1
|
Srivastava AK, Monangi N, Ravichandran V, Solé-Navais P, Jacobsson B, Muglia LJ, Zhang G. Recent Advances in Genomic Studies of Gestational Duration and Preterm Birth. Clin Perinatol 2024; 51:313-329. [PMID: 38705643 PMCID: PMC11189662 DOI: 10.1016/j.clp.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Preterm birth (PTB) is the leading cause of infant mortality and morbidity. For several decades, extensive epidemiologic and genetic studies have highlighted the significant contribution of maternal and offspring genetic factors to PTB. This review discusses the challenges inherent in conventional genomic analyses of PTB and underscores the importance of adopting nonconventional approaches, such as analyzing the mother-child pair as a single analytical unit, to disentangle the intertwined maternal and fetal genetic influences. We elaborate on studies investigating PTB phenotypes through 3 levels of genetic analyses: single-variant, multi-variant, and genome-wide variants.
Collapse
Affiliation(s)
- Amit K Srivastava
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Nagendra Monangi
- Department of Pediatrics, University of Cincinnati College of Medicine, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative; Division of Neonatology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Vidhya Ravichandran
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Neonatology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Pol Solé-Navais
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Sciences, University of Gothenburg, Box 100, Gothenburg 405 30, Sweden
| | - Bo Jacobsson
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Sciences, University of Gothenburg, Box 100, Gothenburg 405 30, Sweden; Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Lovisenberggata 8, Oslo 0456, Norway
| | - Louis J Muglia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative; The Burroughs Wellcome Fund, 21 Tw Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Ge Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative.
| |
Collapse
|
2
|
Golob JL, Oskotsky TT, Tang AS, Roldan A, Chung V, Ha CWY, Wong RJ, Flynn KJ, Parraga-Leo A, Wibrand C, Minot SS, Oskotsky B, Andreoletti G, Kosti I, Bletz J, Nelson A, Gao J, Wei Z, Chen G, Tang ZZ, Novielli P, Romano D, Pantaleo E, Amoroso N, Monaco A, Vacca M, De Angelis M, Bellotti R, Tangaro S, Kuntzleman A, Bigcraft I, Techtmann S, Bae D, Kim E, Jeon J, Joe S, Theis KR, Ng S, Lee YS, Diaz-Gimeno P, Bennett PR, MacIntyre DA, Stolovitzky G, Lynch SV, Albrecht J, Gomez-Lopez N, Romero R, Stevenson DK, Aghaeepour N, Tarca AL, Costello JC, Sirota M. Microbiome preterm birth DREAM challenge: Crowdsourcing machine learning approaches to advance preterm birth research. Cell Rep Med 2024; 5:101350. [PMID: 38134931 PMCID: PMC10829755 DOI: 10.1016/j.xcrm.2023.101350] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/15/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Every year, 11% of infants are born preterm with significant health consequences, with the vaginal microbiome a risk factor for preterm birth. We crowdsource models to predict (1) preterm birth (PTB; <37 weeks) or (2) early preterm birth (ePTB; <32 weeks) from 9 vaginal microbiome studies representing 3,578 samples from 1,268 pregnant individuals, aggregated from public raw data via phylogenetic harmonization. The predictive models are validated on two independent unpublished datasets representing 331 samples from 148 pregnant individuals. The top-performing models (among 148 and 121 submissions from 318 teams) achieve area under the receiver operator characteristic (AUROC) curve scores of 0.69 and 0.87 predicting PTB and ePTB, respectively. Alpha diversity, VALENCIA community state types, and composition are important features in the top-performing models, most of which are tree-based methods. This work is a model for translation of microbiome data into clinically relevant predictive models and to better understand preterm birth.
Collapse
Affiliation(s)
- Jonathan L Golob
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA, USA.
| | - Tomiko T Oskotsky
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| | - Alice S Tang
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Alennie Roldan
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | | | - Connie W Y Ha
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ronald J Wong
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; March of Dimes Prematurity Research Center at Stanford University, Stanford, CA, USA
| | | | - Antonio Parraga-Leo
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA; Department of Pediatrics, Obstetrics and Gynaecology, Universidad de Valencia, Valencia, Spain; IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Camilla Wibrand
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Samuel S Minot
- Data Core, Shared Resources, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Boris Oskotsky
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Gaia Andreoletti
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Idit Kosti
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Jifan Gao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhoujingpeng Wei
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Guanhua Chen
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zheng-Zheng Tang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Pierfrancesco Novielli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Donato Romano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Ester Pantaleo
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy; Dipartimento Interateneo di Fisica "M, Merlin", Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Nicola Amoroso
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy; Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Alfonso Monaco
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy; Dipartimento Interateneo di Fisica "M, Merlin", Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Mirco Vacca
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Roberto Bellotti
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy; Dipartimento Interateneo di Fisica "M, Merlin", Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Sabina Tangaro
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Abigail Kuntzleman
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Isaac Bigcraft
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Stephen Techtmann
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Daehun Bae
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Eunyoung Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jongbum Jeon
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Soobok Joe
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kevin R Theis
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, MI, USA
| | - Sherrianne Ng
- Imperial College Parturition Research Group, Division of the Institute of Reproductive and Developmental Biology, Imperial College London, London, UK; March of Dimes Prematurity Research Centre at Imperial College London, London, UK
| | - Yun S Lee
- Imperial College Parturition Research Group, Division of the Institute of Reproductive and Developmental Biology, Imperial College London, London, UK; March of Dimes Prematurity Research Centre at Imperial College London, London, UK
| | - Patricia Diaz-Gimeno
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Phillip R Bennett
- Imperial College Parturition Research Group, Division of the Institute of Reproductive and Developmental Biology, Imperial College London, London, UK; March of Dimes Prematurity Research Centre at Imperial College London, London, UK
| | - David A MacIntyre
- Imperial College Parturition Research Group, Division of the Institute of Reproductive and Developmental Biology, Imperial College London, London, UK; March of Dimes Prematurity Research Centre at Imperial College London, London, UK
| | - Gustavo Stolovitzky
- Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA; Thomas J. Watson Research Center, IBM, Yorktown Heights, NY, USA; Sema4, Stamford, CT, USA
| | - Susan V Lynch
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Nardhy Gomez-Lopez
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, MI, USA; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Detroit Medical Center, Detroit, MI, USA; Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - David K Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Center for Academic Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Biomedical Data Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marina Sirota
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Radhakrishna U, Sadhasivam S, Radhakrishnan R, Forray A, Muvvala SB, Metpally RP, Patel S, Rawal RM, Vishweswaraiah S, Bahado-Singh RO, Nath SK. Placental cytochrome P450 methylomes in infants exposed to prenatal opioids: exploring the effects of neonatal opioid withdrawal syndrome on health horizons. Front Genet 2024; 14:1292148. [PMID: 38264209 PMCID: PMC10805101 DOI: 10.3389/fgene.2023.1292148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/24/2023] [Indexed: 01/25/2024] Open
Abstract
Background: Neonatal opioid withdrawal syndrome (NOWS), arises due to increased opioid use during pregnancy. Cytochrome P450 (CYP) enzymes play a pivotal role in metabolizing a wide range of substances in the human body, including opioids, other drugs, toxins, and endogenous compounds. The association between CYP gene methylation and opioid effects is unexplored and it could offer promising insights. Objective: To investigate the impact of prenatal opioid exposure on disrupted CYPs in infants and their anticipated long-term clinical implications. Study Design: DNA methylation levels of CYP genes were analyzed in a cohort of 96 placental tissues using Illumina Infinium MethylationEPIC (850 k) BeadChips. This involved three groups of placental tissues: 32 from mothers with infants exposed to opioids prenatally requiring pharmacologic treatment for NOWS, 32 from mothers with prenatally opioid-exposed infants not needing NOWS treatment, and 32 from unexposed control mothers. Results: The study identified 20 significantly differentially methylated CpG sites associated with 17 distinct CYP genes, with 14 CpGs showing reduced methylation across 14 genes (CYP19A1, CYP1A2, CYP4V2, CYP1B1, CYP24A1, CYP26B1, CYP26C1, CYP2C18, CYP2C9, CYP2U1, CYP39A1, CYP2R1, CYP4Z1, CYP2D7P1 and), while 8 exhibited hypermethylation (CYP51A1, CYP26B1, CYP2R1, CYP2U1, CYP4X1, CYP1A2, CYP2W1, and CYP4V2). Genes such as CYP1A2, CYP26B1, CYP2R1, CYP2U1, and CYP4V2 exhibited both increased and decreased methylation. These genes are crucial for metabolizing eicosanoids, fatty acids, drugs, and diverse substances. Conclusion: The study identified profound methylation changes in multiple CYP genes in the placental tissues relevant to NOWS. This suggests that disruption of DNA methylation patterns in CYP transcripts might play a role in NOWS and may serve as valuable biomarkers, suggesting a future pathway for personalized treatment. Further research is needed to confirm these findings and explore their potential for diagnosis and treatment.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States
| | - Senthilkumar Sadhasivam
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ariadna Forray
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Srinivas B. Muvvala
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Raghu P. Metpally
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, United States
| | - Saumya Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Science, Gujarat University, Ahmedabad, India
| | - Rakesh M. Rawal
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, India
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States
| | - Ray O. Bahado-Singh
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States
| | - Swapan K. Nath
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|
4
|
Golob JL, Oskotsky TT, Tang AS, Roldan A, Chung V, Ha CWY, Wong RJ, Flynn KJ, Parraga-Leo A, Wibrand C, Minot SS, Andreoletti G, Kosti I, Bletz J, Nelson A, Gao J, Wei Z, Chen G, Tang ZZ, Novielli P, Romano D, Pantaleo E, Amoroso N, Monaco A, Vacca M, De Angelis M, Bellotti R, Tangaro S, Kuntzleman A, Bigcraft I, Techtmann S, Bae D, Kim E, Jeon J, Joe S, Theis KR, Ng S, Lee Li YS, Diaz-Gimeno P, Bennett PR, MacIntyre DA, Stolovitzky G, Lynch SV, Albrecht J, Gomez-Lopez N, Romero R, Stevenson DK, Aghaeepour N, Tarca AL, Costello JC, Sirota M. Microbiome Preterm Birth DREAM Challenge: Crowdsourcing Machine Learning Approaches to Advance Preterm Birth Research. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.07.23286920. [PMID: 36945505 PMCID: PMC10029035 DOI: 10.1101/2023.03.07.23286920] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Globally, every year about 11% of infants are born preterm, defined as a birth prior to 37 weeks of gestation, with significant and lingering health consequences. Multiple studies have related the vaginal microbiome to preterm birth. We present a crowdsourcing approach to predict: (a) preterm or (b) early preterm birth from 9 publicly available vaginal microbiome studies representing 3,578 samples from 1,268 pregnant individuals, aggregated from raw sequences via an open-source tool, MaLiAmPi. We validated the crowdsourced models on novel datasets representing 331 samples from 148 pregnant individuals. From 318 DREAM challenge participants we received 148 and 121 submissions for our two separate prediction sub-challenges with top-ranking submissions achieving bootstrapped AUROC scores of 0.69 and 0.87, respectively. Alpha diversity, VALENCIA community state types, and composition (via phylotype relative abundance) were important features in the top performing models, most of which were tree based methods. This work serves as the foundation for subsequent efforts to translate predictive tests into clinical practice, and to better understand and prevent preterm birth.
Collapse
Affiliation(s)
- Jonathan L Golob
- Division of Infectious Disease. Department of Internal Medicine. University of Michigan. Ann Arbor, MI. USA
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
| | - Tomiko T Oskotsky
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
| | - Alice S Tang
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
| | - Alennie Roldan
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
| | | | - Connie W Y Ha
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, CA. USA
| | - Ronald J Wong
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. USA
- March of Dimes Prematurity Research Center at Stanford University, Stanford, CA USA
| | | | - Antonio Parraga-Leo
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
| | - Camilla Wibrand
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
| | - Samuel S Minot
- Data Core, Shared Resources, Fred Hutchinson Cancer Center. Seattle, WA. USA
| | - Gaia Andreoletti
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
| | - Idit Kosti
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
| | | | | | - Jifan Gao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | - Zhoujingpeng Wei
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | - Guanhua Chen
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | - Zheng-Zheng Tang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | - Pierfrancesco Novielli
- Division of Infectious Disease. Department of Internal Medicine. University of Michigan. Ann Arbor, MI. USA
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
- Sage Bionetworks, Seattle, WA. USA
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, CA. USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. USA
- March of Dimes Prematurity Research Center at Stanford University, Stanford, CA USA
- Data Core, Shared Resources, Fred Hutchinson Cancer Center. Seattle, WA. USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | - Donato Romano
- Division of Infectious Disease. Department of Internal Medicine. University of Michigan. Ann Arbor, MI. USA
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
- Sage Bionetworks, Seattle, WA. USA
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, CA. USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. USA
- March of Dimes Prematurity Research Center at Stanford University, Stanford, CA USA
- Data Core, Shared Resources, Fred Hutchinson Cancer Center. Seattle, WA. USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | - Ester Pantaleo
- Division of Infectious Disease. Department of Internal Medicine. University of Michigan. Ann Arbor, MI. USA
| | - Nicola Amoroso
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
| | - Alfonso Monaco
- Division of Infectious Disease. Department of Internal Medicine. University of Michigan. Ann Arbor, MI. USA
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
- Sage Bionetworks, Seattle, WA. USA
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, CA. USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. USA
- March of Dimes Prematurity Research Center at Stanford University, Stanford, CA USA
- Data Core, Shared Resources, Fred Hutchinson Cancer Center. Seattle, WA. USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | - Mirco Vacca
- Division of Infectious Disease. Department of Internal Medicine. University of Michigan. Ann Arbor, MI. USA
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
- Sage Bionetworks, Seattle, WA. USA
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, CA. USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. USA
- March of Dimes Prematurity Research Center at Stanford University, Stanford, CA USA
- Data Core, Shared Resources, Fred Hutchinson Cancer Center. Seattle, WA. USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | - Maria De Angelis
- Division of Infectious Disease. Department of Internal Medicine. University of Michigan. Ann Arbor, MI. USA
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
- Sage Bionetworks, Seattle, WA. USA
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, CA. USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. USA
- March of Dimes Prematurity Research Center at Stanford University, Stanford, CA USA
- Data Core, Shared Resources, Fred Hutchinson Cancer Center. Seattle, WA. USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | - Roberto Bellotti
- Division of Infectious Disease. Department of Internal Medicine. University of Michigan. Ann Arbor, MI. USA
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
- Sage Bionetworks, Seattle, WA. USA
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, CA. USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. USA
- March of Dimes Prematurity Research Center at Stanford University, Stanford, CA USA
- Data Core, Shared Resources, Fred Hutchinson Cancer Center. Seattle, WA. USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | - Sabina Tangaro
- Division of Infectious Disease. Department of Internal Medicine. University of Michigan. Ann Arbor, MI. USA
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
- Sage Bionetworks, Seattle, WA. USA
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, CA. USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. USA
- March of Dimes Prematurity Research Center at Stanford University, Stanford, CA USA
- Data Core, Shared Resources, Fred Hutchinson Cancer Center. Seattle, WA. USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | - Abigail Kuntzleman
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
| | - Isaac Bigcraft
- Division of Infectious Disease. Department of Internal Medicine. University of Michigan. Ann Arbor, MI. USA
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
- Sage Bionetworks, Seattle, WA. USA
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, CA. USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. USA
- March of Dimes Prematurity Research Center at Stanford University, Stanford, CA USA
- Data Core, Shared Resources, Fred Hutchinson Cancer Center. Seattle, WA. USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | - Stephen Techtmann
- Division of Infectious Disease. Department of Internal Medicine. University of Michigan. Ann Arbor, MI. USA
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
- Sage Bionetworks, Seattle, WA. USA
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, CA. USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. USA
- March of Dimes Prematurity Research Center at Stanford University, Stanford, CA USA
- Data Core, Shared Resources, Fred Hutchinson Cancer Center. Seattle, WA. USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | - Daehun Bae
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
| | - Eunyoung Kim
- Division of Infectious Disease. Department of Internal Medicine. University of Michigan. Ann Arbor, MI. USA
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
- Sage Bionetworks, Seattle, WA. USA
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, CA. USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. USA
- March of Dimes Prematurity Research Center at Stanford University, Stanford, CA USA
- Data Core, Shared Resources, Fred Hutchinson Cancer Center. Seattle, WA. USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | | | - Soobok Joe
- Division of Infectious Disease. Department of Internal Medicine. University of Michigan. Ann Arbor, MI. USA
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
- Sage Bionetworks, Seattle, WA. USA
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, CA. USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. USA
- March of Dimes Prematurity Research Center at Stanford University, Stanford, CA USA
- Data Core, Shared Resources, Fred Hutchinson Cancer Center. Seattle, WA. USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | - Kevin R Theis
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, CA. USA
| | - Sherrianne Ng
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. USA
- March of Dimes Prematurity Research Center at Stanford University, Stanford, CA USA
| | - Yun S Lee Li
- Division of Infectious Disease. Department of Internal Medicine. University of Michigan. Ann Arbor, MI. USA
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
- Sage Bionetworks, Seattle, WA. USA
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, CA. USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. USA
- March of Dimes Prematurity Research Center at Stanford University, Stanford, CA USA
- Data Core, Shared Resources, Fred Hutchinson Cancer Center. Seattle, WA. USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | - Patricia Diaz-Gimeno
- Division of Infectious Disease. Department of Internal Medicine. University of Michigan. Ann Arbor, MI. USA
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
- Sage Bionetworks, Seattle, WA. USA
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, CA. USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. USA
- March of Dimes Prematurity Research Center at Stanford University, Stanford, CA USA
- Data Core, Shared Resources, Fred Hutchinson Cancer Center. Seattle, WA. USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | - Phillip R Bennett
- Division of Infectious Disease. Department of Internal Medicine. University of Michigan. Ann Arbor, MI. USA
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
- Sage Bionetworks, Seattle, WA. USA
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, CA. USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. USA
- March of Dimes Prematurity Research Center at Stanford University, Stanford, CA USA
- Data Core, Shared Resources, Fred Hutchinson Cancer Center. Seattle, WA. USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | - David A MacIntyre
- Division of Infectious Disease. Department of Internal Medicine. University of Michigan. Ann Arbor, MI. USA
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
- Sage Bionetworks, Seattle, WA. USA
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, CA. USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. USA
- March of Dimes Prematurity Research Center at Stanford University, Stanford, CA USA
- Data Core, Shared Resources, Fred Hutchinson Cancer Center. Seattle, WA. USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | - Gustavo Stolovitzky
- Data Core, Shared Resources, Fred Hutchinson Cancer Center. Seattle, WA. USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | - Susan V Lynch
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, CA. USA
| | | | - Nardhy Gomez-Lopez
- Division of Infectious Disease. Department of Internal Medicine. University of Michigan. Ann Arbor, MI. USA
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
- Sage Bionetworks, Seattle, WA. USA
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, CA. USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. USA
- March of Dimes Prematurity Research Center at Stanford University, Stanford, CA USA
- Data Core, Shared Resources, Fred Hutchinson Cancer Center. Seattle, WA. USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | - Roberto Romero
- Division of Infectious Disease. Department of Internal Medicine. University of Michigan. Ann Arbor, MI. USA
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
- Sage Bionetworks, Seattle, WA. USA
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, CA. USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. USA
- March of Dimes Prematurity Research Center at Stanford University, Stanford, CA USA
- Data Core, Shared Resources, Fred Hutchinson Cancer Center. Seattle, WA. USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | - David K Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. USA
| | - Nima Aghaeepour
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. USA
| | - Adi L Tarca
- Division of Infectious Disease. Department of Internal Medicine. University of Michigan. Ann Arbor, MI. USA
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
- Sage Bionetworks, Seattle, WA. USA
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, CA. USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. USA
- March of Dimes Prematurity Research Center at Stanford University, Stanford, CA USA
- Data Core, Shared Resources, Fred Hutchinson Cancer Center. Seattle, WA. USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | - James C Costello
- Division of Infectious Disease. Department of Internal Medicine. University of Michigan. Ann Arbor, MI. USA
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
- Sage Bionetworks, Seattle, WA. USA
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, CA. USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. USA
- March of Dimes Prematurity Research Center at Stanford University, Stanford, CA USA
- Data Core, Shared Resources, Fred Hutchinson Cancer Center. Seattle, WA. USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI. USA
| | - Marina Sirota
- March of Dimes Prematurity Research Center at the University of California San Francisco, San Francisco, CA USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA. USA
- Department of Pediatrics. University of California San Francisco, San Francisco, CA. USA
| |
Collapse
|
5
|
Dauengauer-Kirlienė S, Domarkienė I, Pilypienė I, Žukauskaitė G, Kučinskas V, Matulevičienė A. Causes of preterm birth: Genetic factors in preterm birth and preterm infant phenotypes. J Obstet Gynaecol Res 2023; 49:781-793. [PMID: 36519629 DOI: 10.1111/jog.15516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
AIM The aim is to provide an overview of recent research on genetic factors that influence preterm birth in the context of neonatal phenotypic assessment. METHODS This is a nonsystematic review of the recent scientific literature. RESULTS Maternal and fetal genetic diversity and rare genome variants are linked with crucial immune response sites. In addition, more frequent in preterm neonates, de novo variants may lead to attention deficits, hyperactivity, autism spectrum disorders, and infertility of both sexes later in life. Environmental factors may also greatly burden fetal, and consequently, neonatal development and neurodevelopment through a failure in the fetal epigenome reprogramming process and even influence the initiation of spontaneous preterm pregnancy termination. Minimally invasive analysis of the transcription factors associated with preterm birth helps elucidate labor mechanisms and predict its timing. We also provide valuable summaries of genomic and transcriptomic factors that contribute to preterm birth. CONCLUSIONS Investigation of the human genome, epigenome, and transcriptome helps to identify molecular mechanisms linked with preterm delivery and premature newborn clinical appearance in early and late neonatal life and even predict developmental outcomes. Further studies are needed to fully understand the implications of genetic changes in preterm births. These data could be used to develop targeted interventions aimed at selecting the most effective individual treatment and rehabilitation plan.
Collapse
Affiliation(s)
- Svetlana Dauengauer-Kirlienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ingrida Domarkienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ingrida Pilypienė
- Clinic of Children's Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Gabrielė Žukauskaitė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Vaidutis Kučinskas
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Aušra Matulevičienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
6
|
Li S, Yan B, Li TKT, Lu J, Gu Y, Tan Y, Gong F, Lam TW, Xie P, Wang Y, Lin G, Luo R. Ultra-low-coverage genome-wide association study-insights into gestational age using 17,844 embryo samples with preimplantation genetic testing. Genome Med 2023; 15:10. [PMID: 36788602 PMCID: PMC9926832 DOI: 10.1186/s13073-023-01158-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Very low-coverage (0.1 to 1×) whole genome sequencing (WGS) has become a promising and affordable approach to discover genomic variants of human populations for genome-wide association study (GWAS). To support genetic screening using preimplantation genetic testing (PGT) in a large population, the sequencing coverage goes below 0.1× to an ultra-low level. However, the feasibility and effectiveness of ultra-low-coverage WGS (ulcWGS) for GWAS remains undetermined. METHODS We built a pipeline to carry out analysis of ulcWGS data for GWAS. To examine its effectiveness, we benchmarked the accuracy of genotype imputation at the combination of different coverages below 0.1× and sample sizes from 2000 to 16,000, using 17,844 embryo PGT samples with approximately 0.04× average coverage and the standard Chinese sample HG005 with known genotypes. We then applied the imputed genotypes of 1744 transferred embryos who have gestational ages and complete follow-up records to GWAS. RESULTS The accuracy of genotype imputation under ultra-low coverage can be improved by increasing the sample size and applying a set of filters. From 1744 born embryos, we identified 11 genomic risk loci associated with gestational ages and 166 genes mapped to these loci according to positional, expression quantitative trait locus, and chromatin interaction strategies. Among these mapped genes, CRHBP, ICAM1, and OXTR were more frequently reported as preterm birth related. By joint analysis of gene expression data from previous studies, we constructed interrelationships of mainly CRHBP, ICAM1, PLAGL1, DNMT1, CNTLN, DKK1, and EGR2 with preterm birth, infant disease, and breast cancer. CONCLUSIONS This study not only demonstrates that ulcWGS could achieve relatively high accuracy of adequate genotype imputation and is capable of GWAS, but also provides insights into the associations between gestational age and genetic variations of the fetal embryos from Chinese population.
Collapse
Affiliation(s)
- Shumin Li
- grid.194645.b0000000121742757Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Bin Yan
- grid.194645.b0000000121742757Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Thomas K. T. Li
- grid.415550.00000 0004 1764 4144Department of Obstetrics & Gynecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Jianliang Lu
- grid.194645.b0000000121742757Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Yifan Gu
- grid.216417.70000 0001 0379 7164NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, 410008 Hunan China ,grid.477823.d0000 0004 1756 593XClinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410013 Hunan China
| | - Yueqiu Tan
- grid.216417.70000 0001 0379 7164NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, 410008 Hunan China ,grid.477823.d0000 0004 1756 593XClinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410013 Hunan China
| | - Fei Gong
- grid.216417.70000 0001 0379 7164NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, 410008 Hunan China ,grid.477823.d0000 0004 1756 593XClinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410013 Hunan China
| | - Tak-Wah Lam
- grid.194645.b0000000121742757Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Pingyuan Xie
- Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China. .,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China.
| | - Yuexuan Wang
- Department of Computer Science, The University of Hong Kong, Hong Kong, China. .,College of Computer Science and Technology, Zhejiang University, Hangzhou, China.
| | - Ge Lin
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, 410008, Hunan, China. .,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410013, Hunan, China. .,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China.
| | - Ruibang Luo
- Department of Computer Science, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Jain VG, Monangi N, Zhang G, Muglia LJ. Genetics, epigenetics, and transcriptomics of preterm birth. Am J Reprod Immunol 2022; 88:e13600. [PMID: 35818963 PMCID: PMC9509423 DOI: 10.1111/aji.13600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
Preterm birth contributes significantly to neonatal mortality and morbidity. Despite its global significance, there has only been limited progress in preventing preterm birth. Spontaneous preterm birth (sPTB) results from a wide variety of pathological processes. Although many non-genetic risk factors influence the timing of gestation and labor, compelling evidence supports the role of substantial genetic and epigenetic influences and their interactions with the environment contributing to sPTB. To investigate a common and complex disease such as sPTB, various approaches such as genome-wide association studies, whole-exome sequencing, transcriptomics, and integrative approaches combining these with other 'omics studies have been used. However, many of these studies were typically small or focused on a single ethnicity or geographic region with limited data, particularly in populations at high risk for sPTB, or lacked a robust replication. These studies found many genes involved in the inflammation and immunity-related pathways that may affect sPTB. Recent studies also suggest the role of epigenetic modifications of gene expression by the environmental signals as a potential contributor to the risk of sPTB. Future genetic studies of sPTB should continue to consider the contributions of both maternal and fetal genomes as well as their interaction with the environment.
Collapse
Affiliation(s)
- Viral G. Jain
- Division of Neonatology, Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nagendra Monangi
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ge Zhang
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Louis J. Muglia
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Burroughs Wellcome Fund, Research Triangle Park, North Carolina, USA
| |
Collapse
|
8
|
Delanerolle G, Zeng YT, Phiri P, Phan T, Tempest N, Busuulwa P, Shetty A, Raymont V, Rathod S, Shi JQ, Hapangama DK. Mental health impact on Black, Asian and Minority Ethnic populations with preterm birth: A systematic review and meta-analysis. World J Psychiatry 2022; 12:1233-1254. [PMID: 36186507 PMCID: PMC9521531 DOI: 10.5498/wjp.v12.i9.1233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/16/2022] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Preterm birth (PTB) is one of the main causes of neonatal deaths globally, with approximately 15 million infants are born preterm. Women from the Black, Asian, and Minority Ethnic (BAME) populations maybe at higher risk of PTB, therefore, the mental health impact on mothers experiencing a PTB is particularly important, within the BAME populations.
AIM To determine the prevalence of mental health conditions among BAME women with PTB as well as the methods of mental health assessments used to characterise the mental health outcomes.
METHODS A systematic methodology was developed and published as a protocol in PROSPERO (CRD42020210863). Multiple databases were used to extract relevant data. I2 and Egger’s tests were used to detect the heterogeneity and publication bias. A trim and fill method was used to demonstrate the influence of publication bias and the credibility of conclusions.
RESULTS Thirty-nine studies met the eligibility criteria from a possible 3526. The prevalence rates of depression among PTB-BAME mothers were significantly higher than full-term mothers with a standardized mean difference of 1.5 and a 95% confidence interval (CI) 29%-74%. The subgroup analysis indicated depressive symptoms to be time sensitive. Women within the very PTB category demonstrated a significantly higher prevalence of depression than those categorised as non-very PTB. The prevalence rates of anxiety and stress among PTB-BAME mothers were significantly higher than in full-term mothers (odds ratio of 88% and 60% with a CI of 42%-149% and 24%-106%, respectively).
CONCLUSION BAME women with PTB suffer with mental health conditions. Many studies did not report on specific mental health outcomes for BAME populations. Therefore, the impact of PTB is not accurately represented in this population, and thus could negatively influence the quality of maternity services they receive.
Collapse
Affiliation(s)
- Gayathri Delanerolle
- Nuffield Department of Primary Care Health Science, University of Oxford, Oxford OX3 7JX, United Kingdom
- Research and Innovation, Southern Health NHS Foundation Trust, Southampton SO30 3JB, United Kingdom
| | - Yu-Tian Zeng
- Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| | - Peter Phiri
- Research and Innovation, Southern Health NHS Foundation Trust, Southampton SO30 3JB, United Kingdom
- Psychology Department, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Thuan Phan
- Department of Women's and Children's Health, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Nicola Tempest
- Department of Women's and Children's Health, University of Liverpool, Liverpool L7 8TX, United Kingdom
- Gynaecology Directorate and Hewitt Centre for Reproductive Medicine, Liverpool Women's NHS Foundation, Liverpool L8 7SS, United Kingdom
| | - Paula Busuulwa
- Department of Women's and Children's Health, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Ashish Shetty
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London W1T 4AJ, United Kingdom
| | - Vanessa Raymont
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| | - Shanaya Rathod
- Research and Innovation, Southern Health NHS Foundation Trust, Southampton SO30 3JB, United Kingdom
| | - Jian-Qing Shi
- National Centre for Applied Mathematics Shenzhen, Shenzhen 518055, Guangdong Province, China
- Department of Statistics, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| | - Dharani K Hapangama
- Department of Women's and Children's Health, University of Liverpool, Liverpool L7 8TX, United Kingdom
- Gynaecology Directorate and Hewitt Centre for Reproductive Medicine, Liverpool Women's NHS Foundation, Liverpool L8 7SS, United Kingdom
| |
Collapse
|
9
|
Gudicha DW, Romero R, Gomez-Lopez N, Galaz J, Bhatti G, Done B, Jung E, Gallo DM, Bosco M, Suksai M, Diaz-Primera R, Chaemsaithong P, Gotsch F, Berry SM, Chaiworapongsa T, Tarca AL. The amniotic fluid proteome predicts imminent preterm delivery in asymptomatic women with a short cervix. Sci Rep 2022; 12:11781. [PMID: 35821507 PMCID: PMC9276779 DOI: 10.1038/s41598-022-15392-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
Preterm birth, the leading cause of perinatal morbidity and mortality, is associated with increased risk of short- and long-term adverse outcomes. For women identified as at risk for preterm birth attributable to a sonographic short cervix, the determination of imminent delivery is crucial for patient management. The current study aimed to identify amniotic fluid (AF) proteins that could predict imminent delivery in asymptomatic patients with a short cervix. This retrospective cohort study included women enrolled between May 2002 and September 2015 who were diagnosed with a sonographic short cervix (< 25 mm) at 16-32 weeks of gestation. Amniocenteses were performed to exclude intra-amniotic infection; none of the women included had clinical signs of infection or labor at the time of amniocentesis. An aptamer-based multiplex platform was used to profile 1310 AF proteins, and the differential protein abundance between women who delivered within two weeks from amniocentesis, and those who did not, was determined. The analysis included adjustment for quantitative cervical length and control of the false-positive rate at 10%. The area under the receiver operating characteristic curve was calculated to determine whether protein abundance in combination with cervical length improved the prediction of imminent preterm delivery as compared to cervical length alone. Of the 1,310 proteins profiled in AF, 17 were differentially abundant in women destined to deliver within two weeks of amniocentesis independently of the cervical length (adjusted p-value < 0.10). The decreased abundance of SNAP25 and the increased abundance of GPI, PTPN11, OLR1, ENO1, GAPDH, CHI3L1, RETN, CSF3, LCN2, CXCL1, CXCL8, PGLYRP1, LDHB, IL6, MMP8, and PRTN3 were associated with an increased risk of imminent delivery (odds ratio > 1.5 for each). The sensitivity at a 10% false-positive rate for the prediction of imminent delivery by a quantitative cervical length alone was 38%, yet it increased to 79% when combined with the abundance of four AF proteins (CXCL8, SNAP25, PTPN11, and MMP8). Neutrophil-mediated immunity, neutrophil activation, granulocyte activation, myeloid leukocyte activation, and myeloid leukocyte-mediated immunity were biological processes impacted by protein dysregulation in women destined to deliver within two weeks of diagnosis. The combination of AF protein abundance and quantitative cervical length improves prediction of the timing of delivery compared to cervical length alone, among women with a sonographic short cervix.
Collapse
Affiliation(s)
- Dereje W Gudicha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
- Detroit Medical Center, Detroit, MI, USA.
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dahiana M Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramiro Diaz-Primera
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Stanley M Berry
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA.
| |
Collapse
|
10
|
Manuck TA, Eaves LA, Rager JE, Sheffield-abdullah K, Fry RC. Nitric oxide-related gene and microRNA expression in peripheral blood in pregnancy vary by self-reported race. Epigenetics 2022; 17:731-745. [PMID: 34308756 PMCID: PMC9336489 DOI: 10.1080/15592294.2021.1957576] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Adverse pregnancy outcomes disproportionately affect non-Hispanic (NH) Black patients in the United States. Structural racism has been associated with increased psychosocial distress and inflammation and may trigger oxidative stress. Thus, the nitric oxide (NO) pathway (involved in the regulation of inflammation and oxidative stress) may partly explain the underlying disparities in obstetric outcomes.Cohort study of 154 pregnant patients with high-risk obstetric histories; n = 212 mRNAs and n = 108 microRNAs (miRNAs) in the NO pathway were evaluated in circulating white blood cells. NO pathway mRNA and miRNA transcript counts were compared by self-reported race; NH Black patients were compared with women of other races/ethnicities. Finally, miRNA-mRNA expression levels were correlated.Twenty-two genes (q < 0.10) were differentially expressed in self-identified NH Black individuals. Superoxide dismutase 1 (SOD1), interleukin-8 (IL-8), dynein light chain LC8-type 1 (DYNLL1), glutathione peroxidase 4 (GPX4), and glutathione peroxidase 1 (GPX1) were the five most differentially expressed genes among NH Black patients compared to other patients. There were 63 significantly correlated miRNA-mRNA pairs (q < 0.10) demonstrating potential miRNA regulation of associated target mRNA expression. Ten miRNAs that were identified as members of significant miRNA-mRNA pairs were also differentially expressed among NH Black patients (q < 0.10).These findings support an association between NO pathway and inflammation and infection-related mRNA and miRNA expression in blood drawn during pregnancy and patient race/ethnicity. These findings may reflect key differences in the biology of inflammatory gene dysregulation that occurs in response to the stress of systemic racism and that underlies disparities in pregnancy outcomes.
Collapse
Affiliation(s)
- Tracy A. Manuck
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC
| | - Lauren A. Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC
| | - Julia E Rager
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC
| | | | - Rebecca C. Fry
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC
| |
Collapse
|
11
|
Polybrominated diphenyl ethers in early pregnancy and preterm birth: Findings from the NICHD Fetal Growth Studies. Int J Hyg Environ Health 2022; 243:113978. [DOI: 10.1016/j.ijheh.2022.113978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
|
12
|
Relationships between Maternal Gene Polymorphisms in One Carbon Metabolism and Adverse Pregnancy Outcomes: A Prospective Mother and Child Cohort Study in China. Nutrients 2022; 14:nu14102108. [PMID: 35631247 PMCID: PMC9146434 DOI: 10.3390/nu14102108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Background: To investigate relationships between five single nucleotide polymorphisms (SNP) in four maternal genes involved in one carbon metabolism and adverse pregnancy outcomes, including preterm birth (PTB), low birth weight (LBW), and small-for-gestational-age (SGA). Methods: This was a prospective mother and child cohort study in Wuqiang, China. Pregnant women (n = 939) were recruited from Jun 2016 to Oct 2018. Pregnancy outcomes (PTB, LBW, and SGA) were extracted from medical records and other information including age at childbearing, maternal education level, gravidity, parity, pre-pregnancy weight and height was collected by using a structured questionnaire. The maternal serum folate concentration was measured by using Abbott Architect i2000SR chemiluminescence analyzer in the first prenatal care visit. DNA genotyping of methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C, methionine synthase reductase (MTRR) A66G, methionine synthase (MTR) A2756G, and thymidylate synthetase (TYMS) rs3819102 was processed by Sequenom MassARRAY iPLEX Platform. Univariate and multivariate logistics regression analysis were used to test the relationships between 5 SNPs and PTB, LBW, SGA. Results: Totally, 849 dyads of women and infants were included in the analysis. The prevalence of PTD, LBW, and SGA were 3.76%, 1.58%, and 5.31% respectively. The homozygote frequencies of MTHFR C677T, MTHFR A1298C, MTRR A66G, MTR A2756G, and TYMS rs3819102 were 44.2%, 1.4%, 6.7%, 1.3%, and 3.2%, and the alt allele frequencies were 66.1%, 10.8%, 24.9%, 10.5%, and 20.5% respectively. The average serum folate concentration was 11.95 ng/mL and the folate deficiency rate was 0.47%. There were no significant associations between MTHFR C677T, MTHFR A1298C, MTRR A66G, MTR A2756G, TYMS rs3819102 alleles and PTD, LBW, SGA (p > 0.05). Conclusions: In the population with adequate folate status and low prevalence of adverse pregnancy outcomes, MTHFR C677T, MTHFR A1298C, MTRR A66G, MTR A2756G, TYMS rs3819102 alleles may not be related to PTD, LBW, and SGA.
Collapse
|
13
|
Vesce F, Battisti C, Crudo M. The Inflammatory Cytokine Imbalance for Miscarriage, Pregnancy Loss and COVID-19 Pneumonia. Front Immunol 2022; 13:861245. [PMID: 35359975 PMCID: PMC8961687 DOI: 10.3389/fimmu.2022.861245] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 12/27/2022] Open
Abstract
Pregnancy can be defined a vascular event upon endocrine control. In the human hemo-chorial placentation the chorionic villi penetrate the wall of the uterine spiral arteries, to provide increasing amounts of nutrients and oxygen for optimal fetal growth. In any physiological pregnancy the natural maternal response is of a Th1 inflammatory type, aimed at avoiding blood loss through the arteriolar wall openings. The control of the vascular function, during gestation as in any other condition, is achieved through the action of two main types of prostanoids: prostaglandin E2 and thromboxane on the one hand (for vasoconstriction and coagulation), prostacyclin on the other (for vasodilation and blood fluidification). The control of the maternal immune response is upon the responsibility of the fetus itself. Indeed, the chorionic villi are able to counteract the natural maternal response, thus changing the inflammatory Th1 type into the anti-inflammatory Th2. Clinical and experimental research in the past half century address to inflammation as the leading cause of abortion, pregnancy loss, premature delivery and related pulmonary, cerebral, intestinal fetal syndromes. Increased level of Interleukin 6, Interleukin 1-beta, Tumor Necrosis Factor-alfa, Interferon-gamma, are some among the well-known markers of gestational inflammation. On the other side, COVID-19 pneumonia is a result of extensive inflammation induced by viral replication within the cells of the respiratory tract. As it may happen in the uterine arteries in the absence of an effective fetal control, viral pneumonia triggers pulmonary vascular coagulation. The cytokines involved in the process are the same as those in gestational inflammation. As the fetus breathes throughout the placenta, fetal death from placental thrombosis is similar to adult death from pulmonary thrombosis. Preventing and counteracting inflammation is mandatory in both conditions. The most relevant literature dealing with the above-mentioned concepts is reviewed in the present article.
Collapse
Affiliation(s)
- Fortunato Vesce
- OB & Gyn Complex Unit, Arcispedale Sant’Anna – Ferrara University, Ferrara, Italy
| | | | | |
Collapse
|
14
|
Barcelona V, Montalvo-Ortiz JL, Wright ML, Nagamatsu ST, Dreisbach C, Crusto CA, Sun YV, Taylor JY. DNA methylation changes in African American women with a history of preterm birth from the InterGEN study. BMC Genom Data 2021; 22:30. [PMID: 34482817 PMCID: PMC8418749 DOI: 10.1186/s12863-021-00988-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/25/2021] [Indexed: 01/20/2023] Open
Abstract
Background Preterm birth (< 37 weeks’ gestation) is a common outcome of pregnancy that has been associated with increased risk of cardiovascular disease for women later in life. Little is known about the physiologic mechanisms underlying this risk. To date, no studies have evaluated if differences in DNA methylation (DNAm) among women who experience preterm birth are short-term or if they persist and are associated with subsequent cardiovascular sequelae or other health disorders. The purpose of this study was to examine long-term epigenetic effects of preterm birth in African American mothers (n = 182) from the InterGEN Study (2014–2019). In this study, we determine if differences in DNAm exist between women who reported a preterm birth in the last 3–5 years compared to those who had full-term births by using two different approaches: epigenome-wide association study (EWAS) and genome-wide co-methylation analyses. Results Though no significant CpG sites were identified using the EWAS approach, we did identify significant modules of co-methylation associated with preterm birth. Co-methylation analyses showed correlations with preterm birth in gene ontology and KEGG pathways. Functional annotation analysis revealed enrichment for pathways related to central nervous system and sensory perception. No association was observed between DNAm age and preterm birth, though larger samples are needed to confirm this further. Conclusions We identified differentially methylated gene networks associated with preterm birth in African American women 3–5 years after birth, including pathways related to neurogenesis and sensory processing. More research is needed to understand better these associations and replicate them in an independent cohort. Further study should be done in this area to elucidate mechanisms linking preterm birth and later epigenomic changes that may contribute to the development of health disorders and maternal mood and well-being. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00988-x.
Collapse
Affiliation(s)
- Veronica Barcelona
- School of Nursing, Columbia University, 560 W. 168th St, New York, NY, 10032, USA.
| | - Janitza L Montalvo-Ortiz
- Department of Psychiatry, Division of Human Genetics, School of Medicine, Errera Community Care Center-Orange Annex, Yale University, 200 Edison Road, Orange, CT, 06477, USA
| | - Michelle L Wright
- School of Nursing & Dell Medical School, Department of Women's Health, University of Texas at Austin, 1710 Red River St., Austin, TX, 78712, USA
| | - Sheila T Nagamatsu
- Department of Psychiatry, Division of Human Genetics, School of Medicine, Errera Community Care Center-Orange Annex, Yale University, 200 Edison Road, Orange, CT, 06477, USA
| | - Caitlin Dreisbach
- Columbia University, Data Science Institute, Northwest Corner, 550 W 120th St #1401, New York, NY, 10027, USA
| | - Cindy A Crusto
- School of Medicine, Department of Psychiatry, Yale University, 389 Whitney Ave, New Haven, CT, 06511, USA
| | - Yan V Sun
- Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Jacquelyn Y Taylor
- Center for Research on People of Color, School of Nursing, Columbia University, 560 W 168th St, Room 605, New York, NY, 10032, USA
| |
Collapse
|
15
|
Braveman P, Dominguez TP, Burke W, Dolan SM, Stevenson DK, Jackson FM, Collins JW, Driscoll DA, Haley T, Acker J, Shaw GM, McCabe ERB, Hay WW, Thornburg K, Acevedo-Garcia D, Cordero JF, Wise PH, Legaz G, Rashied-Henry K, Frost J, Verbiest S, Waddell L. Explaining the Black-White Disparity in Preterm Birth: A Consensus Statement From a Multi-Disciplinary Scientific Work Group Convened by the March of Dimes. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3:684207. [PMID: 36303973 PMCID: PMC9580804 DOI: 10.3389/frph.2021.684207] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022] Open
Abstract
In 2017-2019, the March of Dimes convened a workgroup with biomedical, clinical, and epidemiologic expertise to review knowledge of the causes of the persistent Black-White disparity in preterm birth (PTB). Multiple databases were searched to identify hypothesized causes examined in peer-reviewed literature, 33 hypothesized causes were reviewed for whether they plausibly affect PTB and either occur more/less frequently and/or have a larger/smaller effect size among Black women vs. White women. While definitive proof is lacking for most potential causes, most are biologically plausible. No single downstream or midstream factor explains the disparity or its social patterning, however, many likely play limited roles, e.g., while genetic factors likely contribute to PTB, they explain at most a small fraction of the disparity. Research links most hypothesized midstream causes, including socioeconomic factors and stress, with the disparity through their influence on the hypothesized downstream factors. Socioeconomic factors alone cannot explain the disparity's social patterning. Chronic stress could affect PTB through neuroendocrine and immune mechanisms leading to inflammation and immune dysfunction, stress could alter a woman's microbiota, immune response to infection, chronic disease risks, and behaviors, and trigger epigenetic changes influencing PTB risk. As an upstream factor, racism in multiple forms has repeatedly been linked with the plausible midstream/downstream factors, including socioeconomic disadvantage, stress, and toxic exposures. Racism is the only factor identified that directly or indirectly could explain the racial disparities in the plausible midstream/downstream causes and the observed social patterning. Historical and contemporary systemic racism can explain the racial disparities in socioeconomic opportunities that differentially expose African Americans to lifelong financial stress and associated health-harming conditions. Segregation places Black women in stressful surroundings and exposes them to environmental hazards. Race-based discriminatory treatment is a pervasive stressor for Black women of all socioeconomic levels, considering both incidents and the constant vigilance needed to prepare oneself for potential incidents. Racism is a highly plausible, major upstream contributor to the Black-White disparity in PTB through multiple pathways and biological mechanisms. While much is unknown, existing knowledge and core values (equity, justice) support addressing racism in efforts to eliminate the racial disparity in PTB.
Collapse
Affiliation(s)
- Paula Braveman
- School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Tyan Parker Dominguez
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, United States
| | - Wylie Burke
- University of Washington School of Medicine, Seattle, WA, United States
| | - Siobhan M. Dolan
- Albert Einstein College of Medicine, New York, NY, United States
| | | | | | - James W. Collins
- Northwestern University School of Medicine, Chicago, IL, United States
| | - Deborah A. Driscoll
- University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Terinney Haley
- School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Julia Acker
- School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Gary M. Shaw
- Stanford University School of Medicine, Stanford, CA, United States
| | - Edward R. B. McCabe
- David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | | | - Kent Thornburg
- School of Medicine, Oregon State University, Portland, OR, United States
| | | | - José F. Cordero
- University of Georgia College of Public Health, Athens, GA, United States
| | - Paul H. Wise
- Stanford University School of Medicine, Stanford, CA, United States
| | - Gina Legaz
- March of Dimes, White Plains, NY, United States
| | | | | | - Sarah Verbiest
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | |
Collapse
|
16
|
Spontaneous preterm birth: the underpinnings in the maternal and fetal genomes. NPJ Genom Med 2021; 6:43. [PMID: 34103530 PMCID: PMC8187433 DOI: 10.1038/s41525-021-00209-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
Preterm birth (PTB) is a major cause of neonatal mortality and health complications in infants. Elucidation of its genetic underpinnings can lead to improved understanding of the biological mechanisms and boost the development of methods to predict PTB. Although recent genome-based studies of both mother and fetus have identified several genetic loci which might be implicated in PTB, these results suffer from a lack of consistency across multiple studies and populations. Moreover, results of functional validation of most of these findings are unavailable. Since medically indicated preterm deliveries have well-known heterogeneous causes, we have reviewed only those studies which investigated spontaneous preterm birth (sPTB) and have attempted to suggest probable biological mechanisms by which the implicated genetic factors might result in sPTB. We expect our review to provide a panoramic view of the genetics of sPTB.
Collapse
|
17
|
Manuck TA, Eaves LA, Rager JE, Fry RC. Mid-pregnancy maternal blood nitric oxide-related gene and miRNA expression are associated with preterm birth. Epigenomics 2021; 13:667-682. [PMID: 33890487 DOI: 10.2217/epi-2020-0346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The nitric oxide (NO) pathway modulates inflammation and may influence birth timing. Patients & methods: Case-control analysis of 136 pregnant women with RNA obtained <28 weeks; n = 212 mRNAs and n = 108 miRNAs in the NO pathway were evaluated. NO-pathway mRNA and miRNA transcript counts in women delivering preterm versus at term were compared, miRNA-mRNA expression levels correlated and prediction models generated. Results: Fourteen genes were differentially expressed in women delivering <37 weeks; 13/14 were also differentially expressed in those delivering <34 weeks (q <0.10) versus term births. Multiple miRNA-mRNA pairs were correlated. Models with gene expression better predicted prematurity than models with only clinical or nongenomic predictors. Conclusion: Maternal blood NO pathway-related mRNA and miRNA expression is associated with prematurity.
Collapse
Affiliation(s)
- Tracy A Manuck
- Department of Obstetrics & Gynecology, Division of Maternal Fetal Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.,Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lauren A Eaves
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Julia E Rager
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca C Fry
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
Wang J, Luo X, Pan J, Dong X, Tian X, Tu Z, Ju W, Zhang M, Zhong M, De Chen C, Flory M, Wang Y, Ted Brown W, Zhong N. (Epi)genetic variants of the sarcomere-desmosome are associated with premature utero-contraction in spontaneous preterm labor. ENVIRONMENT INTERNATIONAL 2021; 148:106382. [PMID: 33472089 DOI: 10.1016/j.envint.2021.106382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Spontaneous preterm birth is a syndrome with clinical and genetic heterogeneity. Few studies have focused on the genetic and epigenetic defects and pathogenic mechanisms associated with premature uterine contraction in spontaneous preterm birth. The objective of this study was to investigate the (epi)genetic variations associated with premature uterine contraction of spontaneous preterm birth. A systems biology approach with an integrated multiomic study was employed. Biobanked pregnancy tissues selected from a pregnancy cohort were subjected to genomic, transcriptomic, methylomic, and proteomic studies, with a focus on genetic loci/genes related to uterine muscle contraction, specifically, genes associated with sarcomeres and desmosomes. Thirteen single nucleotide variations and pathogenic variants were identified in the sarcomere gene, TTN, which encodes the protein Titin, from 146 women with spontaneous preterm labor. Differential expression profiles of five long non-coding RNAs were identified from loci that overlap with four sarcomeric genes. Longitudinally, the long non-coding RNA of gene TPM3 that encodes the protein tropomysin 3 was found to significantly regulate the mRNA of TPM3 in the placenta, compared to maternal blood. The majority of genome methylation profiles related to premature uterine contraction were also identified in the CpG promoters of sarcomeric genes/loci. Differential expression profiles of mRNAs associated with premature uterine contraction showed 22 genes associated with sarcomeres and three with desmosomes. The results demonstrated that premature uterine contraction was associated mainly with pathogenic variants of the TTN gene and with transcriptomic variations of sarcomeric premature uterine contraction genes. This association is likely regulated by epigenetic factors, including methylation and long non-coding RNAs.
Collapse
Affiliation(s)
- Jie Wang
- Hainan Provincial Hospital for Maternal and Children's Health, Haikou, Hainan, China; Preterm Birth International Collaborative, USA
| | - Xiucui Luo
- Center of Translational Research, Lianyungang Municipal Hospital for Maternal and Children's Health, Lianyungang, Jiangsu Province, China
| | - Jing Pan
- Center of Translational Research, Lianyungang Municipal Hospital for Maternal and Children's Health, Lianyungang, Jiangsu Province, China
| | - Xiaoyan Dong
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA; Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiujuan Tian
- Sanya Maternity and Child Care Hospital, Sanya, Hainan, China
| | - Zhihua Tu
- Hainan Provincial Hospital for Maternal and Children's Health, Haikou, Hainan, China
| | - Weina Ju
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Meijiao Zhang
- Center of Translational Research, Lianyungang Municipal Hospital for Maternal and Children's Health, Lianyungang, Jiangsu Province, China
| | - Mei Zhong
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Charles De Chen
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Michael Flory
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Yong Wang
- Department of Obstetrics and Gynecology, Washington University, St. Louis, MO, USA; Preterm Birth International Collaborative, USA
| | - W Ted Brown
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Nanbert Zhong
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA; Preterm Birth International Collaborative, USA.
| |
Collapse
|
19
|
Zhao N, Wu W, Feng Y, Yang F, Han T, Guo M, Ren Q, Li W, Li J, Wang S, Zhang Y. Polymorphisms in oxidative stress, metabolic detoxification, and immune function genes, maternal exposure to ambient air pollution, and risk of preterm birth in Taiyuan, China. ENVIRONMENTAL RESEARCH 2021; 194:110659. [PMID: 33359674 DOI: 10.1016/j.envres.2020.110659] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/06/2020] [Accepted: 12/20/2020] [Indexed: 05/27/2023]
Abstract
Exposure to air pollutants may be associated with preterm birth (PB) through oxidative stress, metabolic detoxification, and immune system processes. However, no study has investigated the interactive effects of maternal air pollution and genetic polymorphisms in these pathways on risk of PB. The study included 126 PB and 310 term births. A total of 177 single nucleotide polymorphisms (SNPs) in oxidative stress, immune function, and metabolic detoxification-related genes were examined and analyzed. The China air quality index (AQI) was used as an overall estimation of ambient air pollutants. Among 177 SNPs, four SNPs (GPX4-rs376102, GLRX-rs889224, VEGFA-rs3025039, and IL1A-rs3783550) were found to have significant interactions with AQI on the risk of PB (Pinteraction were 0.001, 0.003, 0.03, and 0.04, respectively). After being stratified by the maternal genotypes in these four SNPs, 1.38 to 1.76 times of the risk of PB were observed as per interquartile range increase in maternal AQI among women who carried the GPX4-rs376102 AC/CC genotypes, the GLRX-rs889224 TT genotype, the VEGFA-rs3025039 CC genotype, or the IL1A-rs3783550 GT/TT genotypes. After adjustment for multiple comparisons, only GPX4-rs376102 and AQI interaction remained statistically significant (false discovery rate (FDR)=0.17). After additional stratification by preeclampsia (PE) status, a strongest association was observed in women who carried the GPX4-rs376102 AC/CC genotypes (OR, 2.26; 95% CI, 1.41-3.65, Pinteraction=0.0002, FDR=0.035) in the PE group. Our study provided the first evidence that association between maternal air pollution and PB risk may be modified by the genetic polymorphisms in oxidative stress and immune function genes. Future large studies are necessary to replicate and confirm the observed associations.
Collapse
Affiliation(s)
- Nan Zhao
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Weiwei Wu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongliang Feng
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Feifei Yang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tianbi Han
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mengzhu Guo
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qingwen Ren
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wangjun Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jinbo Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Suping Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA; Section of Surgical Outcomes and Epidemiology, Department of Surgery, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
20
|
Interleukin-8 dysregulation is implicated in brain dysmaturation following preterm birth. Brain Behav Immun 2020; 90:311-318. [PMID: 32920182 DOI: 10.1016/j.bbi.2020.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Preterm birth is associated with dysconnectivity of structural brain networks, impaired cognition and psychiatric disease. Systemic inflammation contributes to cerebral dysconnectivity, but the immune mediators driving this association are poorly understood. We analysed information from placenta, umbilical cord and neonatal blood, and brain MRI to determine which immune mediators link perinatal systemic inflammation with dysconnectivity of structural brain networks. METHODS Participants were 102 preterm infants (mean gestational age 29+1 weeks, range 23+3-32+0). Placental histopathology identified reaction patterns indicative of histologic chorioamnionitis (HCA), and a customized immunoassay of 24 inflammation-associated proteins selected to reflect the neonatal innate and adaptive immune response was performed from umbilical cord (n = 55) and postnatal day 5 blood samples (n = 71). Brain MRI scans were acquired at term-equivalent age (41+0 weeks [range 38+0-44+4 weeks]) and alterations in white matter connectivity were inferred from mean diffusivity and neurite density index across the white matter skeleton. RESULTS HCA was associated with elevated concentrations of C5a, C9, CRP, IL-1β, IL-6, IL-8 and MCP-1 in cord blood, and IL-8 concentration predicted HCA with an area under the receiver operator curve of 0.917 (95% CI 0.841 - 0.993, p < 0.001). Fourteen analytes explained 66% of the variance in the postnatal profile (BDNF, C3, C5a, C9, CRP, IL-1β, IL-6, IL-8, IL-18, MCP-1, MIP-1β, MMP-9, RANTES and TNF-α). Of these, IL-8 was associated with altered neurite density index across the white matter skeleton after adjustment for gestational age at birth and at scan (β = 0.221, p = 0.037). CONCLUSIONS These findings suggest that IL-8 dysregulation has a role in linking perinatal systemic inflammation and atypical white matter development in preterm infants.
Collapse
|
21
|
Spry EA, Wilson CA, Middleton M, Moreno-Betancur M, Doyle LW, Howard LM, Hannan AJ, Wlodek ME, Cheong JLY, Hines LA, Coffey C, Brown S, Olsson CA, Patton GC. Parental mental health before and during pregnancy and offspring birth outcomes: A 20-year preconception cohort of maternal and paternal exposure. EClinicalMedicine 2020; 27:100564. [PMID: 33150327 PMCID: PMC7599306 DOI: 10.1016/j.eclinm.2020.100564] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Preterm birth (PTB) and small for gestational age (SGA) are increasingly prevalent, with major consequences for health and development into later life. There is emerging evidence that some risk processes begin before pregnancy. We report on associations between maternal and paternal common mental disorders (CMD) before and during pregnancy and offspring PTB and SGA. METHODS 398 women with 609 infants and 267 men with 421 infants were assessed repeatedly for CMD symptoms before pregnancy between age 14 and 29 and during pregnancy. Associations between preconception and antenatal CMD symptoms and offspring gestational age/PTB and size for gestational age/SGA were estimated using linear and Poisson regression. FINDINGS In men, persistent preconception CMD across adolescence and young adulthood predicted offspring PTB after adjustment for ethnicity, education, BMI and adolescent substance use (adjusted RR 7·0, 95% CI 1·8,26·8), corresponding to a population attributable fraction of 31% of preterm births. In women, antenatal CMD symptoms predicted offspring PTB (adjusted RR 4·4, 95% CI 1·4,14·1). There was little evidence of associations with SGA. INTERPRETATION This first report of an association between paternal preconception mental health and offspring gestational age, while requiring replication in larger samples, complements earlier work on stress in animals, and further strengthens the case for expanding preconception mental health care to both men and women. FUNDING National Health and Medical Research Council (Australia), Victorian Health Promotion Foundation, Australian Rotary Health, Colonial Foundation, Perpetual Trustees, Financial Markets Foundation for Children (Australia), Royal Children's Hospital Foundation, Murdoch Children's Research Institute, Australian Research Council.
Collapse
Affiliation(s)
- Elizabeth A Spry
- Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Deakin University, Geelong, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Claire A Wilson
- Section of Women's Mental Health, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- South London and Maudsley NHS Foundation Trust, London, United Kingdom
- Corresponding author at: Section of Women's Mental Health, Institute of Psychiatry, Psychology and Neuroscience, PO31 King's College London, De Crespigny Park, London SE5 8AF, United Kingdom.
| | - Melissa Middleton
- Murdoch Children's Research Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - Margarita Moreno-Betancur
- Murdoch Children's Research Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - Lex W Doyle
- Murdoch Children's Research Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
- Royal Women's Hospital, Melbourne, Australia
| | - Louise M Howard
- Section of Women's Mental Health, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | | | - Jeanie LY Cheong
- Murdoch Children's Research Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
- Royal Women's Hospital, Melbourne, Australia
| | - Lindsey A Hines
- Population Health Science Institute, University of Bristol, Bristol, United Kingdom
| | - Carolyn Coffey
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Stephanie Brown
- Murdoch Children's Research Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - Craig A Olsson
- Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Deakin University, Geelong, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - George C Patton
- Murdoch Children's Research Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| |
Collapse
|
22
|
Conde-Agudelo A, Romero R, Nicolaides KH. Cervical pessary to prevent preterm birth in asymptomatic high-risk women: a systematic review and meta-analysis. Am J Obstet Gynecol 2020; 223:42-65.e2. [PMID: 32027880 DOI: 10.1016/j.ajog.2019.12.266] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Randomized controlled trials that have assessed the efficacy of cervical pessary to prevent preterm birth in asymptomatic high-risk women have reported conflicting results. OBJECTIVE To evaluate the efficacy and safety of cervical pessary to prevent preterm birth and adverse perinatal outcomes in asymptomatic high-risk women. DATA SOURCES MEDLINE, EMBASE, POPLINE, CINAHL, and LILACS (from their inception to October 31, 2019), Cochrane databases, Google Scholar, bibliographies, and conference proceedings. STUDY ELIGIBILITY CRITERIA Randomized controlled trials that compared cervical pessary with standard care (no pessary) or alternative interventions in asymptomatic women at high risk for preterm birth. STUDY APPRAISAL AND SYNTHESIS METHODS The systematic review was conducted according to the Cochrane Handbook guidelines. The primary outcome was spontaneous preterm birth <34 weeks of gestation. Secondary outcomes included adverse pregnancy, maternal, and perinatal outcomes. Pooled relative risks with 95% confidence intervals were calculated. Quality of evidence was assessed using the GRADE methodology. RESULTS Twelve studies (4687 women and 7167 fetuses/infants) met the inclusion criteria: 8 evaluated pessary vs no pessary in women with a short cervix, 2 assessed pessary vs no pessary in unselected multiple gestations, and 2 compared pessary vs vaginal progesterone in women with a short cervix. There were no significant differences between the pessary and no pessary groups in the risk of spontaneous preterm birth <34 weeks of gestation among singleton gestations with a cervical length ≤25 mm (relative risk, 0.80; 95% confidence interval, 0.43-1.49; 6 trials, 1982 women; low-quality evidence), unselected twin gestations (relative risk, 1.05; 95% confidence interval, 0.79-1.41; 1 trial, 1177 women; moderate-quality evidence), twin gestations with a cervical length <38 mm (relative risk, 0.75; 95% confidence interval, 0.41-1.36; 3 trials, 1128 women; low-quality evidence), and twin gestations with a cervical length ≤25 mm (relative risk; 0.72, 95% confidence interval, 0.25-2.06; 2 trials, 348 women; low-quality evidence). Overall, no significant differences were observed between the pessary and no pessary groups in preterm birth <37, <32, and <28 weeks of gestation, and most adverse pregnancy, maternal, and perinatal outcomes (low- to moderate-quality evidence for most outcomes). There were no significant differences in the risk of spontaneous preterm birth <34 weeks of gestation between pessary and vaginal progesterone in singleton gestations with a cervical length ≤25 mm (relative risk, 0.99; 95% confidence interval, 0.54-1.83; 1 trial, 246 women; low-quality evidence) and twin gestations with a cervical length <38 mm (relative risk, 0.73; 95% confidence interval, 0.46-1.18; 1 trial, 297 women; very low-quality evidence). Vaginal discharge was significantly more frequent in the pessary group than in the no pessary and vaginal progesterone groups (relative risks, ∼2.20; high-quality evidence). CONCLUSION Current evidence does not support the use of cervical pessary to prevent preterm birth or to improve perinatal outcomes in singleton or twin gestations with a short cervix and in unselected twin gestations.
Collapse
Affiliation(s)
- Agustin Conde-Agudelo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI; Detroit Medical Center, Detroit, MI; Department of Obstetrics and Gynecology, Florida International University, Miami, FL.
| | - Kypros H Nicolaides
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, UK
| |
Collapse
|
23
|
Han SH, Lee NR, Kim HJ, Kang YD, Kim JS, Park JW, Jin HJ. Association between the IL-6, IL-10, and TNFα gene polymorphisms and preterm-birth in Korean women. Genes Genomics 2020; 42:743-750. [DOI: 10.1007/s13258-020-00946-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
|
24
|
Pandey M, Awasthi S. Role of MMP-1, MMP-8 and MMP-9 gene polymorphisms in preterm birth. J Genet 2020; 99:2. [PMID: 32089521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Novel approaches to preterm births are underway building upon our prior discoveries and probing into unknown discovery pathways. The recent findings showed a high affinity of MMP-9 in serum and its polymorphisms for preterm birth. This study, which is a hospital-based case-control study, aims to investigate the association of MMP-1, MMP-8 and MMP-9 polymorphisms, and levels of MMP-9 in preterm birth. Increased level of MMP-9 was reported in cases as compared to control. The significant association of MMP-9 (-1562) CT (P = 0.001; OR = 1.44(CI = 0.97-2.14)) and TTgenotype (P = 0.05;OR = 2.6 (CI = 1.46-4.69)) were reported in preterm birth. Our findings suggest that the MMP-9 plays an important role in contributing preterm labour and this can be used as a diagnostic tool during pregnancy.
Collapse
Affiliation(s)
- Monika Pandey
- Department of Pediatrics, King George's Medical University, Lucknow 226 003, India.
| | | |
Collapse
|
25
|
Stress During Pregnancy and Epigenetic Modifications to Offspring DNA: A Systematic Review of Associations and Implications for Preterm Birth. J Perinat Neonatal Nurs 2020; 34:134-145. [PMID: 32332443 PMCID: PMC7185032 DOI: 10.1097/jpn.0000000000000471] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Offspring born preterm (ie, before 37 weeks of gestation) are more likely to die or experience long-standing illness than full-term offspring. Maternal genetic variants (ie, heritable, stable variations in the genetic code) and epigenetic modifications (ie, chemical modifications to the genetic code that can affect which genes are turned on or off) in response to stress have been implicated in preterm birth. Fetal genetic variants have been linked to preterm birth though the role of offspring epigenetics in preterm birth remains understudied. This systematic review synthesizes the literature examining associations among stress during pregnancy and epigenetic modifications to offspring DNA, with 25 reports identified. Ten reports examined DNA methylation (ie, addition/removal of methyl groups to/from DNA) across the epigenome. The remainder examined DNA methylation near genes of interest, primarily genes linked to hypothalamic-pituitary-adrenal axis function (NR3C1, FKBP51), growth/immune function (IGF2), and socioemotional regulation (SLC6A4, OXTR). The majority of reports noted associations among stress and offspring DNA methylation, primarily when perceived stress, anxiety, or depression served as the predictor. Findings suggest that differences in offspring epigenetic patterns may play a role in stress-associated preterm birth and serve as targets for novel interventions.
Collapse
|
26
|
EBF1 Gene mRNA Levels in Maternal Blood and Spontaneous Preterm Birth. Reprod Sci 2020; 27:316-324. [PMID: 32046385 DOI: 10.1007/s43032-019-00027-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/03/2019] [Indexed: 01/22/2023]
Abstract
Genetic variants of six genes (EBF1, EEFSEC, AGTR2, WNT4, ADCY5, and RAP2C) have been linked recently to gestational duration and/or spontaneous preterm birth (sPTB). Our goal was to examine sPTB in relation to maternal blood mRNA levels of these genes. We used a public gene expression dataset (GSE59491) derived from maternal blood in trimesters 2 and 3 that included women with sPTB (n = 51) and term births (n = 106) matched for maternal age, race/ethnicity, pre-pregnancy body mass index, smoking during pregnancy, and parity. T tests were used to examine mRNA mean differences (sPTB vs term) within and across trimesters, and logistic regression models with mRNA quartiles were applied to assess associations between candidate gene mRNA levels and sPTB. Based on these analyses, one significant candidate gene was used in a Gene Set Enrichment Analysis (GSEA) to identify related gene sets. These gene sets were then compared with the ones previously linked to sPTB in the same samples. Our results indicated that among women in the lowest quartile of EBF1 mRNA in the 2nd or 3rd trimester, the odds ratio for sPTB was 2.86 (95%CI 1.08, 7.58) (p = 0.0349, false discovery rate (FDR) = 0.18) and 4.43 (95%CI 1.57, 12.50) (p = 0.0049, FDR = 0.06), respectively. No other candidate gene mRNAs were significantly associated with sPTB. In GSEA, 24 downregulated gene sets were correlated with 2nd trimester low EBF1 mRNA and part of previous sPTB-associated gene sets. In conclusion, mRNA levels of EBF1 in maternal blood may be useful in detecting increased risk of sPTB as early as 2nd trimester. The potential underlying mechanism might involve maternal-fetal immune and cell cycle/apoptosis pathways.
Collapse
|
27
|
|
28
|
Abstract
During the course of evolution the human brain has increased in size and complexity, ultimately these differences are the result of changes at the genetic level. Identifying and characterizing molecular evolution requires an understanding of both the genetic underpinning of the system as well as the comparative genetic tools to identify signatures of selection. This chapter aims to describe our current understanding of the genetics of human brain evolution. Primarily this is the story of the evolution of the human brain since our last common ape ancestor, but where relevant we will also discuss changes that are unique to the primate brain (compared to other mammals) or various other lineages in the evolution of humans more generally. It will focus on genetic changes that both directly affected the development and function of the brain as well as those that have indirectly influenced brain evolution through both prenatal and postnatal environment. This review is not meant to be exhaustive, but rather to begin to construct a general framework for understanding the full array of data being generated.
Collapse
Affiliation(s)
- Eric J Vallender
- University of Mississippi Medical Center, Jackson, MS, United States; Tulane National Primate Research Center, Covington, LA, United States.
| |
Collapse
|
29
|
Hočevar K, Peterlin A, Jovanović AM, Božović A, Ristanović M, Tul N, Peterlin B. Association between angiotensin-converting enzyme gene insertion/deletion polymorphism and susceptibility to preterm birth: A case-control study and meta-analysis. Eur J Obstet Gynecol Reprod Biol 2018; 231:122-128. [PMID: 30366344 DOI: 10.1016/j.ejogrb.2018.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/01/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Preterm birth is the largest contributor to newborn mortality, morbidity, and hospitalization in the first year of life worldwide. Previous studies have suggested the importance of genetic variation in the angiotensin-converting enzyme gene, including the angiotensin-converting enzyme gene insertion/deletion polymorphism, in association with preterm birth. The angiotensin-converting enzyme is a key component of the renin-angiotensin system that is involved in blood pressure homeostasis during pregnancy and also affects risk factors of preterm birth, including the regulation of fibrinolytic system, uteroplacental circulation, vascularization of the placenta, and inflammation. OBJECTIVE The results of previous studies investigating the association between the insertion/deletion polymorphism and susceptibility to preterm birth have been inconsistent, therefore, we have performed a case-control study and conducted a meta-analysis of related studies to clarify this association. STUDY DESIGN In a case-control genetic association study, performed on 217 women with a history of preterm birth and 158 women who experienced full-term pregnancy, the significances of associations between allelic and genotype frequencies and preterm birth were determined using Chi-square tests. Following the case-control study, PubMed, Scopus, Google Scholar, and HugeNavigator databases were systematically searched to identify relevant studies. Altogether, four eligible studies involving 369 cases and 559 controls were included in the meta-analysis. The strength of the association between the angiotensin-converting enzyme gene insertion/deletion polymorphism for preterm birth was estimated by odds ratios (ORs) and corresponding 95% confidence intervals (95% CIs), using a fixed-effects model (Mantel-Haenszel method). RESULTS In our case-control study we did not detect a significant association of angiotensin-converting enzyme insertion/deletion alleles and genotypes with preterm birth. The results of the meta-analysis showed a significant association between the angiotensin-converting enzyme gene insertion/deletion and the risk of preterm birth under allelic, dominant, and recessive comparison genetic models (D vs. I: OR = 1.35, 95% CI = 1.11-1.65, p = 0.0033; DD + ID vs. II: OR = 1.52, 95% CI = 1.08-2.15, p = 0.0161; DD vs. ID + II: OR = 1.48, 95% CI = 1.07-2.04, p = 0.0184). CONCLUSIONS The present meta-analysis suggests that the insertion/deletion polymorphism of the angiotensin-converting enzyme gene in mothers might be associated with preterm birth, however, further well-designed large replication studies involving various ethnicities are needed to confirm this association.
Collapse
Affiliation(s)
- Keli Hočevar
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Ana Peterlin
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | | | | | - Momčilo Ristanović
- Institute of Human Genetics, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Nataša Tul
- Department of Perinatology, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
30
|
Silva LVCD, Javorski N, André Cavalcanti Brandão L, Lima MDC, Crovella S, Eickmann SH. Influence of MBL2 and NOS3 polymorphisms on spontaneous preterm birth in North East Brazil: genetics and preterm birth. J Matern Fetal Neonatal Med 2018; 33:127-135. [PMID: 29886784 DOI: 10.1080/14767058.2018.1487938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: The mannose-binding lectin (MBL2) and nitric oxide synthase 3 (NOS3) genes are associated with the immune response against inflammatory processes, have been reported as possibly related with premature birth. Until now, most of the researches regarding the genetic influence of prematurity have revealed limited results because only investigating the child or the mothers' genotypes, thus not exploring the possible effects of interactions between these genotypes or the interactions with environmental factors related to the duration of pregnancy.Objective: We performed a replica study investigating the influence of single nucleotide polymorphisms (SNPs) in MBL2 and NOS3 genes on premature birth, also considering socioeconomic, demographic, and gestational factors.Materials and methods: We conducted a case-control study with 189 mother-infant dyads, with 104 spontaneous preterm births and 85 term births from Recife, Brazil. We used peripheral blood samples and umbilical cord samples to extract DNA. Functional SNPs at exon 1 and promoter region of MBL2 and NOS3 RS1799983 SNP were genotyped using direct sequencing and fluorescent allelic specific TaqMan® assays respectively. Data were analyzed using the Statistical Package for the Social Sciences (SPSS®) program with bivariate association and logistic multivariate regression tests.Results: We observed a prevalence of MBL2 wild-type genotype in the mother-infant dyad of the preterm group and polymorphic genotype in the mother-infant dyad of term birth. The haplotype LYA predominated in our sample, being more frequent in the preterm group, while the haplotype LYB, correlated with lower levels of MBL protein, was more frequent in the term birth group. About NOS3 RS1799983 SNP, the G/G genotype was more frequent throughout the sample. The heterozygous genotype predominated among women from the preterm group, showed a borderline difference between the groups. When MBL2 genotypes of the mother and son were analyzed together, codon 54 of MBL2 remained associated with prematurity. When the variables with p value lower than .20 in the bivariate analysis were analyzed by logistic regression, the low weight of the pregnant woman in relation to the gestational age, the occurrence of preterm premature rupture of membranes, urinary tract infection during birth and maternal history of other premature births were risk factors to prematurity. On the other hand, the presence of B allele at codon 54 of maternal MBL2 was a protective factor for the occurrence of spontaneous premature birth. In contrast, a borderline association was established between the maternal genetic variation within NOS3 gene and the outcome studied.Conclusions: Our study, limited by the small number of patients enrolled, indicates that MBL2 and NOS3 functional SNPs are associated with the occurrence of spontaneous prematurity and the regulation of the maternal inflammatory response. Despite these results are in agreement with previously reports, our findings do not replicate the ones reported in a large genome-wide association study performed on quite high number of subjects. Thus, we can conclude that MBL2 and NOS3 functional SNPs are plausible candidate risk factors just in few preterm birth cases, and consequently they cannot be included in the general diagnostic practice.
Collapse
Affiliation(s)
| | - Natassia Javorski
- Post-graduation in Genetics of Federal University of Pernambuco, Recife, Brazil
| | | | - Marília de Carvalho Lima
- Post-graduation in Child and Adolescent Health of Federal University of Pernambuco, Recife, Brazil
| | - Sergio Crovella
- Genetics Department of Federal University of Pernambuco, Recife, Brazil
| | - Sophie Helena Eickmann
- Post-graduation in Child and Adolescent Health of Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
31
|
Tan Q, Li S, Frost M, Nygaard M, Soerensen M, Larsen M, Christensen K, Christiansen L. Epigenetic signature of preterm birth in adult twins. Clin Epigenetics 2018; 10:87. [PMID: 29983834 PMCID: PMC6020425 DOI: 10.1186/s13148-018-0518-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/11/2018] [Indexed: 11/29/2022] Open
Abstract
Background Preterm birth is a leading cause of perinatal mortality and long-term health consequences. Epigenetic mechanisms may have been at play in preterm birth survivors, and these could be persistent and detrimental to health later in life. Methods We performed a genome-wide DNA methylation profiling in adult twins of premature birth to identify genomic regions under differential epigenetic regulation in 144 twins with a median age of 33 years (age range 30-36). Results Association analysis detected three genomic regions annotated to the SDHAP3, TAGLN3 and GSTT1 genes on chromosomes 5, 3 and 22 (FWER: 0.01, 0.02 and 0.04) respectively. These genes display strong involvement in neurodevelopmental disorders, cancer susceptibility and premature delivery. The three identified significant regions were successfully replicated in an independent sample of twins of even older age (median age 66, range 56-80) with similar regulatory patterns and nominal p values < 5.05e-04. Biological pathway analysis detected five significantly enriched pathways all explicitly involved in immune responses. Conclusion We have found novel evidence associating premature delivery with epigenetic modification of important genes/pathways and revealed that preterm birth, as an early life event, could be related to differential methylation regulation patterns observable in adults and even at high ages which could potentially mediate susceptibility to age-related diseases and adult health.
Collapse
Affiliation(s)
- Qihua Tan
- Epidemiology and Biostatistics, Department of Public Health, Faculty of Health Science, University of Southern Denmark, J. B. Winsløws Vej 9B, DK-5000 Odense, Denmark
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Shuxia Li
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Morten Frost
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Marianne Nygaard
- Epidemiology and Biostatistics, Department of Public Health, Faculty of Health Science, University of Southern Denmark, J. B. Winsløws Vej 9B, DK-5000 Odense, Denmark
| | - Mette Soerensen
- Epidemiology and Biostatistics, Department of Public Health, Faculty of Health Science, University of Southern Denmark, J. B. Winsløws Vej 9B, DK-5000 Odense, Denmark
| | - Martin Larsen
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Kaare Christensen
- Epidemiology and Biostatistics, Department of Public Health, Faculty of Health Science, University of Southern Denmark, J. B. Winsløws Vej 9B, DK-5000 Odense, Denmark
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lene Christiansen
- Epidemiology and Biostatistics, Department of Public Health, Faculty of Health Science, University of Southern Denmark, J. B. Winsløws Vej 9B, DK-5000 Odense, Denmark
| |
Collapse
|
32
|
Zhang G, Srivastava A, Bacelis J, Juodakis J, Jacobsson B, Muglia LJ. Genetic studies of gestational duration and preterm birth. Best Pract Res Clin Obstet Gynaecol 2018; 52:33-47. [PMID: 30007778 PMCID: PMC6290110 DOI: 10.1016/j.bpobgyn.2018.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/18/2018] [Accepted: 05/04/2018] [Indexed: 01/12/2023]
Abstract
The fine control of birth timing is important to human survival and evolution. A key challenge in studying the mechanisms underlying the regulation of human birth timing is that human parturition is a unique to human event — animal models provide only limited information. The duration of gestation or the risk of preterm birth is a complex human trait under genetic control from both maternal and fetal genomes. Genomic discoveries through genome-wide association (GWA) studies would implicate relevant genes and pathways. Similar to other complex human traits, gestational duration is likely to be influenced by numerous genetic variants of small effect size. The detection of these small-effect genetic variants requires very large sample sizes. In addition, several practical and analytical challenges, in particular the involvement of both maternal and fetal genomes, further complicate the genetic studies of gestational duration and other pregnancy phenotypes. Despite these challenges, large-scale GWA studies have already identified several genomic loci associated with gestational duration or the risk of preterm birth. These genomic discoveries have revealed novel insights about the biology of human birth timing. Expanding genomic discoveries in larger datasets by more refined analytical approaches, together with the functional analysis of the identified genomic loci, will collectively elucidate the biological processes underlying the control of human birth timing.
Collapse
Affiliation(s)
- Ge Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, USA; The Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, USA; March of Dimes Prematurity Research Center Ohio Collaborative, USA; Department of Pediatrics, University of Cincinnati College of Medicine, USA.
| | - Amit Srivastava
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, USA; The Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, USA; March of Dimes Prematurity Research Center Ohio Collaborative, USA; Department of Pediatrics, University of Cincinnati College of Medicine, USA
| | - Jonas Bacelis
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (East), Gothenburg, Sweden
| | - Julius Juodakis
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Genetics and Bioinformatics, Area of Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo, Norway
| | - Louis J Muglia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, USA; The Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, USA; March of Dimes Prematurity Research Center Ohio Collaborative, USA; Department of Pediatrics, University of Cincinnati College of Medicine, USA
| |
Collapse
|
33
|
Evidence of a gene-environment interaction of NODAL variants and inflammation in preterm birth. J Perinatol 2018; 38:482-488. [PMID: 29453435 DOI: 10.1038/s41372-018-0073-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/12/2017] [Accepted: 01/02/2018] [Indexed: 01/10/2023]
Abstract
OBJECTIVE NODAL has been implicated in timing of parturition and immune regulation. We investigated the relationship between NODAL polymorphisms, infection/inflammation, and preterm birth. STUDY DESIGN For this secondary analysis, 613 women (189 preterm and 424 term) from the Montreal Prematurity Study were genotyped for NODAL polymorphisms and assessed for bacterial vaginosis and placental inflammation. RESULT NODAL polymorphisms were not associated with preterm birth. However, the rs2231947(C>T) variant allele was associated with increased risk for preterm birth among women with bacterial vaginosis (odds ratio: 2.76, 95% confidence interval: 1.12-6.85). Among women without placental inflammation, the rs1904589(A>G) variant allele was associated with increased risk of preterm birth (odds ratio: 1.31, 95% confidence interval: 1.02-1.70). Among women with placental inflammation, the rs10999338(C>T) variant allele was associated with reduced risk of preterm birth (odds ratio: 0.50, 95% confidence interval: 0.29-0.87). CONCLUSION The effect of NODAL polymorphisms on preterm birth depends on maternal infection/inflammation status.
Collapse
|
34
|
Strauss JF, Romero R, Gomez-Lopez N, Haymond-Thornburg H, Modi BP, Teves ME, Pearson LN, York TP, Schenkein HA. Spontaneous preterm birth: advances toward the discovery of genetic predisposition. Am J Obstet Gynecol 2018; 218:294-314.e2. [PMID: 29248470 PMCID: PMC5834399 DOI: 10.1016/j.ajog.2017.12.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 02/08/2023]
Abstract
Evidence from family and twin-based studies provide strong support for a significant contribution of maternal and fetal genetics to the timing of parturition and spontaneous preterm birth. However, there has been only modest success in the discovery of genes predisposing to preterm birth, despite increasing sophistication of genetic and genomic technology. In contrast, DNA variants associated with other traits/diseases have been identified. For example, there is overwhelming evidence that suggests that the nature and intensity of an inflammatory response in adults and children are under genetic control. Because inflammation is often invoked as an etiologic factor in spontaneous preterm birth, the question of whether spontaneous preterm birth has a genetic predisposition in the case of pathologic inflammation has been of long-standing interest to investigators. Here, we review various genetic approaches used for the discovery of preterm birth genetic variants in the context of inflammation-associated spontaneous preterm birth. Candidate gene studies have sought genetic variants that regulate inflammation in the mother and fetus; however, the promising findings have often not been replicated. Genome-wide association studies, an approach to the identification of chromosomal loci responsible for complex traits, have also not yielded compelling evidence for DNA variants predisposing to preterm birth. A recent genome-wide association study that included a large number of White women (>40,000) revealed that maternal loci contribute to preterm birth. Although none of these loci harbored genes directly related to innate immunity, the results were replicated. Another approach to identify DNA variants predisposing to preterm birth is whole exome sequencing, which examines the DNA sequence of protein-coding regions of the genome. A recent whole exome sequencing study identified rare mutations in genes encoding for proteins involved in the negative regulation (dampening) of the innate immune response (eg, CARD6, CARD8, NLRP10, NLRP12, NOD2, TLR10) and antimicrobial peptide/proteins (eg, DEFB1, MBL2). These findings support the concept that preterm labor, at least in part, has an inflammatory etiology, which can be induced by pathogens (ie, intraamniotic infection) or "danger signals" (alarmins) released during cellular stress or necrosis (ie, sterile intraamniotic inflammation). These findings support the notion that preterm birth has a polygenic basis that involves rare mutations or damaging variants in multiple genes involved in innate immunity and host defense mechanisms against microbes and their noxious products. An overlap among the whole exome sequencing-identified genes and other inflammatory conditions associated with preterm birth, such as periodontal disease and inflammatory bowel disease, was observed, which suggests a shared genetic substrate for these conditions. We propose that whole exome sequencing, as well as whole genome sequencing, is the most promising approach for the identification of functionally significant genetic variants responsible for spontaneous preterm birth, at least in the context of pathologic inflammation. The identification of genes that contribute to preterm birth by whole exome sequencing, or whole genome sequencing, promises to yield valuable population-specific biomarkers to identify the risk for spontaneous preterm birth and potential strategies to mitigate such a risk.
Collapse
Affiliation(s)
- Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University School of Medicine, Richmond, VA; Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA.
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI.
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD and Detroit, MI; Department of Obstetrics and Gynecology and the Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, MI
| | - Hannah Haymond-Thornburg
- Department of Obstetrics and Gynecology, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Bhavi P Modi
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Maria E Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Laurel N Pearson
- Department of Anthropology, Pennsylvania State University, University Park, PA
| | - Timothy P York
- Department of Obstetrics and Gynecology, Virginia Commonwealth University School of Medicine, Richmond, VA; Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Harvey A Schenkein
- Department of Periodontics, Virginia Commonwealth University School of Dentistry, Richmond, VA
| |
Collapse
|
35
|
Abstract
This article presents an account of the research carried out so far in the use of metabolomics to find biomarkers of preterm birth (PTB) in fetal, maternal, and newborn biofluids. Metabolomic studies have employed mainly nuclear magnetic resonance spectroscopy or mass spectrometry-based methodologies to analyze, on one hand, prenatal biofluids (amniotic fluid, maternal urine/maternal blood, cervicovaginal fluid) to identify predictive biomarkers of PTB, and on the other hand, biofluids collected at or after birth (amniotic fluid, umbilical cord blood, newborn urine, and newborn blood, maternal blood, or breast milk) to assess and follow up the health status of PTB babies. Besides advancing on the biochemical knowledge of PTB metabolism mainly during the in utero period and at birth, the work carried out has also helped to identify important requirements related to experimental design and analytical protocol that need to be addressed, if translation of these biomarkers to the clinic is to be envisaged. An outlook of possible future developments for the translation of laboratory results to the clinic is presented.
Collapse
Affiliation(s)
- Ana M Gil
- 1 Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Daniela Duarte
- 1 Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
36
|
Modi BP, Teves ME, Pearson LN, Parikh HI, Haymond‐Thornburg H, Tucker JL, Chaemsaithong P, Gomez‐Lopez N, York TP, Romero R, Strauss JF. Mutations in fetal genes involved in innate immunity and host defense against microbes increase risk of preterm premature rupture of membranes (PPROM). Mol Genet Genomic Med 2017; 5:720-729. [PMID: 29178652 PMCID: PMC5702565 DOI: 10.1002/mgg3.330] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Twin studies have revealed a significant contribution of the fetal genome to risk of preterm birth. Preterm premature rupture of membranes (PPROM) is the leading identifiable cause of preterm delivery. Infection and inflammation of the fetal membranes is commonly found associated with PPROM. METHODS We carried out whole exome sequencing (WES) of genomic DNA from neonates born of African-American mothers whose pregnancies were complicated by PPROM (76) or were normal term pregnancies (N = 43) to identify mutations in 35 candidate genes involved in innate immunity and host defenses against microbes. Targeted genotyping of mutations in the candidates discovered by WES was conducted on an additional 188 PPROM cases and 175 controls. RESULTS We identified rare heterozygous nonsense and frameshift mutations in several of the candidate genes, including CARD6, CARD8, DEFB1, FUT2, MBL2, NLP10, NLRP12, and NOD2. We discovered that some mutations (CARD6, DEFB1, FUT2, MBL2, NLRP10, NOD2) were present only in PPROM cases. CONCLUSIONS We conclude that rare damaging mutations in innate immunity and host defense genes, the majority being heterozygous, are more frequent in neonates born of pregnancies complicated by PPROM. These findings suggest that the risk of preterm birth in African-Americans may be conferred by mutations in multiple genes encoding proteins involved in dampening the innate immune response or protecting the host against microbial infection and microbial products.
Collapse
Affiliation(s)
- Bhavi P. Modi
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVirginia
| | - Maria E. Teves
- Department of Obstetrics and GynecologyVirginia Commonwealth UniversityRichmondVirginia
| | - Laurel N. Pearson
- Department of AnthropologyPennsylvania State UniversityUniversity ParkPennsylvania
| | - Hardik I. Parikh
- Department of Microbiology and ImmunologyVirginia Commonwealth UniversityRichmondVirginia
| | | | - John L. Tucker
- Department of Obstetrics and GynecologyVirginia Commonwealth UniversityRichmondVirginia
| | - Piya Chaemsaithong
- Perinatology Research BranchEunice Kennedy Shriver National Institute for Child Health and Human DevelopmentNIHDetroitMichigan
| | - Nardhy Gomez‐Lopez
- Perinatology Research BranchEunice Kennedy Shriver National Institute for Child Health and Human DevelopmentNIHDetroitMichigan
- Department of Obstetrics and GynecologyUniversity of MichiganAnn ArborMichigan
- Department of Epidemiology and BiostatisticsMichigan State UniversityEast LansingMichigan
- Center for Molecular Medicine and GeneticsWayne State UniversityDetroitMichigan
| | - Timothy P. York
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVirginia
- Department of Obstetrics and GynecologyVirginia Commonwealth UniversityRichmondVirginia
| | - Roberto Romero
- Perinatology Research BranchEunice Kennedy Shriver National Institute for Child Health and Human DevelopmentNIHDetroitMichigan
- Department of Obstetrics and GynecologyUniversity of MichiganAnn ArborMichigan
- Department of Epidemiology and BiostatisticsMichigan State UniversityEast LansingMichigan
- Center for Molecular Medicine and GeneticsWayne State UniversityDetroitMichigan
| | - Jerome F. Strauss
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVirginia
- Department of Obstetrics and GynecologyVirginia Commonwealth UniversityRichmondVirginia
| |
Collapse
|
37
|
Abstract
There is increased recognition that preterm neonates require sequential surveillance to capture the spectrum of coordination, communication, learning, and behavior regulation disorders that may occur in the first 5 years of life and beyond. In particular, the framework of follow-up needs to go beyond the detection of cerebral palsy, blindness, and deafness in the first 2 years of life for only those at highest preterm risk (ie, <28 weeks gestation, with combinations of severe cranial sonographic abnormalities, bronchopulmonary dysplasia, and retinopathy of prematurity). In addition, there are numerous barriers for diverse families in accessing quality, comprehensive early intervention and early child education supports. This article highlights recent research on the long-term impact of preterm birth with a focus on disparities in resource access and in outcomes at entry to kindergarten and early educational trajectories. Across all degrees of prematurity, children from disadvantaged backgrounds face significant disparities both in access to comprehensive and continuous supports and in long-term academic outcomes. Ten key recommendations are provided for ensuring proactive management strategies for the long-term academic, behavioral, and social success of these at-risk children. [Pediatr Ann. 2017;46(10):e360-e364.].
Collapse
|
38
|
Song J, Li J, Liu H, Gan Y, Sun Y, Yu M, Zhang Y, Luo F, Tian Y, Wang W, Zhang J, Little J, Cheng H, Chen D. A genetic variant in the placenta-derived MHC class I chain-related gene A increases the risk of preterm birth in a Chinese population. Hum Genet 2017; 136:1375-1384. [DOI: 10.1007/s00439-017-1834-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022]
|
39
|
Ribeiro de Andrade Ramos B, da Silva MG. The Burden of Genetic and Epigenetic Traits in Prematurity. Reprod Sci 2017; 25:471-479. [PMID: 28718380 DOI: 10.1177/1933719117718270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite decades of investigations and accumulated scientific knowledge, preterm birth (PTB) remains a significant burden worldwide. Several mechanisms have been proposed to explain this condition, and a number of risk factors from infectious to behavioral and genetic/epigenetic factors influence this outcome. The heritability of PTB is estimated to be 17% to 36%, which demonstrates that genetic predisposition plays a key role in PTB. Structural DNA modifications without changes in the DNA sequence and post-transcriptional regulation also have an impact on gene expression and thus influence pregnancy outcomes. There is a complex interplay between environmental factors and the individual's genetics and epigenetics that may culminate in PTB, but the complete regulatory pathways and networks involved in this context are still unclear. Here, we outline what is known so far about the genetic and epigenetic factors involved in preterm delivery, including polymorphisms, DNA methylation, and microRNAs, and suggest fields for research.
Collapse
Affiliation(s)
| | - Márcia Guimarães da Silva
- 1 Department of Pathology, Botucatu Medical School, São Paulo State University-UNESP, São Paulo, Brazil
| |
Collapse
|
40
|
Newnham JP, Kemp MW, White SW, Arrese CA, Hart RJ, Keelan JA. Applying Precision Public Health to Prevent Preterm Birth. Front Public Health 2017; 5:66. [PMID: 28421178 PMCID: PMC5379772 DOI: 10.3389/fpubh.2017.00066] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/17/2017] [Indexed: 12/12/2022] Open
Abstract
Preterm birth (PTB) is one of the major health-care challenges of our time. Being born too early is associated with major risks to the child with potential for serious consequences in terms of life-long disability and health-care costs. Discovering how to prevent PTB needs to be one of our greatest priorities. Recent advances have provided hope that a percentage of cases known to be related to risk factors may be amenable to prevention; but the majority of cases remain of unknown cause, and there is little chance of prevention. Applying the principle of precision public health may offer opportunities previously unavailable. Presented in this article are ideas that may improve our abilities in the fields of studying the effects of migration and of populations in transition, public health programs, tobacco control, routine measurement of length of the cervix in mid-pregnancy by ultrasound imaging, prevention of non-medically indicated late PTB, identification of pregnant women for whom treatment of vaginal infection may be of benefit, and screening by genetics and other “omics.” Opening new research in these fields, and viewing these clinical problems through a prism of precision public health, may produce benefits that will affect the lives of large numbers of people.
Collapse
Affiliation(s)
- John P Newnham
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA, Australia.,Department of Maternal Fetal Medicine, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Matthew W Kemp
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA, Australia
| | - Scott W White
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA, Australia.,Department of Maternal Fetal Medicine, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Catherine A Arrese
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA, Australia
| | - Roger J Hart
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA, Australia
| | - Jeffrey A Keelan
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|