1
|
Rudy E, Tanwar UK, Szlachtowska Z, Grabsztunowicz M, Arasimowicz-Jelonek M, Sobieszczuk-Nowicka E. Unveiling the role of epigenetics in leaf senescence: a comparative study to identify different epigenetic regulations of senescence types in barley leaves. BMC PLANT BIOLOGY 2024; 24:863. [PMID: 39272009 PMCID: PMC11401419 DOI: 10.1186/s12870-024-05573-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Developmental leaf senescence (DLS) is an irreversible process followed by cell death. Dark-induced leaf senescence (DILS) is a reversible process that allows adaptations to changing environmental conditions. As a result of exposure to adverse environmental changes, plants have developed mechanisms that enable them to survive. One of these is the redirection of metabolism into the senescence pathway. The plant seeks to optimise resource allocation. Our research aims to demonstrate how epigenetic machinery regulates leaf senescence, including its irreversibility. RESULTS In silico analyses allowed the complex identification and characterisation of 117 genes involved in epigenetic processes in barley. These genes include those responsible for DNA methylation, post-translational histone modifications, and ATP-dependent chromatin remodelling complexes. We then performed RNAseq analysis after DILS and DLS to evaluate their expression in senescence-dependent leaf metabolism. Principal component analysis revealed that evaluated gene expression in developmental senescence was similar to controls, while induced senescence displayed a distinct profile. Western blot experiments revealed that senescence engages senescence-specific histone modification. During DILS and DLS, the methylation of histone proteins H3K4me3 and H3K9me2 increased. H3K9ac acetylation levels significantly decreased during DILS and remained unchanged during DLS. CONCLUSIONS The study identified different epigenetic regulations of senescence types in barley leaves. These findings are valuable for exploring epigenetic regulation of senescence-related molecular mechanisms, particularly in response to premature, induced leaf senescence. Based on the results, we suggest the presence of an epigenetically regulated molecular switch between cell survival and cell death in DILS, highlighting an epigenetically driven cell survival metabolic response.
Collapse
Affiliation(s)
- Elżbieta Rudy
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6 Str., Poznań, 61-614, Poland
| | - Umesh Kumar Tanwar
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6 Str., Poznań, 61-614, Poland
| | - Zofia Szlachtowska
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6 Str., Poznań, 61-614, Poland
| | - Magda Grabsztunowicz
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6 Str., Poznań, 61-614, Poland
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6 Str., Poznań, 61-614, Poland
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6 Str., Poznań, 61-614, Poland.
| |
Collapse
|
2
|
Hauvermale AL, Matzke C, Bohaliga G, Pumphrey MO, Steber CM, McCubbin AG. Development of Novel Monoclonal Antibodies to Wheat Alpha-Amylases Associated with Grain Quality Problems That Are Increasing with Climate Change. PLANTS (BASEL, SWITZERLAND) 2023; 12:3798. [PMID: 38005695 PMCID: PMC10675223 DOI: 10.3390/plants12223798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023]
Abstract
Accurate, rapid testing platforms are essential for early detection and mitigation of late maturity α-amylase (LMA) and preharvest sprouting (PHS) in wheat. These conditions are characterized by elevated α-amylase levels and negatively impact flour quality, resulting in substantial economic losses. The Hagberg-Perten Falling Number (FN) method is the industry standard for measuring α-amylase activity in wheatmeal. However, FN does not directly detect α-amylase and has major limitations. Developing α-amylase immunoassays would potentially enable early, accurate detection regardless of testing environment. With this goal, we assessed an expression of α-amylase isoforms during seed development. Transcripts of three of the four isoforms were detected in developing and mature grain. These were cloned and used to develop E. coli expression lines expressing single isoforms. After assessing amino acid conservation between isoforms, we identified peptide sequences specific to a single isoform (TaAMY1) or that were conserved in all isoforms, to develop monoclonal antibodies with targeted specificities. Three monoclonal antibodies were developed, anti-TaAMY1-A, anti-TaAMY1-B, and anti-TaAMY1-C. All three detected endogenous α-amylase(s). Anti-TaAMY1-A was specific for TaAMY1, whereas anti-TaAMY1-C detected TaAMY1, 2, and 4. Thus, confirming that they possessed the intended specificities. All three antibodies were shown to be compatible for use with immuno-pulldown and immuno-assay applications.
Collapse
Affiliation(s)
- Amber L. Hauvermale
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA; (A.L.H.); (G.B.); (M.O.P.)
| | - Courtney Matzke
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Gamila Bohaliga
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA; (A.L.H.); (G.B.); (M.O.P.)
| | - Mike O. Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA; (A.L.H.); (G.B.); (M.O.P.)
| | - Camille M. Steber
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA; (A.L.H.); (G.B.); (M.O.P.)
- Wheat Health, Quality and Genetics Unit, United States Department of Agriculture-Agricultural Research Service, Pullman, WA 99164, USA
| | - Andrew G. McCubbin
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
3
|
Chen J, Watson-Lazowski A, Kamble NU, Vickers M, Seung D. Gene expression profile of the developing endosperm in durum wheat provides insight into starch biosynthesis. BMC PLANT BIOLOGY 2023; 23:363. [PMID: 37460981 DOI: 10.1186/s12870-023-04369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Durum wheat (Triticum turgidum subsp. durum) is widely grown for pasta production, and more recently, is gaining additional interest due to its resilience to warm, dry climates and its use as an experimental model for wheat research. Like in bread wheat, the starch and protein accumulated in the endosperm during grain development are the primary contributors to the calorific value of durum grains. RESULTS To enable further research into endosperm development and storage reserve synthesis, we generated a high-quality transcriptomics dataset from developing endosperms of variety Kronos, to complement the extensive mutant resources available for this variety. Endosperms were dissected from grains harvested at eight timepoints during grain development (6 to 30 days post anthesis (dpa)), then RNA sequencing was used to profile the transcriptome at each stage. The largest changes in gene expression profile were observed between the earlier timepoints, prior to 15 dpa. We detected a total of 29,925 genes that were significantly differentially expressed between at least two timepoints, and clustering analysis revealed nine distinct expression patterns. We demonstrate the potential of our dataset to provide new insights into key processes that occur during endosperm development, using starch metabolism as an example. CONCLUSION We provide a valuable resource for studying endosperm development in this increasingly important crop species.
Collapse
Affiliation(s)
- Jiawen Chen
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Alexander Watson-Lazowski
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | | | - Martin Vickers
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - David Seung
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
4
|
Tanwar UK, Stolarska E, Rudy E, Paluch-Lubawa E, Grabsztunowicz M, Arasimowicz-Jelonek M, Sobieszczuk-Nowicka E. Metal tolerance gene family in barley: an in silico comprehensive analysis. J Appl Genet 2022; 64:197-215. [PMID: 36586056 PMCID: PMC10076399 DOI: 10.1007/s13353-022-00744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023]
Abstract
Metal-tolerance proteins (MTPs) are divalent cation transporters that play critical roles in metal tolerance and ion homeostasis in plants. However, a comprehensive study of MTPs is still lacking in crop plants. The current study aimed to comprehensively identify and characterize the MTP gene family in barley (Hordeum vulgare, Hv), an important crop. In total, 12 HvMTPs were identified in the barley genome in this study. They were divided into three phylogenetic groups (Zn-cation diffusion facilitator proteins [CDFs], Fe/Zn-CDFs, and Mn-CDFs) and further subdivided into seven groups (G1, G5, G6, G7, G8, G9, and G12). The majority of MTPs were hydrophobic proteins found in the vacuolar membrane. Gene duplication analysis of HvMTPs revealed one pair of segmental-like duplications in the barley genome. Evolutionary analysis suggested that barley MTPs underwent purifying natural selection. Additionally, the HvMTPs were analyzed in the pan-genome sequences of barley (20 accessions), which suggests that HvMTPs are highly conserved in barley evolution. Cis-acting regulatory elements, microRNA target sites, and protein-protein interaction analysis indicated the role of HvMTPs in a variety of biological processes. Expression profiling suggests that HvMTPs play an active role in maintaining barley nutrient homeostasis throughout its life cycle, and their expression levels were not significantly altered by abiotic stresses like cold, drought, or heat. The expression of barley HvMTP genes in the presence of heavy metals such as Zn2+, Cu2+, As3+, and Cd2+ revealed that these MTPs were induced by at least one metal ion, implying their involvement in metal tolerance or transportation. The identification and comprehensive investigation of MTP gene family members will provide important gene resources for the genetic improvement of crops for metal tolerance, bioremediation, or biofortification of staple crops.
Collapse
Affiliation(s)
- Umesh Kumar Tanwar
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Ewelina Stolarska
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Elżbieta Rudy
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Ewelina Paluch-Lubawa
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Magda Grabsztunowicz
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
5
|
Rogato A, Valkov VT, Chiurazzi M. LjNRT2.3 plays a hierarchical role in the control of high affinity transport system for root nitrate acquisition in Lotus japonicus. FRONTIERS IN PLANT SCIENCE 2022; 13:1042513. [PMID: 36438153 PMCID: PMC9687105 DOI: 10.3389/fpls.2022.1042513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Nitrate is a key mineral nutrient required for plant growth and development. Plants have evolved sophisticated mechanisms to respond to changes of nutritional availability in the surrounding environment and the optimization of root nitrate acquisition under nitrogen starvation is crucial to cope with unfavoured condition of growth. In this study we present a general description of the regulatory transcriptional and spatial profile of expression of the Lotus japonicus nitrate transporter NRT2 family. Furthermore, we report a phenotypic characterization of two independent Ljnrt2.3 knock out mutants indicating the involvement of the LjNRT2.3 gene in the root nitrate acquisition and lateral root elongation pathways occurring in response to N starvation conditions. We also report an epistatic relationship between LjNRT2.3 and LjNRT2.1 suggesting a combined mode of action of these two genes in order to optimize the Lotus response to a prolonged N starvation.
Collapse
|
6
|
Unraveling the genetics of polyamine metabolism in barley for senescence-related crop improvement. Int J Biol Macromol 2022; 221:585-603. [PMID: 36075308 DOI: 10.1016/j.ijbiomac.2022.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 12/25/2022]
Abstract
We explored the polyamine (PA) metabolic pathway genes in barley (Hv) to understand plant development and stress adaptation in Gramineae crops with emphasis on leaf senescence. Bioinformatics and functional genomics tools were utilized for genome-wide identification, comprehensive gene features, evolution, development and stress effects on the expression of the polyamine metabolic pathway gene families (PMGs). Three S-adenosylmethionine decarboxylases (HvSAMDCs), two ornithine decarboxylases (HvODCs), one arginine decarboxylase (HvADC), one spermidine synthase (HvSPDS), two spermine synthases (HvSPMSs), five copper amine oxidases (HvCuAOs) and seven polyamine oxidases (HvPAOs) members of PMGs were identified and characterized in barley. All the HvPMG genes were found to be distributed on all chromosomes of barley. The phylogenetic and comparative assessment revealed that PA metabolic pathway is highly conserved in plants and the prediction of nine H. vulgare miRNAs (hvu-miR) target sites, 18 protein-protein interactions and 961 putative CREs in the promoter region were discerned. Gene expression of HvSAMDC3, HvCuAO7, HvPAO4 and HvSPMS1 was apparent at every developmental stage. SPDS/SPMS gene family was found to be the most responsive to induced leaf senescence. This study provides a reference for the functional investigation of the molecular mechanism(s) that regulate polyamine metabolism in plants as a tool for future breeding decision management systems.
Collapse
|
7
|
White J, Sharma R, Balding D, Cockram J, Mackay IJ. Genome-wide association mapping of Hagberg falling number, protein content, test weight, and grain yield in U.K. wheat. CROP SCIENCE 2022; 62:965-981. [PMID: 35915786 PMCID: PMC9314726 DOI: 10.1002/csc2.20692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 12/14/2021] [Indexed: 05/12/2023]
Abstract
Association mapping using crop cultivars allows identification of genetic loci of direct relevance to breeding. Here, 150 U.K. wheat (Triticum aestivum L.) cultivars genotyped with 23,288 single nucleotide polymorphisms (SNPs) were used for genome-wide association studies (GWAS) using historical phenotypic data for grain protein content, Hagberg falling number (HFN), test weight, and grain yield. Power calculations indicated experimental design would enable detection of quantitative trait loci (QTL) explaining ≥20% of the variation (PVE) at a relatively high power of >80%, falling to 40% for detection of a SNP with an R2 ≥ .5 with the same QTL. Genome-wide association studies identified marker-trait associations for all four traits. For HFN (h 2 = .89), six QTL were identified, including a major locus on chromosome 7B explaining 49% PVE and reducing HFN by 44 s. For protein content (h 2 = 0.86), 10 QTL were found on chromosomes 1A, 2A, 2B, 3A, 3B, and 6B, together explaining 48.9% PVE. For test weight, five QTL were identified (one on 1B and four on 3B; 26.3% PVE). Finally, 14 loci were identified for grain yield (h 2 = 0.95) on eight chromosomes (1A, 2A, 2B, 2D, 3A, 5B, 6A, 6B; 68.1% PVE), of which five were located within 16 Mbp of genetic regions previously identified as under breeder selection in European wheat. Our study demonstrates the utility of exploiting historical crop datasets, identifying genomic targets for independent validation, and ultimately for wheat genetic improvement.
Collapse
Affiliation(s)
- Jon White
- Genetics and Breeding Dep.NIAB93 Lawrence Weaver RoadCambridge, CB3 0LEUK
- Institute of GeneticsUniv. College LondonLondon, WC1E 6BTUK
| | - Rajiv Sharma
- Scotland's Rural College (SRUC)Kings Buildings, West Mains RoadEdinburgh, EH9 3JGUK
| | - David Balding
- Institute of GeneticsUniv. College LondonLondon, WC1E 6BTUK
- Current address: Melbourne Integrative GenomicsUniv. of MelbourneMelbourneAustralia
| | - James Cockram
- Genetics and Breeding Dep.NIAB93 Lawrence Weaver RoadCambridge, CB3 0LEUK
| | - Ian J. Mackay
- Scotland's Rural College (SRUC)Kings Buildings, West Mains RoadEdinburgh, EH9 3JGUK
| |
Collapse
|
8
|
Hu Y, Sjoberg SM, Chen CJ, Hauvermale AL, Morris CF, Delwiche SR, Cannon AE, Steber CM, Zhang Z. As the number falls, alternatives to the Hagberg-Perten falling number method: A review. Compr Rev Food Sci Food Saf 2022; 21:2105-2117. [PMID: 35411636 DOI: 10.1111/1541-4337.12959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022]
Abstract
This review examines the application, limitations, and potential alternatives to the Hagberg-Perten falling number (FN) method used in the global wheat industry for detecting the risk of poor end-product quality mainly due to starch degradation by the enzyme α-amylase. By viscometry, the FN test indirectly detects the presence of α-amylase, the primary enzyme that digests starch. Elevated α-amylase results in low FN and damages wheat product quality resulting in cakes that fall, and sticky bread and noodles. Low FN can occur from preharvest sprouting (PHS) and late maturity α-amylase (LMA). Moist or rainy conditions before harvest cause PHS on the mother plant. Continuously cool or fluctuating temperatures during the grain filling stage cause LMA. Due to the expression of additional hydrolytic enzymes, PHS has a stronger negative impact than LMA. Wheat grain with low FN/high α-amylase results in serious losses for farmers, traders, millers, and bakers worldwide. Although blending of low FN grain with sound wheat may be used as a means of moving affected grain through the marketplace, care must be taken to avoid grain lots from falling below contract-specified FN. A large amount of sound wheat can be ruined if mixed with a small amount of sprouted wheat. The FN method is widely employed to detect α-amylase after harvest. However, it has several limitations, including sampling variability, high cost, labor intensiveness, the destructive nature of the test, and an inability to differentiate between LMA and PHS. Faster, cheaper, and more accurate alternatives could improve breeding for resistance to PHS and LMA and could preserve the value of wheat grain by avoiding inadvertent mixing of high- and low-FN grain by enabling testing at more stages of the value stream including at harvest, delivery, transport, storage, and milling. Alternatives to the FN method explored here include the Rapid Visco Analyzer, enzyme assays, immunoassays, near-infrared spectroscopy, and hyperspectral imaging.
Collapse
Affiliation(s)
- Yang Hu
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
| | - Stephanie M Sjoberg
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
| | - Chunpen James Chen
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Amber L Hauvermale
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
| | - Craig F Morris
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA.,USDA, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, Washington, USA
| | - Stephen R Delwiche
- USDA, Agricultural Research Service, Beltsville Agricultural Research Center, Food Quality, Laboratory, Beltsville, Maryland, USA
| | - Ashley E Cannon
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA.,USDA, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, Washington, USA
| | - Camille M Steber
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA.,USDA, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, Washington, USA
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
9
|
Zoghbi-Rodríguez NM, Gamboa-Tuz SD, Pereira-Santana A, Rodríguez-Zapata LC, Sánchez-Teyer LF, Echevarría-Machado I. Phylogenomic and Microsynteny Analysis Provides Evidence of Genome Arrangements of High-Affinity Nitrate Transporter Gene Families of Plants. Int J Mol Sci 2021; 22:13036. [PMID: 34884876 PMCID: PMC8658032 DOI: 10.3390/ijms222313036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] Open
Abstract
Nitrate transporter 2 (NRT2) and NRT3 or nitrate-assimilation-related 2 (NAR2) proteins families form a two-component, high-affinity nitrate transport system, which is essential for the acquisition of nitrate from soils with low N availability. An extensive phylogenomic analysis across land plants for these families has not been performed. In this study, we performed a microsynteny and orthology analysis on the NRT2 and NRT3 genes families across 132 plants (Sensu lato) to decipher their evolutionary history. We identified significant differences in the number of sequences per taxonomic group and different genomic contexts within the NRT2 family that might have contributed to N acquisition by the plants. We hypothesized that the greater losses of NRT2 sequences correlate with specialized ecological adaptations, such as aquatic, epiphytic, and carnivory lifestyles. We also detected expansion on the NRT2 family in specific lineages that could be a source of key innovations for colonizing contrasting niches in N availability. Microsyntenic analysis on NRT3 family showed a deep conservation on land plants, suggesting a high evolutionary constraint to preserve their function. Our study provides novel information that could be used as guide for functional characterization of these gene families across plant lineages.
Collapse
Affiliation(s)
- Normig M. Zoghbi-Rodríguez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico;
| | - Samuel David Gamboa-Tuz
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Alejandro Pereira-Santana
- Conacyt-Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico;
| | - Luis C. Rodríguez-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Lorenzo Felipe Sánchez-Teyer
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Ileana Echevarría-Machado
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico;
| |
Collapse
|
10
|
Zhang Q, Pritchard J, Mieog J, Byrne K, Colgrave ML, Wang J, Ral JF. Overexpression of a wheat α-amylase type 2 impact on starch metabolism and abscisic acid sensitivity during grain germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:378-393. [PMID: 34312931 PMCID: PMC9290991 DOI: 10.1111/tpj.15444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 05/27/2023]
Abstract
Despite being of vital importance for seed establishment and grain quality, starch degradation remains poorly understood in organs such as cereal or legume seeds. In cereals, starch degradation requires the synergetic action of different isoforms of α-amylases. Ubiquitous overexpression of TaAmy2 resulted in a 2.0-437.6-fold increase of total α-amylase activity in developing leaf and harvested grains. These increases led to dramatic alterations of starch visco-properties and augmentation of soluble carbohydrate levels (mainly sucrose and α-gluco-oligosaccharide) in grain. Interestingly, the overexpression of TaAMY2 led to an absence of dormancy in ripened grain due to abscisic acid (ABA) insensitivity. Using an allosteric α-amylase inhibitor (acarbose), we demonstrated that ABA insensitivity was due to the increased soluble carbohydrate generated by the α-amylase excess. Independent from the TaAMY2 overexpression, inhibition of α-amylase during germination led to the accumulation of soluble α-gluco-oligosaccharides without affecting the first stage of germination. These findings support the hypotheses that (i) endosperm sugar may overcome ABA signalling and promote sprouting, and (ii) α-amylase may not be required for the initial stage of grain germination, an observation that questions the function of the amylolytic enzyme in the starch degradation process during germination.
Collapse
Affiliation(s)
- Qin Zhang
- Agriculture and foodCSIRO Agriculture and FoodCanberraACT2601Australia
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuan611130China
| | - Jenifer Pritchard
- Agriculture and foodCSIRO Agriculture and FoodCanberraACT2601Australia
| | - Jos Mieog
- Agriculture and foodCSIRO Agriculture and FoodCanberraACT2601Australia
- Present address:
Plant ScienceSouthern Cross UniversityLismoreACTAustralia
| | - Keren Byrne
- Agriculture and foodCSIRO Agriculture and FoodCanberraACT2601Australia
- CSIRO Agriculture and FoodSt. LuciaQLD4067Australia
| | - Michelle L. Colgrave
- Agriculture and foodCSIRO Agriculture and FoodCanberraACT2601Australia
- CSIRO Agriculture and FoodSt. LuciaQLD4067Australia
| | - Ji‐Rui Wang
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuan611130China
| | | |
Collapse
|
11
|
Lim SJ, Oslan SN. Native to designed: microbial -amylases for industrial applications. PeerJ 2021; 9:e11315. [PMID: 34046253 PMCID: PMC8139272 DOI: 10.7717/peerj.11315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
Background -amylases catalyze the endo-hydrolysis of -1,4-D-glycosidic bonds in starch into smaller moieties. While industrial processes are usually performed at harsh conditions, -amylases from mainly the bacteria, fungi and yeasts are preferred for their stabilities (thermal, pH and oxidative) and specificities (substrate and product). Microbial -amylases can be purified and characterized for industrial applications. While exploring novel enzymes with these properties in the nature is time-costly, the advancements in protein engineering techniques including rational design, directed evolution and others have privileged their modifications to exhibit industrially ideal traits. However, the commentary on the strategies and preferably mutated residues are lacking, hindering the design of new mutants especially for enhanced substrate specificity and oxidative stability. Thus, our review ensures wider accessibility of the previously reported experimental findings to facilitate the future engineering work. Survey methodology and objectives A traditional review approach was taken to focus on the engineering of microbial -amylases to enhance industrially favoured characteristics. The action mechanisms of - and -amylases were compared to avoid any bias in the research background. This review aimed to discuss the advances in modifying microbial -amylases via protein engineering to achieve longer half-life in high temperature, improved resistance (acidic, alkaline and oxidative) and enhanced specificities (substrate and product). Captivating results were discussed in depth, including the extended half-life at 100C, pH 3.5 and 10, 1.8 M hydrogen peroxide as well as enhanced substrate (65.3%) and product (42.4%) specificities. These shed light to the future microbial -amylase engineering in achieving paramount biochemical traits ameliorations to apt in the industries. Conclusions Microbial -amylases can be tailored for specific industrial applications through protein engineering (rational design and directed evolution). While the critical mutation points are dependent on respective enzymes, formation of disulfide bridge between cysteine residues after mutations is crucial for elevated thermostability. Amino acids conversion to basic residues was reported for enhanced acidic resistance while hydrophobic interaction resulted from mutated hydrophobic residues in carbohydrate-binding module or surface-binding sites is pivotal for improved substrate specificity. Substitution of oxidation-prone methionine residues with non-polar residues increases the enzyme oxidative stability. Hence, this review provides conceptual advances for the future microbial -amylases designs to exhibit industrially significant characteristics. However, more attention is needed to enhance substrate specificity and oxidative stability since they are least reported.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme Technology Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
12
|
Smailov B, Alybayev S, Smekenov I, Mursalimov A, Saparbaev M, Sarbassov D, Bissenbaev A. Wheat Germination Is Dependent on Plant Target of Rapamycin Signaling. Front Cell Dev Biol 2020; 8:606685. [PMID: 33330509 PMCID: PMC7719826 DOI: 10.3389/fcell.2020.606685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
Germination is a process of seed sprouting that facilitates embryo growth. The breakdown of reserved starch in the endosperm into simple sugars is essential for seed germination and subsequent seedling growth. At the early stage of germination, gibberellic acid (GA) activates transcription factor GAMYB to promote de novo synthesis of isoforms of α-amylase in the aleurone layer and scutellar epithelium of the embryo. Here, we demonstrate that wheat germination is regulated by plant target of rapamycin (TOR) signaling. TOR is a central component of the essential-nutrient–dependent pathway controlling cell growth in all eukaryotes. It is known that rapamycin, a highly specific allosteric inhibitor of TOR, is effective in yeast and animal cells but ineffective in most of higher plants likely owing to structural differences in ubiquitous rapamycin receptor FKBP12. The action of rapamycin on wheat growth has not been studied. Our data show that rapamycin inhibits germination of wheat seeds and of their isolated embryos in a dose-dependent manner. The involvement of Triticum aestivum TOR (TaTOR) in wheat germination was consistent with the suppression of wheat embryo growth by specific inhibitors of the TOR kinase: pp242 or torin1. Rapamycin or torin1 interfered with GA function in germination because of a potent inhibitory effect on α-amylase and GAMYB gene expression. The TOR inhibitors selectively targeted the GA-dependent gene expression, whereas expression of the abscisic acid-dependent ABI5 gene was not affected by either rapamycin or torin1. To determine whether the TaTOR kinase activation takes place during wheat germination, we examined phosphorylation of a ribosomal protein, T. aestivum S6 kinase 1 (TaS6K1; a substrate of TOR). The phosphorylation of serine 467 (S467) in a hydrophobic motif on TaS6K1 was induced in a process of germination triggered by GA. Moreover, the germination-induced phosphorylation of TaS6K1 on S467 was dependent on TaTOR and was inhibited by rapamycin or torin1. Besides, a gibberellin biosynthesis inhibitor (paclobutrazol; PBZ) blocked not only α-amylase gene expression but also TaS6K1 phosphorylation in wheat embryos. Thus, a hormonal action of GA turns on the synthesis of α-amylase in wheat germination via activation of the TaTOR–S6K1 signaling pathway.
Collapse
Affiliation(s)
- Bauyrzhan Smailov
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan.,Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Sanzhar Alybayev
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan.,Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Izat Smekenov
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan.,Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Aibek Mursalimov
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan.,Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Murat Saparbaev
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan.,Groupe «Mechanisms of DNA Repair and Carcinogenesis», Equipe Labellisée LIGUE 2016, CNRS UMR 9019, Université Paris-Sud, Gustave Roussy Cancer Campus, Villejuif, France
| | - Dos Sarbassov
- Department of Biology, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Amangeldy Bissenbaev
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan.,Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
13
|
Liu R, Jia T, Cui B, Song J. The expression patterns and putative function of nitrate transporter 2.5 in plants. PLANT SIGNALING & BEHAVIOR 2020; 15:1815980. [PMID: 32867594 PMCID: PMC7671049 DOI: 10.1080/15592324.2020.1815980] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nitrate transporter 2.5 (NRT2.5) was originally characterized as the transporter for nitrogen (N) limitation. In Arabidopsis, NRT2.5 is expressed mainly under extremely low NO3- and N starvation conditions, and this must work in conjunction with NAR2.1. NRT2.5 is expressed both in the roots and leaves in Arabidopsis, poplars, tea trees and cassava. This is also expressed in the seeds of Arabidopsis and wheat. In wheat, NRT2.5 is expressed in the embryo and shell and plays a role in the accumulation of NO3- in the seeds. In maize, this is also expressed in silk, cobs and tassel husk leaves. In rice, OsNRT2.5 (also known as OsNRT2.3a) may help the species to remove NO3- from the roots to shoots. In addition, NRT2.5 may interact with TGA3, MYC1, LBD37, LBD38, TaNAC2 and other transcription factors and participate in the transmission of NO3- signals. The present review summarizes the functions of NRT2.5 in different plant species, which may help plant breeders and molecular biologists to improve crop yield. Abbreviations: NRT, Nitrate transporter; NUE, nitrogen use efficiency; PTR, peptide transporter; NPF, nitrate peptide transporter family; CLC, chloride channel; LAC1/SLAH, slow anion channel-associated 1 homolog 3; LATS, low-affinity transporter systems; HATS, high-affinity transport systems; NNP, nitrate-nitrite-porter; MFS, major facilitator superfamily.
Collapse
Affiliation(s)
- Ranran Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, P.R. China
| | - Ting Jia
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, P.R. China
| | - Bing Cui
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, P.R. China
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, P.R. China
- CONTACT Jie Song Jinan250014, P.R. China
| |
Collapse
|
14
|
Li W, He X, Chen Y, Jing Y, Shen C, Yang J, Teng W, Zhao X, Hu W, Hu M, Li H, Miller AJ, Tong Y. A wheat transcription factor positively sets seed vigour by regulating the grain nitrate signal. THE NEW PHYTOLOGIST 2020; 225:1667-1680. [PMID: 31581317 PMCID: PMC7004088 DOI: 10.1111/nph.16234] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/22/2019] [Indexed: 05/12/2023]
Abstract
Seed vigour and early establishment are important factors determining the yield of crops. A wheat nitrate-inducible NAC transcription factor, TaNAC2, plays a critical role in promoting crop growth and nitrogen use efficiency (NUE), and now its role in seed vigour is revealed. A TaNAC2 regulated gene was identified that is a NRT2-type nitrate transporter TaNRT2.5 with a key role in seed vigour. Overexpressing TaNAC2-5A increases grain nitrate concentration and seed vigour by directly binding to the promoter of TaNRT2.5-3B and positively regulating its expression. TaNRT2.5 is expressed in developing grain, particularly the embryo and husk. In Xenopus oocyte assays TaNRT2.5 requires a partner protein TaNAR2.1 to give nitrate transport activity, and the transporter locates to the tonoplast in a tobacco leaf transient expression system. Furthermore, in the root TaNRT2.5 and TaNRT2.1 function in post-anthesis acquisition of soil nitrate. Overexpression of TaNRT2.5-3B increases seed vigour, grain nitrate concentration and yield, whereas RNA interference of TaNRT2.5 has the opposite effects. The TaNAC2-NRT2.5 module has a key role in regulating grain nitrate accumulation and seed vigour. Both genes can potentially be used to improve grain yield and NUE in wheat.
Collapse
Affiliation(s)
- Wenjing Li
- The State Key Laboratory for Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- CAS‐JIC Centre of Excellence for Plant and Microbial Science (CEPAMS)Shanghai Institutes for Biological SciencesChinese Academy of Sciences (CAS)Shanghai200032China
| | - Xue He
- The State Key Laboratory for Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- CAS‐JIC Centre of Excellence for Plant and Microbial Science (CEPAMS)Shanghai Institutes for Biological SciencesChinese Academy of Sciences (CAS)Shanghai200032China
| | - Yi Chen
- CAS‐JIC Centre of Excellence for Plant and Microbial Science (CEPAMS)Shanghai Institutes for Biological SciencesChinese Academy of Sciences (CAS)Shanghai200032China
- Department of Metabolic BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Yanfu Jing
- The State Key Laboratory for Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chuncai Shen
- The State Key Laboratory for Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Junbo Yang
- The State Key Laboratory for Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wan Teng
- The State Key Laboratory for Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijing100101China
| | - Xueqiang Zhao
- The State Key Laboratory for Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijing100101China
| | - Weijuan Hu
- The State Key Laboratory for Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijing100101China
| | - Mengyun Hu
- The Institute for Cereal and Oil CropsHebei Academy of Agriculture and Forestry SciencesShijiazhuang050035China
| | - Hui Li
- The Institute for Cereal and Oil CropsHebei Academy of Agriculture and Forestry SciencesShijiazhuang050035China
| | - Anthony J. Miller
- CAS‐JIC Centre of Excellence for Plant and Microbial Science (CEPAMS)Shanghai Institutes for Biological SciencesChinese Academy of Sciences (CAS)Shanghai200032China
- Department of Metabolic BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Yiping Tong
- The State Key Laboratory for Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- CAS‐JIC Centre of Excellence for Plant and Microbial Science (CEPAMS)Shanghai Institutes for Biological SciencesChinese Academy of Sciences (CAS)Shanghai200032China
| |
Collapse
|
15
|
Zhang Z, Fan J, Wu J, Zhang L, Wang J, Zhang B, Wang-Pruski G. Alleviating effect of silicon on melon seed germination under autotoxicity stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109901. [PMID: 31704323 DOI: 10.1016/j.ecoenv.2019.109901] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 05/25/2023]
Abstract
Melon (Cucumis melo L.) is an important horticultural crop worldwide. Continuous cropping obstacle occurs in many melon cultivation area, resulting in poor plant growth and fruit quality, autotoxicity is the main reason for the obstacle. Silicon (Si) plays an important role in improving the resistance of plants to biotic and abiotic stresses. In this study, melon plant water extracts (MPWE) were used to simulate the autotoxicity stress. Different concentrations of Na2SiO3 (0, 1, 2, 4, 8, 16, 32 mM) were added into MPWE for preliminary concentration screening and alleviating effect determination of Si on melon seed autotoxicity. The results showed that autotoxicity reduced the seed germination index, inhibited the growth of germinated seeds. 2 mM Si significantly increased seed germination index and improved subsequent growth under autotoxicity. The effect of Si showed a concentration-dependent manner, which can be counteracted or even reversed at high concentration. Three treatment combinations, double distilled water, 0.02 g/mL MPWE and 2 mM Na2SiO3 + 0.02 g/mL MPWE were used for subsequent physiology, biochemistry and gene analysis. During the germination of melon seed under autotoxicity, starch degradation ability decreased, amylase activity and amylase gene expression were inhibited, cell membrane lipid peroxidation increased, and antioxidant enzyme activity was abnormal. In Si-addition group, the radicle growth, lateral roots number, starch degradation ability, amylase activity and amylase gene expression level increased. The addition of Si also maintained the activities of superoxide dismutase, catalase and peroxidase and the content of malondialdehyde in a relatively normal state. The change trend of amylase gene and antioxidant enzyme activity was complex, but the acute change coincided with the key stage of seed germination, which occurred when the seed was about to break through or just broken through the seed coat. Appropriate concentration of Si is an effective strategy to alleviate the autotoxicity on melon seed.
Collapse
Affiliation(s)
- Zhizhong Zhang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jiaru Fan
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinghua Wu
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lizhen Zhang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingrong Wang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Beibei Zhang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Gefu Wang-Pruski
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada; Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
16
|
New insights into the origin and evolution of α-amylase genes in green plants. Sci Rep 2019; 9:4929. [PMID: 30894656 PMCID: PMC6426938 DOI: 10.1038/s41598-019-41420-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/05/2018] [Indexed: 01/16/2023] Open
Abstract
Gene duplication is a source of genetic materials and evolutionary changes, and has been associated with gene family expansion. Functional divergence of duplicated genes is strongly directed by natural selections such as organism diversification and novel feature acquisition. We show that, plant α-amylase gene family (AMY) is comprised of six subfamilies (AMY1-AMY6) that fell into two ancient phylogenetic lineages (AMY3 and AMY4). Both AMY1 and AMY2 are grass-specific and share a single-copy ancestor, which is derived from grass AMY3 genes that have undergone massive tandem and whole-genome duplications during evolution. Ancestral features of AMY4 and AMY5/AMY6 genes have been retained among four green algal sequences (Chrein_08.g362450, Vocart_0021s0194, Dusali_0430s00012 and Monegl_16464), suggesting a gene duplication event following Chlorophyceae diversification. The observed horizontal gene transfers between plant and bacterial AMYs, and chromosomal locations of AMY3 and AMY4 genes in the most ancestral green body (C. reinhardtii), provide evidences for the monophyletic origin of plant AMYs. Despite subfamily-specific sequence divergence driven by natural selections, the active site and SBS1 are well-conserved across different AMY isoforms. The differentiated electrostatic potentials and hydrogen bands-forming residue polymorphisms, further imply variable digestive abilities for a broad substrates in particular tissues or subcellular localizations.
Collapse
|