1
|
Kamat V, Grumbine MK, Bao K, Mokate K, Khalil G, Cook D, Clearwater B, Hirst R, Harman J, Boeck M, Fu Z, Smith LEH, Goswami M, Wubben TJ, Walker EM, Zhu J, Soleimanpour SA, Scarlett JM, Robbings BM, Hass D, Hurley JB, Sweet IR. A versatile pumpless multi-channel fluidics system for maintenance and real-time functional assessment of tissue and cells. CELL REPORTS METHODS 2023; 3:100642. [PMID: 37963464 PMCID: PMC10694526 DOI: 10.1016/j.crmeth.2023.100642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/24/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
To address the needs of the life sciences community and the pharmaceutical industry in pre-clinical drug development to both maintain and continuously assess tissue metabolism and function with simple and rapid systems, we improved on the initial BaroFuse to develop it into a fully functional, pumpless, scalable multi-channel fluidics instrument that continuously measures changes in oxygen consumption and other endpoints in response to test compounds. We and several other laboratories assessed it with a wide range of tissue types including retina, pancreatic islets, liver, and hypothalamus with both aqueous and gaseous test compounds. The setup time was less than an hour for all collaborating groups, and there was close agreement between data obtained from the different laboratories. This easy-to-use system reliably generates real-time metabolic and functional data from tissue and cells in response to test compounds that will address a critical need in basic and applied research.
Collapse
Affiliation(s)
- Varun Kamat
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA
| | | | - Khang Bao
- EnTox Sciences, Inc., Mercer Island, WA 98040, USA
| | - Kedar Mokate
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA
| | - Gamal Khalil
- EnTox Sciences, Inc., Mercer Island, WA 98040, USA
| | - Daniel Cook
- EnTox Sciences, Inc., Mercer Island, WA 98040, USA
| | | | - Richard Hirst
- Technical Assembly Service Corporation, Seattle, WA 98109, USA
| | - Jarrod Harman
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Myriam Boeck
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Moloy Goswami
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Thomas J Wubben
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Emily M Walker
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 98195, USA
| | - Jie Zhu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 98195, USA
| | - Scott A Soleimanpour
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 98195, USA
| | - Jarrad M Scarlett
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA 98145, USA
| | - Brian M Robbings
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington, Seattle, WA 98109, USA
| | - Daniel Hass
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA
| | - James B Hurley
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA
| | - Ian R Sweet
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; EnTox Sciences, Inc., Mercer Island, WA 98040, USA.
| |
Collapse
|
2
|
Max-Harry IM, Hashmi WJ, List BP, Kantake N, Corbin KL, Toribio RE, Nunemaker CS, Rosol TJ. The nuclear localization sequence and C-terminus of parathyroid hormone-related protein regulate normal pancreatic islet development and function. Gen Comp Endocrinol 2023; 340:114309. [PMID: 37236490 PMCID: PMC10323322 DOI: 10.1016/j.ygcen.2023.114309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
Parathyroid hormone-related protein (PTHrP) is a pleiotropic hormone essential for morphogenesis, tissue differentiation, as well as cell regulation and function. PTHrP is expressed by pancreatic beta cells which are responsible for insulin secretion. Previous studies have reported that N-terminal PTHrP stimulated proliferation in beta cells in rodents. We have developed a knockin mouse model (PTHrP Δ/Δ) lacking the C-terminal and nuclear localization sequence (NLS) of PTHrP. These mice die at ∼day 5, are severely stunted in growth, weigh 54% less than control mice at day 1-2 and eventually fail to grow. PTHrP Δ/Δ mice are also hypoinsulinemic and hypoglycemic yet have nutrient intake proportional to size. To characterize the pancreatic islets in these mice, islets (∼10-20) were isolated from 2 to 5 day-old-mice using collagenase digestion. Islets from PTHrP Δ/Δ mice were smaller in size but secreted more insulin than littermate controls. PTHrP Δ/Δ and control mice islets were exposed to various glucose concentrations and intracellular calcium, the trigger for insulin release, was elevated for glucose concentrations of 8-20 mM. Immunofluorescence staining showed less glucagon-stained area in islets from PTHrP Δ/Δ mice (∼250 µm2) compared to islets from control mice (∼900 µm2), and ELISA confirmed there was reduced glucagon content. These data collectively demonstrate increased insulin secretion and reduced glucagon at the islet level, which may contribute to the observed hypoglycemia and early death in PTHrP Δ/Δ mice. Thus, the C-terminus and NLS of PTHrP are crucial to life, including regulation of glucose homeostasis and islet function.
Collapse
Affiliation(s)
- Ibiagbani M Max-Harry
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, USA; Molecular and Cellular Biology Program, College of Arts and Sciences, Ohio University, USA; Department of Biological Sciences, Ohio University, USA
| | - Waleed J Hashmi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; Molecular and Cellular Biology Program, College of Arts and Sciences, Ohio University, USA
| | - Brian P List
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, USA; Translational Biomedical Sciences Program, Graduate College, Ohio University, USA
| | - Noriko Kantake
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Kathryn L Corbin
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Ramiro E Toribio
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, USA
| | - Craig S Nunemaker
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, USA; Translational Biomedical Sciences Program, Graduate College, Ohio University, USA.
| | - Thomas J Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine, Ohio University, USA.
| |
Collapse
|
3
|
D’Angelo CV, West HL, Whitticar NB, Corbin KL, Donovan LM, Stiadle BI, Nunemaker CS. Similarities in Calcium Oscillations Between Neonatal Mouse Islets and Mature Islets Exposed to Chronic Hyperglycemia. Endocrinology 2022; 163:6585503. [PMID: 35551371 PMCID: PMC9186310 DOI: 10.1210/endocr/bqac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/19/2022]
Abstract
Pulsatility is important to islet function. As islets mature into fully developed insulin-secreting micro-organs, their ability to produce oscillatory intracellular calcium ([Ca2+]i) patterns in response to glucose also matures. In this study, we measured [Ca2+]i using fluorescence imaging to characterize oscillations from neonatal mice on postnatal (PN) days 0, 4, and 12 in comparison to adult islets. Under substimulatory (3-mM) glucose levels, [Ca2+]i was low and quiescent for adult islets as expected, as well as for PN day 12 islets. In contrast, one-third of islets on PN day 0 and 4 displayed robust [Ca2+]i oscillations in low glucose. In stimulatory glucose (11 mM) conditions, oscillations were present on all neonatal days but differed from patterns in adults. By PN day 12, [Ca2+]i oscillations were approaching characteristics of fully developed islets. The immature response pattern of neonatal islets was due, at least in part, to differences in adenosine 5'-triphosphate (ATP)-sensitive K+-channel activity estimated by [Ca2+]i responses to KATP channel agents diazoxide and tolbutamide. Neonatal [Ca2+]i patterns were also strikingly similar to patterns observed in mature islets exposed to hyperglycemic conditions (20 mM glucose for 48 hours): elevated [Ca2+]i and oscillations in low glucose along with reduced pulse mass in high glucose. Since a hallmark of diabetic islets is dedifferentiation, we propose that diabetic islets display features of "reverse maturation," demonstrating similar [Ca2+]i dynamics as neonatal islets. Pulsatility is thus an important emergent feature of neonatal islets. Our findings may provide insight into reversing β-cell dedifferentiation and to producing better functioning β cells from pluripotent stem cells.
Collapse
Affiliation(s)
- Cathleen V D’Angelo
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Hannah L West
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Honors Tutorial College, Ohio University, Athens, Ohio 45701, USA
| | - Nicholas B Whitticar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Translational Biomedical Sciences Program, Graduate College, Ohio University, Athens, Ohio 45701, USA
| | - Kathryn L Corbin
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Lauren M Donovan
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Benjamin I Stiadle
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Craig S Nunemaker
- Correspondence: Craig S. Nunemaker, PhD, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, 1 Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
4
|
Gerber KM, Whitticar NB, Rochester DR, Corbin KL, Koch WJ, Nunemaker CS. The Capacity to Secrete Insulin Is Dose-Dependent to Extremely High Glucose Concentrations: A Key Role for Adenylyl Cyclase. Metabolites 2021; 11:metabo11060401. [PMID: 34205432 PMCID: PMC8235240 DOI: 10.3390/metabo11060401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Insulin secretion is widely thought to be maximally stimulated in glucose concentrations of 16.7-to-30 mM (300-to-540 mg/dL). However, insulin secretion is seldom tested in hyperglycemia exceeding these levels despite the Guinness World Record being 147.6 mM (2656 mg/dL). We investigated how islets respond to 1-h exposure to glucose approaching this record. Insulin secretion from human islets at 12 mM glucose intervals dose-dependently increased until at least 72 mM glucose. Murine islets in 84 mM glucose secreted nearly double the insulin as in 24 mM (p < 0.001). Intracellular calcium was maximally stimulated in 24 mM glucose despite a further doubling of insulin secretion in higher glucose, implying that insulin secretion above 24 mM occurs through amplifying pathway(s). Increased osmolarity of 425-mOsm had no effect on insulin secretion (1-h exposure) or viability (48-h exposure) in murine islets. Murine islets in 24 mM glucose treated with a glucokinase activator secreted as much insulin as islets in 84 mM glucose, indicating that glycolytic capacity exists above 24 mM. Using an incretin mimetic and an adenylyl cyclase activator in 24 mM glucose enhanced insulin secretion above that observed in 84 mM glucose while adenylyl cyclase inhibitor reduced stimulatory effects. These results highlight the underestimated ability of islets to secrete insulin proportionally to extreme hyperglycemia through adenylyl cyclase activity.
Collapse
Affiliation(s)
- Katherine M. Gerber
- Translational Health, Honors Tutorial College, Ohio University, Athens, OH 45701, USA;
| | - Nicholas B. Whitticar
- Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.B.W.); (D.R.R.); (K.L.C.); (W.J.K.)
- Translational Biomedical Sciences Program, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Daniel R. Rochester
- Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.B.W.); (D.R.R.); (K.L.C.); (W.J.K.)
| | - Kathryn L. Corbin
- Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.B.W.); (D.R.R.); (K.L.C.); (W.J.K.)
| | - William J. Koch
- Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.B.W.); (D.R.R.); (K.L.C.); (W.J.K.)
- Translational Biomedical Sciences Program, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Craig S. Nunemaker
- Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.B.W.); (D.R.R.); (K.L.C.); (W.J.K.)
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Correspondence: ; Tel.: +740-593-2387
| |
Collapse
|
5
|
Chen X, Daniels NA, Cottrill D, Cao Y, Wang X, Li Y, Shriwas P, Qian Y, Archer MW, Whitticar NB, Jahan I, Nunemaker CS, Guo A. Natural Compound α-PGG and Its Synthetic Derivative 6Cl-TGQ Alter Insulin Secretion: Evidence for Diminishing Glucose Uptake as a Mechanism. Diabetes Metab Syndr Obes 2021; 14:759-772. [PMID: 33658814 PMCID: PMC7917315 DOI: 10.2147/dmso.s284295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Previously we showed that natural compound α-penta-galloyl-glucose (α-PGG) and its synthetic derivative 6-chloro-6-deoxy-1,2,3,4-tetra-O-galloyl-α-D-glucopyranose (6Cl-TGQ) act to improve insulin signaling in adipocytes by increasing glucose transport. In this study, we investigated the mechanism of actions of α-PGG and 6Cl-TGQ on insulin secretion. METHODS Mouse islets and/or INS-1832/13 beta-cells were used to test the effects of our compounds on glucose-stimulated insulin secretion (GSIS), intracellular calcium [Ca2+]i using fura-2AM, glucose transport activity via a radioactive glucose uptake assay, intracellular ATP/ADP, and extracellular acidification (ECAR) and mitochondrial oxygen consumption rates (OCAR) using Seahorse metabolic analysis. RESULTS Both compounds reduced GSIS in beta-cells without negatively affecting cell viability. The compounds primarily diminished glucose uptake into islets and beta-cells. Despite insulin-like effects in the peripheral tissues, these compounds do not act through the insulin receptor in islets. Further interrogation of the stimulus-secretion pathway showed that all the key metabolic factors involved in GSIS including ECAR, OCAR, ATP/ADP ratios, and [Ca2+]i of INS-1832/13 cells were diminished after the compound treatment. CONCLUSION The compounds suppress glucose uptake of the beta-cells, which consequently slows down the rates of glycolysis and ATP synthesis, leading to decrease in [Ca2+]i and GSIS. The difference between adipocytes and beta-cells in effects on glucose uptake is of great interest. Further structural and functional modifications could produce new compounds with optimized therapeutic potentials for different target cells. The higher potency of synthetic 6Cl-TGQ in enhancing insulin signaling in adipocytes but lower potency in reducing glucose uptake in beta-cells compared to α-PGG suggests the feasibility of such an approach.
Collapse
Affiliation(s)
- Xiaozhuo Chen
- The Diabetes Institute at Ohio University, Athens, OH, 45701, USA
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Athens, OH, 45701, USA
- Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, Athens, OH, 45701, USA
- Department of Chemistry and Biochemistry, Athens, OH, 45701, USA
| | - Nigel A Daniels
- The Diabetes Institute at Ohio University, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Athens, OH, 45701, USA
- Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
- Department of Specialty Medicine, Athens, OH, 45701, USA
| | - David Cottrill
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
| | - Yanyang Cao
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
| | - Xuan Wang
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
| | - Yunsheng Li
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
| | - Pratik Shriwas
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
| | - Yanrong Qian
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
| | - Michael W Archer
- The Diabetes Institute at Ohio University, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Athens, OH, 45701, USA
| | - Nicholas B Whitticar
- Department of Biomedical Sciences, Athens, OH, 45701, USA
- Translational Biomedical Sciences Program, Ohio University, Athens, OH, 45701, USA
| | - Ishrat Jahan
- The Diabetes Institute at Ohio University, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Athens, OH, 45701, USA
| | - Craig S Nunemaker
- The Diabetes Institute at Ohio University, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Athens, OH, 45701, USA
- Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
- Craig S Nunemaker Department of Biomedical Sciences, 1 Ohio University, Athens, OH, 45701, USATel +1 740-593-2387Fax +1 740-593-4795 Email
| | - Aili Guo
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of California at Davis (UC Davis) School of Medicine, UC Davis Health Science, Sacramento, CA, 95817, USA
- Correspondence: Aili Guo Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of California at Davis (UC Davis) School of Medicine, UC Davis Health Science, PSSB, G400, 4150 V St., Sacramento, CA, 95817, USATel +1 916-734-3730Fax +1 916-734-2292 Email
| |
Collapse
|
6
|
Postnatal maturation of calcium signaling in islets of Langerhans from neonatal mice. Cell Calcium 2020; 94:102339. [PMID: 33422769 DOI: 10.1016/j.ceca.2020.102339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023]
Abstract
Pancreatic islet cells develop mature physiological responses to glucose and other fuels postnatally. In this study, we used fluorescence imaging techniques to measure changes in intracellular calcium ([Ca2+]i) to compare islets isolated from mice on postnatal days 0, 4, and 12 with islets from adult CD-1 mice. In addition, we used publicly available RNA-sequencing data to compare expression levels of key genes in β-cell physiology with [Ca2+]i data across these ages. We show that islets isolated from mice on postnatal day 0 displayed elevated [Ca2+]i in basal glucose (≤4 mM) but lower [Ca2+]i responses to stimulation by 12-20 mM glucose compared to adult. Neonatal islets displayed more adult-like [Ca2+]i in basal glucose by day 4 but continued to show lower [Ca2+]i responses to 16 and 20 mM glucose stimulation up to at least day 12. A right shift in glucose sensing (EC50) correlated with lower fragment-per-kilobase-of-transcript-per-million-reads-mapped (FPKM) of Slc2a2 (glut2) and Actn3 and increased FPKM for Galk1 and Nupr1. Differences in [Ca2+]i responses to additional stimuli were also observed. Calcium levels in the endoplasmic reticulum were elevated on day 0 but became adult-like by day 4, which corresponded with reduced expression in Atp2a2 (SERCA2) and novel K+-channel Ktd17, increased expression of Pml, Wfs1, Thada, and Herpud1, and basal [Ca2+]i maturing to adult levels. Ion-channel activity also matured rapidly, but RNA sequencing data mining did not yield strong leads. In conclusion, the maturation of islet [Ca2+]i signaling is complex and multifaceted; several possible gene targets were identified that may participate in this process.
Collapse
|
7
|
Whitticar NB, Nunemaker CS. Reflections on undergraduate research mentoring. BIOPHYSICIST (ROCKVILLE, MD.) 2020; 1:1. [PMID: 35647498 PMCID: PMC9137253 DOI: 10.35459/tbp.2019.000112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recruiting talented high school and college students to consider a career in the biomedical or biophysical sciences is important, yet often difficult. Encouraging students in regions like Appalachia adds additional challenges due to socioeconomic hurdles and misperceptions. This brief report contains the reflections of a research mentor engaging with students as a high school physics teacher, a principal investigator at research-intensive university, and as a principal investigator at a predominantly undergraduate-focused research university, as well as the viewpoint of a former undergraduate student in the mentor's lab. Different hurdles stand in the way of success at each level. A key issue at the high school level is engaging students in 'real science', the discovery of new knowledge and ideas. With undergraduate students at a larger research institution, a key issue is for the student to have opportunities to engage in meaningful scientific research. At a smaller and more rural research institution, especially in Appalachia, many students have socioeconomic concerns and misconceptions of what scientific careers entail. Regardless of background and environment, there are certain students who thrive on the scientific curiosity to discover new things. All they need is that opportunity to engage in meaningful scientific discovery to become interested in a scientific career.
Collapse
Affiliation(s)
- Nicholas B. Whitticar
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- Translational Biomedical Sciences Program, Graduate College, Ohio University, Athens, OH
| | - Craig S. Nunemaker
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- Former high school physics teacher with K-12 certification at Clover Hill High School, Chesterfield, VA, USA
| |
Collapse
|
8
|
Uesugi K, Nishiyama K, Hirai K, Inoue H, Sakurai Y, Yamada Y, Taniguchi T, Morishima K. Survival Rate of Cells Sent by a Low Mechanical Load Tube Pump: The "Ring Pump". MICROMACHINES 2020; 11:mi11040447. [PMID: 32340401 PMCID: PMC7231339 DOI: 10.3390/mi11040447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 11/18/2022]
Abstract
A ring pump (RP) is a useful tool for microchannels and automated cell culturing. We have been developing RPs (a full-press ring pump, FRP; and a mid-press ring pump, MRP). However, damage to cells which were sent by the RP and the MRP was not investigated, and no other studies have compared the damage to cells between RPs and peristaltic pumps (PPs). Therefore, first, we evaluated the damage to cells that were sent by a small size FRP (s-FRP) and small size MRPs (s-MRPs; gap = 25 or 50 μm, respectively). “Small size” means that the s-FRP and the s-MRPs are suitable for microchannel-scale applications. The survival rate of cells sent by the s-MRPs was higher than those sent by the s-FRP, and less damage caused by the former. Second, we compared the survival rate of cells that were sent by a large size FRP (l-FRP), a large size MRP (l-MRP) (gap = 50 μm) and a PP. “Large size” means that the l-FRP and the l-MRP are suitable for automated cell culture system applications. We could not confirm any differences among the cell survival rates. On the other hand, when cells suspended in Dulbecco’s phosphate-buffered saline solution were circulated with the l-MRP (gap = 50 μm) and the PP, we confirmed a difference in cell survival rate, and less damage caused by the former.
Collapse
Affiliation(s)
- Kaoru Uesugi
- Department of Mechanical Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan; (K.U.); (K.H.)
- Global Center for Medical Engineering and Informatics, Osaka University, 2-1 Yamada-oka Suita, Osaka 565-0871, Japan
- Department of Mechanical Systems Engineering, Ibaraki University, 4-12-1 Nakanarusawacho, Hitachi, Ibaraki 316-8511, Japan
| | - Keizo Nishiyama
- Aquatech Co., Ltd., 2-1-13 Ono, Daito, Osaka 574-0042, Japan; (K.N.); (H.I.); (Y.S.); (Y.Y.); (T.T.)
- Phonics Center, Osaka University, 2-1 Yamada-oka Suita, Osaka 565-0871, Japan
| | - Koki Hirai
- Department of Mechanical Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan; (K.U.); (K.H.)
| | - Hiroaki Inoue
- Aquatech Co., Ltd., 2-1-13 Ono, Daito, Osaka 574-0042, Japan; (K.N.); (H.I.); (Y.S.); (Y.Y.); (T.T.)
| | - Yoichi Sakurai
- Aquatech Co., Ltd., 2-1-13 Ono, Daito, Osaka 574-0042, Japan; (K.N.); (H.I.); (Y.S.); (Y.Y.); (T.T.)
| | - Yoji Yamada
- Aquatech Co., Ltd., 2-1-13 Ono, Daito, Osaka 574-0042, Japan; (K.N.); (H.I.); (Y.S.); (Y.Y.); (T.T.)
| | - Takashi Taniguchi
- Aquatech Co., Ltd., 2-1-13 Ono, Daito, Osaka 574-0042, Japan; (K.N.); (H.I.); (Y.S.); (Y.Y.); (T.T.)
| | - Keisuke Morishima
- Department of Mechanical Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan; (K.U.); (K.H.)
- Global Center for Medical Engineering and Informatics, Osaka University, 2-1 Yamada-oka Suita, Osaka 565-0871, Japan
- Correspondence: ; Tel.: +81-6-6879-7343
| |
Collapse
|
9
|
Scarl RT, Corbin KL, Vann NW, Smith HM, Satin LS, Sherman A, Nunemaker CS. Intact pancreatic islets and dispersed beta-cells both generate intracellular calcium oscillations but differ in their responsiveness to glucose. Cell Calcium 2019; 83:102081. [PMID: 31563790 DOI: 10.1016/j.ceca.2019.102081] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 01/19/2023]
Abstract
Pancreatic islets produce pulses of insulin and other hormones that maintain normal glucose homeostasis. These micro-organs possess exquisite glucose-sensing capabilities, allowing for precise changes in pulsatile insulin secretion in response to small changes in glucose. When communication among these cells is disrupted, precision glucose sensing falters. We measured intracellular calcium patterns in 6-mM-steps between 0 and 16 mM glucose, and also more finely in 2-mM-steps from 8 to 12 mM glucose, to compare glucose sensing systematically among intact islets and dispersed islet cells derived from the same mouse pancreas in vitro. The calcium activity of intact islets was uniformly low (quiescent) below 4 mM glucose and active above 8 mM glucose, whereas dispersed beta-cells displayed a broader activation range (2-to-10 mM). Intact islets exhibited calcium oscillations with 2-to-5-min periods, yet beta-cells exhibited longer 7-10 min periods. In every case, intact islets showed changes in activity with each 6-mM-glucose step, whereas dispersed islet cells displayed a continuum of calcium responses ranging from islet-like patterns to stable oscillations unaffected by changes in glucose concentration. These differences were also observed for 2-mM-glucose steps. Despite the diversity of dispersed beta-cell responses to glucose, the sum of all activity produced a glucose dose-response curve that was surprisingly similar to the curve for intact islets, arguing against the importance of "hub cells" for function. Beta-cells thus retain many of the features of islets, but some are more islet-like than others. Determining the molecular underpinnings of these variations could be valuable for future studies of stem-cell-derived beta-cell therapies.
Collapse
Affiliation(s)
- Rachel T Scarl
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Kathryn L Corbin
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Nicholas W Vann
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Hallie M Smith
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Leslie S Satin
- Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Arthur Sherman
- Laboratory of Biological Modeling, NIDDK, NIH, Bethesda, MD, United States
| | - Craig S Nunemaker
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States.
| |
Collapse
|
10
|
Jahan I, Corbin KL, Bogart AM, Whitticar NB, Waters CD, Schildmeyer C, Vann NW, West HL, Law NC, Wiseman JS, Nunemaker CS. Reducing Glucokinase Activity Restores Endogenous Pulsatility and Enhances Insulin Secretion in Islets From db/db Mice. Endocrinology 2018; 159:3747-3760. [PMID: 30239634 PMCID: PMC6202857 DOI: 10.1210/en.2018-00589] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022]
Abstract
An early sign of islet failure in type 2 diabetes (T2D) is the loss of normal patterns of pulsatile insulin release. Disruptions in pulsatility are associated with a left shift in glucose sensing that can cause excessive insulin release in low glucose (relative hyperinsulinemia, a hallmark of early T2D) and β-cell exhaustion, leading to inadequate insulin release during hyperglycemia. Our hypothesis was that reducing excessive glucokinase activity in diabetic islets would improve their function. Isolated mouse islets were exposed to glucose and varying concentrations of the glucokinase inhibitor d-mannoheptulose (MH) to examine changes in intracellular calcium ([Ca2+]i) and insulin secretion. Acutely exposing islets from control CD-1 mice to MH in high glucose (20 mM) dose dependently reduced the size of [Ca2+]i oscillations detected by fura-2 acetoxymethyl. Glucokinase activation in low glucose (3 mM) had the opposite effect. We then treated islets from male and female db/db mice (age, 4 to 8 weeks) and heterozygous controls overnight with 0 to 10 mM MH to determine that 1 mM MH produced optimal oscillations. We then used 1 mM MH overnight to measure [Ca2+]i and insulin simultaneously in db/db islets. MH restored oscillations and increased insulin secretion. Insulin secretion rates correlated with MH-induced increases in amplitude of [Ca2+]i oscillations (R2 = 0.57, P < 0.01, n = 10) but not with mean [Ca2+]i levels in islets (R2 = 0.05, not significant). Our findings show that correcting glucose sensing can restore proper pulsatility to diabetic islets and improved pulsatility correlates with enhanced insulin secretion.
Collapse
Affiliation(s)
- Ishrat Jahan
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Kathryn L Corbin
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Avery M Bogart
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Honors Tutorial College, Ohio University, Athens, Ohio
| | - Nicholas B Whitticar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Christopher D Waters
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Cara Schildmeyer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Honors Tutorial College, Ohio University, Athens, Ohio
| | - Nicholas W Vann
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Hannah L West
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Honors Tutorial College, Ohio University, Athens, Ohio
| | - Nathan C Law
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | | | - Craig S Nunemaker
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| |
Collapse
|
11
|
Gelin L, Li J, Corbin KL, Jahan I, Nunemaker CS. Metformin Inhibits Mouse Islet Insulin Secretion and Alters Intracellular Calcium in a Concentration-Dependent and Duration-Dependent Manner near the Circulating Range. J Diabetes Res 2018; 2018:9163052. [PMID: 29862303 PMCID: PMC5971297 DOI: 10.1155/2018/9163052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/25/2017] [Accepted: 01/17/2018] [Indexed: 12/23/2022] Open
Abstract
Metformin is considered the first-line treatment for type 2 diabetes. While metformin primarily increases insulin sensitivity, evidence also suggests that metformin affects the activity of insulin-secreting pancreatic islets. This study was designed to systematically examine the direct effects of metformin by measuring insulin secretion and the kinetics of the calcium response to glucose stimulation in isolated mouse islets using varying concentrations (20 μM, 200 μM, and 1 mM) and durations (~1, 2, and 3 days) of metformin exposure. We observed both concentration- and duration-dependent inhibitory effects of metformin. Concentrations as little as 20 μM (nearing circulating therapeutic levels) were sufficient to reduce insulin secretion following 3-day treatment. Concentrations of 200 μM and 1 mM produced more pronounced effects more rapidly. With 1 mM metformin, islets showed severe impairments in calcium handling, inhibition of insulin secretion, and increased cell death. No stimulatory effects of metformin were observed for any experimental endpoint. We conclude that the direct effects of metformin on islets are inhibitory at near-physiological concentrations. Beneficial effects of metformin observed on islets under various stressors may occur by "resting" fatigued cellular processes. However, metformin may have unintended consequences on normally functioning islets within the circulating range that require further evaluation.
Collapse
Affiliation(s)
- Lindor Gelin
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Jiewen Li
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Kathryn L. Corbin
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Ishrat Jahan
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Craig S. Nunemaker
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| |
Collapse
|