1
|
Sharma R, Mishra R, Joshi RK. A highly contiguous genome sequence of Alternaria porri isolate Apn-Nashik causing purple blotch disease in onion. BMC Genom Data 2024; 25:95. [PMID: 39501136 PMCID: PMC11539676 DOI: 10.1186/s12863-024-01276-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
OBJECTIVES Purple blotch, caused by the necrotrophic pathogen Alternaria porri, is one of the most economically significant diseases of onion and allied crops. While the virulent nature of many Alternaria spp. has been identified, the pathogenic repertoire of A. porri is still unknown. The objective of this work was to sequence the genome of A. porri using the PacBio SMRT sequencing strategy and analyse the repertoire of CAZymes, secondary metabolites, secretome and effectors in A. porri. Our research group is working to identify onion germplasm with purple blotch resistance and to understand the genetics of the pathogen. The reported de-novo assembly will contribute to the analysis of potential variants and the gene repertoire contributing to the virulence and pathogenicity of the purple blotch pathogen. DATA DESCRIPTION Long-read sequencing on a PacBio Sequel II system resulted in a 32.98 Mb (20 contigs) assembly with an N50 of 2, 657, 264 bp, the longest contig length of 5.05 Mb, and a GC content of 51.06%. The Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis resulted in 99.7% genome completeness at the Dothideomycetes lineage, representing a high-quality genome assembly. AUGUSTUS ab initio analysis resulted in 9875 protein-coding genes. Of the 6776 pathogenicity-related genes, 537 genes with effector functions were identified. Likewise, the glycoside hydrolases (434) were the most dominant group of the total 837 predicted CAZymes. The assembled genome of A. porri showed distinctive similarities to the genomes of A. alternata and A. brassicicola, the causal agents of leaf blight of onion and leaf spot of Brassica crops, respectively.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Biotechnology, Rama Devi Women's University, Vidya Vihar, Bhubaneswar, Odisha, 751022, India
| | - Rukmini Mishra
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Raj Kumar Joshi
- Department of Biotechnology, Rama Devi Women's University, Vidya Vihar, Bhubaneswar, Odisha, 751022, India.
| |
Collapse
|
2
|
Laurent‐Webb L, Maurice K, Perez‐Lamarque B, Bourceret A, Ducousso M, Selosse M. Seed or soil: Tracing back the plant mycobiota primary sources. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13301. [PMID: 38924368 PMCID: PMC11194045 DOI: 10.1111/1758-2229.13301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
Plants host diverse communities of fungi (the mycobiota), playing crucial roles in their development. The assembly processes of the mycobiota, however, remain poorly understood, in particular, whether it is transmitted by parents through the seeds (vertical transmission) or recruited in the environment (horizontal transmission). Here we attempt to quantify the relative contributions of horizontal and vertical transmission in the mycobiota assembly of a desert shrub, Haloxylon salicornicum, by comparing the mycobiota of in situ bulk soil and seeds to that of (i) in situ adult individuals and (ii) in vitro-germinated seedlings in soil collected in situ. We show that the mycobiota are partially vertically transmitted through the seeds to seedlings, whereas bulk soil has a limited contribution to the seedling's mycobiota. In adults, root and bulk soil mycobiota tend to resemble each other, suggesting a compositional turnover in plant mycobiota during plant development due to horizontal transmission. Thus, the mycobiota are transmitted both horizontally and vertically depending on the plant tissue and developmental stage. Understanding the respective contribution of these transmission pathways to the plant mycobiota is fundamental to deciphering potential coevolutionary processes between plants and fungi. Our findings particularly emphasize the importance of vertical transmission in desert ecosystems.
Collapse
Affiliation(s)
- Liam Laurent‐Webb
- Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRSSorbonne Université, EPHEParisFrance
| | | | - Benoît Perez‐Lamarque
- Institut de Biologie de l'École Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
| | - Amélia Bourceret
- Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRSSorbonne Université, EPHEParisFrance
| | | | - Marc‐André Selosse
- Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRSSorbonne Université, EPHEParisFrance
- Faculty of BiologyUniversity of GdanskGdanskPoland
- Institut Universitaire de FranceParisFrance
| |
Collapse
|
3
|
Adhikari TB, Olukolu BA, Paudel R, Pandey A, Halterman D, Louws FJ. Genotyping-by-Sequencing Reveals Population Differentiation and Linkage Disequilibrium in Alternaria linariae from Tomato. PHYTOPATHOLOGY 2024; 114:653-661. [PMID: 37750924 DOI: 10.1094/phyto-07-23-0229-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Alternaria linariae is an economically important foliar pathogen that causes early blight disease in tomatoes. Understanding genetic diversity, population genetic structure, and evolutionary potential is crucial to contemplating effective disease management strategies. We leveraged genotyping-by-sequencing (GBS) technology to compare genome-wide variation in 124 isolates of Alternaria spp. (A. alternata, A. linariae, and A. solani) for comparative genome analysis and to test the hypotheses of genetic differentiation and linkage disequilibrium (LD) in A. linariae collected from tomatoes in western North Carolina. We performed a pangenome-aware variant calling and filtering with GBSapp and identified 53,238 variants conserved across the reference genomes of three Alternaria spp. The highest marker density was observed on chromosome 1 (7 Mb). Both discriminant analysis of principal components and Bayesian model-based STRUCTURE analysis of A. linariae isolates revealed three subpopulations with minimal admixture. The genetic differentiation coefficients (FST) within A. linariae subpopulations were similar and high (0.86), indicating that alleles in the subpopulations are fixed and the genetic structure is likely due to restricted recombination. Analysis of molecular variance indicated higher variation among populations (89%) than within the population (11%). We found long-range LD between pairs of loci in A. linariae, supporting the hypothesis of low recombination expected for a fungal pathogen with limited sexual reproduction. Our findings provide evidence of a high level of population genetic differentiation in A. linariae, which reinforces the importance of developing tomato varieties with broad-spectrum resistance to various isolates of A. linariae.
Collapse
Affiliation(s)
- Tika B Adhikari
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Bode A Olukolu
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996
| | - Rajan Paudel
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Anju Pandey
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
| | - Dennis Halterman
- U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706
| | - Frank J Louws
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
4
|
Schmey T, Tominello‐Ramirez CS, Brune C, Stam R. Alternaria diseases on potato and tomato. MOLECULAR PLANT PATHOLOGY 2024; 25:e13435. [PMID: 38476108 PMCID: PMC10933620 DOI: 10.1111/mpp.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
Alternaria spp. cause different diseases in potato and tomato crops. Early blight caused by Alternaria solani and brown spot caused by Alternaria alternata are most common, but the disease complex is far more diverse. We first provide an overview of the Alternaria species infecting the two host plants to alleviate some of the confusion that arises from the taxonomic rearrangements in this fungal genus. Highlighting the diversity of Alternaria fungi on both solanaceous hosts, we review studies investigating the genetic diversity and genomes, before we present recent advances from studies elucidating host-pathogen interactions and fungicide resistances. TAXONOMY Kingdom Fungi, Phylum Ascomycota, Class Dothideomycetes, Order Pleosporales, Family Pleosporaceae, Genus Alternaria. BIOLOGY AND HOST RANGE Alternaria spp. adopt diverse lifestyles. We specifically review Alternaria spp. that cause disease in the two solanaceous crops potato (Solanum tuberosum) and tomato (Solanum lycopersicum). They are necrotrophic pathogens with no known sexual stage, despite some signatures of recombination. DISEASE SYMPTOMS Symptoms of the early blight/brown spot disease complex include foliar lesions that first present as brown spots, depending on the species with characteristic concentric rings, which eventually lead to severe defoliation and considerable yield loss. CONTROL Good field hygiene can keep the disease pressure low. Some potato and tomato cultivars show differences in susceptibility, but there are no fully resistant varieties known. Therefore, the main control mechanism is treatment with fungicides.
Collapse
Affiliation(s)
- Tamara Schmey
- TUM School of Life Science WeihenstephanTechnical University of MunichFreisingGermany
| | | | - Carolin Brune
- TUM School of Life Science WeihenstephanTechnical University of MunichFreisingGermany
| | - Remco Stam
- Department of Phytopathology and Crop Protection, Institute of PhytopathologyChristian Albrechts UniversityKielGermany
| |
Collapse
|
5
|
Qiu C, Halterman D, Zhang H, Liu Z. Multifunctionality of AsCFEM6 and AsCFEM12 effectors from the potato early blight pathogen Alternaria solani. Int J Biol Macromol 2024; 257:128575. [PMID: 38048930 DOI: 10.1016/j.ijbiomac.2023.128575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Plant pathogens secrete fungal-specific common in several fungal extracellular membrane (CFEM) effectors to manipulate host immunity and contribute to their virulence. Little is known about effectors and their functions in Alternaria solani, the necrotrophic fungal pathogen causing potato early blight. To identify candidate CFEM effector genes, we mined A. solani genome databases. This led to the identification of 12 genes encoding CFEM proteins (termed AsCFEM1-AsCFEM12) and 6 of them were confirmed to be putative secreted effectors. In planta expression revealed that AsCFEM6 and AsCFEM12 have elicitor function that triggers plant defense response including cell death in different botanical families. Targeted gene disruption of AsCFEM6 and AsCFEM12 resulted in a change in spore development, significant reduction of virulence on potato and eggplant susceptible cultivars, increased resistance to fungicide stress, variation in iron acquisition and utilization, and the involvement in 1,8-dihydroxynaphthalene (DHN) melanin biosynthesis pathway. Using maximum likelihood method, we found that positive selection likely caused the polymorphism within AsCFEM6 and AsCFEM12 homologs in different Alternaria spp. Site-directed mutagenesis analysis indicated that positive selection sites within their CFEM domains are required for cell death induction in Nicotiana benthamiana and are critical for response to abiotic stress in yeast. These results demonstrate that AsCFEM effectors possess additional functions beyond their roles in host plant immune response and pathogen virulence.
Collapse
Affiliation(s)
- Chaodong Qiu
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Dennis Halterman
- U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706, USA
| | - Huajian Zhang
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei 230036, China.
| | - Zhenyu Liu
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei 230036, China.
| |
Collapse
|
6
|
Natarajan S, Pucker B, Srivastava S. Genomic and transcriptomic analysis of camptothecin producing novel fungal endophyte: Alternaria burnsii NCIM 1409. Sci Rep 2023; 13:14614. [PMID: 37670002 PMCID: PMC10480469 DOI: 10.1038/s41598-023-41738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023] Open
Abstract
Camptothecin is an important anticancer alkaloid produced by particular plant species. No suitable synthetic route has been established for camptothecin production yet, imposing a stress on plant-based production systems. Endophytes associated with these camptothecin-producing plants have been reported to also produce camptothecin and other high-value phytochemicals. A previous study identified a fungal endophyte Alternaria burnsii NCIM 1409, isolated from Nothapodytes nimmoniana, to be a sustainable producer of camptothecin. Our study provides key insights on camptothecin biosynthesis in this recently discovered endophyte. The whole genome sequence of A. burnsii NCIM 1409 was assembled and screened for biosynthetic gene clusters. Comparative studies with related fungi supported the identification of candidate genes involved in camptothecin synthesis and also helped to understand some aspects of the endophyte's defense against the toxic effects of camptothecin. No evidence for horizontal gene transfer of the camptothecin biosynthetic genes from the host plant to the endophyte was detected suggesting an independent evolution of the camptothecin biosynthesis in this fungus.
Collapse
Affiliation(s)
- Shakunthala Natarajan
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology and Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106, Brunswick, Germany
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Boas Pucker
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology and Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106, Brunswick, Germany.
| | - Smita Srivastava
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India.
| |
Collapse
|
7
|
Hou YH, Yang ZH, Wang JZ, Yang QZ. Characterization of a thermostable alkaline feruloyl esterase from Alternaria alternata and its synergism in dissolving pulp production. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Behiry SI, Philip B, Salem MZM, Amer MA, El-Samra IA, Abdelkhalek A, Heflish A. Urtica dioica and Dodonaea viscosa leaf extracts as eco-friendly bioagents against Alternaria alternata isolate TAA-05 from tomato plant. Sci Rep 2022; 12:16468. [PMID: 36183011 PMCID: PMC9526714 DOI: 10.1038/s41598-022-20708-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
One of the tomato’s acutely devastating diseases is Alternaria leaf spot, lowering worldwide tomato production. In this study, one fungal isolate was isolated from tomatoes and was assigned to Alternaria alternata TAA-05 upon morphological and molecular analysis of the ITS region and 18SrRNA, endoPG, Alt a1, and gapdh genes. Also, Urtica dioica and Dodonaea viscosa methanol leaf extracts (MLEs) were utilized as antifungal agents in vitro and compared to Ridomil, a reference chemical fungicide. The in vitro antifungal activity results revealed that Ridomil (2000 µg/mL) showed the highest fungal growth inhibition (FGI) against A. alternata (96.29%). Moderate activity was found against A. alternata by D. viscosa and U. dioica MLEs (2000 µg/mL), with an FGI value of 56.67 and 54.81%, respectively. The abundance of flavonoid and phenolic components were identified by HPLC analysis in the two plant extracts. The flavonoid compounds, including hesperidin, quercetin, and rutin were identified using HPLC in D. viscosa MLE with concentrations of 11.56, 10.04, and 5.14 µg/mL of extract and in U. dioica MLE with concentrations of 12.45, 9.21, and 5.23 µg/mL, respectively. α-Tocopherol and syringic acid, were also identified in D. viscosa MLE with concentrations of 26.13 and 13.69 µg/mL, and in U. dioica MLE, with values of 21.12 and 18.33 µg/mL, respectively. Finally, the bioactivity of plant extracts suggests that they play a crucial role as antifungal agents against A. alternata. Some phenolic chemicals, including coumaric acid, caffeic acid, ferulic acid, and α-tocopherol, have shown that they may be utilized as environmentally friendly fungicidal compounds.
Collapse
Affiliation(s)
- Said I Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Bassant Philip
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Mohamed Z M Salem
- Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| | - Mostafa A Amer
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Ibrahim A El-Samra
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab City, 21934, Egypt
| | - Ahmed Heflish
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| |
Collapse
|
9
|
Towards Understanding the Function of Aegerolysins. Toxins (Basel) 2022; 14:toxins14090629. [PMID: 36136567 PMCID: PMC9505663 DOI: 10.3390/toxins14090629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Aegerolysins are remarkable proteins. They are distributed over the tree of life, being relatively widespread in bacteria and fungi, but also present in some insects, plants, protozoa, and viruses. Despite their abundance in cells of certain developmental stages and their presence in secretomes, only a few aegerolysins have been studied in detail. Their function, in particular, is intriguing. Here, we summarize previously published findings on the distribution, molecular interactions, and function of these versatile aegerolysins. They have very diverse protein sequences but a common fold. The machine learning approach of the AlphaFold2 algorithm, which incorporates physical and biological knowledge of protein structures and multisequence alignments, provides us new insights into the aegerolysins and their pore-forming partners, complemented by additional genomic support. We hypothesize that aegerolysins are involved in the mechanisms of competitive exclusion in the niche.
Collapse
|
10
|
Won TH, Bok JW, Nadig N, Venkatesh N, Nickles G, Greco C, Lim FY, González JB, Turgeon BG, Keller NP, Schroeder FC. Copper starvation induces antimicrobial isocyanide integrated into two distinct biosynthetic pathways in fungi. Nat Commun 2022; 13:4828. [PMID: 35973982 PMCID: PMC9381783 DOI: 10.1038/s41467-022-32394-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 01/26/2023] Open
Abstract
The genomes of many filamentous fungi, such as Aspergillus spp., include diverse biosynthetic gene clusters of unknown function. We previously showed that low copper levels upregulate a gene cluster that includes crmA, encoding a putative isocyanide synthase. Here we show, using untargeted comparative metabolomics, that CrmA generates a valine-derived isocyanide that contributes to two distinct biosynthetic pathways under copper-limiting conditions. Reaction of the isocyanide with an ergot alkaloid precursor results in carbon-carbon bond formation analogous to Strecker amino-acid synthesis, producing a group of alkaloids we term fumivalines. In addition, valine isocyanide contributes to biosynthesis of a family of acylated sugar alcohols, the fumicicolins, which are related to brassicicolin A, a known isocyanide from Alternaria brassicicola. CrmA homologs are found in a wide range of pathogenic and non-pathogenic fungi, some of which produce fumicicolin and fumivaline. Extracts from A. fumigatus wild type (but not crmA-deleted strains), grown under copper starvation, inhibit growth of diverse bacteria and fungi, and synthetic valine isocyanide shows antibacterial activity. CrmA thus contributes to two biosynthetic pathways downstream of trace-metal sensing.
Collapse
Affiliation(s)
- Tae Hyung Won
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nischala Nadig
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nandhitha Venkatesh
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Grant Nickles
- Department of Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Claudio Greco
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Fang Yun Lim
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Jennifer B González
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
- 104 Peckham Hall, Nazareth College, 4245 East Avenue, Rochester, NY, USA
| | - B Gillian Turgeon
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
11
|
Transcriptome analysis reveals putative pathogenesis genes in Alternaria panax during infecting Panax notoginseng leaves. Genes Genomics 2022; 44:855-866. [PMID: 35622230 DOI: 10.1007/s13258-022-01241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Alternaria panax is the causative agent of black spot disease in Panax notoginseng, which causes significant yield loss. However, the molecular mechanisms underlying its pathogenicity remain mostly unknown. OBJECTIVE We sequenced the transcriptome of A. panax during infecting P. notoginseng leaves using next-generation RNA-seq to understand the molecular aspects of black spot disease. METHODS In this study, we sequenced the A. panax transcriptome during infecting P. notoginseng leaves through next-generation sequencing to explore the pathogenesis genes that may be responsible for black spot disease on P. notoginseng. RESULT The de novo transcriptome assembly of A. panax produced 23,036 unigenes, of which 18,096 genes were functionally annotated by at least one protein database. GO enrichment analysis and KEGG pathways of differentially up-regulated genes suggest that most genes are associated with metabolic processes, catalytic activity, starch, and sucrose metabolism during infection. Many pathogenesis-associated genes, including genes encoding secreted proteins, candidate secreted effectors, cell wall degrading enzymes, transcription factors, and transporters, were up-regulated in A. panax during infection. In addition, the secondary metabolite biosynthesis genes, including cytochrome P450, and nonribosomal peptide synthetases, were also identified in this study. CONCLUSIONS Differential gene expression analysis has confirmed that A. panax infection was mainly present in the middle and final stages. The findings show that these pathogenesis-associated genes in A. panax may be critical for the P. notoginseng black spots disease.
Collapse
|
12
|
Leng J, Dai Y, Qiu D, Zou Y, Wu X. Utilization of the antagonistic yeast, Wickerhamomyces anomalus, combined with UV-C to manage postharvest rot of potato tubers caused by Alternaria tenuissima. Int J Food Microbiol 2022; 377:109782. [DOI: 10.1016/j.ijfoodmicro.2022.109782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/21/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
|
13
|
Courtial J, Helesbeux JJ, Oudart H, Aligon S, Bahut M, Hamon B, N'Guyen G, Pigné S, Hussain AG, Pascouau C, Bataillé-Simoneau N, Collemare J, Berruyer R, Poupard P. Characterization of NRPS and PKS genes involved in the biosynthesis of SMs in Alternaria dauci including the phytotoxic polyketide aldaulactone. Sci Rep 2022; 12:8155. [PMID: 35581239 PMCID: PMC9114375 DOI: 10.1038/s41598-022-11896-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Alternaria dauci is a Dothideomycete fungus, causal agent of carrot leaf blight. As a member of the Alternaria genus, known to produce a lot of secondary metabolite toxins, A. dauci is also supposed to synthetize host specific and non-host specific toxins playing a crucial role in pathogenicity. This study provides the first reviewing of secondary metabolism genetic basis in the Alternaria genus by prediction of 55 different putative core genes. Interestingly, aldaulactone, a phytotoxic benzenediol lactone from A. dauci, was demonstrated as important in pathogenicity and in carrot partial resistance to this fungus. As nothing is known about aldaulactone biosynthesis, bioinformatic analyses on a publicly available A. dauci genome data set that were reassembled, thanks to a transcriptome data set described here, allowed to identify 19 putative secondary metabolism clusters. We exploited phylogeny to pinpoint cluster 8 as a candidate in aldaulactone biosynthesis. This cluster contains AdPKS7 and AdPKS8, homologs with genes encoding a reducing and a non-reducing polyketide synthase. Clusters containing such a pair of PKS genes have been identified in the biosynthesis of resorcylic acid lactones or dihydroxyphenylacetic acid lactones. AdPKS7 and AdPKS8 gene expression patterns correlated with aldaulactone production in different experimental conditions. The present results highly suggest that both genes are responsible for aldaulactone biosynthesis.
Collapse
Affiliation(s)
- Julia Courtial
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Jean-Jacques Helesbeux
- Substances d'Origine Naturelle et Analogues Structuraux, SFR4207 QUASAV, Université d'Angers, Angers, France
| | - Hugo Oudart
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Sophie Aligon
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | | | - Bruno Hamon
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Guillaume N'Guyen
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Sandrine Pigné
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Ahmed G Hussain
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France.,Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Claire Pascouau
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | | | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Romain Berruyer
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France.
| | - Pascal Poupard
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| |
Collapse
|
14
|
Dauda WP, Morumda D, Abraham P, Adetunji CO, Ghazanfar S, Glen E, Abraham SE, Peter GW, Ogra IO, Ifeanyi UJ, Musa H, Azameti MK, Paray BA, Gulnaz A. Genome-Wide Analysis of Cytochrome P450s of Alternaria Species: Evolutionary Origin, Family Expansion and Putative Functions. J Fungi (Basel) 2022; 8:jof8040324. [PMID: 35448554 PMCID: PMC9028179 DOI: 10.3390/jof8040324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Cytochrome P450s are a group of monooxygenase enzymes involved in primary, secondary and xenobiotic metabolisms. They have a wide application in the agriculture sector where they could serve as a target for herbicides or fungicides, while they could function in the pharmaceutical industry as drugs or drugs structures or for bioconversions. Alternaria species are among the most commonly encountered fungal genera, with most of them living as saprophytes in different habitats, while others are parasites of plants and animals. This study was conducted to elucidate the diversity and abundance, evolutionary relationships and cellular localization of 372 cytochrome P450 in 13 Alternaria species. The 372 CYP proteins were phylogenetically clustered into ten clades. Forty (40) clans and seventy-one (71) cyp families were identified, of which eleven (11) families were found to appear in one species each. The majority of the CYP proteins were located in the endomembrane system. Polyketide synthase (PKS) gene cluster was the predominant secondary metabolic-related gene cluster in all the Alternaria species studied, except in A. porriof, where non-ribosomal peptide synthetase genes were dominant. This study reveals the expansion of cyps in these fungal genera, evident in the family and clan expansions, which is usually associated with the evolution of fungal characteristics, especially their lifestyle either as parasites or saprophytes, with the ability to metabolize a wide spectrum of substrates. This study can be used to understand the biology, physiology and toxigenic potentials of P450 in these fungal genera.
Collapse
Affiliation(s)
- Wadzani Palnam Dauda
- Crop Science Unit, Department of Agronomy, Federal University Gashua, Gashua P.M.B. 1005, Yobe State, Nigeria
- Correspondence:
| | - Daji Morumda
- Department of Microbiology, Federal University Wukari, Wukari P.M.B. 1020, Taraba State, Nigeria;
| | - Peter Abraham
- Department of Horticulture, Federal College of Horticulture, Dadin Kowa P.M.B. 108, Gombe State, Nigeria;
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University Iyamho, Auchi P.M.B. 04, Edo State, Nigeria;
| | - Shakira Ghazanfar
- National Agricultural Research Centre, National Institute of Genomics and Agriculture Biotechnology (NIGAB), Park Road, Islamabad 45500, Pakistan;
| | - Elkanah Glen
- Department of Biochemistry, Federal University Lokoja, Lokoja P.M.B. 1154, Kogi State, Nigeria;
| | | | - Grace Wabba Peter
- Department of Biochemistry, Ahmadu Bello University, Zaria 800001, Kaduna State, Nigeria; (G.W.P.); (I.O.O.)
| | - Israel Ogwuche Ogra
- Department of Biochemistry, Ahmadu Bello University, Zaria 800001, Kaduna State, Nigeria; (G.W.P.); (I.O.O.)
| | - Ulasi Joseph Ifeanyi
- Department of Crop Science, University of Uyo, Uyo P.M.B. 1071, Akwa Ibom State, Nigeria;
| | - Hannatu Musa
- Department of Botany, Ahmadu Bello University, Zaria 800001, Kaduna State, Nigeria;
| | - Mawuli Kwamla Azameti
- Division of Molecular Biology and Biotechnology, Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Aneela Gulnaz
- College of Pharmacy, Woosuk University, Wanju-gun 55338, Korea;
| |
Collapse
|
15
|
Qiu C, Wang W, Liu Z. Genome Resource of American Ginseng Black Spot Pathogen Alternaria panax. PLANT DISEASE 2022; 106:1020-1022. [PMID: 35259299 DOI: 10.1094/pdis-05-21-0895-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Chaodong Qiu
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Weiquan Wang
- Professional Committee of Planting & Breeding of Chinese Herbal Medicines, China Association of Traditional Chinese Medicine, Beijing, 100000, China
| | - Zhenyu Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, 230036, China
| |
Collapse
|
16
|
Wang L, Wang M, Jiao J, Liu H. Roles of AaVeA on Mycotoxin Production via Light in Alternaria alternata. Front Microbiol 2022; 13:842268. [PMID: 35250954 PMCID: PMC8894881 DOI: 10.3389/fmicb.2022.842268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Alternaria alternata is a principal plant pathogen responsible for the biosynthesis of mycotoxins, including tenuazonic acid (TeA), alternariol (AOH), and alternariol monomethyl ether (AME). The velvet gene VeA is involved in fungal growth, development, and secondary metabolism, including mycotoxin biosynthesis via light regulation. In this study, the detailed regulatory roles of AaVeA in A. alternata with various light sources were investigated from the comparative analyses between the wild type and the gene knockout strains. In fungal growth and conidiation, mycelial extension was independent of light regulation in A. alternata. Red light favored conidiation, but blue light repressed it. The absence of AaVeA caused the marked reduction of hyphae extension and conidiophore formation even though red light could not induce more spores in ΔAaVeA mutant. The differentially expressed genes (DEGs) enriched in hyphal growth and conidiation were drastically transcribed from the comparatively transcriptomic profile between the wild type and ΔAaVeA mutant strains with or without light. In mycotoxin production, TeA biosynthesis seems no obvious effect by light regulation, but AOH and AME formation was significantly stimulated by blue light. Nevertheless, the disruption of AaVeA resulted in a marked decrease in mycotoxin production and the action of the stimulation was lost via blue light for the abundant accumulation of AOH and AME in the ΔAaVeA strain. From DEG expression and further verification by RT-qPCR, the loss of AaVeA caused the discontinuous supply of the substrates for mycotoxin biosynthesis and the drastic decline of biosynthetic gene expression. In addition, pathogenicity depends on AaVeA regulation in tomato infected by A. alternata in vivo. These findings provide a distinct understanding of the roles of AaVeA in fungal growth, development, mycotoxin biosynthesis, and pathogenicity in response to various light sources.
Collapse
Affiliation(s)
- Liuqing Wang
- Institute of Quality Standard and Testing Technology of BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing, China
| | - Meng Wang
- Institute of Quality Standard and Testing Technology of BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing, China
- *Correspondence: Meng Wang,
| | - Jian Jiao
- Institutes of Science and Development, Chinese Academy of Sciences, Beijing, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| |
Collapse
|
17
|
Feng Z, Li Y, Ma X, Duan Y, Zhang R, Hsiang T, Niu Y, Sun G. Draft Genome Sequence of Alternaria longipes Causing Tobacco Brown Spot. PLANT DISEASE 2022; 106:734-736. [PMID: 34597148 DOI: 10.1094/pdis-06-21-1274-a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alternaria is a cosmopolitan fungal genus associated with diverse hosts. Tobacco brown spot caused by Alternaria longipes is one of the most destructive diseases of tobacco. A. longipes can also infect many other plants, some animals and even humans. Here, we report a genome assembly of A. longipes CBS 540.94 using Oxford Nanopore Technologies. A total of 15 contigs were assembled, and the genome size was 37.5 Mb with contig N50 of 4.33 Mb. This genome resource will provide information for further research on comparative genomics of the genus Alternaria and be a valuable resource in investigations of the molecular interactions of pathogen and hosts.
Collapse
Affiliation(s)
- Zhonghong Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yaxin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xueyan Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yangbo Duan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Yongchun Niu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
18
|
Apangu GP, Frisk CA, Petch GM, Muggia L, Pallavicini A, Hanson M, Skjøth CA. Environmental DNA reveals diversity and abundance of Alternaria species in neighbouring heterogeneous landscapes in Worcester, UK. AEROBIOLOGIA 2022; 38:457-481. [PMID: 36471880 PMCID: PMC9715499 DOI: 10.1007/s10453-022-09760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/28/2022] [Indexed: 05/05/2023]
Abstract
UNLABELLED Alternaria is a pathogenic and allergenic fungus affecting 400 plant species and 334 million people globally. This study aimed at assessing the diversity of Alternaria species in airborne samples collected from closely located (7 km apart) and heterogeneous sites (rural, urban and unmanaged grassland) in Worcester and Lakeside, the UK. A secondary objective was to examine how the ITS1 subregion varies from ITS2 in Alternaria species diversity and composition. Airborne spores were collected using Burkard 7-day and multi-vial Cyclone samplers for the period 5 July 2016-9 October 2019. Air samples from the Cyclone were amplified using the ITS1and ITS2 subregions and sequenced using Illumina MiSeq platform whereas those from the Burkard sampler were identified and quantified using optical microscopy. Optical microscopy and eDNA revealed a high abundance of Alternaria in the rural, urban and unmanaged sites. ITS1 and ITS2 detected five and seven different Alternaria species at the three sampling sites, respectively. A. dactylidicola, A. metachromatica and A. infectoria were the most abundant. The rural, urban and unmanaged grassland sites had similar diversity (PERMANOVA) of the species due to similarity in land use and proximity of the sites. Overall, the study showed that heterogeneous and neighbouring sites with similar land uses can have similar Alternaria species. It also demonstrated that an eDNA approach can complement the classical optical microscopy method in providing more precise information on fungal species diversity in an environment for targeted management. Similar studies can be replicated for other allergenic and pathogenic fungi. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10453-022-09760-9.
Collapse
Affiliation(s)
- Godfrey Philliam Apangu
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester UK
- Present Address: Protecting Crops and the Environment, Rothamsted Research, West Common, Harpenden, AL5 2JQ Hertfordshire UK
| | - Carl Alexander Frisk
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester UK
- Present Address: Department of Urban Greening and Vegetation Ecology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Geoffrey M. Petch
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester UK
| | - Lucia Muggia
- Department of Life Sciences, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Mary Hanson
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester UK
| | - Carsten Ambelas Skjøth
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester UK
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| |
Collapse
|
19
|
Brouwer SM, Brus-Szkalej M, Saripella GV, Liang D, Liljeroth E, Grenville-Briggs LJ. Transcriptome Analysis of Potato Infected with the Necrotrophic Pathogen Alternaria solani. PLANTS (BASEL, SWITZERLAND) 2021; 10:2212. [PMID: 34686023 PMCID: PMC8539873 DOI: 10.3390/plants10102212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
Potato early blight is caused by the necrotrophic fungus Alternaria solani and can result in yield losses of up to 50% if left uncontrolled. At present, the disease is controlled by chemical fungicides, yet rapid development of fungicide resistance renders current control strategies unsustainable. On top of that, a lack of understanding of potato defences and the quantitative nature of resistance mechanisms against early blight hinders the development of more sustainable control methods. Necrotrophic pathogens, compared to biotrophs, pose an extra challenge to the plant, since common defence strategies to biotic stresses such as the hypersensitive response and programmed cell death are often beneficial for necrotrophs. With the aim of unravelling plant responses to both the early infection stages (i.e., before necrosis), such as appressorium formation and penetration, as well as to later responses to the onset of necrosis, we present here a transcriptome analysis of potato interactions with A. solani from 1 h after inoculation when the conidia have just commenced germination, to 48 h post inoculation when multiple cell necrosis has begun. Potato transcripts with putative functions related to biotic stress tolerance and defence against pathogens were upregulated, including a putative Nudix hydrolase that may play a role in defence against oxidative stress. A. solani transcripts encoding putative pathogenicity factors, such as cell wall degrading enzymes and metabolic processes that may be important for infection. We therefore identified the differential expression of several potato and A. solani transcripts that present a group of valuable candidates for further studies into their roles in immunity or disease development.
Collapse
Affiliation(s)
- Sophie M. Brouwer
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 7070, SE-750 07 Uppsala, Sweden; (M.B.-S.); (D.L.); (E.L.)
| | - Maja Brus-Szkalej
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 7070, SE-750 07 Uppsala, Sweden; (M.B.-S.); (D.L.); (E.L.)
| | - Ganapathi V. Saripella
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 7070, SE-750 07 Uppsala, Sweden;
| | - Dong Liang
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 7070, SE-750 07 Uppsala, Sweden; (M.B.-S.); (D.L.); (E.L.)
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Erland Liljeroth
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 7070, SE-750 07 Uppsala, Sweden; (M.B.-S.); (D.L.); (E.L.)
| | - Laura J. Grenville-Briggs
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 7070, SE-750 07 Uppsala, Sweden; (M.B.-S.); (D.L.); (E.L.)
| |
Collapse
|
20
|
Dettman JR, Eggertson Q. Phylogenomic analyses of Alternaria section Alternaria: A high-resolution, genome-wide study of lineage sorting and gene tree discordance. Mycologia 2021; 113:1218-1232. [PMID: 34637684 DOI: 10.1080/00275514.2021.1950456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The genus Alternaria contains a diversity of saprobic and pathogenic species that can be found in a wide range of environments. Alternaria is currently divided into 26 subgeneric sections, and the "small-spored" Alternaria section Alternaria includes many species that are economically important agricultural pathogens. Recognizing that a stable framework for systematics and species identification is essential for management and regulation purposes, this section has experienced much taxonomic debate and systematic revision in recent years. Molecular phylogenetic studies have challenged the reliability of using morphological characteristics to differentiate Alternaria species but have also suggested that commonly used molecular markers for fungal phylogenetics may not be sufficiently informative at this taxonomic level. To allow the assessment of molecular variation and evolutionary history at a genome-wide scale, we present an overview and analysis of phylogenomic resources for Alternaria section Alternaria. We review the currently available genomic resources and report five newly sequenced genomes. We then perform multiple comparative genomic analyses, including macrosynteny assessment and inference of phylogenetic relationships using a variety of data sets and analysis methods. Fine-scale, genome-wide phylogenetic reconstruction revealed incomplete lineage sorting and the genomic distribution of gene/species tree discordance. Based on these patterns, we propose a list of candidate genes that may be developed into informative markers that are diagnostic for the main lineages. This overview identifies gaps in knowledge and can guide future genome sequencing efforts for this important group of plant pathogenic fungi.
Collapse
Affiliation(s)
- Jeremy R Dettman
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
| | - Quinn Eggertson
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
| |
Collapse
|
21
|
Huang K, Tang J, Zou Y, Sun X, Lan J, Wang W, Xu P, Wu X, Ma R, Wang Q, Wang Z, Liu J. Whole Genome Sequence of Alternaria alternata, the Causal Agent of Black Spot of Kiwifruit. Front Microbiol 2021; 12:713462. [PMID: 34616379 PMCID: PMC8488381 DOI: 10.3389/fmicb.2021.713462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023] Open
Abstract
Alternaria alternata is a pathogen in a wide range of agriculture crops and causes significant economic losses. A strain of A. alternata (Y784-BC03) was isolated and identified from “Hongyang” kiwifruit and demonstrated to cause black spot infections on fruits. The genome sequence of Y784-BC03 was obtained using Nanopore MinION technology. The assembled genome is composed of 33,869,130bp (32.30Mb) comprising 10 chromosomes and 11,954 genes. A total of 2,180 virulence factors were predicted to be present in the obtained genome sequence. The virulence factors comprised genes encoding secondary metabolites, including non-host-specific toxins, cell wall-degrading enzymes, and major transcriptional regulators. The predicted gene clusters encoding genes for the biosynthesis and export of secondary metabolites in the genome of Y784-BC03 were associated with non-host-specific toxins, including cercosporin, dothistromin, and versicolorin B. Major transcriptional regulators of different mycotoxin biosynthesis pathways were identified, including the transcriptional regulators, polyketide synthase, P450 monooxygenase, and major facilitator superfamily transporters.
Collapse
Affiliation(s)
- Ke Huang
- College of Landscape Architecture and Life Science, Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China.,Institute of Microbial Ecology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Jianming Tang
- College of Landscape Architecture and Life Science, Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Yong Zou
- College of Landscape Architecture and Life Science, Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Xiangcheng Sun
- College of Life Sciences, Northwest A&F University, Yangling, China.,West China Biopharm Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Jianbin Lan
- College of Landscape Architecture and Life Science, Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Wei Wang
- College of Landscape Architecture and Life Science, Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China.,Institute of Microbial Ecology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Panpan Xu
- College of Life Sciences, Northwest A&F University, Yangling, China
| | | | - Rui Ma
- College of Landscape Architecture and Life Science, Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Qi Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhenshuo Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jia Liu
- College of Landscape Architecture and Life Science, Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| |
Collapse
|
22
|
Jones DAB, Moolhuijzen PM, Hane JK. Remote homology clustering identifies lowly conserved families of effector proteins in plant-pathogenic fungi. Microb Genom 2021; 7. [PMID: 34468307 PMCID: PMC8715435 DOI: 10.1099/mgen.0.000637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plant diseases caused by fungal pathogens are typically initiated by molecular interactions between 'effector' molecules released by a pathogen and receptor molecules on or within the plant host cell. In many cases these effector-receptor interactions directly determine host resistance or susceptibility. The search for fungal effector proteins is a developing area in fungal-plant pathology, with more than 165 distinct confirmed fungal effector proteins in the public domain. For a small number of these, novel effectors can be rapidly discovered across multiple fungal species through the identification of known effector homologues. However, many have no detectable homology by standard sequence-based search methods. This study employs a novel comparison method (RemEff) that is capable of identifying protein families with greater sensitivity than traditional homology-inference methods, leveraging a growing pool of confirmed fungal effector data to enable the prediction of novel fungal effector candidates by protein family association. Resources relating to the RemEff method and data used in this study are available from https://figshare.com/projects/Effector_protein_remote_homology/87965.
Collapse
Affiliation(s)
- Darcy A B Jones
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia
| | - Paula M Moolhuijzen
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia
| | - James K Hane
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia.,Curtin Institute for Computation, Curtin University, Perth, Australia
| |
Collapse
|
23
|
Adhikari TB, Muzhinji N, Halterman D, Louws FJ. Genetic diversity and population structure of Alternaria species from tomato and potato in North Carolina and Wisconsin. Sci Rep 2021; 11:17024. [PMID: 34426589 PMCID: PMC8382843 DOI: 10.1038/s41598-021-95486-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/26/2021] [Indexed: 11/19/2022] Open
Abstract
Early blight (EB) caused by Alternaria linariae or Alternaria solani and leaf blight (LB) caused by A. alternata are economically important diseases of tomato and potato. Little is known about the genetic diversity and population structure of these pathogens in the United States. A total of 214 isolates of A. alternata (n = 61), A. linariae (n = 96), and A. solani (n = 57) were collected from tomato and potato in North Carolina and Wisconsin and grouped into populations based on geographic locations and tomato varieties. We exploited 220 single nucleotide polymorphisms derived from DNA sequences of 10 microsatellite loci to analyse the population genetic structure between species and between populations within species and infer the mode of reproduction. High genetic variation and genotypic diversity were observed in all the populations analysed. The null hypothesis of the clonality test based on the index of association \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( {\overline{r}_{d} } \right)$$\end{document}r¯d was rejected, and equal frequencies of mating types under random mating were detected in some studied populations of Alternaria spp., suggesting that recombination can play an important role in the evolution of these pathogens. Most genetic differences were found between species, and the results showed three distinct genetic clusters corresponding to the three Alternaria spp. We found no evidence for clustering of geographic location populations or tomato variety populations. Analyses of molecular variance revealed high (> 85%) genetic variation within individuals in a population, confirming a lack of population subdivision within species. Alternaria linariae populations harboured more multilocus genotypes (MLGs) than A. alternata and A. solani populations and shared the same MLG between populations within a species, which was suggestive of gene flow and population expansion. Although both A. linariae and A. solani can cause EB on tomatoes and potatoes, these two species are genetically differentiated. Our results provide new insights into the evolution and structure of Alternaria spp. and can lead to new directions in optimizing management strategies to mitigate the impact of these pathogens on tomato and potato production in North Carolina and Wisconsin.
Collapse
Affiliation(s)
- Tika B Adhikari
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Norman Muzhinji
- Department of Applied and Natural Sciences, Namibia University of Science and Technology, Private Bag 13388, Windhoek, Namibia
| | - Dennis Halterman
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Vegetable Crops Research Unit, Madison, WI, 53706, USA
| | - Frank J Louws
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA. .,Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
24
|
Gai Y, Ma H, Chen Y, Li L, Cao Y, Wang M, Sun X, Jiao C, Riely BK, Li H. Chromosome-Scale Genome Sequence of Alternaria alternata Causing Alternaria Brown Spot of Citrus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:726-732. [PMID: 33689393 DOI: 10.1094/mpmi-10-20-0278-sc] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Alternaria brown spot (ABS), caused by Alternaria alternata, is an economically important fungal disease of citrus worldwide. The ABS pathogen A. alternata tangerine pathotype can produce a host-specific ACT toxin, which is regulated by ACT toxin gene cluster located in the conditionally dispensable chromosome (CDC). Previously, we have assembled a draft genome of A. alternata tangerine pathotype strain Z7, which comprises 165 contigs. In this study, we report a chromosome-level genome assembly of A. alternata Z7 through the combination of Oxford Nanopore sequencing and Illumina sequencing technologies. The assembly of A. alternata Z7 had a total size of 34.28 Mb, with a GC content of 51.01% and contig N50 of 3.08 Mb. The genome is encompassed 12,067 protein-coding genes, 34 ribosomal RNAs, and 107 transfer RNAs. Interestingly, A. alternata Z7 is composed of 10 essential chromosomes and 2 CDCs, which is consistent with the experimental evidences of pulsed-field gel electrophoresis. To our best knowledge, this is the first chromosome-level genome assembly of A. alternata. In addition, a database for citrus-related Alternaria genomes has been established to provide public resources for the sequences, annotation and comparative genomics data of Alternaria spp. The improved genome sequence and annotation at the chromosome level is a significant step toward a better understanding of the pathogenicity of A. alternata. The database will be updated regularly whenever the genomes of newly isolated Alternaria spp. are available. The citrus-related Alternaria genomes database is open accessible through the Citrus Fungal Disease Database.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yunpeng Gai
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - Haijie Ma
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- School of Agriculture and Food Sciences, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yanan Chen
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lei Li
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yingzi Cao
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mingshuang Wang
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Xuepeng Sun
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, U.S.A
| | - Chen Jiao
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, U.S.A
| | - Brendan K Riely
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - Hongye Li
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
25
|
Feng Z, Hsiang T, Liang X, Zhang R, Sun G. Draft Genome Sequence of Cumin Blight Pathogen Alternaria burnsii. PLANT DISEASE 2021; 105:1165-1167. [PMID: 32990522 DOI: 10.1094/pdis-02-20-0224-a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The fungal genus Alternaria consists of highly diverse species. They can be isolated readily from soil, water, and many plants, and even from animals and humans. Alternaria burnsii is a small-spored species of section Alternaria. It has been reported as a pathogen, an endophyte, and a saprophyte, and can also be found in indoor air. It causes cumin blight, a destructive disease on cumin (Cuminum cyminum), and also causes other serious diseases, such as pumpkin seed rot, date palm leaf spot, wheat leaf spot, and gray spot of Notopterygium incisum. In this study, we sequenced and assembled the first genome of A. burnsii isolate CBS 107.38. The draft genome can be used as a reference for the further study of related pathogens and comparative genomics of Alternaria species.
Collapse
Affiliation(s)
- Zhonghong Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
26
|
Igbalajobi O, Gao J, Fischer R. The HOG Pathway Plays Different Roles in Conidia and Hyphae During Virulence of Alternaria alternata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1405-1410. [PMID: 33104446 DOI: 10.1094/mpmi-06-20-0165-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The black mold Alternaria alternata causes dramatic losses in agriculture due to postharvest colonization and mycotoxin formation and is a weak pathogen on living plants. Fungal signaling processes are crucial for successful colonization of a host plant. Because the mitogen-activated protein kinase HogA is important for the expression of stress-associated genes, we tested a ∆hogA-deletion strain for pathogenicity. When conidia were used as inoculum, the ∆hogA-deletion strain was largely impaired in colonizing tomato and apple. In comparison, hyphae as inoculum colonized the fruit very well. Hence, HogA appears to be important only in the initial stages of plant colonization. A similar difference between conidial inoculum and hyphal inoculum was observed on artificial medium in the presence of different stress agents. Whereas wild-type conidia adapted well to different stresses, the ∆hogA-deletion strain failed to grow under the same conditions. With hyphae as inoculum, the wild type and the ∆hogA-deletion strain grew in a very similar way. At the molecular level, we observed upregulation of several catalase (catA, -B, and -D) and superoxide dismutase (sodA, -B, and -E) genes in germlings but not in hyphae after exposure to 4 mM hydrogen peroxide. The upregulation required the high osmolarity glycerol (HOG) pathway. In contrast, in mycelia, catD, sodA, sodB, and sodE were upregulated upon stress in the absence of HogA. Several other stress-related genes behaved in a similar way.
Collapse
Affiliation(s)
- Olumuyiwa Igbalajobi
- Karlsruhe Institute of Technology (KIT)-South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4,D-76131 Karlsruhe, Germany
| | - Jia Gao
- Karlsruhe Institute of Technology (KIT)-South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4,D-76131 Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT)-South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4,D-76131 Karlsruhe, Germany
| |
Collapse
|
27
|
Giampetruzzi A, Baptista P, Morelli M, Cameirão C, Lino Neto T, Costa D, D’Attoma G, Abou Kubaa R, Altamura G, Saponari M, Pereira JA, Saldarelli P. Differences in the Endophytic Microbiome of Olive Cultivars Infected by Xylella fastidiosa across Seasons. Pathogens 2020; 9:pathogens9090723. [PMID: 32887278 PMCID: PMC7558191 DOI: 10.3390/pathogens9090723] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
The dynamics of Xylella fastidiosa infections in the context of the endophytic microbiome was studied in field-grown plants of the susceptible and resistant olive cultivars Kalamata and FS17. Whole metagenome shotgun sequencing (WMSS) coupled with 16S/ITS rRNA gene sequencing was carried out on the same trees at two different stages of the infections: In Spring 2017 when plants were almost symptomless and in Autumn 2018 when the trees of the susceptible cultivar clearly showed desiccations. The progression of the infections detected in both cultivars clearly unraveled that Xylella tends to occupy the whole ecological niche and suppresses the diversity of the endophytic microbiome. However, this trend was mitigated in the resistant cultivar FS17, harboring lower population sizes and therefore lower Xylella average abundance ratio over total bacteria, and a higher α-diversity. Host cultivar had a negligible effect on the community composition and no clear associations of a single taxon or microbial consortia with the resistance cultivar were found with both sequencing approaches, suggesting that the mechanisms of resistance likely reside on factors that are independent of the microbiome structure. Overall, Proteobacteria, Actinobacteria, Firmicutes, and Bacteriodetes dominated the bacterial microbiome while Ascomycota and Basidiomycota those of Fungi.
Collapse
Affiliation(s)
- Annalisa Giampetruzzi
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari, 70126 Bari, Italy;
| | - Paula Baptista
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (P.B.); (C.C.); (J.A.P.)
| | - Massimiliano Morelli
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - Cristina Cameirão
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (P.B.); (C.C.); (J.A.P.)
| | - Teresa Lino Neto
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (T.L.N.); (D.C.)
| | - Daniela Costa
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (T.L.N.); (D.C.)
| | - Giusy D’Attoma
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - Raied Abou Kubaa
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - Giuseppe Altamura
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - Maria Saponari
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (P.B.); (C.C.); (J.A.P.)
| | - Pasquale Saldarelli
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
- Correspondence: ; Tel.: +39-0805443065
| |
Collapse
|
28
|
Zhang Y, Tian P, Duan G, Gao F, Schnabel G, Zhan J, Chen F. Histone H3 gene is not a suitable marker to distinguish Alternaria tenuissima from A. alternata affecting potato. PLoS One 2020; 15:e0231961. [PMID: 32324785 PMCID: PMC7179870 DOI: 10.1371/journal.pone.0231961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/03/2020] [Indexed: 11/21/2022] Open
Abstract
Potato Alternaria leaf blight is one of the economically most important disease in potato production worldwide. A recent study reported a quick method to distinguish main Alternaria pathogens A. tenuissima, A. alternata, and A. solani using partial histone H3 gene sequences. Using this method, our collection of 79 isolates from 8 provinces in China were presumably separated into A. tenussima and A. alternata. But in depth morphological and genetic analysis casted doubt on this identification. Culture morphologies of six presumed A. alternata isolates (PresA_alt) and six presumed A. tenuissima isolates (PresA_ten) were not significantly different. PresA_ten isolates also produced conidia in branched chains which supposed to be A. aternata. Phylogenetic analyses were conducted using internal transcribed spacer region (ITS) and five genes commonly used for species identification including glyceraldehyde-3-phosphate dehydrogenase (GPDH), translation elongation factor 1-alpha (TEF1), β-tubulin, plasma membrane ATPase (ATPase), and calmodulin genes. The results showed that GPDH and TEF1 sequences of PresA_alt and PresA_ten isolates were identical. The 12 isolates did not cluster by presumed species neither by individual or concatenated sequence comparisons. The phylogeny–trait association analysis confirmed that the two group isolates were undistinguishable by those molecular markers. Analysis of histone H3 gene sequences revealed variable intron sequences between PresA_ten and PresA_alt isolates, but the amino acid sequences were identical. Our results indicate that the previously published method to distinguish Alternaria species based on histone H3 gene sequence variation is inaccurate and that the prevalence of A. tenuissima isolates in China was likely overestimated.
Collapse
Affiliation(s)
- Yue Zhang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peiyu Tian
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guohua Duan
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fangluan Gao
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States of America
| | - Jiasui Zhan
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (FC); (JZ)
| | - Fengping Chen
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (FC); (JZ)
| |
Collapse
|
29
|
Draft Genome Sequences of Alternaria Strains Isolated from Grapes and Apples. Microbiol Resour Announc 2020; 9:9/14/e01491-19. [PMID: 32241865 PMCID: PMC7118191 DOI: 10.1128/mra.01491-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the draft genome sequences of Alternaria alternata, isolated from seedless grapes, and Alternaria arborescens and Alternaria atra, isolated from Red Delicious apples, all from the Washington, DC, area.
Collapse
|
30
|
Armitage AD, Cockerton HM, Sreenivasaprasad S, Woodhall J, Lane CR, Harrison RJ, Clarkson JP. Genomics Evolutionary History and Diagnostics of the Alternaria alternata Species Group Including Apple and Asian Pear Pathotypes. Front Microbiol 2020; 10:3124. [PMID: 32038562 PMCID: PMC6989435 DOI: 10.3389/fmicb.2019.03124] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 12/24/2019] [Indexed: 02/04/2023] Open
Abstract
The Alternaria section alternaria (Alternaria alternata species group) represents a diverse group of saprotroph, human allergens, and plant pathogens. Alternaria taxonomy has benefited from recent phylogenetic revision but the basis of differentiation between major phylogenetic clades within the group is not yet understood. Furthermore, genomic resources have been limited for the study of host-specific pathotypes. We report near complete genomes of the apple and Asian pear pathotypes as well as draft assemblies for a further 10 isolates representing Alternaria tenuissima and Alternaria arborescens lineages. These assemblies provide the first insights into differentiation of these taxa as well as allowing the description of effector and non-effector profiles of apple and pear conditionally dispensable chromosomes (CDCs). We define the phylogenetic relationship between the isolates sequenced in this study and a further 23 Alternaria spp. based on available genomes. We determine which of these genomes represent MAT1-1-1 or MAT1-2-1 idiomorphs and designate host-specific pathotypes. We show for the first time that the apple pathotype is polyphyletic, present in both the A. arborescens and A. tenuissima lineages. Furthermore, we profile a wider set of 89 isolates for both mating type idiomorphs and toxin gene markers. Mating-type distribution indicated that gene flow has occurred since the formation of A. tenuissima and A. arborescens lineages. We also developed primers designed to AMT14, a gene from the apple pathotype toxin gene cluster with homologs in all tested pathotypes. These primers allow identification and differentiation of apple, pear, and strawberry pathotypes, providing new tools for pathogen diagnostics.
Collapse
Affiliation(s)
- Andrew D. Armitage
- NIAB EMR, East Malling, United Kingdom
- Natural Resources Institute, University of Greenwich, Chatham Maritime, London, United Kingdom
| | | | | | - James Woodhall
- Parma Research and Extension Center, University of Idaho, Parma, ID, United States
| | | | | | - John P. Clarkson
- Warwick Crop Centre, University of Warwick, Warwick, United Kingdom
| |
Collapse
|
31
|
Yang X, Qi YJ, Al-Attala MN, Gao ZH, Yi XK, Zhang AF, Zang HY, Gu CY, Gao TC, Chen Y. Rapid Detection of Alternaria Species Involved in Pear Black Spot Using Loop-Mediated Isothermal Amplification. PLANT DISEASE 2019; 103:3002-3008. [PMID: 31573432 DOI: 10.1094/pdis-01-19-0149-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alternaria species are the most important fungal pathogens that attack various crops as well as fruit trees such as pear and cause black spot disease. Here, a loop-mediated isothermal amplification (LAMP) assay is developed for the detection of Alternaria species. A. alternata cytochrome b (cyt-b) gene was used to design two pairs of primers and amplified a 229-bp segment of Aacyt-b gene. The results showed that LAMP assay is faster and simpler than polymerase chain reaction (PCR). LAMP assay is highly sensitive method for the detection of about 1 pg of genomic DNA of A. alternata by using optimized concentration of MgCl2 (4 mM) in final LAMP reaction. In contrast, the limit of detection was 1 ng of target DNA via conventional PCR. Among the genomic DNA of 46 fungal species, only the tubes containing DNA of Alternaria spp. except A. porri, A. solani, and A. infectoria changed color from orange to yellowish green with SYBR Green I including the main pathogens of pear black spot. The yellowish green color was indicative of DNA amplification. Moreover, LAMP assay was used for testing infected tissues among 22 healthy and diseased pear tissues; the orange color changed to yellowish green for infected tissues only. Altogether, we conclude that cyt-b gene can be used for the detection of Alternaria spp. via LAMP assay, which is involved in pear black spot disease.
Collapse
Affiliation(s)
- Xue Yang
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products, Hefei, Ministry of Agriculture, China
| | - Yong-Jie Qi
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province, China
| | - Mohamed N Al-Attala
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Plant Pathology Unit, Plant Protection Department, Desert Research Center, Cairo 11753, Egypt
| | - Zheng-Hui Gao
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province, China
| | - Xing-Kai Yi
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province, China
| | - Ai-Fang Zhang
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products, Hefei, Ministry of Agriculture, China
| | - Hao-Yu Zang
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products, Hefei, Ministry of Agriculture, China
| | - Chun-Yan Gu
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products, Hefei, Ministry of Agriculture, China
| | - Tong-Chun Gao
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products, Hefei, Ministry of Agriculture, China
| | - Yu Chen
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products, Hefei, Ministry of Agriculture, China
| |
Collapse
|
32
|
Ushijima K, Yamamoto M. A Sequence Resource of Autosomes and Additional Chromosomes in the Peach Pathotype of Alternaria alternata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1273-1276. [PMID: 31125281 DOI: 10.1094/mpmi-04-19-0093-a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Alternaria alternata is a generally saprophytic fungus. Its genome consists of 10 autosomes, while some strains have one or two additional chromosomes, called a conditionally dispensable chromosome (CDC). A CDC is not required for reproduction but confers host-specific pathogenicity. We sequenced the genome of the peach pathotype of A. alternata using Nanopore and assembled it into 20 sequences. The 10 largest sequences corresponded to 10 gapless sequences of A. solani autosomes, and 1 sequence was a mitochondrial genome. Nine other sequences may be derived from CDCs because of lack of similarity with autosomes of other Alternaria spp. The sequence information could provide novel insights into genomes of Alternaria spp. and on the biosynthesis of a novel host-specific toxin in the peach pathotype of A. alternata.
Collapse
Affiliation(s)
- Koichiro Ushijima
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Mikihiro Yamamoto
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
33
|
Wang M, Fu H, Shen X, Ruan R, Rokas A, Li H. Genomic features and evolution of the conditionally dispensable chromosome in the tangerine pathotype of Alternaria alternata. MOLECULAR PLANT PATHOLOGY 2019; 20:1425-1438. [PMID: 31297970 PMCID: PMC6792136 DOI: 10.1111/mpp.12848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The tangerine pathotype of the ascomycete fungus Alternaria alternata is the causal agent of citrus brown spot, which can result in significant losses of both yield and marketability for tangerines worldwide. A conditionally dispensable chromosome (CDC), which harbours the host-selective ACT toxin gene cluster, is required for tangerine pathogenicity of A. alternata. To understand the genetic makeup and evolution of the tangerine pathotype CDC, we isolated and sequenced the CDCs of the A. alternata Z7 strain and analysed the function and evolution of their genes. The A. alternata Z7 strain has two CDCs (~1.1 and ~0.8 Mb, respectively), and the longer Z7 CDC contains all but one contig of the shorter one. Z7 CDCs contain 254 predicted protein-coding genes, which are enriched in functional categories associated with 'metabolic process' (55 genes, P = 0.037). Relatively few of the CDC genes can be classified as carbohydrate-active enzymes (CAZymes) (4) and transporters (19) and none as kinases. Evolutionary analysis of the 254 CDC proteins showed that their evolutionary conservation tends to be restricted within the genus Alternaria and that the CDC genes evolve faster than genes in the essential chromosomes, likely due to fewer selective constraints. Interestingly, phylogenetic analysis suggested that four of the 25 genes responsible for the ACT toxin production were likely transferred from Colletotrichum (Sordariomycetes). Functional experiments showed that two of them are essential for the virulence of the tangerine pathotype of A. alternata. These results provide new insights into the function and evolution of CDC genes in Alternaria.
Collapse
Affiliation(s)
- Mingshuang Wang
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of BiotechnologyZhejiang UniversityHangzhou310058China
- Department of Biological SciencesVanderbilt UniversityNashvilleTN37235USA
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhou310036China
| | - Huilan Fu
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of BiotechnologyZhejiang UniversityHangzhou310058China
| | - Xing‐Xing Shen
- Department of Biological SciencesVanderbilt UniversityNashvilleTN37235USA
| | - Ruoxin Ruan
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of BiotechnologyZhejiang UniversityHangzhou310058China
- Hangzhou Academy of Agricultural SciencesHangzhou310024China
| | - Antonis Rokas
- Department of Biological SciencesVanderbilt UniversityNashvilleTN37235USA
| | - Hongye Li
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of BiotechnologyZhejiang UniversityHangzhou310058China
| |
Collapse
|
34
|
N'Guyen GQ, Raulo R, Marchi M, Agustí-Brisach C, Iacomi B, Pelletier S, Renou JP, Bataillé-Simoneau N, Campion C, Bastide F, Hamon B, Mouchès C, Porcheron B, Lemoine R, Kwasiborski A, Simoneau P, Guillemette T. Responses to Hydric Stress in the Seed-Borne Necrotrophic Fungus Alternaria brassicicola. Front Microbiol 2019; 10:1969. [PMID: 31543870 PMCID: PMC6730492 DOI: 10.3389/fmicb.2019.01969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Alternaria brassicicola is a necrotrophic fungus causing black spot disease and is an economically important seed-borne pathogen of cultivated brassicas. Seed transmission is a crucial component of its parasitic cycle as it promotes long-term survival and dispersal. Recent studies, conducted with the Arabidopsis thaliana/A. brassicicola pathosystem, showed that the level of susceptibility of the fungus to water stress strongly influenced its seed transmission ability. In this study, we gained further insights into the mechanisms involved in the seed infection process by analyzing the transcriptomic and metabolomic responses of germinated spores of A. brassicicola exposed to water stress. Then, the repertoire of putative hydrophilins, a group of proteins that are assumed to be involved in cellular dehydration tolerance, was established in A. brassicicola based on the expression data and additional structural and biochemical criteria. Phenotyping of single deletion mutants deficient for fungal hydrophilin-like proteins showed that they were affected in their transmission to A. thaliana seeds, although their aggressiveness on host vegetative tissues remained intact.
Collapse
Affiliation(s)
- Guillaume Quang N'Guyen
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Roxane Raulo
- Université de Lille, INRA, ISA, Université d'Artois, Université du Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, Lille, France
| | - Muriel Marchi
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | | | - Beatrice Iacomi
- Department of Plant Sciences, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Sandra Pelletier
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Jean-Pierre Renou
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Nelly Bataillé-Simoneau
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Claire Campion
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Franck Bastide
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Bruno Hamon
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Chloé Mouchès
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Benoit Porcheron
- Equipe "Sucres & Echanges Végétaux-Environnement," UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Remi Lemoine
- Equipe "Sucres & Echanges Végétaux-Environnement," UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Anthony Kwasiborski
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Philippe Simoneau
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Thomas Guillemette
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| |
Collapse
|
35
|
Rajarammohan S, Pental D, Kaur J. Near-Complete Genome Assembly of Alternaria brassicae-A Necrotrophic Pathogen of Brassica Crops. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:928-930. [PMID: 30920345 DOI: 10.1094/mpmi-03-19-0084-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Alternaria brassicae, a necrotrophic fungal pathogen, causes Alternaria blight, an important disease of brassica crops. Although many Alternaria spp. have been sequenced, no genome information is available for A. brassicae, a monotypic lineage within the Alternaria genus. A highly contiguous genome assembly of A. brassicae has been generated using Nanopore MinION sequencing with an N50 of 2.98 Mb, yielding nine full chromosome-level sequences. This study adds to the current genomic resources available for the genus Alternaria and will provide opportunities for further analyses to unravel the mechanisms underlying pathogenicity of this important necrotrophic pathogen.
Collapse
Affiliation(s)
| | - Deepak Pental
- 2Centre for Genetic Manipulation of Crop Plants, University of Delhi - South Campus, Delhi, India
| | - Jagreet Kaur
- 1Department of Genetics, University of Delhi - South Campus, Delhi, India
| |
Collapse
|
36
|
Wenderoth M, Garganese F, Schmidt‐Heydt M, Soukup ST, Ippolito A, Sanzani SM, Fischer R. Alternariol as virulence and colonization factor of
Alternaria alternata
during plant infection. Mol Microbiol 2019; 112:131-146. [DOI: 10.1111/mmi.14258] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Maximilian Wenderoth
- Department of Microbiology Karlsruhe Institute of Technology (KIT) – South Campus Fritz‐Haber‐Weg 4D‐76131 Karlsruhe Germany
| | - Francesca Garganese
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti Università degli Studi di Bari Aldo Moro Via Amendola 165/A70126 Bari Italy
| | - Markus Schmidt‐Heydt
- Department of Safety and Quality of Fruit and Vegetables Max Rubner‐Institut Haid‐und‐Neu‐Str. 976131 Karlsruhe Germany
| | - Sebastian Tobias Soukup
- Department of Safety and Quality of Fruit and Vegetables Max Rubner‐Institut Haid‐und‐Neu‐Str. 976131 Karlsruhe Germany
| | - Antonio Ippolito
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti Università degli Studi di Bari Aldo Moro Via Amendola 165/A70126 Bari Italy
| | - Simona Marianna Sanzani
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti Università degli Studi di Bari Aldo Moro Via Amendola 165/A70126 Bari Italy
| | - Reinhard Fischer
- Department of Microbiology Karlsruhe Institute of Technology (KIT) – South Campus Fritz‐Haber‐Weg 4D‐76131 Karlsruhe Germany
| |
Collapse
|
37
|
Gomes T, Pereira JA, Lino-Neto T, Bennett AE, Baptista P. Bacterial disease induced changes in fungal communities of olive tree twigs depend on host genotype. Sci Rep 2019; 9:5882. [PMID: 30971758 PMCID: PMC6458152 DOI: 10.1038/s41598-019-42391-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
In nature, pathogens live and interact with other microorganisms on plant tissues. Yet, the research area exploring interactions between bacteria-fungi and microbiota-plants, within the context of a pathobiome, is still scarce. In this study, the impact of olive knot (OK) disease caused by the bacteria Pseudomonas savastanoi pv. savastanoi (Psv) on the epiphytic and endophytic fungal communities of olive tree twigs from three different cultivars, was investigated in field conditions. The ITS-DNA sequencing of cultivable fungi, showed that OK disease disturbs the resident fungal communities, which may reflect changes in the habitat caused by Psv. In particular, a reduction on epiphyte abundance and diversity, and changes on their composition were observed. Compared to epiphytes, endophytes were less sensitive to OK, but their abundance, in particular of potential pathogens, was increased in plants with OK disease. Host genotype, at cultivar level, contributed to plant fungal assembly particularly upon disease establishment. Therefore, besides fungi - Psv interactions, the combination of cultivar - Psv also appeared to be critical for the composition of fungal communities in olive knots. Specific fungal OTUs were associated to the presence and absence of disease, and their role in the promotion or suppression of OK disease should be studied in the future.
Collapse
Affiliation(s)
- Teresa Gomes
- CIMO/Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.,Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - José Alberto Pereira
- CIMO/Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Teresa Lino-Neto
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Alison E Bennett
- Dept of Evolution, Ecology & Organismal Biology, The Ohio State University, 318 W. 12th Ave., 300 Aronoff Laboratory, Columbus, OH, 43210, USA
| | - Paula Baptista
- CIMO/Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| |
Collapse
|
38
|
Choudhary P, Chakdar H, Singh A, Kumar S, Singh SK, Aarthy M, Goswami SK, Srivastava AK, Saxena AK. Computational identification and antifungal bioassay reveals phytosterols as potential inhibitor of Alternaria arborescens. J Biomol Struct Dyn 2019; 38:1143-1157. [PMID: 30898083 DOI: 10.1080/07391102.2019.1597767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Alternaria arborescens is a major pathogen for crops like tomato, tangerine and so on and its control is mostly dependent on the application of chemical agents. Plants as the sources of natural products are very attractive option for developing eco-friendly and natural antifungal agents. In this study, we modeled three-dimensional structure of chorismate synthase (CS) enzyme from A. arborescens. Docking studies of phytosterols, namely, γ-sitosterol and β-sitosterol, with CS showed them to be potential inhibitor of CS. To explore the stability and conformational flexibility of all the AaCS complex systems, molecular dynamics simulations were performed. None of the putative inhibitors as well as β- and γ-sitosterol showed interaction with the FMNH2 binding pocket of the tomato CS (major host of A. arborescens) indicating their suitability as antifungal compounds inhibiting the shikimate pathway without causing any harm to the host. An in vivo antifungal bioassay showed a significant reduction in fungal growth in the presence of β-sitosterol (500 ppm) which resulted in ∼23% and ∼17% reduction in fungal fresh and dry weight, respectively, at 8 days after inoculation. This study provides experimental evidence establishing natural sterols like β-sitosterol can be useful in curbing A. arborescens damage in an eco-friendly manner.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prassan Choudhary
- Microbial Technology Unit, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Hillol Chakdar
- Microbial Technology Unit, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Arjun Singh
- Microbial Technology Unit, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Sunil Kumar
- Microbial Technology Unit, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Sanjeev Kumar Singh
- Department of Bioinformatics, Algappa University, Karaikudi, Tamil Nadu, India
| | - Murali Aarthy
- Department of Bioinformatics, Algappa University, Karaikudi, Tamil Nadu, India
| | - Sanjay Kumar Goswami
- Microbial Technology Unit, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Alok Kumar Srivastava
- Microbial Technology Unit, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Anil Kumar Saxena
- Microbial Technology Unit, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| |
Collapse
|
39
|
Somma S, Amatulli MT, Masiello M, Moretti A, Logrieco AF. Alternaria species associated to wheat black point identified through a multilocus sequence approach. Int J Food Microbiol 2019; 293:34-43. [PMID: 30634069 DOI: 10.1016/j.ijfoodmicro.2019.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022]
Abstract
Black point is one of the most important wheat disease and its incidence is increasing worldwide due to climate change too. Among the fungal genera that can cause black point, Alternaria is one of the predominant genus, often associated with mycotoxin contamination. The correct identification is the baseline for prevention and control of the disease. Taxonomy of the genus Alternaria is not completely clear yet, since its species can be differentiated for few morphological traits and, in some cases, also molecular phylogeny is not very effective in establishing species boundaries. In this study, one-hundred sixty-four strains, isolated from wheat kernels affected by black point sampled worldwide, were analyzed in order to assess their identity. Sequences of elongation factor, β-tubulin, glyceraldehyde-3-phosphate dehydrogenase and allergen alt-a1 genes were used to identify the variability of this population and their phylogenetic relationships. Isolates were grouped in two main clades: the Alternaria section, including A. alternata, A. tenuissima and A. arborescens species, and the Infectoriae section, that includes the two species A. infectoria and A. triticina. Comparison of isolates according with their area of isolation did not show a correlation between phylogeny and geographic origin. Indeed, the isolates grouped on the base of only their phylogenetic relationship. Due to the data arisen by our study, we strongly recommend a multilocus sequence approach to define Alternaria species, based on common genes and procedures to be unanimously shared by scientific community dealing with Alternaria genus. Moreover, we suggest that A. alternata, A. tenuissima, A. turkisafria and A. limoniasperae species would be merged in the defined species A. alternata. Finally we recommend to consider a taxonomic re-evaluation of the Infectoriae section that, for the morphology, sexuality, genetic and mycotoxin profile of the species included, could be defined as different fungal genus from Alternaria.
Collapse
Affiliation(s)
- Stefania Somma
- Institute of Sciences of Food Production (ISPA-CNR), via Amendola 122/O, 70126 Bari, Italy
| | - Maria Teresa Amatulli
- Institute of Sciences of Food Production (ISPA-CNR), via Amendola 122/O, 70126 Bari, Italy
| | - Mario Masiello
- Institute of Sciences of Food Production (ISPA-CNR), via Amendola 122/O, 70126 Bari, Italy
| | - Antonio Moretti
- Institute of Sciences of Food Production (ISPA-CNR), via Amendola 122/O, 70126 Bari, Italy.
| | | |
Collapse
|
40
|
Zhang D, He JY, Haddadi P, Zhu JH, Yang ZH, Ma L. Genome sequence of the potato pathogenic fungus Alternaria solani HWC-168 reveals clues for its conidiation and virulence. BMC Microbiol 2018; 18:176. [PMID: 30400851 PMCID: PMC6219093 DOI: 10.1186/s12866-018-1324-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/22/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Alternaria solani is a known air-born deuteromycete fungus with a polycyclic life cycle and is the causal agent of early blight that causes significant yield losses of potato worldwide. However, the molecular mechanisms underlying the conidiation and pathogenicity remain largely unknown. RESULTS We produced a high-quality genome assembly of A. solani HWC-168 that was isolated from a major potato-producing region of Northern China, which facilitated a comprehensive gene annotation, the accurate prediction of genes encoding secreted proteins and identification of conidiation-related genes. The assembled genome of A. solani HWC-168 has a genome size 32.8 Mb and encodes 10,358 predicted genes that are highly similar with related Alternaria species including Alternaria arborescens and Alternaria brassicicola. We identified conidiation-related genes in the genome of A. solani HWC-168 by searching for sporulation-related homologues identified from Aspergillus nidulans. A total of 975 secreted protein-encoding genes, which might act as virulence factors, were identified in the genome of A. solani HWC-168. The predicted secretome of A. solani HWC-168 possesses 261 carbohydrate-active enzymes (CAZy), 119 proteins containing RxLx[EDQ] motif and 27 secreted proteins unique to A. solani. CONCLUSIONS Our findings will facilitate the identification of conidiation- and virulence-related genes in the genome of A. solani. This will permit new insights into understanding the molecular mechanisms underlying the A. solani-potato pathosystem and will add value to the global fungal genome database.
Collapse
Affiliation(s)
- Dai Zhang
- Center of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding, 071001 China
| | - Jia-Yu He
- Center of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding, 071001 China
| | - Parham Haddadi
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N0X2 Canada
| | - Jie-Hua Zhu
- Center of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding, 071001 China
| | - Zhi-Hui Yang
- Center of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding, 071001 China
| | - Lisong Ma
- Center of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding, 071001 China
| |
Collapse
|
41
|
Ferrándiz-Pulido C, Martin-Gomez MT, Repiso T, Juárez-Dobjanschi C, Ferrer B, López-Lerma I, Aparicio G, González-Cruz C, Moreso F, Roman A, García-Patos V. Cutaneous infections by dematiaceous opportunistic fungi: Diagnosis and management in 11 solid organ transplant recipients. Mycoses 2018; 62:121-127. [DOI: 10.1111/myc.12853] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Trinidad Repiso
- Department of Dermatology; Hospital Universitari Vall d'Hebron; Barcelona Spain
| | | | - Berta Ferrer
- Department of Pathology; Hospital Universitari Vall d'Hebron; Barcelona Spain
| | - Ingrid López-Lerma
- Department of Dermatology; Hospital Universitari Vall d'Hebron; Barcelona Spain
| | - Gloria Aparicio
- Department of Dermatology; Hospital Universitari Vall d'Hebron; Barcelona Spain
| | | | - Francesc Moreso
- Department of Nephology; Hospital Universitari Vall d'Hebron; Barcelona Spain
| | - Antonio Roman
- Department of Neumology; Hospital Universitari Vall d'Hebron; Barcelona Spain
| | | |
Collapse
|
42
|
Schiro G, Müller T, Verch G, Sommerfeld T, Mauch T, Koch M, Grimm V, Müller MEH. The distribution of mycotoxins in a heterogeneous wheat field in relation to microclimate, fungal and bacterial abundance. J Appl Microbiol 2018; 126:177-190. [PMID: 30216614 DOI: 10.1111/jam.14104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/25/2018] [Accepted: 08/29/2018] [Indexed: 12/24/2022]
Abstract
AIM To observe the variation in accumulation of Fusarium and Alternaria mycotoxins across a topographically heterogeneous field and tested biotic (fungal and bacterial abundance) and abiotic (microclimate) parameters as explanatory variables. METHODS AND RESULTS We selected a wheat field characterized by a diversified topography, to be responsible for variations in productivity and in canopy-driven microclimate. Fusarium and Alternaria mycotoxins where quantified in wheat ears at three sampling dates between flowering and harvest at 40 points. Tenuazonic acid (TeA), alternariol (AOH), alternariol monomethyl ether (AME), tentoxin (TEN), deoxynivalenol (DON), zearalenone (ZEN) and deoxynivalenol-3-Glucoside (DON.3G) were quantified. In canopy temperature, air and soil humidity were recorded for each point with data-loggers. Fusarium spp. as trichothecene producers, Alternaria spp. and fungal abundances were assessed using qPCR. Pseudomonas fluorescens bacteria were quantified with a culture based method. We only found DON, DON.3G, TeA and TEN to be ubiquitous across the whole field, while AME, AOH and ZEN were only occasionally detected. Fusarium was more abundant in spots with high soil humidity, while Alternaria in warmer and drier spots. Mycotoxins correlated differently to the observed explanatory variables: positive correlations between DON accumulation, tri 5 gene and Fusarium abundance were clearly detected. The correlations among the others observed variables, such as microclimatic conditions, varied among the sampling dates. The results of statistical model identification do not exclude that species coexistence could influence mycotoxin production. CONCLUSIONS Fusarium and Alternaria mycotoxins accumulation varies heavily across the field and the sampling dates, providing the realism of landscape-scale studies. Mycotoxin concentrations appear to be partially explained by biotic and abiotic variables. SIGNIFICANCE AND IMPACT OF THE STUDY We provide a useful experimental design and useful data for understanding the dynamics of mycotoxin biosynthesis in wheat.
Collapse
Affiliation(s)
- G Schiro
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - T Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - G Verch
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - T Sommerfeld
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | - T Mauch
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | - M Koch
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | - V Grimm
- Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - M E H Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
43
|
Nowrousian M. Genomics and transcriptomics to study fruiting body development: An update. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
44
|
Anand G, Kapoor R. Population structure and virulence analysis of Alternaria carthami isolates of India using ISSR and SSR markers. World J Microbiol Biotechnol 2018; 34:140. [PMID: 30171375 DOI: 10.1007/s11274-018-2524-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/24/2018] [Indexed: 11/24/2022]
Abstract
Alternaria leaf spot caused by Alternaria carthami is one of the most devastating diseases of safflower. Diversity among 95 isolates of A. carthami was determined using virulence assays, enzyme assays, dominant (ISSR) and co-dominant (SSR) markers. Collections and isolations were made from three major safflower producing states of India. The virulence assays categorised the population into four groups based on level of virulence. Estimation of activities of cell wall degrading enzymes (CWDE) yielded concurrent results to virulence assays with maximum CWDE activities in most virulent group. Eighteen ISSR primers were used and 23 polymorphic microsatellite markers were developed to assess the genetic diversity and determine the population structure of A. carthami. Analysis of ISSR profiles revealed high genetic diversity (Nei's Genetic diversity index; h = 0.36). Microsatellite markers produced a total of 56 alleles with an average of 2.43 alleles per microsatellite marker and Nei's genetic diversity index as h = 0.43. Unweighted Neighbor-joining and population structure analysis using both the marker systems differently arranged the isolates into three clusters. Distance analysis of the marker profiles provided no evidence for geographical clustering of isolates, indicating that isolates are randomly spread across India, signifying high potential of the fungus to adapt to diverse regions. Microsatellite markers clustered the isolates in consonance to the virulence groups in the dendrogram. This implies that the fungus has a high potential to adapt to resistant cultivars or fungicides. The information can aid in the breeding and deployment of A. carthami resistant varieties, and in early blight disease management in all safflower growing regions of the world.
Collapse
Affiliation(s)
- Garima Anand
- Department of Botany, University of Delhi, New Delhi, 110007, India
| | - Rupam Kapoor
- Department of Botany, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
45
|
Wolters PJ, Faino L, van den Bosch TBM, Evenhuis B, Visser RGF, Seidl MF, Vleeshouwers VGAA. Gapless Genome Assembly of the Potato and Tomato Early Blight Pathogen Alternaria solani. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:692-694. [PMID: 29432053 DOI: 10.1094/mpmi-12-17-0309-a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Alternaria genus consists of saprophytic fungi as well as plant-pathogenic species that have significant economic impact. To date, the genomes of multiple Alternaria species have been sequenced. These studies have yielded valuable data for molecular studies on Alternaria fungi. However, most of the current Alternaria genome assemblies are highly fragmented, thereby hampering the identification of genes that are involved in causing disease. Here, we report a gapless genome assembly of A. solani, the causal agent of early blight in tomato and potato. The genome assembly is a significant step toward a better understanding of pathogenicity of A. solani.
Collapse
Affiliation(s)
- Pieter J Wolters
- 1 Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Luigi Faino
- 2 Laboratory of Phytopathology, Wageningen University and Research
| | | | - Bert Evenhuis
- 4 Applied Arable and Vegetable Research, Wageningen University and Research, Edelhertweg 1, 8219 PH, Lelystad, The Netherlands
| | - Richard G F Visser
- 1 Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Michael F Seidl
- 2 Laboratory of Phytopathology, Wageningen University and Research
| | - Vivianne G A A Vleeshouwers
- 1 Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
46
|
Schiro G, Verch G, Grimm V, Müller MEH. Alternaria and Fusarium Fungi: Differences in Distribution and Spore Deposition in a Topographically Heterogeneous Wheat Field. J Fungi (Basel) 2018; 4:E63. [PMID: 29795010 PMCID: PMC6023320 DOI: 10.3390/jof4020063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/26/2018] [Accepted: 05/18/2018] [Indexed: 12/16/2022] Open
Abstract
Fusarium spp. and Alternaria spp., two genera of filamentous fungi, are common colonizers of the wheat phyllosphere. Both can be pathogenic and produce mycotoxins that are harmful to consumers. Their in-field infection dynamics have been a focus for the development of new control strategies. We analysed the abundance on plant ears and spore deposition patterns of Fusarium spp. and Alternaria spp. in a topographically heterogeneous field. Abundances were assessed genetically, using qPCR-based techniques, and passive spore traps were installed for quantifying the spore deposition at different plant heights. Data loggers were placed to measure the differences in microclimate across the field. Results indicate different distribution and spore deposition patterns for the two fungi. Fusarium spp. spore and genetic abundances were higher in spots with a more humid and colder under-canopy microclimate. Alternaria spp. showed the opposite trend for genetic abundance, while its spore deposition was not correlated to any of the microclimatic conditions and was more uniform across the field. Our study extends the knowledge on the dispersal and in-field infection dynamics of Fusarium spp. and Alternaria spp., important for a better understanding of the epidemiology of these wheat pathogens. It also illustrates that topographically heterogeneous fields are a suitable environment for studying the ecology of phyllosphere-colonizing fungi.
Collapse
Affiliation(s)
- Gabriele Schiro
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany.
| | - Gernot Verch
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany.
| | - Volker Grimm
- Department Ecological Modelling, Helmholtz Centre for Environmental Research (UFZ), Permoserstr. 15, D-04318 Leipzig, Germany.
| | - Marina E H Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 34, 14195 Berlin, Germany.
| |
Collapse
|
47
|
García-Calvo L, Ullán RV, Fernández-Aguado M, García-Lino AM, Balaña-Fouce R, Barreiro C. Secreted protein extract analyses present the plant pathogen Alternaria alternata as a suitable industrial enzyme toolbox. J Proteomics 2018; 177:48-64. [PMID: 29438850 DOI: 10.1016/j.jprot.2018.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 01/08/2023]
Abstract
Lignocellulosic plant biomass is the most abundant carbon source in the planet, which makes it a potential substrate for biorefinery. It consists of polysaccharides and other molecules with applications in pharmaceutical, food and feed, cosmetics, paper and textile industries. The exploitation of these resources requires the hydrolysis of the plant cell wall, which is a complex process. Aiming to discover novel fungal natural isolates with lignocellulolytic capacities, a screening for feruloyl esterase activity was performed in samples taken from different metal surfaces. An extracellular enzyme extract from the most promising candidate, the natural isolate Alternaria alternata PDA1, was analyzed. The feruloyl esterase activity of the enzyme extract was characterized, determining the pH and temperature optima (pH 5.0 and 55-60 °C, respectively), thermal stability and kinetic parameters, among others. Proteomic analyses derived from two-dimensional gels allowed the identification and classification of 97 protein spots from the extracellular proteome. Most of the identified proteins belonged to the carbohydrates metabolism group, particularly plant cell wall degradation. Enzymatic activities of the identified proteins (β-glucosidase, cellobiohydrolase, endoglucanase, β-xylosidase and xylanase) of the extract were also measured. These findings confirm A. alternata PDA1 as a promising lignocellulolytic enzyme producer. SIGNIFICANCE Although plant biomass is an abundant material that can be potentially utilized by several industries, the effective hydrolysis of the recalcitrant plant cell wall is not a straightforward process. As this hydrolysis occurs in nature relying almost solely on microbial enzymatic systems, it is reasonable to infer that further studies on lignocellulolytic enzymes will discover new sustainable industrial solutions. The results included in this paper provide a promising fungal candidate for biotechnological processes to obtain added value from plant byproducts and analogous substrates. Moreover, the proteomic analysis of the secretome of a natural isolate of Alternaria sp. grown in the presence of one of the most used vegetal substrates on the biofuels industry (sugar beet pulp) sheds light on the extracellular enzymatic machinery of this fungal plant pathogen, and can be potentially applied to developing new industrial enzymatic tools. This work is, to our knowledge, the first to analyze in depth the secreted enzyme extract of the plant pathogen Alternaria when grown on a lignocellulosic substrate, identifying its proteins by means of MALDI-TOF/TOF mass spectrometry and characterizing its feruloyl esterase, cellulase and xylanolytic activities.
Collapse
Affiliation(s)
- L García-Calvo
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006 León, Spain
| | - R V Ullán
- mAbxience, Upstream Production, Parque Tecnológico de León, Julia Morros, s/n, Armunia, 24009 León, Spain
| | - M Fernández-Aguado
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006 León, Spain
| | - A M García-Lino
- Área de Fisiología, Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - R Balaña-Fouce
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - C Barreiro
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006 León, Spain; Departamento de Biología Molecular, Universidad de León, Campus de Ponferrada, Avda. Astorga s/n, 24401 Ponferrada, Spain.
| |
Collapse
|
48
|
Genome Sequence of the Necrotrophic Plant Pathogen Alternaria brassicicola Abra43. GENOME ANNOUNCEMENTS 2018; 6:6/6/e01559-17. [PMID: 29439047 PMCID: PMC5805885 DOI: 10.1128/genomea.01559-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Alternaria brassicicola causes dark spot (or black spot) disease, which is one of the most common and destructive fungal diseases of Brassicaceae spp. worldwide. Here, we report the draft genome sequence of strain Abra43. The assembly comprises 29 scaffolds, with an N50 value of 2.1 Mb. The assembled genome was 31,036,461 bp in length, with a G+C content of 50.85%.
Collapse
|
49
|
Chen S, Qiang S. Recent advances in tenuazonic acid as a potential herbicide. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:252-257. [PMID: 29183600 DOI: 10.1016/j.pestbp.2017.01.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 05/23/2023]
Abstract
Tenuazonic acid (TeA), belonging to tetramic acids that are the largest family of natural products, is a mycotoxin produced by members of the genus Alternaria and other phytopathogenic fungi. TeA has many desirable bioactivities. In the past two decades, several studies have addressed its phytotoxic activity. Because it can cause brown leaf spot and kill seedlings of mono- and dicotyledonous plants, TeA is regarded as a potential herbicidal agent. TeA blocks electron transport beyond QA by interacting with D1 protein and is a PSII inhibitor. The chloroplast-derived oxidative burst is responsible for TeA-induced cell death and plant necrosis. Based on the model of molecular interaction between TeA and D1 protein, a series of its derivatives with stable herbicidal activity have been designed, evaluated and patented. Recently, some chemical synthetic approaches of TeA and its derivatives have been successfully developed. This paper will mainly focus on new developments regarding TeA's herbicidal activity, mode of action, biosynthesis and chemical synthesis, and characterization of new derivatives.
Collapse
Affiliation(s)
- Shiguo Chen
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Qiang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
50
|
Djemiel C, Grec S, Hawkins S. Characterization of Bacterial and Fungal Community Dynamics by High-Throughput Sequencing (HTS) Metabarcoding during Flax Dew-Retting. Front Microbiol 2017; 8:2052. [PMID: 29104570 PMCID: PMC5655573 DOI: 10.3389/fmicb.2017.02052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/06/2017] [Indexed: 11/13/2022] Open
Abstract
Flax dew-retting is a key step in the industrial extraction of fibers from flax stems and is dependent upon the production of a battery of hydrolytic enzymes produced by micro-organisms during this process. To explore the diversity and dynamics of bacterial and fungal communities involved in this process we applied a high-throughput sequencing (HTS) DNA metabarcoding approach (16S rRNA/ITS region, Illumina Miseq) on plant and soil samples obtained over a period of 7 weeks in July and August 2014. Twenty-three bacterial and six fungal phyla were identified in soil samples and 11 bacterial and four fungal phyla in plant samples. Dominant phyla were Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes (bacteria) and Ascomycota, Basidiomycota, and Zygomycota (fungi) all of which have been previously associated with flax dew-retting except for Bacteroidetes and Basidiomycota that were identified for the first time. Rare phyla also identified for the first time in this process included Acidobacteria, CKC4, Chlorobi, Fibrobacteres, Gemmatimonadetes, Nitrospirae and TM6 (bacteria), and Chytridiomycota (fungi). No differences in microbial communities and colonization dynamics were observed between early and standard flax harvests. In contrast, the common agricultural practice of swath turning affects both bacterial and fungal community membership and structure in straw samples and may contribute to a more uniform retting. Prediction of community function using PICRUSt indicated the presence of a large collection of potential bacterial enzymes capable of hydrolyzing backbones and side-chains of cell wall polysaccharides. Assignment of functional guild (functional group) using FUNGuild software highlighted a change from parasitic to saprophytic trophic modes in fungi during retting. This work provides the first exhaustive description of the microbial communities involved in flax dew-retting and will provide a valuable benchmark in future studies aiming to evaluate the effects of other parameters (e.g., year-to year and site variability etc.) on this complex process.
Collapse
Affiliation(s)
- Christophe Djemiel
- Univ. Lille, Centre National de la Recherche Scientifique, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Sébastien Grec
- Univ. Lille, Centre National de la Recherche Scientifique, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Simon Hawkins
- Univ. Lille, Centre National de la Recherche Scientifique, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|