Scienze Neurologiche di Bologna, European Reference Network for Rare and Complex Epilepsies (EpiCARE), Bologna, Italy
| | - Lorenzo Muccioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna Italy
| | - Antonella Boni
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria Dell'età Pediatrica, via Altura 3, Bologna 40138, Italy
| | - Paolo Tinuper
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna Italy
| | - Francesca Bisulli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, European Reference Network for Rare and Complex Epilepsies (EpiCARE), Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna Italy
| |
Collapse
|
5
|
Wen F, Tan Z, Huang D, Xiang J. Molecular mechanism analyses of post-traumatic epilepsy and hereditary epilepsy based on 10× single-cell transcriptome sequencing technology. CNS Neurosci Ther 2024; 30:e14702. [PMID: 38572804 PMCID: PMC10993349 DOI: 10.1111/cns.14702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Single-cell RNA sequencing analysis has been usually conducted on post-traumatic epilepsy (PET) and hereditary epilepsy (HE) patients; however, the transcriptome of patients with traumatic temporal lobe epilepsy has rarely been studied. MATERIALS AND METHODS Hippocampus tissues isolated from one patient with PTE and one patient with HE were used in the present study. Single cell isolates were prepared and captured using a 10× Genomics Chromium Single-Cell 3' kit (V3) according to the manufacturer's instructions. The libraries were sequenced on an Illumina NovaSeq 6000 sequencing system. Raw data were processed, and the cells were filtered and classified using the Seurat R package. Uniform Manifold Approximation and Projection was used for visualization. Differentially expressed genes (DEGs) were identified based on a p-value ≤0.01 and log fold change (FC) ≥0.25. Gene Ontology (GO, http://geneontology.org/) and KEGG (Kyoto Encyclopedia of Genes and Genomes, www.genome.jp/kegg) analyses were performed on the DEGs for enrichment analysis. RESULTS The reads obtained from the 10× genomic platform for PTE and HE were 39.56 M and 30.08 M, respectively. The Q30 score of the RNA reads was >91.6%. After filtering, 7479 PTE cells and 9357 HE cells remained for further study. More than 96.4% of the reads were mapped to GRCh38/GRCm38. The cells were differentially distributed in two groups, with higher numbers of oligodendrocytes (6522 vs. 2532) and astrocytes (133 vs. 52), and lower numbers of microglial cells (2242 vs. 3811), and neurons (3 vs. 203) present in the HE group than in the PTE group. The DEGs in four cell clusters were identified, with 25 being in oligodendrocytes (13 upregulated and 12 downregulated), 87 in microglia cells (42 upregulated and 45 downregulated), 222 in astrocytes (115 upregulated and 107 downregulated), and 393 in neurons (305 upregulated and 88 downregulated). The genes MTND1P23 (downregulated), XIST (downregulated), and RPS4Y1 (upregulated) were commonly expressed in all four cell clusters. The DEGs in microglial cells and astrocytes were enriched in the IL-17 signaling pathway. CONCLUSION Our study explored differences in cells found in a patient with PE compared to a patient with HE, and the transcriptome in the different cells was analyzed for the first time. Studying inflammatory and immune functions might be the best approach for investigating traumatic temporal lobe epilepsy in neurons.
Collapse
Affiliation(s)
- Fang Wen
- Department of NeurologyThe Second Xiang‐Ya Hospital of Central South UniversityChangshaHunanChina
| | - Zhigang Tan
- Department of NeurosurgeryThe Second Xiang‐Ya Hospital of Central South UniversityChangshaHunanChina
| | - Dezhi Huang
- Department of NeurosurgeryThe Second Xiang‐Ya Hospital of Central South UniversityChangshaHunanChina
| | - Jun Xiang
- Department of NeurosurgeryThe Second Xiang‐Ya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
6
|
Hsieh CCJ, Lo YC, Wang HH, Shen HY, Chen YY, Lee YC. Amelioration of the brain structural connectivity is accompanied with changes of gut microbiota in a tuberous sclerosis complex mouse model. Transl Psychiatry 2024; 14:68. [PMID: 38296969 PMCID: PMC10830571 DOI: 10.1038/s41398-024-02752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic disease that causes benign tumors and dysfunctions in many organs, including the brain. Aside from the brain malformations, many individuals with TSC exhibit neuropsychiatric symptoms. Among these symptoms, autism spectrum disorder (ASD) is one of the most common co-morbidities, affecting up to 60% of the population. Past neuroimaging studies strongly suggested that the impairments in brain connectivity contribute to ASD, whether or not TSC-related. Specifically, the tract-based diffusion tensor imaging (DTI) analysis provides information on the fiber integrity and has been used to study the neuropathological changes in the white matter of TSC patients with ASD symptoms. In our previous study, curcumin, a diet-derived mTOR inhibitor has been shown to effectively mitigate learning and memory deficits and anxiety-like behavior in Tsc2+/- mice via inhibiting astroglial proliferation. Recently, gut microbiota, which is greatly influenced by the diet, has been considered to play an important role in regulating several components of the central nervous system, including glial functions. In this study, we showed that the abnormal social behavior in the Tsc2+/- mice can be ameliorated by the dietary curcumin treatment. Second, using tract-based DTI analysis, we found that the Tsc2+/- mice exhibited altered fractional anisotropy, axial and radial diffusivities of axonal bundles connecting the prefrontal cortex, nucleus accumbens, hypothalamus, and amygdala, indicating a decreased brain network. Third, the dietary curcumin treatment improved the DTI metrics, in accordance with changes in the gut microbiota composition. At the bacterial phylum level, we showed that the abundances of Actinobacteria, Verrucomicrobia, and Tenericutes were significantly correlated with the DTI metrics FA, AD, and RD, respectively. Finally, we revealed that the expression of myelin-associated proteins, myelin bassic protein (MBP) and proteolipid protein (PLP) was increased after the treatment. Overall, we showed a strong correlation between structural connectivity alterations and social behavioral deficits, as well as the diet-dependent changes in gut microbiota composition.
Collapse
Affiliation(s)
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Hui Wang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Ying Shen
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - You-Yin Chen
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yi-Chao Lee
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Orlando B, Morano A, Manzini V, Cerulli Irelli E, Borioni MS, Veroni C, Salamone EM, D'Amelio C, Moliterni E, Giustini S, Ruffolo G, Arisi I, D'Onofrio M, Giallonardo AT, Piscopo P, Di Bonaventura C. Plasma Biomarker Profile and Clinical Correlations in Adult Patients With Tuberous Sclerosis Complex. Neurology 2023; 101:e1933-e1938. [PMID: 37652704 PMCID: PMC10663002 DOI: 10.1212/wnl.0000000000207799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/10/2023] [Indexed: 09/02/2023] Open
Abstract
OBJECTIVES Different pathophysiologic mechanisms, especially involving astrocytes, could contribute to tuberous sclerosis complex (TSC). We assessed neurodegeneration and astrocytopathy plasma biomarkers in adult patients with TSC to define TSC biomarker profile and investigate clinical-radiologic correlations. METHODS Patients with TSC aged 15 years or older followed at Policlinico "Umberto I" of Rome were consecutively enrolled (July 2021-June 2022). The plasma levels of the following biomarkers were compared between patients and age/sex-matched healthy controls (HCs): tTau, pTau181, Abeta40, Abeta42, neurofilament light chain, and glial fibrillary acid protein (GFAP). RESULTS Thirty-one patients (20 females/11 males; median age 30 years, interquartile range 24-47) and 38 HCs were enrolled. Only GFAP was significantly higher in the whole TSC population than in HCs (132.71 [86.14-231.06] vs 44.80 [32.87-66.76] pg/mL, p < 0.001), regardless of genotype. GFAP correlated with the disease clinical (ρ = 0.498, p = 0.005) and radiologic severity (ρ = 0.417, p = 0.001). It was significantly higher in patients with epileptic spasms (254.50 [137.54-432.96] vs 86.92 [47.09-112.76] pg/mL, p < 0.0001), moderate-severe intellectual disability (200.80 [78.40-427.6] vs 105.08 [46.80-152.58] pg/mL, p = 0.040), and autism spectrum disorder (306.26 [159.07-584.47] vs 109.34 [72.56-152.08] pg/mL, p = 0.021). DISCUSSION Our exploratory study documented a significant increase of GFAP plasma concentration in adult patients with TSC, correlated with their neurologic severity, supporting the central role of astrocytopathy in TSC pathophysiology.
Collapse
Affiliation(s)
- Biagio Orlando
- From the Department of Human Neurosciences (B.O., A.M., E.C.I., M.S.B., E.M.S., A.T.G., C.D.B.), "Sapienza" University of Rome; Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini (V.M., C.D.A., I.A., M.D.O.) Department of Neurosciences (C.V., P.P.), Istituto Superiore di Sanità, Rome; Department of Odontostomatological and Maxillofacial Sciences (E.M.), "Sapienza" University of Rome; Department of Clinical Internal (S.G.), Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome; Department of Physiology and Pharmacology (G.R.), Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy; and Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma (G.R.)
| | - Alessandra Morano
- From the Department of Human Neurosciences (B.O., A.M., E.C.I., M.S.B., E.M.S., A.T.G., C.D.B.), "Sapienza" University of Rome; Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini (V.M., C.D.A., I.A., M.D.O.) Department of Neurosciences (C.V., P.P.), Istituto Superiore di Sanità, Rome; Department of Odontostomatological and Maxillofacial Sciences (E.M.), "Sapienza" University of Rome; Department of Clinical Internal (S.G.), Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome; Department of Physiology and Pharmacology (G.R.), Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy; and Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma (G.R.)
| | - Valeria Manzini
- From the Department of Human Neurosciences (B.O., A.M., E.C.I., M.S.B., E.M.S., A.T.G., C.D.B.), "Sapienza" University of Rome; Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini (V.M., C.D.A., I.A., M.D.O.) Department of Neurosciences (C.V., P.P.), Istituto Superiore di Sanità, Rome; Department of Odontostomatological and Maxillofacial Sciences (E.M.), "Sapienza" University of Rome; Department of Clinical Internal (S.G.), Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome; Department of Physiology and Pharmacology (G.R.), Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy; and Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma (G.R.)
| | - Emanuele Cerulli Irelli
- From the Department of Human Neurosciences (B.O., A.M., E.C.I., M.S.B., E.M.S., A.T.G., C.D.B.), "Sapienza" University of Rome; Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini (V.M., C.D.A., I.A., M.D.O.) Department of Neurosciences (C.V., P.P.), Istituto Superiore di Sanità, Rome; Department of Odontostomatological and Maxillofacial Sciences (E.M.), "Sapienza" University of Rome; Department of Clinical Internal (S.G.), Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome; Department of Physiology and Pharmacology (G.R.), Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy; and Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma (G.R.)
| | - Maria S Borioni
- From the Department of Human Neurosciences (B.O., A.M., E.C.I., M.S.B., E.M.S., A.T.G., C.D.B.), "Sapienza" University of Rome; Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini (V.M., C.D.A., I.A., M.D.O.) Department of Neurosciences (C.V., P.P.), Istituto Superiore di Sanità, Rome; Department of Odontostomatological and Maxillofacial Sciences (E.M.), "Sapienza" University of Rome; Department of Clinical Internal (S.G.), Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome; Department of Physiology and Pharmacology (G.R.), Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy; and Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma (G.R.)
| | - Caterina Veroni
- From the Department of Human Neurosciences (B.O., A.M., E.C.I., M.S.B., E.M.S., A.T.G., C.D.B.), "Sapienza" University of Rome; Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini (V.M., C.D.A., I.A., M.D.O.) Department of Neurosciences (C.V., P.P.), Istituto Superiore di Sanità, Rome; Department of Odontostomatological and Maxillofacial Sciences (E.M.), "Sapienza" University of Rome; Department of Clinical Internal (S.G.), Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome; Department of Physiology and Pharmacology (G.R.), Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy; and Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma (G.R.)
| | - Enrico Michele Salamone
- From the Department of Human Neurosciences (B.O., A.M., E.C.I., M.S.B., E.M.S., A.T.G., C.D.B.), "Sapienza" University of Rome; Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini (V.M., C.D.A., I.A., M.D.O.) Department of Neurosciences (C.V., P.P.), Istituto Superiore di Sanità, Rome; Department of Odontostomatological and Maxillofacial Sciences (E.M.), "Sapienza" University of Rome; Department of Clinical Internal (S.G.), Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome; Department of Physiology and Pharmacology (G.R.), Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy; and Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma (G.R.)
| | - Chiara D'Amelio
- From the Department of Human Neurosciences (B.O., A.M., E.C.I., M.S.B., E.M.S., A.T.G., C.D.B.), "Sapienza" University of Rome; Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini (V.M., C.D.A., I.A., M.D.O.) Department of Neurosciences (C.V., P.P.), Istituto Superiore di Sanità, Rome; Department of Odontostomatological and Maxillofacial Sciences (E.M.), "Sapienza" University of Rome; Department of Clinical Internal (S.G.), Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome; Department of Physiology and Pharmacology (G.R.), Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy; and Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma (G.R.)
| | - Elisa Moliterni
- From the Department of Human Neurosciences (B.O., A.M., E.C.I., M.S.B., E.M.S., A.T.G., C.D.B.), "Sapienza" University of Rome; Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini (V.M., C.D.A., I.A., M.D.O.) Department of Neurosciences (C.V., P.P.), Istituto Superiore di Sanità, Rome; Department of Odontostomatological and Maxillofacial Sciences (E.M.), "Sapienza" University of Rome; Department of Clinical Internal (S.G.), Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome; Department of Physiology and Pharmacology (G.R.), Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy; and Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma (G.R.)
| | - Sandra Giustini
- From the Department of Human Neurosciences (B.O., A.M., E.C.I., M.S.B., E.M.S., A.T.G., C.D.B.), "Sapienza" University of Rome; Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini (V.M., C.D.A., I.A., M.D.O.) Department of Neurosciences (C.V., P.P.), Istituto Superiore di Sanità, Rome; Department of Odontostomatological and Maxillofacial Sciences (E.M.), "Sapienza" University of Rome; Department of Clinical Internal (S.G.), Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome; Department of Physiology and Pharmacology (G.R.), Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy; and Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma (G.R.)
| | - Gabriele Ruffolo
- From the Department of Human Neurosciences (B.O., A.M., E.C.I., M.S.B., E.M.S., A.T.G., C.D.B.), "Sapienza" University of Rome; Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini (V.M., C.D.A., I.A., M.D.O.) Department of Neurosciences (C.V., P.P.), Istituto Superiore di Sanità, Rome; Department of Odontostomatological and Maxillofacial Sciences (E.M.), "Sapienza" University of Rome; Department of Clinical Internal (S.G.), Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome; Department of Physiology and Pharmacology (G.R.), Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy; and Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma (G.R.)
| | - Ivan Arisi
- From the Department of Human Neurosciences (B.O., A.M., E.C.I., M.S.B., E.M.S., A.T.G., C.D.B.), "Sapienza" University of Rome; Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini (V.M., C.D.A., I.A., M.D.O.) Department of Neurosciences (C.V., P.P.), Istituto Superiore di Sanità, Rome; Department of Odontostomatological and Maxillofacial Sciences (E.M.), "Sapienza" University of Rome; Department of Clinical Internal (S.G.), Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome; Department of Physiology and Pharmacology (G.R.), Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy; and Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma (G.R.)
| | - Mara D'Onofrio
- From the Department of Human Neurosciences (B.O., A.M., E.C.I., M.S.B., E.M.S., A.T.G., C.D.B.), "Sapienza" University of Rome; Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini (V.M., C.D.A., I.A., M.D.O.) Department of Neurosciences (C.V., P.P.), Istituto Superiore di Sanità, Rome; Department of Odontostomatological and Maxillofacial Sciences (E.M.), "Sapienza" University of Rome; Department of Clinical Internal (S.G.), Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome; Department of Physiology and Pharmacology (G.R.), Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy; and Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma (G.R.)
| | - Anna T Giallonardo
- From the Department of Human Neurosciences (B.O., A.M., E.C.I., M.S.B., E.M.S., A.T.G., C.D.B.), "Sapienza" University of Rome; Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini (V.M., C.D.A., I.A., M.D.O.) Department of Neurosciences (C.V., P.P.), Istituto Superiore di Sanità, Rome; Department of Odontostomatological and Maxillofacial Sciences (E.M.), "Sapienza" University of Rome; Department of Clinical Internal (S.G.), Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome; Department of Physiology and Pharmacology (G.R.), Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy; and Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma (G.R.)
| | - Paola Piscopo
- From the Department of Human Neurosciences (B.O., A.M., E.C.I., M.S.B., E.M.S., A.T.G., C.D.B.), "Sapienza" University of Rome; Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini (V.M., C.D.A., I.A., M.D.O.) Department of Neurosciences (C.V., P.P.), Istituto Superiore di Sanità, Rome; Department of Odontostomatological and Maxillofacial Sciences (E.M.), "Sapienza" University of Rome; Department of Clinical Internal (S.G.), Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome; Department of Physiology and Pharmacology (G.R.), Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy; and Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma (G.R.)
| | - Carlo Di Bonaventura
- From the Department of Human Neurosciences (B.O., A.M., E.C.I., M.S.B., E.M.S., A.T.G., C.D.B.), "Sapienza" University of Rome; Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini (V.M., C.D.A., I.A., M.D.O.) Department of Neurosciences (C.V., P.P.), Istituto Superiore di Sanità, Rome; Department of Odontostomatological and Maxillofacial Sciences (E.M.), "Sapienza" University of Rome; Department of Clinical Internal (S.G.), Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome; Department of Physiology and Pharmacology (G.R.), Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy; and Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma (G.R.).
| |
Collapse
|
8
|
Davletshin AI, Matveeva AA, Poletaeva II, Evgen'ev MB, Garbuz DG. The role of molecular chaperones in the mechanisms of epileptogenesis. Cell Stress Chaperones 2023; 28:599-619. [PMID: 37755620 PMCID: PMC10746656 DOI: 10.1007/s12192-023-01378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Epilepsy is a group of neurological diseases which requires significant economic costs for the treatment and care of patients. The central point of epileptogenesis stems from the failure of synaptic signal transmission mechanisms, leading to excessive synchronous excitation of neurons and characteristic epileptic electroencephalogram activity, in typical cases being manifested as seizures and loss of consciousness. The causes of epilepsy are extremely diverse, which is one of the reasons for the complexity of selecting a treatment regimen for each individual case and the high frequency of pharmacoresistant cases. Therefore, the search for new drugs and methods of epilepsy treatment requires an advanced study of the molecular mechanisms of epileptogenesis. In this regard, the investigation of molecular chaperones as potential mediators of epileptogenesis seems promising because the chaperones are involved in the processing and regulation of the activity of many key proteins directly responsible for the generation of abnormal neuronal excitation in epilepsy. In this review, we try to systematize current data on the role of molecular chaperones in epileptogenesis and discuss the prospects for the use of chemical modulators of various chaperone groups' activity as promising antiepileptic drugs.
Collapse
Affiliation(s)
| | - Anna A Matveeva
- Engelhardt Institute of Molecular Biology RAS, 119991, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Moscow Region, Russia
| | - Inga I Poletaeva
- Biology Department, Lomonosov Moscow State University, 119991, Moscow, Russia
| | | | - David G Garbuz
- Engelhardt Institute of Molecular Biology RAS, 119991, Moscow, Russia
| |
Collapse
|
9
|
Çarçak N, Onat F, Sitnikova E. Astrocytes as a target for therapeutic strategies in epilepsy: current insights. Front Mol Neurosci 2023; 16:1183775. [PMID: 37583518 PMCID: PMC10423940 DOI: 10.3389/fnmol.2023.1183775] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Astrocytes are specialized non-neuronal glial cells of the central nervous system, contributing to neuronal excitability and synaptic transmission (gliotransmission). Astrocytes play a key roles in epileptogenesis and seizure generation. Epilepsy, as a chronic disorder characterized by neuronal hyperexcitation and hypersynchronization, is accompanied by substantial disturbances of glial cells and impairment of astrocytic functions and neuronal signaling. Anti-seizure drugs that provide symptomatic control of seizures primarily target neural activity. In epileptic patients with inadequate control of seizures with available anti-seizure drugs, novel therapeutic candidates are needed. These candidates should treat epilepsy with anti-epileptogenic and disease-modifying effects. Evidence from human and animal studies shows that astrocytes have value for developing new anti-seizure and anti-epileptogenic drugs. In this review, we present the key functions of astrocytes contributing to neuronal hyperexcitability and synaptic activity following an etiology-based approach. We analyze the role of astrocytes in both development (epileptogenesis) and generation of seizures (ictogenesis). Several promising new strategies that attempted to modify astroglial functions for treating epilepsy are being developed: (1) selective targeting of glia-related molecular mechanisms of glutamate transport; (2) modulation of tonic GABA release from astrocytes; (3) gliotransmission; (4) targeting the astrocytic Kir4.1-BDNF system; (5) astrocytic Na+/K+/ATPase activity; (6) targeting DNA hypo- or hypermethylation of candidate genes in astrocytes; (7) targeting astrocytic gap junction regulators; (8) targeting astrocytic adenosine kinase (the major adenosine-metabolizing enzyme); and (9) targeting microglia-astrocyte communication and inflammatory pathways. Novel disease-modifying therapeutic strategies have now been developed, such as astroglia-targeted gene therapy with a broad spectrum of genetic constructs to target astroglial cells.
Collapse
Affiliation(s)
- Nihan Çarçak
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Filiz Onat
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Bychkova E, Dorofeeva M, Levov A, Kislyakov A, Karandasheva K, Strelnikov V, Anoshkin K. Specific Features of Focal Cortical Dysplasia in Tuberous Sclerosis Complex. Curr Issues Mol Biol 2023; 45:3977-3996. [PMID: 37232723 DOI: 10.3390/cimb45050254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Patients with tuberous sclerosis complex present with cognitive, behavioral, and psychiatric impairments, such as intellectual disabilities, autism spectrum disorders, and drug-resistant epilepsy. It has been shown that these disorders are associated with the presence of cortical tubers. Tuberous sclerosis complex results from inactivating mutations in the TSC1 or TSC2 genes, resulting in hyperactivation of the mTOR signaling pathway, which regulates cell growth, proliferation, survival, and autophagy. TSC1 and TSC2 are classified as tumor suppressor genes and function according to Knudson's two-hit hypothesis, which requires both alleles to be damaged for tumor formation. However, a second-hit mutation is a rare event in cortical tubers. This suggests that the molecular mechanism of cortical tuber formation may be more complicated and requires further research. This review highlights the issues of molecular genetics and genotype-phenotype correlations, considers histopathological characteristics and the mechanism of morphogenesis of cortical tubers, and also presents data on the relationship between these formations and the development of neurological manifestations, as well as treatment options.
Collapse
Affiliation(s)
- Ekaterina Bychkova
- Research Centre for Medical Genetics, Moskvorechye Street 1, 115522 Moscow, Russia
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova Street 1, 117997 Moscow, Russia
| | - Marina Dorofeeva
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery, Pirogov Russian National Research Medical University, Taldomskaya 2, 125412 Moscow, Russia
| | - Aleksandr Levov
- Morozov Children's City Clinical Hospital, 4th Dobryninsky Lane, 1/9, 119049 Moscow, Russia
| | - Alexey Kislyakov
- Morozov Children's City Clinical Hospital, 4th Dobryninsky Lane, 1/9, 119049 Moscow, Russia
| | | | - Vladimir Strelnikov
- Research Centre for Medical Genetics, Moskvorechye Street 1, 115522 Moscow, Russia
| | - Kirill Anoshkin
- Research Centre for Medical Genetics, Moskvorechye Street 1, 115522 Moscow, Russia
| |
Collapse
|
11
|
Mordelt A, de Witte LD. Microglia-mediated synaptic pruning as a key deficit in neurodevelopmental disorders: Hype or hope? Curr Opin Neurobiol 2023; 79:102674. [PMID: 36657237 DOI: 10.1016/j.conb.2022.102674] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/18/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023]
Abstract
There is a consensus in the field that microglia play a prominent role in neurodevelopmental processes like synaptic pruning and neuronal network maturation. Thus, a current momentum of associating microglia deficits with neurodevelopmental disorders (NDDs) emerged. This concept is challenged by rodent studies and clinical data. Intriguingly, reduced numbers of microglia or altered microglial functions do not necessarily lead to overt NDD phenotypes, and neuropsychiatric symptoms seem to develop primarily in adulthood. Hence, it remains open for discussion whether microglia are truly indispensable for healthy neurodevelopment. Here, we critically discuss the role of microglia in synaptic pruning and highlight area- and age dependency. We propose an updated model of microglia-mediated synaptic pruning in the context of NDDs and discuss the potential of targeting microglia for treatment of these disorders.
Collapse
Affiliation(s)
- Annika Mordelt
- Department of Human Genetics and Department of Cognitive Neuroscience, Radboudumc, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, the Netherlands.
| | - Lot D de Witte
- Department of Human Genetics and Department of Cognitive Neuroscience, Radboudumc, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, the Netherlands; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
12
|
Ai YW, Du Y, Chen L, Liu SH, Liu QS, Cheng Y. Brain Inflammatory Marker Abnormalities in Major Psychiatric Diseases: a Systematic Review of Postmortem Brain Studies. Mol Neurobiol 2023; 60:2116-2134. [PMID: 36600081 DOI: 10.1007/s12035-022-03199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
Schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD) are common neuropsychiatric disorders that lead to neuroinflammation in the pathogenesis. It is possible to further explore the connection between inflammation in the brain and SCZ, BD, and MDD. Therefore, we systematically reviewed PubMed and Web of Science on brain inflammatory markers measured in SCZ, BD, and MDD postmortem brains. Out of 2166 studies yielded by the search, 46 studies met the inclusion criteria in SCZ, BD, and MDD postmortem brains. The results were variable across inflammatory markers. For example, 26 studies were included to measure the differential expression between SCZ and control subjects. Similarly, seven of the included studies measured the differential expression of inflammatory markers in patients with BD. The heterogeneity from the included studies is not clear at present, which may be caused by several factors, including the measured brain region, disease stage, brain source, medication, and other factors.
Collapse
Affiliation(s)
- Yang-Wen Ai
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China
| | - Yang Du
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China
| | - Lei Chen
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China
| | - Shu-Han Liu
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China
| | - Qing-Shan Liu
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China.
| | - Yong Cheng
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China. .,Institute of National Security, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China.
| |
Collapse
|
13
|
Wu X, Sosunov AA, Lado W, Teoh JJ, Ham A, Li H, Al-Dalahmah O, Gill BJA, Arancio O, Schevon CA, Frankel WN, McKhann GM, Sulzer D, Goldman JE, Tang G. Synaptic hyperexcitability of cytomegalic pyramidal neurons contributes to epileptogenesis in tuberous sclerosis complex. Cell Rep 2022; 40:111085. [PMID: 35858542 PMCID: PMC9376014 DOI: 10.1016/j.celrep.2022.111085] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 02/15/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a developmental disorder associated with epilepsy, autism, and cognitive impairment. Despite inactivating mutations in the TSC1 or TSC2 genes and hyperactive mechanistic target of rapamycin (mTOR) signaling, the mechanisms underlying TSC-associated neurological symptoms remain incompletely understood. Here we generate a Tsc1 conditional knockout (CKO) mouse model in which Tsc1 inactivation in late embryonic radial glia causes social and cognitive impairment and spontaneous seizures. Tsc1 depletion occurs in a subset of layer 2/3 cortical pyramidal neurons, leading to development of cytomegalic pyramidal neurons (CPNs) that mimic dysplastic neurons in human TSC, featuring abnormal dendritic and axonal overgrowth, enhanced glutamatergic synaptic transmission, and increased susceptibility to seizure-like activities. We provide evidence that enhanced synaptic excitation in CPNs contributes to cortical hyperexcitability and epileptogenesis. In contrast, astrocytic regulation of synapse formation and synaptic transmission remains unchanged after late embryonic radial glial Tsc1 inactivation, and astrogliosis evolves secondary to seizures. Wu et al. demonstrate that Tsc1 inactivation in late embryonic radial glial cells (RGCs) produces cytomegalic pyramidal neurons that mimic TSC-like dysplastic neurons. They find that enhanced excitatory synaptic transmission in Tsc1-null cytomegalic pyramidal neurons contributes to cortical hyperexcitability and epileptogenesis.
Collapse
Affiliation(s)
- Xiaoping Wu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexander A Sosunov
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wudu Lado
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jia Jie Teoh
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ahrom Ham
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hongyu Li
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brian J A Gill
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; The Taub Institute, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Catherine A Schevon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wayne N Frankel
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pharmacology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; The Taub Institute, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Guomei Tang
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
14
|
Genetic pathogenesis of the epileptogenic lesions in Tuberous Sclerosis Complex: Therapeutic targeting of the mTOR pathway. Epilepsy Behav 2022; 131:107713. [PMID: 33431351 DOI: 10.1016/j.yebeh.2020.107713] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022]
Abstract
Tuberous sclerosis complex (TSC) is a genetic multisystem disease due to the mutation in one of the two genes TSC1 and TSC2, affecting several organs and systems and carrying a significant risk of early onset and refractory seizures. The pathogenesis of this complex disorder is now well known, with most of TSC-related manifestations being a consequence of the overactivation of the mammalian Target of Rapamycin (mTOR) complex. The discovery of this underlying mechanism paved the way for the use of a class of drugs called mTOR inhibitors including rapamycin and everolimus and specifically targeting this pathway. Rapamycin has been widely used in different animal models of TSC-related epilepsy and proved to be able not only to suppress seizures but also to prevent the development of epilepsy, thus demonstrating an antiepileptogenic potential. In some models, it also showed some benefit on neuropsychiatric manifestations associated with TSC. Everolimus has recently been approved by the US Food and Drug Administration and the European Medical Agency for the treatment of refractory seizures associated with TSC starting from the age of 2 years. It demonstrated a clear benefit when compared to placebo on reducing the frequency of different seizure types and exerting a higher effect in younger children. In conclusion, mTOR cascade can be a potentially major cause of TSC-associated epilepsy and neurodevelopmental disability, and additional research should investigate if early suppression of abnormal mTOR signal with mTOR inhibitors before seizure onset can be a more efficient approach and an effective antiepileptogenic and disease-modifying strategy in infants with TSC.
Collapse
|
15
|
López-Aranda MF, Boxx GM, Phan M, Bach K, Mandanas R, Herrera I, Taloma S, Thadani C, Lu O, Bui R, Liu S, Li N, Zhou Y, Cheng G, Silva AJ. Role of type I interferon signaling and microglia in the abnormal long term potentiation and object place recognition deficits of male mice with a mutation of the Tuberous Sclerosis 2 gene. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022. [PMID: 37519458 PMCID: PMC10382699 DOI: 10.1016/j.bpsgos.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Tuberous sclerosis complex is a genetic disorder associated with high rates of intellectual disability and autism. Mice with a heterozygous null mutation of the Tsc2 gene (Tsc2+/-) show deficits in hippocampal-dependent tasks and abnormal long-term potentiation (LTP) in the hippocampal CA1 region. Although previous studies focused on the role of neuronal deficits in the memory phenotypes of rodent models of tuberous sclerosis complex, the results presented here demonstrate a role for microglia in these deficits. Methods To test the possible role of microglia and type I interferon in abnormal hippocampal-dependent memory and LTP of Tsc2+/- mice, we used field recordings in CA1 and the object place recognition (OPR) task. We used the colony stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia in Tsc2+/- mice and interferon alpha/beta receptor alpha chain null mutation (Ifnar1-/-) to manipulate a signaling pathway known to modulate microglia function. Results Unexpectedly, we demonstrate that male, but not female, Tsc2+/- mice show OPR deficits. These deficits can be rescued by depletion of microglia and by the Ifnar1-/- mutation. In addition to rescuing OPR deficits, depletion of microglia also reversed abnormal LTP of the Tsc2+/- mice. Altogether, our results suggest that altered IFNAR1 signaling in microglia causes the abnormal LTP and OPR deficits of male Tsc2+/- mice. Conclusions Microglia and IFNAR1 signaling have a key role in the hippocampal-dependent memory deficits and abnormal hippocampal LTP of Tsc2+/- male mice.
Collapse
|
16
|
Sato A, Tominaga K, Iwatani Y, Kato Y, Wataya-Kaneda M, Makita K, Nemoto K, Taniike M, Kagitani-Shimono K. Abnormal White Matter Microstructure in the Limbic System Is Associated With Tuberous Sclerosis Complex-Associated Neuropsychiatric Disorders. Front Neurol 2022; 13:782479. [PMID: 35359647 PMCID: PMC8963953 DOI: 10.3389/fneur.2022.782479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTuberous sclerosis complex (TSC) is a genetic disease that arises from TSC1 or TSC2 abnormalities and induces the overactivation of the mammalian/mechanistic target of rapamycin pathways. The neurological symptoms of TSC include epilepsy and tuberous sclerosis complex-associated neuropsychiatric disorders (TAND). Although TAND affects TSC patients' quality of life, the specific region in the brain associated with TAND remains unknown. We examined the association between white matter microstructural abnormalities and TAND, using diffusion tensor imaging (DTI).MethodsA total of 19 subjects with TSC and 24 age-matched control subjects were enrolled. Tract-based spatial statistics (TBSS) were performed to assess group differences in fractional anisotropy (FA) between the TSC and control groups. Atlas-based association analysis was performed to reveal TAND-related white matter in subjects with TSC. Multiple linear regression was performed to evaluate the association between TAND and the DTI parameters; FA and mean diffusivity in seven target regions and projection fibers.ResultsThe TBSS showed significantly reduced FA in the right hemisphere and particularly in the inferior frontal occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), uncinate fasciculus (UF), and genu of corpus callosum (CC) in the TSC group relative to the control group. In the association analysis, intellectual disability was widely associated with all target regions. In contrast, behavioral problems and autistic features were associated with the limbic system white matter and anterior limb of the internal capsule (ALIC) and CC.ConclusionThe disruption of white matter integrity may induce underconnectivity between cortical and subcortical regions. These findings suggest that TANDs are not the result of an abnormality in a specific brain region, but rather caused by connectivity dysfunction as a network disorder. This study indicates that abnormal white matter connectivity including the limbic system is relevant to TAND. The analysis of brain and behavior relationship is a feasible approach to reveal TAND related white matter and neural networks. TAND should be carefully assessed and treated at an early stage.
Collapse
Affiliation(s)
- Akemi Sato
- United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Koji Tominaga
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiko Iwatani
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoko Kato
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mari Wataya-Kaneda
- Division of Health Science, Department of Neurocutaneous Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kai Makita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Kiyotaka Nemoto
- Division of Clinical Medicine, Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masako Taniike
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kuriko Kagitani-Shimono
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
- *Correspondence: Kuriko Kagitani-Shimono
| |
Collapse
|
17
|
Hayatdavoudi P, Hosseini M, Hajali V, Hosseini A, Rajabian A. The role of astrocytes in epileptic disorders. Physiol Rep 2022; 10:e15239. [PMID: 35343625 PMCID: PMC8958496 DOI: 10.14814/phy2.15239] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 04/17/2023] Open
Abstract
Epilepsy affects about 1% of the population and approximately 30% of epileptic patients are resistant to current antiepileptic drugs. As a hallmark in epileptic tissue, many of the epileptic patients show changes in glia morphology and function. There are characteristic changes in different types of glia in different epilepsy models. Some of these changes such as astrogliosis are enough to provoke epileptic seizures. Astrogliosis is well known in mesial temporal lobe epilepsy (MTLE), the most common form of refractory epilepsy. A better understanding of astrocytes alterations could lead to novel and efficient pharmacological approaches for epilepsy. In this review, we present the alterations of astrocyte morphology and function and present some instances of targeting astrocytes in seizure and epilepsy.
Collapse
Affiliation(s)
- Parichehr Hayatdavoudi
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of PhysiologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
| | - Vahid Hajali
- Department of NeuroscienceFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical SciencesMashhadIran
- Department of PharmacologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Arezoo Rajabian
- Department of Internal MedicineFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
18
|
Fang Y, Li D, Wang M, Zhao X, Duan J, Gu Q, Li B, Zha J, Mei D, Bian G, Zhang M, Zhang H, Hu J, Yang L, Yu L, Li H, Liao J. Ketogenic Diet Therapy for Drug-Resistant Epilepsy and Cognitive Impairment in Children With Tuberous Sclerosis Complex. Front Neurol 2022; 13:863826. [PMID: 35685742 PMCID: PMC9171393 DOI: 10.3389/fneur.2022.863826] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Tuberous sclerosis complex (TSC) is a rare disease with a high risk of epilepsy and cognitive impairment in children. Ketogenic diet (KD) therapy has been consistently reported to be beneficial to TSC patients. In this study, we aimed to investigate the efficacy and safety of KD in the treatment of drug-resistant epilepsy and cognitive impairment in children with TSC. METHODS In this multicenter study, 53 children (33 males and 20 females) with drug-resistant epilepsy or cognitive impairment caused by TSC were retrospectively recruited from 10 hospitals from January 1, 2010, to December 31, 2020. Intention-to-treat analysis was used to evaluate seizure reduction and cognition improvement as outcomes after KD therapy. RESULTS Of the 53 TSC patients included, 51 failed to be seizure-free with an average of 5.0 (range, 4-6) different anti-seizure medications (ASMs), before KD therapy. Although the other two patients achieved seizure freedom before KD, they still showed psychomotor development delay and electroencephalogram (EEG) abnormalities. At 1, 3, 6, and 12 months after the KD therapy, 51 (100%), 46 (90.2%), 35 (68.6%), and 16 patients (31.4%) remained on the diet therapy, respectively. At these time points, there were 26 (51.0%), 24 (47.1%), 22 (43.1%) and 13 patients (25.5%) having ≥50% reductions in seizure, including 11 (21.6%), 12 (23.5%), 9 (17.6%) and 3 patients (5.9%) achieving seizure freedom. In addition, of 51 patients with psychomotor retardation, 36 (36 of 51, 70.6%) showed cognitive and behavioral improvements. During the KD therapy, no serious side effects occurred in any patient. The most common side effects were gastrointestinal disturbance (20 of 53, 37.7%) and hyperlipidemia (6 of 53, 11.3%). The side effects were gradually relieved after adjustment of the ketogenic ratio and symptomatic treatment. CONCLUSION KD is an effective and safe treatment for TSC-related drug-resistant epilepsy and cognitive impairment in children. KD can reduce seizure frequency and may potentially improve cognition and behavior.
Collapse
Affiliation(s)
- Yu Fang
- Shenzhen Children's Hospital, China Medical University, Shenzhen, China
| | - Dan Li
- Department of Pediatric, Second Affiliated Hospital of Xi'an, Jiaotong University, Xi'an, China
| | - Man Wang
- Epilepsy Center, Shanghai Neuromedical Center, Shanghai, China
| | - Xia Zhao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Jing Duan
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Qiang Gu
- Department of Pediatric, First Hospital, Peking University, Beijing, China
| | - Baomin Li
- Qilu Hospital, Shandong University, Jinan, China
| | - Jian Zha
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Daoqi Mei
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Guangbo Bian
- Department of Pediatric Neurorehabilitation, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Man Zhang
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Huiting Zhang
- Shenzhen Children's Hospital, China Medical University, Shenzhen, China
| | - Junjie Hu
- Department of Neurology, Shantou University Medical College Shenzhen Children's Hospital, Shenzhen, China
| | - Liu Yang
- Department of Pediatric, Guangdong Women and Children Hospital, Guangzhou, China
| | - Lifei Yu
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
- Lifei Yu
| | - Hua Li
- Department of Neurology, Guangdong 999 Brain Hospital, Guangzhou, China
- Hua Li
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
- *Correspondence: Jianxiang Liao
| |
Collapse
|
19
|
The Endocannabinoid System in Glial Cells and Their Profitable Interactions to Treat Epilepsy: Evidence from Animal Models. Int J Mol Sci 2021; 22:ijms222413231. [PMID: 34948035 PMCID: PMC8709154 DOI: 10.3390/ijms222413231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is one of the most common neurological conditions. Yearly, five million people are diagnosed with epileptic-related disorders. The neuroprotective and therapeutic effect of (endo)cannabinoid compounds has been extensively investigated in several models of epilepsy. Therefore, the study of specific cell-type-dependent mechanisms underlying cannabinoid effects is crucial to understanding epileptic disorders. It is estimated that about 100 billion neurons and a roughly equal number of glial cells co-exist in the human brain. The glial population is in charge of neuronal viability, and therefore, their participation in brain pathophysiology is crucial. Furthermore, glial malfunctioning occurs in a wide range of neurological disorders. However, little is known about the impact of the endocannabinoid system (ECS) regulation over glial cells, even less in pathological conditions such as epilepsy. In this review, we aim to compile the existing knowledge on the role of the ECS in different cell types, with a particular emphasis on glial cells and their impact on epilepsy. Thus, we propose that glial cells could be a novel target for cannabinoid agents for treating the etiology of epilepsy and managing seizure-like disorders.
Collapse
|
20
|
Aroor A, Brewster AL. Dendritic and Spine Loss in Epilepsy: What Seizures Got to Do With It? Epilepsy Curr 2021; 21:186-188. [PMID: 34867100 PMCID: PMC8609590 DOI: 10.1177/15357597211003096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
[Box: see text]
Collapse
|
21
|
Bhattacharya A, Choi WWY, Muffat J, Li Y. Modeling Developmental Brain Diseases Using Human Pluripotent Stem Cells-Derived Brain Organoids - Progress and Perspective. J Mol Biol 2021; 434:167386. [PMID: 34883115 DOI: 10.1016/j.jmb.2021.167386] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
Abstract
Developmental brain diseases encompass a group of conditions resulting from genetic or environmental perturbations during early development. Despite the increased research attention in recent years following recognition of the prevalence of these diseases, there is still a significant lack of knowledge of their etiology and treatment options. The genetic and clinical heterogeneity of these diseases, in addition to the limitations of experimental animal models, contribute to this difficulty. In this regard, the advent of brain organoid technology has provided a new means to study the cause and progression of developmental brain diseases in vitro. Derived from human pluripotent stem cells, brain organoids have been shown to recapitulate key developmental milestones of the early human brain. Combined with technological advancements in genome editing, tissue engineering, electrophysiology, and multi-omics analysis, brain organoids have expanded the frontiers of human neurobiology, providing valuable insight into the cellular and molecular mechanisms of normal and pathological brain development. This review will summarize the current progress of applying brain organoids to model human developmental brain diseases and discuss the challenges that need to be overcome to further advance their utility.
Collapse
Affiliation(s)
- Afrin Bhattacharya
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Wendy W Y Choi
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Julien Muffat
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Program in Neurosciences and Mental Health, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
22
|
Cohen R, Genizi J, Korenrich L. Behavioral Symptoms May Correlate With the Load and Spatial Location of Tubers and With Radial Migration Lines in Tuberous Sclerosis Complex. Front Neurol 2021; 12:673583. [PMID: 34744957 PMCID: PMC8570125 DOI: 10.3389/fneur.2021.673583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Tuberous sclerosis complex (TSC) is a multisystem neurocutaneous genetic disorder. The clinical manifestations are extensive and include neurological, dermatological, cardiac, ophthalmic, nephrological, and neuropsychiatric manifestations. The prediction and pathophysiology of neuropsychiatric disorders such as emotional symptoms, conduct problems, hyperactivity, and poor social behavior are poorly understood. The aim of the study was to diagnose neuropsychiatric symptoms in individuals with TSC, and to examine their possible correlations with quantity, magnitude, and spatial location of tubers and radial migration (RM) lines. Methods: The cohort comprised 16 individuals with TSC, aged 5–29 years, with normal or low normal intelligence. The participants or their parents were requested to fill Strengths and Difficulties Questionnaire (SDQ) and the TAND (TSC-associated neuropsychiatric disorders) Checklist for assessment of their neuropsychiatric symptoms. Correlations were examined between these symptoms and the magnitude, quantities, and locations of tubers and white matter RM lines, as identified in T2/FLAIR brain MRI scans. Results: The SDQ score for peer relationship problems showed correlation with the tuber load (r = 0.52, p < 0.05). Tuber load and learning difficulties correlated significantly in the temporal and parietal area. Mood swings correlated with tubers in the parietal area (r = 0.529, p < 0.05). RM lines in the temporal area correlated with abnormal total SDQ (r = 0.51, p < 0.05). Anxiety and extreme shyness were correlated with RM lines in the parietal area, r = 0.513, p < 0.05 and r = 0.593, p < 0.05, respectively. Hyperactive/inattention correlated negatively with RM lines in the parietal area (r = −707, p < 0.01). Conclusions: These observations may lead to future studies for precise localization of neuropsychiatric symptoms, thereby facilitating directed therapy.
Collapse
Affiliation(s)
- Rony Cohen
- Department of Pediatric Neurology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel.,NF1 and Other Neurocutaneous Disorders Clinic, Schneider Children's Medical Center of Israel, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Genizi
- Pediatric Neurology Unit, Bnai Zion Medical Center, Haifa, Israel
| | - Liora Korenrich
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Imaging, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| |
Collapse
|
23
|
French JA, Bebin M, Dichter MA, Engel J, Hartman AL, Jóźwiak S, Klein P, McNamara J, Twyman R, Vespa P. Antiepileptogenesis and disease modification: Clinical and regulatory issues. Epilepsia Open 2021; 6:483-492. [PMID: 34270884 PMCID: PMC8408600 DOI: 10.1002/epi4.12526] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
This is a summary report of clinical and regulatory issues discussed at the 2018 NINDS workshop, entitled “Accelerating Therapies for Antiepileptogenesis and Disease Modification.” The intent of the workshop was to optimize and accelerate development of therapies for antiepileptogenesis (AEG) and disease modification in the epilepsies. The working group discussed nomenclature for antiepileptogenic therapies, subdividing them into “antiepileptogenic therapies” and “disease modifying therapies,” both of which are urgently needed. We use the example of traumatic brain injury to explain issues and complexities in designing a trial for disease‐preventing antiepileptogenic therapies, including identifying timing of intervention, selecting the appropriate dose, and the need for biomarkers. We discuss the recent trials of vigabatrin to prevent onset and modify epilepsy outcome in children with tuberous sclerosis (Epistop and PreVeNT). We describe a potential approach to a disease modification trial in adults, using patients with temporal lobe epilepsy. Finally, we discuss regulatory hurdles for antiepileptogenesis and disease‐modifying trials.
Collapse
Affiliation(s)
| | - Martina Bebin
- UAB School of Medicine and UAB Epilepsy Center, Birmingham, AL, USA
| | | | - Jerome Engel
- David Geffen School of Medicine at, UCLA and the Brain Research Institute, Los Angeles, CA, USA
| | - Adam L Hartman
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke/NIH, Bethesda, MD, USA
| | - Sergiusz Jóźwiak
- Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| | - James McNamara
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | | | - Paul Vespa
- Departments of Neurology and Neurosurgery, David Geffen School of Medicine UCLA, Los Angeles, CA, USA
| |
Collapse
|
24
|
Anderson NC, Chen PF, Meganathan K, Afshar Saber W, Petersen AJ, Bhattacharyya A, Kroll KL, Sahin M. Balancing serendipity and reproducibility: Pluripotent stem cells as experimental systems for intellectual and developmental disorders. Stem Cell Reports 2021; 16:1446-1457. [PMID: 33861989 PMCID: PMC8190574 DOI: 10.1016/j.stemcr.2021.03.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) and their differentiation into neural lineages is a revolutionary experimental system for studying neurological disorders, including intellectual and developmental disabilities (IDDs). However, issues related to variability and reproducibility have hindered translating preclinical findings into drug discovery. Here, we identify areas for improvement by conducting a comprehensive review of 58 research articles that utilized iPSC-derived neural cells to investigate genetically defined IDDs. Based upon these findings, we propose recommendations for best practices that can be adopted by research scientists as well as journal editors.
Collapse
Affiliation(s)
- Nickesha C Anderson
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pin-Fang Chen
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kesavan Meganathan
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Wardiya Afshar Saber
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA.
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Ahmed MM, Carrel AJ, Cruz Del Angel Y, Carlsen J, Thomas AX, González MI, Gardiner KJ, Brooks-Kayal A. Altered Protein Profiles During Epileptogenesis in the Pilocarpine Mouse Model of Temporal Lobe Epilepsy. Front Neurol 2021; 12:654606. [PMID: 34122302 PMCID: PMC8194494 DOI: 10.3389/fneur.2021.654606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is characterized by recurrent, spontaneous seizures and is a major contributor to the global burden of neurological disease. Although epilepsy can result from a variety of brain insults, in many cases the cause is unknown and, in a significant proportion of cases, seizures cannot be controlled by available treatments. Understanding the molecular alterations that underlie or are triggered by epileptogenesis would help to identify therapeutics to prevent or control progression to epilepsy. To this end, the moderate throughput technique of Reverse Phase Protein Arrays (RPPA) was used to profile changes in protein expression in a pilocarpine mouse model of acquired epilepsy. Levels of 54 proteins, comprising phosphorylation-dependent and phosphorylation-independent components of major signaling pathways and cellular complexes, were measured in hippocampus, cortex and cerebellum of mice at six time points, spanning 15 min to 2 weeks after induction of status epilepticus. Results illustrate the time dependence of levels of the commonly studied MTOR pathway component, pS6, and show, for the first time, detailed responses during epileptogenesis of multiple components of the MTOR, MAPK, JAK/STAT and apoptosis pathways, NMDA receptors, and additional cellular complexes. Also noted are time- and brain region- specific changes in correlations among levels of functionally related proteins affecting both neurons and glia. While hippocampus and cortex are primary areas studied in pilocarpine-induced epilepsy, cerebellum also shows significant time-dependent molecular responses.
Collapse
Affiliation(s)
- Md Mahiuddin Ahmed
- Department of Neurology, University of Colorado Alzheimer's and Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andrew J Carrel
- Division of Neurology and Translational Epilepsy Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Yasmin Cruz Del Angel
- Division of Neurology and Translational Epilepsy Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jessica Carlsen
- Division of Neurology and Translational Epilepsy Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Ajay X Thomas
- Division of Neurology and Translational Epilepsy Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States.,Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States.,Section of Child Neurology, Texas Children's Hospital, Houston, TX, United States
| | - Marco I González
- Division of Neurology and Translational Epilepsy Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katheleen J Gardiner
- Department of Pediatrics, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Amy Brooks-Kayal
- Division of Neurology and Translational Epilepsy Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Children's Hospital Colorado, Aurora, CO, United States.,Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
26
|
Rahim F, Azizimalamiri R, Sayyah M, Malayeri A. Experimental Therapeutic Strategies in Epilepsies Using Anti-Seizure Medications. J Exp Pharmacol 2021; 13:265-290. [PMID: 33732031 PMCID: PMC7959000 DOI: 10.2147/jep.s267029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/10/2021] [Indexed: 02/02/2023] Open
Abstract
Epilepsies are among the most common neurological problems. The disease burden in patients with epilepsy is significantly high, and epilepsy has a huge negative impact on patients' quality of life with epilepsy and their families. Anti-seizure medications are the mainstay treatment in patients with epilepsy, and around 70% of patients will ultimately control with a combination of at least two appropriately selected anti-seizure medications. However, in one-third of patients, seizures are resistant to drugs, and other measures will be needed. The primary goal in using experimental therapeutic medication strategies in patients with epilepsy is to prevent recurrent seizures and reduce the rate of traumatic events that may occur during seizures. So far, various treatments using medications have been offered for patients with epilepsies, which have been classified according to the type of epilepsy, the effectiveness of the medications, and the adverse effects. Medications such as Levetiracetam, valproic acid, and lamotrigine are at the forefront of these patients' treatment. Epilepsy surgery, neuro-stimulation, and the ketogenic diet are the main measures in patients with medication-resistant epilepsies. In this paper, we will review the therapeutic approach using anti-seizure medications in patients with epilepsy. However, it should be noted that some of these patients still do not respond to existing treatments; therefore, the limited ability of current therapies has fueled research efforts for the development of novel treatment strategies. Thus, it seems that in addition to surgical measures, we should look for more specific agents that have less adverse events and have a greater effect in stopping seizures.
Collapse
Affiliation(s)
- Fakher Rahim
- Molecular Medicine and Bioinformatics, Research Center of Thalassemia & Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Azizimalamiri
- Department of Pediatrics, Division of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Sayyah
- Education Development Center (EDC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Malayeri
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
27
|
Brewster AL. Relationship Status Update on Astrocytic VEGFR-3 and mTOR Signaling: It's Complicated. Epilepsy Curr 2021; 21:117-119. [PMID: 34025288 PMCID: PMC8010874 DOI: 10.1177/1535759720988541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Vascular Endothelial Growth Factor Receptor-3 Regulates Astroglial Glutamate Transporter-1 Expression via mTOR Activation in Reactive Astrocytes Following Pilocarpine-Induced Status Epilepticus Jeong KH, Cho KO, Lee MY, Kim SY, Kim WJ. Glia. 2021;69(2):296-309. doi:10.1002/glia.23897. PMID: 32835451. Recent evidence has shown that the vascular endothelial growth factor (VEGF) system plays a crucial role in several neuropathological processes. We previously reported an upregulation of VEGF-C and its receptor, VEGFR-3, in reactive astrocytes after the onset of status epilepticus (SE). However, it remains unknown, which molecules act as downstream signals following VEGFR-3 upregulation and are involved in astrogliosis after SE. Therefore, we investigated whether VEGFR-3 upregulation within reactive astrocytes is associated with the activation of mammalian target of rapamycin (mTOR) signaling, which we confirmed by assaying for the phosphorylated form of S6 protein (pS6), and whether VEGFR-3-mediated mTOR activation induces astroglial glutamate transporter-1 (GLT-1) expression in the hippocampus after pilocarpine-induced SE. We found that spatiotemporal expression of pS6 was consistent with VEGFR-3 expression in the hippocampus after SE and that both pS6 and VEGFR-3 were highly expressed in SE-induced reactive astrocytes. Treatment with the mTOR inhibitor rapamycin decreased astroglial VEGFR-3 expression and GLT-1 expression after SE. Treatment with a selective inhibitor for VEGFR-3 attenuated astroglial pS6 expression as well as suppressed GLT-1 expression and astroglial reactivity in the hippocampus after SE. These findings demonstrate that VEGFR-3-mediated mTOR activation could contribute to the regulation of GLT-1 expression in reactive astrocytes during the subacute phase of epilepsy. In conclusion, the present study suggests that VEGFR-3 upregulation in reactive astrocytes may play a role in preventing hyperexcitability induced by continued seizure activity.
Collapse
|
28
|
Hirose S, Tanaka Y, Shibata M, Kimura Y, Ishikawa M, Higurashi N, Yamamoto T, Ichise E, Chiyonobu T, Ishii A. Application of induced pluripotent stem cells in epilepsy. Mol Cell Neurosci 2020; 108:103535. [DOI: 10.1016/j.mcn.2020.103535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
|
29
|
Zimmer TS, Broekaart DWM, Gruber VE, van Vliet EA, Mühlebner A, Aronica E. Tuberous Sclerosis Complex as Disease Model for Investigating mTOR-Related Gliopathy During Epileptogenesis. Front Neurol 2020; 11:1028. [PMID: 33041976 PMCID: PMC7527496 DOI: 10.3389/fneur.2020.01028] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) represents the prototypic monogenic disorder of the mammalian target of rapamycin (mTOR) pathway dysregulation. It provides the rational mechanistic basis of a direct link between gene mutation and brain pathology (structural and functional abnormalities) associated with a complex clinical phenotype including epilepsy, autism, and intellectual disability. So far, research conducted in TSC has been largely neuron-oriented. However, the neuropathological hallmarks of TSC and other malformations of cortical development also include major morphological and functional changes in glial cells involving astrocytes, oligodendrocytes, NG2 glia, and microglia. These cells and their interglial crosstalk may offer new insights into the common neurobiological mechanisms underlying epilepsy and the complex cognitive and behavioral comorbidities that are characteristic of the spectrum of mTOR-associated neurodevelopmental disorders. This review will focus on the role of glial dysfunction, the interaction between glia related to mTOR hyperactivity, and its contribution to epileptogenesis in TSC. Moreover, we will discuss how understanding glial abnormalities in TSC might give valuable insight into the pathophysiological mechanisms that could help to develop novel therapeutic approaches for TSC or other pathologies characterized by glial dysfunction and acquired mTOR hyperactivation.
Collapse
Affiliation(s)
- Till S Zimmer
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Diede W M Broekaart
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - Erwin A van Vliet
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| |
Collapse
|
30
|
Decanoic acid inhibits mTORC1 activity independent of glucose and insulin signaling. Proc Natl Acad Sci U S A 2020; 117:23617-23625. [PMID: 32879008 PMCID: PMC7519326 DOI: 10.1073/pnas.2008980117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mTORC1 complex provides a critical role in cell function, regulating a variety of processes including growth and autophagy. mTORC1 signaling is hyperactivated in a range of common diseases including cancer, epilepsy, and neurodegenerative disorders. Hence, mTORC1 signaling provides an important target for regulation in many contexts. Here, we show that decanoic acid, a key component of a widely used medicinal diet, reduces mTORC1 activity. We identify this in a tractable model system, and validate it in ex vivo rat brain tissue and in human iPSC-derived astrocytes from patients with a clinically relevant disease. Thus, we provide insight into an easily accessible therapeutic approach for a range of diseases. Low-glucose and -insulin conditions, associated with ketogenic diets, can reduce the activity of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, potentially leading to a range of positive medical and health-related effects. Here, we determined whether mTORC1 signaling is also a target for decanoic acid, a key component of the medium-chain triglyceride (MCT) ketogenic diet. Using a tractable model system, Dictyostelium, we show that decanoic acid can decrease mTORC1 activity, under conditions of constant glucose and in the absence of insulin, measured by phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). We determine that this effect of decanoic acid is dependent on a ubiquitin regulatory X domain-containing protein, mediating inhibition of a conserved Dictyostelium AAA ATPase, p97, a homolog of the human transitional endoplasmic reticulum ATPase (VCP/p97) protein. We then demonstrate that decanoic acid decreases mTORC1 activity in the absence of insulin and under high-glucose conditions in ex vivo rat hippocampus and in tuberous sclerosis complex (TSC) patient-derived astrocytes. Our data therefore indicate that dietary decanoic acid may provide a new therapeutic approach to down-regulate mTORC1 signaling.
Collapse
|
31
|
Liu YD, Ma MY, Hu XB, Yan H, Zhang YK, Yang HX, Feng JH, Wang L, Zhang H, Zhang B, Li QB, Zhang JC, Kong QX. Brain Proteomic Profiling in Intractable Epilepsy Caused by TSC1 Truncating Mutations: A Small Sample Study. Front Neurol 2020; 11:475. [PMID: 32655475 PMCID: PMC7326032 DOI: 10.3389/fneur.2020.00475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/30/2020] [Indexed: 01/01/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic disease characterized by seizures, mental deficiency, and abnormalities of the skin, brain, kidney, heart, and lungs. TSC is inherited in an autosomal dominant manner and is caused by variations in either the TSC1 or TSC2 gene. TSC-related epilepsy (TRE) is the most prevalent and challenging clinical feature of TSC, and more than half of the patients have refractory epilepsy. In clinical practice, we found several patients of intractable epilepsy caused by TSC1 truncating mutations. To study the changes of protein expression in the brain, three cases of diseased brain tissue with TSC1 truncating mutation resected in intractable epilepsy operations and three cases of control brain tissue resected in craniocerebral trauma operations were collected to perform protein spectrum detection, and then the data-independent acquisition (DIA) workflow was used to analyze differentially expressed proteins. As a result, there were 55 up- and 55 down-regulated proteins found in the damaged brain tissue with TSC1 mutation compared to the control. Further bioinformatics analysis revealed that the differentially expressed proteins were mainly concentrated in the synaptic membrane between the patients with TSC and the control. Additionally, TSC1 truncating mutations may affect the pathway of amino acid metabolism. Our study provides a new idea to explore the brain damage mechanism caused by TSC1 mutations.
Collapse
Affiliation(s)
- Yi-Dan Liu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meng-Yu Ma
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xi-Bin Hu
- Department of Imaging, Affiliated Hospital of Jining Medical University, Jining, China
| | - Huan Yan
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yan-Ke Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Hao-Xiang Yang
- Clinical Medical College, Jining Medical University, Jining, China
| | - Jing-Hui Feng
- Clinical Medical College, Jining Medical University, Jining, China
| | - Lin Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Hao Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Bin Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qiu-Bo Li
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Jun-Chen Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qing-Xia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China.,Institute of Epilepsy, Jining Medical University, Jining, China
| |
Collapse
|
32
|
Hazlett HC, Gallo V. White matter and neurodevelopmental disorders: honoring Jean De Vellis through the work of the NICHD-funded intellectual and developmental disabilities research centers. J Neurodev Disord 2019; 11:38. [PMID: 31839009 PMCID: PMC6912932 DOI: 10.1186/s11689-019-9299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 11/10/2022] Open
Affiliation(s)
- Heather Cody Hazlett
- Department of Psychiatry, School of Medicine, UNC-Chapel Hill and Carolina Institute for Developmental Disabilities, Chapel Hill, NC, USA.
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC, USA
| |
Collapse
|