1
|
Rubini E, van Rossem L, Schoenmakers S, Willemsen SP, Sinclair KD, Steegers-Theunissen RPM, Rousian M. Maternal fatty acid intake and human embryonic growth: the Rotterdam Periconception Cohort. Eur J Epidemiol 2024; 39:1379-1389. [PMID: 39661096 DOI: 10.1007/s10654-024-01184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
The required intake of macronutrients by women during the periconceptional period for optimal fetal growth is the subject of ongoing investigation. Intake of polyunsaturated fatty acids (PUFA) is positively associated with fetal neural development, growth velocity and birth weight. However, limited evidence indicates that PUFAs play a role in embryogenesis. We aim to investigate the associations between maternal PUFA dietary intake and first trimester embryonic volume (EV) and head volume (HV). In a prospective cohort study (2013-2020), 464 pregnant women at < 8 weeks of gestation were included. Maternal dietary intake of PUFAs, including omega 3 (docosahexaenoic acid, DHA and eicosapentaeonic acid, EPA) and 6, was obtained from food frequency questionnaires, and first trimester three-dimensional ultrasound examinations were performed to measure EV and HV using Virtual Reality techniques. More than 70% of the population had omega 3 intakes below recommendations. A higher intake of PUFAs was associated with a smaller embryonic HV/EV ratio after adjusting for confounders (EPA p = 0.012, DHA p = 0.015, omega 3 and 6 p < 0.001), but no associations were found with EV or HV alone. Omega 3 from fish oil supplements alone was not associated with embryonic growth. Strong adherence to a PUFA-rich dietary pattern was associated with a smaller embryonic HV/EV ratio (DHA and EPA-rich diet p = 0.054, PUFA-rich diet p = 0.002). It is important to increase awareness of the high prevalence of omega 3-deficiency among pregnant women, and the opportunity for prevention by increasing PUFA intake, thereby reducing the risks of adverse pregnancy outcomes which originate during the periconceptional period.
Collapse
Affiliation(s)
- Eleonora Rubini
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Lenie van Rossem
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sam Schoenmakers
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Sten P Willemsen
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Biostatistics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Kevin D Sinclair
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, UK
| | | | - Melek Rousian
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Zhu H, Li X, Wang J, Wang H, Zhao S, Tian Y, Su Y. Transcriptomic analysis reveals differentially expressed genes associated with meat quality in Chinese Dagu chicken and AA + broiler roosters. BMC Genomics 2024; 25:1002. [PMID: 39455924 PMCID: PMC11515088 DOI: 10.1186/s12864-024-10927-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND With the improvement of living standards, the quality of chicken has become a significant concern. Chinese Dagu Chicken (dual-purpose type) and Arbor Acres plus broiler (AA+ broiler) (meat-type) were selected as the research subjects in this study, the meat quality of the breast and leg muscles were measured. However, the molecular mechanism(s) underlying regulation of muscle development are not yet fully elucidated. Therefore, finding molecular markers or major genes that regulate muscle quality has become a crucial breakthrough in chicken breeding. Unraveling the molecular mechanism behind meat traits in chicken and other domestic fowl is facilitated by identifying the key genes associated with these developmental events. Here, a comparative transcriptomic analysis of chicken meat was conducted on breast muscles (BM) and leg muscles (LM) in AA+ broilers (AA) and Dagu chicken (DG) to explore the differences in their meat traits employing RNA-seq. RESULTS Twelve cDNA libraries of BM and LM from AA and DG were constructed from four experimental groups, yielding 14,464 genes. Among them, Dagu chicken breast muscles (DGB) vs AA+ broilers breast muscles (AAB) showed 415 upregulated genes and 449 downregulated genes, Dagu chicken leg muscles (DGL) vs AA+ broilers leg muscles (AAL) exhibited 237 upregulated genes and 278 downregulated genes, DGL vs DGB demonstrated 391 upregulated genes and 594 downregulated genes, and AAL vs AAB displayed 122 upregulated genes and 154 downregulated genes. 13 genes, including nine upregulated genes (COX5A, COX7C, NDUFV1, UQCRFS1, UQCR11, BRT-1, FGF14, TMOD1, MYOZ2) and four downregulated genes (MYBPC3, MYO7B, MTMR7, and TNNC1), were found to be associated with the oxidative phosphorylation signaling pathway. Further analysis revealed that the differentially expressed genes (DEGs) from muscle were enriched in various pathways, such as metabolic pathways, oxidative phosphorylation, carbon metabolism, glycolysis, extracellular matrix-receptor interaction, biosynthesis of amino acids, focal adhesion, vascular smooth muscle contraction, and cardiac muscle contraction, all of which are involved in muscle development and metabolism. This study also measured the meat quality of the breast and leg muscles from the two breeds, which demonstrated superior overall meat quality in Chinese Dagu Chicken compared to the AA+ broiler. CONCLUSIONS Our findings show that the meat quality of dual-purpose breeds (Chinese Dagu chicken) is higher than meat-type (AA+ broiler), which may be related to the DEGs regulating muscle development and metabolism. Our findings also provide transcriptomic insights for a comparative analysis of molecular mechanisms underlying muscle development between the two breeds, and have practical implications for the improvement of chicken breeding practices.
Collapse
Affiliation(s)
- Hongyan Zhu
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou , Liaoning, 121001, China
- Key Laboratory of Molecular Cell Biology and New Drug Development of the Education, Department of Liaoning Province, Jinzhou, Liaoning, 121001, China
| | - Xiaohan Li
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Jie Wang
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Haoming Wang
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou , Liaoning, 121001, China
| | - Song Zhao
- Key Laboratory of Molecular Cell Biology and New Drug Development of the Education, Department of Liaoning Province, Jinzhou, Liaoning, 121001, China
- College of Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Yumin Tian
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Yuhong Su
- College of Food and Health, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| |
Collapse
|
3
|
Wang X, Liu R, Chen Z, Zhang R, Mei Y, Miao X, Bai X, Dong Y. Combining Transcriptomics and Proteomics to Screen Candidate Genes Related to Bovine Birth Weight. Animals (Basel) 2024; 14:2751. [PMID: 39335340 PMCID: PMC11429316 DOI: 10.3390/ani14182751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The placenta is a vital organ in bovine reproduction, crucial for blood supply, nutrient transport, and embryonic development. It plays an essential role in the intrauterine growth of calves. However, the molecular mechanisms governing placental function in calves remain inadequately understood. METHODS We established transcriptome and proteome databases for low-birth-weight (LB) and high-birth-weight (HB) calf placentae, identifying key genes and proteins associated with birth weight through bioinformatics analyses that included functional enrichment and protein-protein interactions (PPIs). Both mRNA and protein levels were validated. RESULTS A total of 1494 differentially expressed genes (DEGs) and 294 differentially expressed proteins (DEPs) were identified when comparing the LB group to the HB group. Furthermore, we identified 53 genes and proteins exhibiting significant co-expression across both transcriptomic and proteomic datasets; among these, 40 were co-upregulated, 8 co-downregulated, while 5 displayed upregulation at the protein level despite downregulation at the mRNA level. Functional enrichment analyses (GO and KEGG) and protein-protein interaction (PPI) analysis indicate that, at the transcriptional level, the primary factor contributing to differences in calf birth weight is that the placenta of the high-birth-weight (HB) group provides more nutrients to the fetus, characterized by enhanced nutrient transport (SLC2A1 and SLC2A11), energy metabolism (ACSL1, MICALL2, PAG2, COL14A1, and ELOVL5), and lipid synthesis (ELOVL5 and ELOVL7). In contrast, the placenta of the low-birth-weight (LB) group prioritizes cell proliferation (PAK1 and ITGA3) and angiogenesis. At the protein level, while the placentae from the HB group exhibit efficient energy production and lipid synthesis, they also demonstrate reduced immunity to various diseases such as systemic lupus erythematosus and bacterial dysentery. Conversely, the LB group placentae excel in regulating critical biological processes, including cell migration, proliferation, differentiation, apoptosis, and signal transduction; they also display higher disease immunity markers (COL6A1, TNC CD36, CD81, Igh-1a, and IGHG) compared to those of the HB group placentae. Co-expression analysis further suggests that increases in calf birth weight can be attributed to both high-efficiency energy production and lipid synthesis within the HB group placentae (ELOVL5, ELOVL7, and ACSL1), alongside cholesterol biosynthesis and metabolic pathways involving CYP11A1 and CYP17A1. CONCLUSION We propose that ELOVL5, ELOVL7, ACSL1, CYP11A1, and CYP17A1 serve as potential protein biomarkers for regulating calf birth weight through the modulation of the fatty acid metabolism, lipid synthesis, and cholesterol levels.
Collapse
Affiliation(s)
- Xiuyuan Wang
- Laboratory of Animal Molecular, Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Ruili Liu
- Laboratory of Animal Molecular, Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhenpeng Chen
- Laboratory of Animal Molecular, Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Renzheng Zhang
- Laboratory of Animal Molecular, Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanfang Mei
- Laboratory of Animal Molecular, Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiuping Miao
- Laboratory of Animal Molecular, Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuejin Bai
- Laboratory of Animal Molecular, Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao 266109, China
- Black Cattle Seed Industry Innovation Center, Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Yajuan Dong
- Laboratory of Animal Molecular, Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao 266109, China
- Black Cattle Seed Industry Innovation Center, Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
4
|
Walker KE, Pasternak JA, Jones A, Mulligan MK, Van Goor A, Harding JCS, Lunney JK. Gene expression in heart, kidney, and liver identifies possible mechanisms underpinning fetal resistance and susceptibility to in utero PRRSV infection. Vet Microbiol 2024; 295:110154. [PMID: 38959808 DOI: 10.1016/j.vetmic.2024.110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the costliest diseases to pork producers worldwide. We tested samples from the pregnant gilt model (PGM) to better understand the fetal response to in-utero PRRS virus (PRRSV) infection. Our goal was to identify critical tissues and genes associated with fetal resilience or susceptibility. Pregnant gilts (N=22) were infected with PRRSV on day 86 of gestation. At 21 days post maternal infection, the gilts and fetuses were euthanized, and fetal tissues collected. Fetuses were characterized for PRRS viral load in fetal serum and thymus, and preservation status (viable or meconium stained: VIA or MEC). Fetuses (N=10 per group) were compared: uninfected (UNIF; <1 log/µL PRRSV RNA), resilient (HV_VIA, >5 log virus/µL but viable), and susceptible (HV_MEC, >5 log virus/µL with MEC). Gene expression in fetal heart, kidney, and liver was investigated using NanoString transcriptomics. Gene categories investigated were hypothesized to be involved in fetal response to PRRSV infection: renin- angiotensin-aldosterone, inflammatory, transporter and metabolic systems. Following PRRSV infection, CCL5 increased expression in heart and kidney, and ACE2 decreased expression in kidney, each associated with fetal PRRS susceptibility. Liver revealed the most significant differential gene expression: CXCL10 decreased and IL10 increased indicative of immune suppression. Increased liver gene expression indicated potential associations with fetal PRRS susceptibility on several systems including blood pressure regulation (AGTR1), energy metabolism (SLC16A1 and SLC16A7), tissue specific responses (KL) and growth modulation (TGFB1). Overall, analyses of non-lymphoid tissues provided clues to mechanisms of fetal compromise following maternal PRRSV infection.
Collapse
Affiliation(s)
- K E Walker
- Animal Parasitic Diseases Laboratory, United States Department of Agriculture, Agricultural Research Services, Beltsville Agricultural Research Center, Beltsville, MD, United States; Department of Biology, Morgan State University, Baltimore, MD, United States
| | - J A Pasternak
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - A Jones
- Doctor of Veterinary Medicine program, St. George's University, True Blue, Grenada, West Indies
| | - M K Mulligan
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - A Van Goor
- United States Department of Agriculture, National Institute of Food and Agriculture, Columbia, MO, United States
| | - J C S Harding
- Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr., Saskatoon, Saskatchewan S7N 5B4, Canada
| | - J K Lunney
- Animal Parasitic Diseases Laboratory, United States Department of Agriculture, Agricultural Research Services, Beltsville Agricultural Research Center, Beltsville, MD, United States.
| |
Collapse
|
5
|
Calcaterra V, Stagi S, Verduci E, Zuccotti G. Editorial: Nutrition, diet and endocrinological health in female children and adolescents. Front Nutr 2024; 11:1459419. [PMID: 39081681 PMCID: PMC11287253 DOI: 10.3389/fnut.2024.1459419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Department of Pediatric, Buzzi Children's Hospital, Milan, Italy
| | - Stefano Stagi
- Department of Health Sciences, University of Florence, Florence, Italy
- Meyer Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Florence, Italy
| | - Elvira Verduci
- Department of Pediatric, Buzzi Children's Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatric, Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Park J, Na CS. Weighted single-step genome-wide association study to reveal new candidate genes for productive traits of Landrace pig in Korea. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:702-716. [PMID: 39165735 PMCID: PMC11331376 DOI: 10.5187/jast.2024.e104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/12/2023] [Accepted: 10/04/2023] [Indexed: 08/22/2024]
Abstract
The objective of this study was to identify genomic regions and candidate genes associated with productive traits using a total of 37,099 productive records and 6,683 single nucleotide polymorphism (SNP) data obtained from five Great-Grand-Parents (GGP) farms in Landrace. The estimated of heritabilities for days to 105 kg (AGE), average daily gain (ADG), backfat thickness (BF), and eye muscle area (EMA) were 0.49, 0.49, 0.56, and 0.23, respectively. We identified a genetic window that explained 2.05%-2.34% for each trait of the total genetic variance. We observed a clear partitioning of the four traits into two groups, and the most significant genomic region for AGE and ADG were located on the Sus scrofa chromosome (SSC) 1, while BF and EMA were located on SSC 2. We conducted Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), which revealed results in three biological processes, four cellular component, three molecular function, and six KEGG pathway. Significant SNPs can be used as markers for quantitative trait loci (QTL) investigation and genomic selection (GS) for productive traits in Landrace pig.
Collapse
Affiliation(s)
- Jun Park
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
| | - Chong-Sam Na
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
7
|
Akinyemi AJ, Du XQ, Aguilan J, Sidoli S, Hirsch D, Wang T, Reznik S, Fuloria M, Charron MJ. Human cord plasma proteomic analysis reveals sexually dimorphic proteins associated with intrauterine growth restriction. Proteomics 2024; 24:e2300260. [PMID: 38059784 DOI: 10.1002/pmic.202300260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023]
Abstract
Intrauterine growth restriction (IUGR) is associated with increased risk of cardiometabolic disease later in life and has been shown to affect female and male offspring differently, but the mechanisms remain unclear. The purpose of this study was to identify proteomic differences and metabolic risk markers in IUGR male and female neonates when compared to appropriate for gestational age (AGA) babies that will provide a better understanding of IUGR pathogenesis and its associated risks. Our results revealed alterations in IUGR cord plasma proteomes with most of the differentially abundant proteins implicated in peroxisome pathways. This effect was evident in females but not in males. Furthermore, we observed that catalase activity, a peroxisomal enzyme, was significantly increased in females (p < 0.05) but unchanged in males. Finally, we identified risk proteins associated with obesity, type-2 diabetes, and glucose intolerance such as EGF containing fibulin extracellular matrix protein 1 (EFEMP1), proprotein convertase subtilisin/kexin type 9 (PCSK9) and transforming growth factor beta receptor 3 (TGFBR3) proteins unique to females while coagulation factor IX (C9) and retinol binding protein 4 (RBP4) are unique in males. In conclusion, IUGR may display sexual dimorphism which may be associated with differences in lifelong risk for cardiometabolic disease between males and females.
Collapse
Affiliation(s)
| | - Xiu Quan Du
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jennifer Aguilan
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David Hirsch
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tao Wang
- Department of Epidemiology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sandra Reznik
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Jamaica, New York, USA
| | - Mamta Fuloria
- Department of Pediatrics, Division of Neonatology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Maureen J Charron
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Division of Endocrinology, Norman Fleisher Institute, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
8
|
Tao Y, Chen W, Xu H, Xu J, Yang H, Luo X, Chen M, He J, Bai Y, Qi H. Adipocyte-Derived Exosomal NOX4-Mediated Oxidative Damage Induces Premature Placental Senescence in Obese Pregnancy. Int J Nanomedicine 2023; 18:4705-4726. [PMID: 37608820 PMCID: PMC10441661 DOI: 10.2147/ijn.s419081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Background A recent study has reported that maternal obesity is linked to placental oxidative damage and premature senescence. NADPH oxidase 4 (NOX4) is massively expressed in adipose tissue, and its induced reactive oxygen species have been found to contribute to cellular senescence. While, whether, in obese pregnancy, adipose tissue-derived NOX4 is the considerable cause of placental senescence remained elusive. Methods This study collected term placentas from obese and normal pregnancies and obese pregnant mouse model was constructed by a high fat diet to explore placental senescence. Furthermore, adipocyte-derived exosomes were isolated from primary adipocyte medium of obese and normal pregnancies to examine their effect on placenta functions in vivo and vitro. Results The placenta from the obese group showed a significant increase in placental oxidative damage and senescence. Exosomes from obese adipocytes contained copies of NOX4, and when cocultured with HTR8/SVneo cells, they induced severe oxidative damage, cellular senescence, and suppressed proliferation and invasion functions when compared with the control group. In vivo, adipocyte-derived NOX4-containing exosomes could induce placental oxidative damage and senescence, ultimately leading to adverse pregnancy outcomes. Conclusion In obesity, adipose tissue can secrete exosomes containing NOX4 which can be delivered to trophoblast resulting in severe DNA oxidative damage and premature placental senescence, ultimately leading to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Yuelan Tao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Wei Chen
- Department of Emergency & Intensive Care Units, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hongbing Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jiacheng Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Huan Yang
- Department of Obstetrics, Chongqing University Three Gorges Hospital, Chongqing, 404100, People’s Republic of China
| | - Xin Luo
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Miaomiao Chen
- Maternal and Child Health Hospital of Hubei Province, Wuhan City, Hubei Province, 430070, People’s Republic of China
| | - Jie He
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yuxiang Bai
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Women and Children’s Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
| |
Collapse
|
9
|
Wei W, Qin F, Gao J, Chang J, Pan X, Jiang X, Che L, Zhuo Y, Wu D, Xu S. The effect of maternal consumption of high-fat diet on ovarian development in offspring. Anim Reprod Sci 2023; 255:107294. [PMID: 37421833 DOI: 10.1016/j.anireprosci.2023.107294] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
The environment encountered by the fetus during its development exerts a profound influence on its physiological function and disease risk in adulthood. Women's intake of high-fat diet during pregnancy and lactation has gradually become an issue of widespread concern. Maternal high-fat diet will not only cause abnormal neurological development and metabolic syndrome symptoms in the offspring, but also affect the fertility of female offspring. Maternal high-fat diet affects the expression of genes related to follicle growth in offspring, such as AAT, AFP and GDF-9, which reduces the number of follicles and impairs follicle development. Additionally, maternal high-fat diet also affects ovarian health by inducing ovarian oxidative stress and cell apoptosis, which collectively can impair the reproductive potential of female offspring. Reproductive potential carries significant importance for both humans and animals. Therefore, this review aims to describe the effect of maternal exposure to high-fat diet on the ovarian development of offspring and to discuss possible mechanisms by which maternal diet affects the growth and metabolism of offspring.
Collapse
Affiliation(s)
- Wenyan Wei
- Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130 Sichuan, PR China
| | - Feng Qin
- Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130 Sichuan, PR China
| | - Junjie Gao
- Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130 Sichuan, PR China
| | - Junlei Chang
- Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130 Sichuan, PR China
| | - Xujing Pan
- Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130 Sichuan, PR China
| | - Xuemei Jiang
- Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130 Sichuan, PR China
| | - Lianqiang Che
- Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130 Sichuan, PR China
| | - Yong Zhuo
- Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130 Sichuan, PR China
| | - De Wu
- Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130 Sichuan, PR China
| | - Shengyu Xu
- Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130 Sichuan, PR China.
| |
Collapse
|
10
|
Van Ginneken C, Ayuso M, Van Bockstal L, Van Cruchten S. Preweaning performance in intrauterine growth-restricted piglets: Characteristics and interventions. Mol Reprod Dev 2023; 90:697-707. [PMID: 35652465 DOI: 10.1002/mrd.23614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 11/06/2022]
Abstract
Intrauterine growth restriction (IUGR) is frequently observed in pig production, especially when using highly prolific sows. IUGR piglets are born with low body weight and shape indicative of differences in organ growth. Insufficient uteroplacental nutrient transfer to the fetuses is the leading cause of growth restriction in the pig. Supplementing the sow's gestation diet with arginine and/or glutamine improves placenta growth and functionality and consequently is able to reduce IUGR incidence. IUGR piglets are at higher risk of dying preweaning and face higher morbidity than their normal-weight littermates. A high level of surveillance during farrowing and individual nutrient supplementation can reduce the mortality rates. Still, these do not reverse the long-term consequences of IUGR, which are induced by persistent structural deficits in different organs. Dietary interventions peri-weaning can optimize performance but these are less effective in combating the metabolic changes that occurred in IUGR, which affect reproductive performance later in life. IUGR piglets share many similarities with IUGR infants, such as a poorer outcome of males. Using the IUGR piglet as an animal model to further explore the structural and molecular basis of the long-term consequences of IUGR and the potential sex bias could aid in fully understanding the impact of prenatal undernutrition and finding solutions for both species and sexes.
Collapse
Affiliation(s)
- Chris Van Ginneken
- Comparative Perinatal Development (CoPeD), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Miriam Ayuso
- Comparative Perinatal Development (CoPeD), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Lieselotte Van Bockstal
- Comparative Perinatal Development (CoPeD), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Steven Van Cruchten
- Comparative Perinatal Development (CoPeD), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
11
|
Álvarez-Rodríguez M, Roca J, Martínez EA, Rodríguez-Martínez H. Mating modifies the expression of crucial oxidative-reductive transcripts in the pig oviductal sperm reservoir: is the female ensuring sperm survival? Front Endocrinol (Lausanne) 2023; 14:1042176. [PMID: 37351104 PMCID: PMC10282951 DOI: 10.3389/fendo.2023.1042176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/17/2023] [Indexed: 06/24/2023] Open
Abstract
Background Mating induces large changes in the female genital tract, warranting female homeostasis and immune preparation for pregnancy, including the preservation of crucial oxidative status among its pathways. Being highly susceptible to oxidative stress, sperm survival and preserved function depend on the seminal plasma, a protection that is removed during sperm handling but also after mating when spermatozoa enter the oviduct. Therefore, it is pertinent to consider that the female sperm reservoir takes up this protection, providing a suitable environment for sperm viability. These aspects have not been explored despite the increasing strategies in modulating the female status through diet control and nutritional supplementation. Aims To test the hypothesis that mating modifies the expression of crucial oxidative-reductive transcripts across the entire pig female genital tract (cervix to infundibulum) and, particularly in the sperm reservoir at the utero-tubal junction, before ovulation, a period dominated by estrogen stimulation of ovarian as well as of seminal origin. Methods The differential expression of estrogen (ER) and progesterone (PR) receptors and of 59 oxidative-reductive transcripts were studied using a species-specific microarray platform, in specific segments of the peri-ovulatory sow reproductive tract in response to mating. Results Mating induced changes along the entire tract, with a conspicuous downregulation of both ER and PR and an upregulation of superoxide dismutase 1 (SOD1), glutaredoxin (GLRX3), and peroxiredoxin 1 and 3 (PRDX1, PRDX3), among other NADH Dehydrogenase Ubiquinone Flavoproteins, in the distal uterus segment. These changes perhaps helped prevent oxidative stress in the area adjacent to the sperm reservoir at the utero-tubal junction. Concomitantly, there were a downregulation of catalase (CAT) and NADH dehydrogenase (ubiquinone) oxidoreductases 1 beta subcomplex, subunit 1 (NDUFB1) in the utero-tubal junction alongside an overall downregulation of CAT, SOD1, and PRDX3 in the ampullar and infundibulum segments. Conclusions Natural mating is an inducer of changes in the expression of female genes commanding antioxidant enzymes relevant for sperm survival during sperm transport, under predominant estrogen influence through the bloodstream and semen. The findings could contribute to the design of new therapeutics for the female to improve oxidative-reductive balance.
Collapse
Affiliation(s)
- Manuel Álvarez-Rodríguez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- Department of Animal Reproduction, Instituto Nacional de Investigación Agraria y Alimentaria (INIA)-CSIC, Madrid, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | - Emilio A. Martínez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | - Heriberto Rodríguez-Martínez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
Abu-Awwad SA, Craina M, Gluhovschi A, Ciordas PD, Marian C, Boscu L, Bernad E, Iurciuc M, Abu-Awwad A, Iurciuc S, Maghiari AL. Linking Pregnancy and Long-Term Health: The Impact of Cardiovascular Risk on Telomere Shortening in Pregnant Women. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1012. [PMID: 37374216 DOI: 10.3390/medicina59061012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: Telomeres are repetitive DNA sequences located at the end of chromosomes that play a crucial role in maintaining chromosomal stability. Shortening of telomeres has been associated with an increased risk of cardiovascular disease. The aim of this study was to investigate whether the length of telomeres in pregnant women with cardiovascular risk is shorter compared to those without cardiovascular risk. Materials and Methods: A total of 68 participants were enrolled, including 30 pregnant women with cardiovascular risk and 38 without cardiovascular risk, who were followed-up during their pregnancy between 2020 and 2022 at the Obstetrical and Gynecology Department of the "Pius Brînzeu" Emergency County Clinical Hospital in Timişoara, Romania. All included women underwent delivery via cesarean section at the same medical institution. The telomere length was measured in each participant using quantitative Polymerase chain reaction (PCR). Results: The results showed that the telomere length was negatively correlated with cardiovascular risk in pregnant women, with significantly shorter telomeres observed in the cardiovascular risk group (mean telomere length = 0.3537) compared to the group without cardiovascular risk (mean telomere length = 0.5728) (p = 0.0458). Conclusions: These findings suggest that cardiovascular risk during pregnancy may be associated with accelerated telomere shortening, which could have implications for the long-term health of both the mother and the child. Further research is needed to investigate the potential mechanisms underlying this association and to identify interventions that may mitigate the negative effects of cardiovascular risk on the telomere length during pregnancy.
Collapse
Affiliation(s)
- Simona-Alina Abu-Awwad
- Doctoral School, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- "Clinic of Obstetrics and Gynecology", "Pius Brinzeu" County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Marius Craina
- "Clinic of Obstetrics and Gynecology", "Pius Brinzeu" County Clinical Emergency Hospital, 300723 Timisoara, Romania
- Department of Obstetrics and Gynecology, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Center for Laparoscopy, Laparoscopic Surgery and In Vitro Fertilization, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adrian Gluhovschi
- "Clinic of Obstetrics and Gynecology", "Pius Brinzeu" County Clinical Emergency Hospital, 300723 Timisoara, Romania
- Department of Obstetrics and Gynecology, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Paula Diana Ciordas
- Departament IV-Discipline of Biochemistry, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Catalin Marian
- Departament IV-Discipline of Biochemistry, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Lioara Boscu
- Department of Cardiology, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Elena Bernad
- "Clinic of Obstetrics and Gynecology", "Pius Brinzeu" County Clinical Emergency Hospital, 300723 Timisoara, Romania
- Department of Obstetrics and Gynecology, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Center for Laparoscopy, Laparoscopic Surgery and In Vitro Fertilization, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Mircea Iurciuc
- Department of Cardiology, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Departament VI-Discipline of Outpatient Internal Medicine, Cardiovascular Prevention and Recovery, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Ahmed Abu-Awwad
- "Clinic of Obstetrics and Gynecology", "Pius Brinzeu" County Clinical Emergency Hospital, 300723 Timisoara, Romania
- Department XV-Discipline of Orthopedics-Traumatology, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center University Professor Doctor Teodor Șora, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Stela Iurciuc
- Department of Cardiology, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Departament VI-Discipline of Outpatient Internal Medicine, Cardiovascular Prevention and Recovery, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Anca Laura Maghiari
- "Clinic of Obstetrics and Gynecology", "Pius Brinzeu" County Clinical Emergency Hospital, 300723 Timisoara, Romania
- Departament I-Discipline of Anatomy and Embryology, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
13
|
Jansen LAW, Nijsten K, Limpens J, van Eekelen R, Koot MH, Grooten IJ, Roseboom TJ, Painter RC. Perinatal outcomes of infants born to mothers with hyperemesis gravidarum: A systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol 2023; 284:30-51. [PMID: 36924660 DOI: 10.1016/j.ejogrb.2023.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Hyperemesis gravidarum is the severe form of nausea and vomiting during pregnancy and can lead to undernutrition and low maternal weight gain. Previous epidemiologic and animal studies have shown that undernutrition and low maternal weight gain in pregnancy can increase the risk of unfavorable perinatal outcomes, like shorter gestational age, small for gestational age and lower weight at birth. OBJECTIVE To evaluate the effect of hyperemesis gravidarum on perinatal outcomes. SEARCH STRATEGY OVID Medline and Embase were searched from inception to February 9th, 2022. STUDY ELIGIBILITY Studies reporting on perinatal outcomes of infants born to mothers with hyperemesis gravidarum or severe nausea and vomiting in pregnancy were included. Case reports, case series, animal studies, reviews, editorials and conference abstracts were excluded. DATA COLLECTION AND ANALYSIS Two reviewers independently selected and extracted data. Risk of bias was assessed by the Newcastle-Ottawa Quality Assessment Scale. We conducted meta-analyses where possible. RESULTS Our search yielded 1387 unique papers, of which 61 studies (n = 20,532,671 participants) were included in our systematic review. Meta-analyses showed that hyperemesis gravidarum was associated with preterm birth < 34 weeks (2 studies n = 2,882: OR 2.81, 95 %CI: 1.69-4.67), birth weight < 1500 g (2 studies, n = 489,141: OR 1.43, 95 %CI: 1.02-1.99), neonatal resuscitation (2 studies, n = 4,289,344: OR 1.07, 95 %CI: 1.05-1.10), neonatal intensive care unit admission (7 studies, n = 6,509,702: OR 1.20, 95 %CI: 1.14-1.26) and placental abruption (6 studies, n = 9,368,360: OR 1.15, 95 %CI: 1.05-1.25). Hyperemesis gravidarum was associated with reductions in birthweight > 4000 g (2 studies, n = 5,503,120: OR 0.74, 95 %CI: 0.72-0.76) and stillbirth (9 studies, n = 3,973,154: OR 0.92, 95 %CI: 0.85-0.99). Meta-analyses revealed no association between hyperemesis gravidarum and Apgar scores < 7 at 1 and 5 min; fetal loss, perinatal deaths and neonatal deaths. CONCLUSION Hyperemesis gravidarum is associated with several adverse perinatal outcomes including low birth weight and preterm birth. We also found that pregnancies complicated by hyperemesis gravidarum less frequently were complicated by macrosomia and stillbirth. We were unable to investigate underlying mechanisms.
Collapse
Affiliation(s)
- Larissa A W Jansen
- Department of Obstetrics and Gynecology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Obstetrics and Gynecology, Amphia Hospital, Breda, The Netherlands; Department of Obstetrics and Gynecology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Kelly Nijsten
- Department of Obstetrics and Gynecology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Obstetrics and Gynecology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Jacqueline Limpens
- Medical Library, Research Support - Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rik van Eekelen
- Department of Epidemiology & Data Science, Amsterdam UMC, Vrije Universiteit Medical Centre, Amsterdam, The Netherlands
| | - Marjette H Koot
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Iris J Grooten
- Department of Obstetrics and Gynecology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Tessa J Roseboom
- Department of Obstetrics and Gynecology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Obstetrics and Gynecology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands; Department of Epidemiology & Data Science, Amsterdam UMC, Vrije Universiteit Medical Centre, Amsterdam, The Netherlands
| | - Rebecca C Painter
- Department of Obstetrics and Gynecology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Ahmadzadeh-Gavahan L, Hosseinkhani A, Palangi V, Lackner M. Supplementary Feed Additives Can Improve Lamb Performance in Terms of Birth Weight, Body Size, and Survival Rate. Animals (Basel) 2023; 13:ani13060993. [PMID: 36978533 PMCID: PMC10044332 DOI: 10.3390/ani13060993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
To evaluate the effects of supplementation of feed additives in the last trimester of pregnancy on placental characteristics and offspring performance, this study was conducted with 48 estrous-synchronized Ghezel ewes that had randomly been assigned to one of the following six groups (n = 8): ad libitum feeding (AL); feed restriction (RF; 60% of ad libitum intake); feed restriction + propylene glycol (PG); feed restriction + propylene glycol + monensin sodium (MS); feed restriction + propylene glycol + rumen-protected choline chloride (RPC); feed restriction + propylene glycol + monensin sodium + rumen-protected choline chloride (PMC). Birth weight, body size, and rectal temperature of lambs were determined within 24 h of birth. The presence of lambs at 87 days of age was used as an index of survival to weaning. The outcome of this study was that the average placental weight of ewes in the AL and MS groups was the highest and lowest, respectively, among the treatment groups (p < 0.01). RPC ewes presented higher placental efficiency compared to AL, RF, and MS ewes (p < 0.05). The largest and smallest crown-to-rump lengths (CRLs) were observed in PMC and RF lambs, respectively (p < 0.01). In addition, lambs born from PMC, RPC, and PG ewes had a longer curved crown-to-rump length (CCRL) than those born from AL and RF ewes (p < 0.01). The concurrent administration of propylene glycol and rumen-protected choline chloride resulted in the highest birth weight among treatment groups (p < 0.01). Lambs born to PMC and RPC ewes had a higher survival rate and rectal temperature than those born to RF ewes (p < 0.05). It can be concluded that although dietary restriction does not have adverse effects on lambs’ performance compared with ad libitum intake, the combined administration of propylene glycol and rumen-protected choline chloride in the ewes’ restricted diet can improve placental characteristics and subsequently amend lambs’ birth weight and body size. Therefore, the combined administration of these additives can be practiced during feed restriction.
Collapse
Affiliation(s)
- Leila Ahmadzadeh-Gavahan
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Ali Hosseinkhani
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
- Correspondence: (A.H.); (M.L.)
| | - Valiollah Palangi
- Department of Animal Science, Faculty of Agriculture, Ege University, Bornova, Izmir 35100, Türkiye
| | - Maximilian Lackner
- Department of Industrial Engineering, University of Applied Sciences Technikum Wien, Hoechstaedtplatz 6, 1200 Vienna, Austria
- Correspondence: (A.H.); (M.L.)
| |
Collapse
|
15
|
Lyderik KK, Østrup E, Bruun TS, Amdi C, Strathe AV. Fetal and placental development in early gestation of hyper-prolific sows. Theriogenology 2023; 197:259-266. [PMID: 36527862 DOI: 10.1016/j.theriogenology.2022.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Modern hyper-prolific sows produce large litters with a high within-litter variation in birth weight and an increased number of low-birth-weight piglets per litter with higher mortality rates and lower growth rates compared to heavier littermates. This study aimed to describe fetal development in hyper-prolific sows, to characterize differences between large and small fetuses, and to determine when within-litter variation in fetal weight can be detected. Forty-seven multiparous sows were blood-sampled and slaughtered at day 28, 33, 45, 50, and 56 of gestation. Number of fetuses were counted, fetal body and organ weights were measured, and the intrauterine positioning was recorded. Length, width, and area of each placenta was measured and the fetus weight/placental weight ratio was calculated. The umbilical cords of the smallest, medium and the largest fetus of each litter were sampled for histological analysis. In total measurements were obtained for 1161 fetuses. The results revealed no difference in fetal survival between the gestational days (P > 0.05). Intrauterine positioning near the cervix significantly reduced fetal weight at day 56 (P < 0.05). Total litter weight and average fetal weight increased with gestational age and individual fetal weight was negatively affected by litter size from day 33 and onwards (P < 0.05). The coefficient of variation for within-litter variation in fetal weight was higher at day 28 compared to the other gestational days (P < 0.05). Relative brain- and heart weights decreased from day 28-56 (P < 0.001). Small fetuses had relatively heavier brains and hearts at day 45, 50 and 56 (P < 0.001). Size of placenta, fetus weight/placental weight ratio and length of umbilical cord increased with gestational age (P < 0.001). There was a positive correlation between size of placenta and weight of individual fetus (P < 0.001), the weight of the fetus was positively correlated with umbilical cord length (P < 0.001) and the umbilical cross-sectional area was correlated to fetal weight at day 56 (P < 0.01). Individual fetal weight was positively correlated to the fetus weight/placental weight ratio (P < 0.001). In conclusion, fetal growth was affected by litter size, placental weight, and -area, and umbilical cord length. Lightweight fetuses were characterized by having placentas with lower weight and area and shorter umbilical cords. Lastly, within-litter variation in fetal weight was detectable at day 28, and the coefficient of variance remained stable from day 33-56.
Collapse
Affiliation(s)
- Kimmie K Lyderik
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, 1870, Frederiksberg, Denmark
| | - Esben Østrup
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, 1870, Frederiksberg, Denmark
| | - Thomas S Bruun
- SEGES Danish Innovation, Agro Food Park 15, 8200, Aarhus N, Denmark
| | - Charlotte Amdi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, 1870, Frederiksberg, Denmark
| | - Anja V Strathe
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, 1870, Frederiksberg, Denmark.
| |
Collapse
|
16
|
Wang X, Wang L, Shi L, Zhang P, Li Y, Li M, Tian J, Wang L, Zhao F. GWAS of Reproductive Traits in Large White Pigs on Chip and Imputed Whole-Genome Sequencing Data. Int J Mol Sci 2022; 23:13338. [PMID: 36362120 PMCID: PMC9656588 DOI: 10.3390/ijms232113338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 12/09/2023] Open
Abstract
Total number born (TNB), number of stillborn (NSB), and gestation length (GL) are economically important traits in pig production, and disentangling the molecular mechanisms associated with traits can provide valuable insights into their genetic structure. Genotype imputation can be used as a practical tool to improve the marker density of single-nucleotide polymorphism (SNP) chips based on sequence data, thereby dramatically improving the power of genome-wide association studies (GWAS). In this study, we applied Beagle software to impute the 50 K chip data to the whole-genome sequencing (WGS) data with average imputation accuracy (R2) of 0.876. The target pigs, 2655 Large White pigs introduced from Canadian and French lines, were genotyped by a GeneSeek Porcine 50K chip. The 30 Large White reference pigs were the key ancestral individuals sequenced by whole-genome resequencing. To avoid population stratification, we identified genetic variants associated with reproductive traits by performing within-population GWAS and cross-population meta-analyses with data before and after imputation. Finally, several genes were detected and regarded as potential candidate genes for each of the traits: for the TNB trait: NOTCH2, KLF3, PLXDC2, NDUFV1, TLR10, CDC14A, EPC2, ORC4, ACVR2A, and GSC; for the NSB trait: NUB1, TGFBR3, ZDHHC14, FGF14, BAIAP2L1, EVI5, TAF1B, and BCAR3; for the GL trait: PPP2R2B, AMBP, MALRD1, HOXA11, and BICC1. In conclusion, expanding the size of the reference population and finding an optimal imputation strategy to ensure that more loci are obtained for GWAS under high imputation accuracy will contribute to the identification of causal mutations in pig breeding.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ligang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liangyu Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Pengfei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mianyan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingjing Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lixian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fuping Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
17
|
Mangu SR, Patel K, Sukhdeo SV, Savitha MR, Sharan K. Maternal high-cholesterol diet negatively programs offspring bone development and downregulates hedgehog signaling in osteoblasts. J Biol Chem 2022; 298:102324. [PMID: 35931113 PMCID: PMC9440389 DOI: 10.1016/j.jbc.2022.102324] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Cholesterol is one of the essential intrauterine factors required for fetal growth and development. Maternal high cholesterol levels are known to be detrimental for offspring health. However, its long-term effect on offspring skeletal development remains to be elucidated. We performed our studies in two strains of mice (C57BL6/J and Swiss Albino) and human subjects (65 mother-female newborn dyads) to understand the regulation of offspring skeletal growth by maternal high cholesterol. We found that mice offspring from high-cholesterol-fed dams had low birth weight, smaller body length, and delayed skeletal ossification at the E18.5 embryonic stage. Moreover, we observed that the offspring did not recover from the reduced skeletal mass and exhibited a low bone mass phenotype throughout their life. We attributed this effect to reduced osteoblast cell activity with a concomitant increase in the osteoclast cell population. Our investigation of the molecular mechanism revealed that offspring from high-cholesterol-fed dams had a decrease in the expression of ligands and proteins involved in hedgehog signaling. Further, our cross-sectional study of human subjects showed a significant inverse correlation between maternal blood cholesterol levels and cord blood bone formation markers. Moreover, the bone formation markers were significantly lower in the female newborns of hypercholesterolemic mothers compared with mothers with normal cholesterolemic levels. Together, our results suggest that maternal high cholesterol levels deleteriously program offspring bone mass and bone quality and downregulate the hedgehog signaling pathway in their osteoblasts.
Collapse
Affiliation(s)
- Svvs Ravi Mangu
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kalpana Patel
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shinde Vijay Sukhdeo
- Department of Meat and Marine Sciences, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - M R Savitha
- Department of Paediatrics, Mysore Medical College and Research Institute, Mysuru, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
18
|
Faccin JEG, Tokach MD, Goodband RD, DeRouchey JM, Woodworth JC, Gebhardt JT. Gilt development to improve offspring performance and survivability. J Anim Sci 2022; 100:6609152. [PMID: 35708589 DOI: 10.1093/jas/skac128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/06/2022] [Indexed: 11/14/2022] Open
Abstract
Methods for developing incoming replacement gilts can indirectly and directly influence survivability of their offspring. Indirectly, having proper gilt development reduces culling rates and mortality, which increases longevity and creates a more mature sow herd. Older sows are more likely to have greater immunity than gilts and therefore can pass this along to their pigs in both quantity and quality of colostrum and milk, thus improving piglet survivability. Directly, proper gilt development will maximize mammary gland development which increases colostrum and milk production leading to large, healthy pig. As for the developing gilt at birth, increasing colostrum intake, reducing nursing pressure, providing adequate space allowance, and good growth rate can increase the likelihood that gilts successfully enter and remain in the herd. Light birth weight gilts (<1 kg) or gilts from litters with low birth weight should be removed early in the selection process. Gilts should be weaned at 24 d of age or older and then can be grown in a variety of ways as long as lifetime growth rate is over 600 g/d. Current genetic lines with exceptional growth rate run the risk of being bred too heavy, reducing longevity. On the other hand, restricting feed intake at specific times could be detrimental to mammary development. In these situations, reducing diet amino acid concentration and allowing ad libitum feed is a possible strategy. Gilts should be bred between 135 and 160 kg and at second estrus or later while in a positive metabolic state to increase lifetime productivity and longevity in the herd. Once bred, gilts should be fed to maintain or build body reserves without becoming over-conditioned at farrowing. Proper body condition at farrowing impacts the percentage of pigs born alive as well as colostrum and milk production, and consequently, offspring performance and survivability. Combined with the benefit in pig immunity conferred by an older sow parity structure, gilt development has lasting impacts on offspring performance and survivability.
Collapse
Affiliation(s)
- Jamil E G Faccin
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0201, USA
| |
Collapse
|
19
|
Nutritional Regulation of Embryonic Survival, Growth, and Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:63-76. [PMID: 34807437 DOI: 10.1007/978-3-030-85686-1_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maternal nutritional status affects conceptus development and, therefore, embryonic survival, growth, and development. These effects are apparent very early in pregnancy, which is when most embryonic losses occur. Maternal nutritional status has been shown to affect conceptus growth and gene expression throughout the periconceptual period of pregnancy (the period immediately before and after conception). Thus, the periconceptual period may be an important "window" during which the structure and function of the fetus and the placenta are "programmed" by stressors such as maternal malnutrition, which can have long-term consequences for the health and well-being of the offspring, a concept often referred to as Developmental Origins of Health and Disease (DOHaD) or simply developmental programming. In this review, we focus on recent studies, using primarily animal models, to examine the effects of various maternal "stressors," but especially maternal malnutrition and Assisted Reproductive Techniques (ART, including in vitro fertilization, cloning, and embryo transfer), during the periconceptual period of pregnancy on conceptus survival, growth, and development. We also examine the underlying mechanisms that have been uncovered in these recent studies, such as effects on the development of both the placenta and fetal organs. We conclude with our view of future research directions in this critical area of investigation.
Collapse
|
20
|
Xing P, Hong L, Yan G, Tan B, Qiao J, Wang S, Li Z, JieYang, Zheng E, Cai G, Wu Z, Gu T. Neuronatin gene expression levels affect foetal growth and development by regulating glucose transport in porcine placenta. Gene 2021; 809:146051. [PMID: 34756962 DOI: 10.1016/j.gene.2021.146051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 11/04/2022]
Abstract
Imprinted genes play important regulatory roles in the growth and development of placentas and foetuses during pregnancy. In a previous study, we found that the imprinted gene Neuronatin (NNAT) is involved in foetal development; NNAT expression was significantly lower in the placentas of piglets that died neonatally compared to the placentas of surviving piglets. However, the function and mechanism of NNAT in regulating porcine placental development is still unknown. In this study, we collected the placentas of high- and low-weight foetuses at gestational day (GD 65, 90), (n = 4-5 litters/GD) to investigate the role of NNAT in regulating foetal growth and development. We found that the mRNA and protein levels of NNAT were significantly higher in the placentas of high-weight than low-weight foetuses. We then overexpressed NNAT in porcine placental trophoblast cell lines (pTr2) and demonstrated that NNAT activated the PI3K-AKT pathway, and further promoted the expression of glucose transporter 1 (GLUT1) and increased cellular calcium ion levels, which improved glucose transport in placental trophoblast cells in vitro. To conclude, our study suggests that NNAT expression impacts porcine foetal development by regulating placental glucose transport.
Collapse
Affiliation(s)
- Pingping Xing
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guanhao Yan
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baohua Tan
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiaxin Qiao
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shanshan Wang
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, China; Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Guangzhou, China; Guangdong Wens Breeding Swine Technology Co., Ltd, Yunfu, China
| | - JieYang
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, China; Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Guangzhou, China; Guangdong Wens Breeding Swine Technology Co., Ltd, Yunfu, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
21
|
Threadgold T, Greenwood EC, Van Wettere W. Identifying Suitable Supplements to Improve Piglet Survival during Farrowing and Lactation. Animals (Basel) 2021; 11:ani11102912. [PMID: 34679933 DOI: 10.3390/ani1110291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 05/22/2023] Open
Abstract
Piglet mortality during parturition and prior to weaning is an ongoing economic and welfare issue. This review collates the current literature describing the effects of specific dietary supplements on key parameters affecting piglet survival. Four distinct parameters were identified as having a direct impact on the survival of piglets to weaning: stillbirth rate, birth weight and weight variation, daily gain and weaning weight, and colostrum and milk quality. In the primary stage, relevant literature from the past 5 years was reviewed, followed by a secondary review of literature older than 5 years. The focal parameters benefitted from different supplements. For example, stillbirth may be reduced by supplements in late gestation, including forms of arginine, alpha-tocopherol-selenium, uridine, and Saccharomyces cerevisiae yeast culture, whereas average daily gain and weaning weight were related closely to supplements which improved colostrum and milk quality, most commonly fats and fatty acids in the form of n-3 polyunsaturated fatty acids, soybean oil, and fish oil, and polysaccharides, such as ginseng polysaccharide. Therefore, an effective supplement plan for piglet mortality reduction must consider the circumstances of the individual system and target one or more of the highlighted parameters.
Collapse
Affiliation(s)
- Tobias Threadgold
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Mudla Wirra Road, Roseworthy, SA 5371, Australia
| | - Emma Catharine Greenwood
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Mudla Wirra Road, Roseworthy, SA 5371, Australia
| | - William Van Wettere
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Mudla Wirra Road, Roseworthy, SA 5371, Australia
| |
Collapse
|
22
|
Threadgold T, Greenwood EC, Van Wettere W. Identifying Suitable Supplements to Improve Piglet Survival during Farrowing and Lactation. Animals (Basel) 2021; 11:ani11102912. [PMID: 34679933 PMCID: PMC8532790 DOI: 10.3390/ani11102912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
Piglet mortality during parturition and prior to weaning is an ongoing economic and welfare issue. This review collates the current literature describing the effects of specific dietary supplements on key parameters affecting piglet survival. Four distinct parameters were identified as having a direct impact on the survival of piglets to weaning: stillbirth rate, birth weight and weight variation, daily gain and weaning weight, and colostrum and milk quality. In the primary stage, relevant literature from the past 5 years was reviewed, followed by a secondary review of literature older than 5 years. The focal parameters benefitted from different supplements. For example, stillbirth may be reduced by supplements in late gestation, including forms of arginine, alpha-tocopherol-selenium, uridine, and Saccharomyces cerevisiae yeast culture, whereas average daily gain and weaning weight were related closely to supplements which improved colostrum and milk quality, most commonly fats and fatty acids in the form of n-3 polyunsaturated fatty acids, soybean oil, and fish oil, and polysaccharides, such as ginseng polysaccharide. Therefore, an effective supplement plan for piglet mortality reduction must consider the circumstances of the individual system and target one or more of the highlighted parameters.
Collapse
|
23
|
Riddersholm KV, Bahnsen I, Bruun TS, de Knegt LV, Amdi C. Identifying Risk Factors for Low Piglet Birth Weight, High Within-Litter Variation and Occurrence of Intrauterine Growth-Restricted Piglets in Hyperprolific Sows. Animals (Basel) 2021; 11:ani11092731. [PMID: 34573697 PMCID: PMC8468730 DOI: 10.3390/ani11092731] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Piglet mortality is an ongoing concern for pig production worldwide. Piglets that have a low piglet birth weight (PBW), suffer from intrauterine growth restriction (IUGR) or are born from litters with a high within-litter variation in PBW (CVPBW) have an increased risk of dying before weaning. IUGR piglets, CVPBW and a low PBW might be connected by the same risk factors, and in order to optimize fetal development in the litter, these risk factors should be identified. Free-access stall feeding, floor feeding and electronic sow feeding systems are commonly used feeding systems for gestating sows in Denmark. These systems differ in several points, including in sow competition at feeding. The nutritional status of the sow is important for fetal development, and so the feeding method during gestation is also expected to affect such development. Of the risk factors identified in this study, increasing litter size was considered the most critical. Only small differences were found between the feeding systems and these differed amongst groups. The results should inspire further investigation of those risk factors to clarify causes of the observed effects and what drives individual herd differences. Abstract This study aimed to identify risk factors affecting PBW, high CVPBW and the occurrence of IUGR piglets in 12 commercial Danish herds with hyperprolific sows using free-access stalls, floor or electronic sow feeding systems in the gestation unit. The following factors were investigated: the duration of previous lactation, the length of the interval from weaning to insemination, the length of gestation, litter size, parity, sow backfat thickness in late gestation and the type of feeding system in the gestation unit. The study included newborn piglets from 452 litters with the following production indicator averages: 21.3 piglets/L, 1235 g PBW, 22.9% CVPBW and 10.9% and 11.8% within-litter occurrence of severe and mild IUGR piglets, respectively. Increasing length of weaning-to-insemination interval decreased PBW by 25.8 g/day. For 2nd to 9th parity sows, each additional piglet in the litter increased CVPBW by 0.38%, the occurrence of severe IUGR piglets by 0.68% and mild IUGR piglets by 0.50%. Sows of 5th parity and older had a 1.39% higher CVPBW and 49.1 g lighter piglets compared with sows of 2nd to 4th parity. PBW was lower in one ESF herd, suggesting complex interactions that need to be further elucidated. The main critical risk factor observed was litter size.
Collapse
Affiliation(s)
- Kristina V. Riddersholm
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (K.V.R.); (I.B.); (L.V.d.K.)
| | - Ida Bahnsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (K.V.R.); (I.B.); (L.V.d.K.)
| | | | - Leonardo V. de Knegt
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (K.V.R.); (I.B.); (L.V.d.K.)
| | - Charlotte Amdi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (K.V.R.); (I.B.); (L.V.d.K.)
- Correspondence:
| |
Collapse
|
24
|
Does a MediDiet with additional extra virgin olive oil (EVOO) and pistachios reduce the incidence of gestational diabetes? Endocr Pract 2021; 28:135-141. [PMID: 34481972 DOI: 10.1016/j.eprac.2021.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/05/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The present study aimed to evaluate gestational diabetes mellitus (GDM) incidence in pregnant women following the Mediterranean diet with additional extra virgin olive oil (EVOO) and pistachios. METHODS 560 pregnant patients were enrolled in the present study. The Mediterranean diet (MedDiet) was introduced in both the interventional group (IG) and control group (CG). The females received 40 ml of extra virgin olive oil (EVOO) every day along with 25 - 30 gm of roasted pistachios in the interventional group. The incidence of Gestational Diabetes Mellitus (GDM) was recorded along with specific maternal and neonatal outcomes. MATERIALS AND METHODS The nutritional and MEDAS scores were not statistically different among the groups at baseline, but the difference was statistically significant and higher in IG at 24-28 weeks (p = 0.001) and 36-38 weeks (p = 0.001). GDM was diagnosed in 51(20.4%) females in the Control group and 34 (13.6%) females in the Interventional group. The MedDiet significantly reduced the GDM incidence (p=0.02) after adjusting the confounding factors. CONCLUSION The present study depicts that dietary intervention in pregnant women, including MedDiet and increased consumption of EVOO and pistachios, decreased the incidence of GDM.
Collapse
|
25
|
Riang'a RM, Nangulu AK, Broerse JEW. Implementation fidelity of nutritional counselling, iron and folic acid supplementation guidelines and associated challenges in rural Uasin Gishu County Kenya. BMC Nutr 2020; 6:78. [PMID: 33334353 PMCID: PMC7747396 DOI: 10.1186/s40795-020-00403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 12/01/2020] [Indexed: 11/15/2022] Open
Abstract
Background Implementation fidelity which is defined as the degree to which programmes are implemented as intended is one of the factors that affect programme outcome, thus requiring careful examination. This study aims to acquire insight into the degree to which nutritional counselling and Iron and Folic Acid supplementation (IFAs) policy guidelines during pregnancy have been implemented as intended and the challenges to implementation fidelity. Methods Data were collected in rural Uasin Gishu County in the western part of Kenya through document analysis, questionnaires among intervention recipients (n = 188) and semi-structured interviews with programme implementers (n = 6). Data collection and analysis were guided by an implementation fidelity framework. We specifically evaluated adherence to intervention design (content, frequency, duration and coverage), exposure or dosage, quality of delivery and participant responsiveness. Results Coverage of nutritional counselling and IFAs policy is widespread. However, partial provision was reported in all the intervention components. Only 10% accessed intervention within the first trimester as recommended by policy guidelines, only 28% reported receiving nutritional counselling, only 18 and 15% of the respondents received 90 or more iron and folic acid pills respectively during their entire pregnancy period, and 66% completed taking the IFAs pills that were issued to them. Late initial bookings to antenatal care, drug stock shortage, staff shortage and long queues, confusing dosage instructions, side effects of the pills and issuing of many pills at one go, were established to be the main challenges to effective implementation fidelity. Anticipated health consequences and emphasis by the health officer to comply with instructions were established to be motivations for adherence to nutritional counselling and IFAs guidelines. Conclusions Implementation fidelity of nutritional counselling and IFAs policy in Kenya is generally weak. There is need for approaches to enhance early access to interventions, enhance stock availability, provide mitigation measures for the side effects, as well as intensify nutritional counselling to promote the consumption of micronutrient-rich food sources available in the local environment to substitute for the shortage of nutritional supplements and low compliance to IFAs.
Collapse
Affiliation(s)
- Roselyter Monchari Riang'a
- Current address: Department of Sociology, Psychology and Anthropology, School of Arts and Social Sciences, Moi University, Eldoret, Kenya.
| | - Anne Kisaka Nangulu
- Current address: Principle, Bomet University College, Bomet, Kenya.,Current address: Department of History and political Science, School of Arts and Social Sciences, Moi University, Eldoret, Kenya
| | - Jacqueline E W Broerse
- Current address: Athena Institute, Faculty of Science, Vrije Universiteit Amsterdam, and Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Sohel MMH, Akyuz B, Konca Y, Arslan K, Gurbulak K, Abay M, Kaliber M, Cinar MU. Differential protein input in the maternal diet alters the skeletal muscle transcriptome in fetal sheep. Mamm Genome 2020; 31:309-324. [PMID: 33164111 DOI: 10.1007/s00335-020-09851-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
Maternal nutrition during pregnancy is one of the major intrauterine environmental factors that influence fetal development by significantly altering the expression of genes that might have a consequence on the physiological, morphological, and metabolic performance of the offspring in the postnatal period. The impact of maternal dietary protein on the expression of genes in sheep fetal skeletal muscle development is not well understood. The current study aims to investigate the impact of high and low maternal dietary protein on the holistic mRNA expression in the sheep fetal skeletal muscle. Dams were exposed to an isoenergetic high-protein diet (HP, 160-270 g/day), low-protein diet (LP, 73-112 g/day), and standard protein (SP, 119-198 g/day) diets during pregnancy. Fetal skeletal muscles were obtained at the 105th day of pregnancy and mRNA expression profiles were evaluated using Affymetrix GeneChip™ Ovine Gene 1.0 ST Array. The transcriptional analysis revealed a total of 323, 354, and 14 genes were differentially regulated (fold change > 2 and false discovery rate ≤ 0.05) in HP vs. SP, LP vs. HP, and SP vs. LP, respectively. Several myogenic genes, including MYOD1, MYH2, MYH1, are significantly upregulated, while genes related to the immune system, such as CXCL11, HLA-E, CXCL10, CXCL9, TLRs, are significantly downregulated in the fetal muscle of the HP group compared to those of SP and LP group. Bioinformatic analysis revealed that the majority of these genes are involved in pathways related to the immune system and diseases. The results of our study demonstrate that both augmented and restricted dietary proteins in maternal diet during pregnancy alter the expression of genes as well as the offspring's genetic marks.
Collapse
Affiliation(s)
- Md Mahmodul Hasan Sohel
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey.,Genome and Stem Cell Centre, Erciyes University, 38039, Kayseri, Turkey
| | - Bilal Akyuz
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Yusuf Konca
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, 38039, Kayseri, Turkey
| | - Korhan Arslan
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Kutlay Gurbulak
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Murat Abay
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Mahmut Kaliber
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, 38039, Kayseri, Turkey
| | - Mehmet Ulas Cinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, 38039, Kayseri, Turkey.
| |
Collapse
|
27
|
Ahmadzadeh L, Hosseinkhani A, Taghizadeh A, Ghasemi-Panahi B, Hamidian G. Effect of late gestational feed restriction and glucogenic precursor on behaviour and performance of Ghezel ewes and their offspring. Appl Anim Behav Sci 2020. [DOI: 10.1016/j.applanim.2020.105030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Manta-Vogli PD, Schulpis KH, Loukas YL, Dotsikas Y. Birth weight related essential, non-essential and conditionally essential amino acid blood concentrations in 12,000 breastfed full-term infants perinatally. Scandinavian Journal of Clinical and Laboratory Investigation 2020; 80:571-579. [DOI: 10.1080/00365513.2020.1818280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Penelope D. Manta-Vogli
- Department of Clinical Nutrition & Dietetics, Agia Sofia Children’s Hospital, Athens, Greece
| | | | - Yannis L. Loukas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Yannis Dotsikas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
29
|
Mallmann AL, Fagundes DP, Vier CE, Oliveira GS, Mellagi APG, Ulguim RR, Bernardi ML, Orlando UAD, Cogo RJ, Bortolozzo FP. Maternal nutrition during early and late gestation in gilts and sows under commercial conditions: impacts on maternal growth and litter traits1. J Anim Sci 2020; 97:4957-4964. [PMID: 31742334 DOI: 10.1093/jas/skz349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/05/2019] [Indexed: 01/04/2023] Open
Abstract
The effects of two different feeding levels, offered in two phases during gestation, on body measurements and litter traits were evaluated in 152 gilts and 551 sows. The treatments consisted of the combination of two gestation phases (phase 1-days 22 to 42; phase 2-days 90 to 110) and two feed amounts (1.8 or 3.5 kg/d). Females were weighed on days 22, 42, 90, and 110 of gestation. Born alive and stillborn piglets were weighed within 12 h of birth. Total placental efficiency (ratio between litter weight and total placental weight) was measured in 518 females. Variables concerning body measurements at days 42 and 90 of gestation were analyzed considering the effects of feed amount, parity order (PO) and its interaction as a 2 × 2 factorial arrangement. Body measurements at day 110 of gestation and litter traits were analyzed considering the effects of feed amounts in phase 1, feed amounts in phase 2, PO and their interactions, as a 2 × 2 × 2 factorial arrangement. As expected, BW, backfat, and caliper units were greater at days 42, 90, and 110 (P ≤ 0.006) for females fed 3.5 kg/d during the previous phase than those fed 1.8 kg. No differences were observed among feed levels in total number of piglets born, mummified fetuses, sum of born alive and stillborn piglets, and within-litter birth weight CV (P ≥ 0.118). The percentage of stillborn piglets was affected by a three-way interaction (feed level at phase 1 × feed level at phase 2 × PO). Gilts fed 1.8 kg/d at phase 1 and 3.5 kg/d at phase 2 had fewer stillborn piglets than the other females (P ≤ 0.004). Birth weight was not affected by feed levels (P ≥ 0.153); however, sows had heavier piglets than gilts (P < 0.001). Females fed 3.5 kg/d during phase 2 tended to have heavier litters (P = 0.054) than those fed 1.8 kg/d. Feeding a high level at phase 2 reduced the occurrence of lightweight piglets in gilts, but not in sows (feed level phase 2 × PO; P = 0.031). Total placental weight, average placental weight, and total placental efficiency were not affected by feed level at phase 1, feed level at phase 2 or interactions (P > 0.14). Sows had total placental weight and average placental weight greater (P ≤ 0.003) than gilts. In conclusion, increasing feed intake during phase 1, phase 2, or both phases resulted in increased maternal BW gain, without expressive effects on litter traits. Feeding 3.5 kg/d to gilts during phase 2 reduced the occurrence of lightweight piglets.
Collapse
Affiliation(s)
- André L Mallmann
- Departamento de Medicina Animal/Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Deivison P Fagundes
- Departamento de Medicina Animal/Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos E Vier
- Departamento de Medicina Animal/Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriela S Oliveira
- Departamento de Medicina Animal/Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana P G Mellagi
- Departamento de Medicina Animal/Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafael R Ulguim
- Departamento de Medicina Animal/Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mari L Bernardi
- Departamento de Zootecnia/Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Ricardo J Cogo
- Frísia Cooperativa Agroindustrial, Carambeí, Paraná, Brazil
| | - Fernando P Bortolozzo
- Departamento de Medicina Animal/Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
30
|
Krishna RG, Vishnu Bhat B, Bobby Z, Papa D, Badhe B, Kalidoss VK, Karli S. Identification of differentially methylated candidate genes and their biological significance in IUGR neonates by methylation EPIC array. J Matern Fetal Neonatal Med 2020; 35:525-533. [PMID: 32091279 DOI: 10.1080/14767058.2020.1727881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background: Intrauterine growth restriction (IUGR) is a pregnancy-associated disease manifested by decreased growth rate of fetus than the normal genetic growth potential. It is associated with increased susceptibility to metabolic diseases later in life. Although the mechanisms underlying the origin of metabolic diseases are poorly understood, DNA methylation is a crucial investigation for the identification of epigenetic changes.Objectives: To assess the degree of change of DNA methylation in IUGR neonates and compare with that of appropriate for gestational age (AGA) neonates and to explore the differentially methylated candidate genes and their biological significance.Methods: This cohort study was conducted in the Neonatology Department of JIPMER during the period of November 2017 to December 2018. Forty each of IUGR and gestation matched AGA neonates were recruited. Umbilical cord blood samples were collected at birth. DNA was separated from the blood samples; and, using 5-mC DNA ELISA method, the percentage of genomic DNA methylated in these neonates was established. Data were expressed as mean ± standard deviation. Methylation EPIC array was performed to identify the differentially methylated candidate genes. David analysis was used to find out the functional annotation chart by KEGG pathway.Results: Genomic DNA methylation varied significantly between IUGR and AGA neonates (IUGR: 3.12 ± 1.24; AGA: 4.40 ± 2.03; p value: <.01). A global shift toward hypomethylation was seen in IUGR compared with AGA, targeted to regulatory regions of the genome, and specifically promoters. Pathway analysis identified deregulation of pathways involved in metabolic diseases. Altered methylation of PTPRN2 & HLADQB1 genes leads to dysregulation of T-cells and reactive oxygen species (ROS). These changes may lead to complications later among these neonates subjected to IUGR.Conclusion: Our findings show significant changes in the methylation pattern of genes among IUGR and AGA babies. Steps for correcting the changes may help in reducing later complications among IUGR babies.
Collapse
Affiliation(s)
- Rao Gurugubelli Krishna
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Mangalagiri, Andhra Pradesh, India.,Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Ballambattu Vishnu Bhat
- Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India.,Department of Pediatrics, AVMC, Puducherry, India
| | | | - Dasari Papa
- Department of Obstetrics & Gynaecology, JIPMER, Puducherry, India
| | | | | | | |
Collapse
|
31
|
Moreira RHR, Mendes MFDSA, Palencia JYP, Lemes MAG, Roque AR, Kutschenko M, Ferreira RA, de Abreu MLT. L-arginine supplementation during the final third of gestation improves litter uniformity and physical characteristics of neonatal piglet thermoregulation. J Anim Physiol Anim Nutr (Berl) 2020; 104:645-656. [PMID: 31990085 DOI: 10.1111/jpn.13305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/20/2019] [Accepted: 12/20/2019] [Indexed: 11/29/2022]
Abstract
The study assessed the effects of dietary L-arginine supplementation from days 85 to 115 of gestation on sow performance, litter quality, piglet physiology and survival variables in the first 24 hr of life. Twenty multiparous sows, with a history of hyperprolificacy (more than 14 piglets per litter), were used. A completely randomized experimental design was used, consisting of two treatments: feed supplemented or not with 1% L-arginine from days 85 to 115 of gestation. The experimental unit consisted of the sow and its respective litter, using 10 replicates per treatment. The sows were distributed into the treatments based on body condition and parity. Supplementation with L-arginine reduced the within-litter standard deviation and the within-litter coefficient of variation of piglet weight at 24 hr by 54 g and 4.14 percentage points respectively (p = .029; p = .035). Supplementation with 1.0% L-arginine decreased the percentages of piglets weighing less than 800 g by 5.60 and 5.08 points at birth and at 24 hr of life respectively. Piglets from sows supplemented with L-arginine had higher (p = .088) average rectal temperatures at birth and lower (p = .030) rectal temperature at 24 hr of life in comparison with control piglets. No significant differences in placental weight or estimated colostrum production and intake were observed in the first 24 hr of life. At 24 hr of life, piglets weighing less than 1,000 g and from supplemented sows had lower (p = .048) surface/mass ratios and higher body mass index (p = .070). Piglets from supplemented sows and who weighed 1601 to 1,800 g had lower body mass index and ponderal index (p = .002; p = .003). Supplementation with L-arginine during the final third of gestation reduces the incidence of unviable piglets (<800 g) and improved litter uniformity and piglets' body conformation within the first 24 hr of life.
Collapse
|
32
|
Manta-Vogli PD, Schulpis KH, Loukas YL, Dotsikas Y. Quantitation of the arginine family amino acids in the blood of full-term infants perinatally in relation to their birth weight. J Pediatr Endocrinol Metab 2019; 32:803-809. [PMID: 31246579 DOI: 10.1515/jpem-2019-0146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022]
Abstract
Background Arginine family amino acids (AFAAs) include glutamine (Gln) plus glutamate (Glu), ornithine (Orn), proline (Pro), citrulline (Cit) and arginine (Arg). We aimed to quantitate these amino acids in the blood of full-term infants in relation to their birth weight (BW) perinatally. Methods Breastfeeding full-term infants (n = 2000, 1000 males, 1000 females) with a BW of 2000-4000 g were divided into four equal groups: group A, 2000-2500 g; B, 2500-3000 g; C, 3000-3500 g and D, 3500-4000 g. Blood samples as dried blood spots (DBS) were collected on the third day of life and analyzed via a liquid chromatography tandem mass spectrometry (LC-MS/MS) protocol. Results Gln plus Glu mean values were found to be statistically significantly different between males and females in all studied groups. The highest values of these amino acids were detected in both males and females in group D. Orn mean values were found to be statistically significantly different between males and females of the same BW in all groups except the last one. The lower mean value was determined in group A, whereas the highest was determined in group D. Cit and Arg mean values were determined to be almost similar in all studied groups. Conclusions Gln plus Glu and Orn blood concentrations were directly related to infants' BW. Conversely, Cit and Arg did not vary significantly in all groups.
Collapse
Affiliation(s)
- Penelope D Manta-Vogli
- Department of Clinical Nutrition and Dietetics, Agia Sofia Children's Hospital, Athens, Greece
| | | | - Yannis L Loukas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Yannis Dotsikas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, GR-157 71, Athens, Greece, Phone: +30 210 7274696, Fax: +30 210 7274039
| |
Collapse
|
33
|
Wang P, Song Y, Zhong H, Lin S, Zhang X, Li J, Che L, Feng B, Lin Y, Xu S, Zhuo Y, Wu D, Burrin DG, Fang Z. Transcriptome Profiling of Placenta through Pregnancy Reveals Dysregulation of Bile Acids Transport and Detoxification Function. Int J Mol Sci 2019; 20:ijms20174099. [PMID: 31443432 PMCID: PMC6747679 DOI: 10.3390/ijms20174099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/27/2022] Open
Abstract
Placenta performs the function of several adult organs for the fetus during intrauterine life. Because of the dramatic physiological and metabolic changes during pregnancy and the strong association between maternal metabolism and placental function, the possibility that variation in gene expression patterns during pregnancy might be linked to fetal health warrants investigation. Here, next-generation RNA sequencing was used to investigate the expression profile, including mRNAs and long non-coding RNAs (lncRNAs) of placentas on day 60 of gestation (G60), day 90 of gestation (G90), and on the farrowing day (L0) in pregnant swine. Bioinformatics analysis of differentially expressed mRNAs and lncRNAs consistently showed dysregulation of bile acids transport and detoxification as pregnancy progress. We found the differentially expressed mRNAs, particularly bile salt export pump (ABCB11), organic anion-transporting polypeptide 1A2 (OATP1A2), carbonic anhydrase II (CA2), Na+-HCO3− cotransporter (NBC1), and hydroxysteroid sulfotransferases (SULT2A1) play an important role in bile acids transport and sulfation in placentas during pregnancy. We also found the potential regulation role of ALDBSSCG0000000220 and XLOC_1301271 on placental SULT2A1. These findings have uncovered a previously unclear function and its genetic basis for bile acids metabolism in developing placentas and have important implications for exploring the potential physiological and pathological pathway to improve fetal outcomes.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yumo Song
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Heju Zhong
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Sen Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoling Zhang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Douglas G Burrin
- USDA/ARS Children's Nutrition Research Center, Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
34
|
Punshon T, Li Z, Jackson BP, Parks WT, Romano M, Conway D, Baker ER, Karagas MR. Placental metal concentrations in relation to placental growth, efficiency and birth weight. ENVIRONMENT INTERNATIONAL 2019; 126:533-542. [PMID: 30851484 PMCID: PMC6475117 DOI: 10.1016/j.envint.2019.01.063] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 05/19/2023]
Abstract
The quality of the intrauterine environment, in which the placenta plays a critical role, affects birth outcomes and lifelong health. The effect of metal contaminants on the growth and functioning of the placenta have not been widely reported but may provide insights into how metal exposures lead to these outcomes. We examined relationships between placental concentrations of cadmium (Cd), arsenic (As), mercury (Hg) and lead (Pb) and measures of placental growth and functioning (placental weight, placental efficiency (the log ratio of placental weight and birth weight), chorionic disc area and disc eccentricity) as part of the New Hampshire Birth Cohort Study (N = 1159). We additionally examined whether these associations were modified by placental concentrations of essential elements zinc (Zn) and selenium (Se). Associations were evaluated using generalized linear models. Multivariable-adjusted differences in placental weight were - 7.81 g (95% CI: -15.42, -2.48) with every ng/g increase in the Cd concentration of placenta (p-Value = 0.0009). Greater decrements in placental weight and efficiency associated with placental Cd were observed for females. For placentae with below median Zn and Se concentrations, decrements in placental weight were - 8.81 g (95% CI: -16.85, -0.76) and - 13.20 g (95% CI: -20.70, -5.70) respectively. The Cd concentration of placenta was also associated with reductions in placental efficiency both overall, and in Zn- and Se-stratified models. No appreciable differences were observed with other elements (As, Hg or Pb) and with other placental measures (chorionic disc area and disc eccentricity). In structural equation models, placental weight was a mediator in the relation between placental Cd concentration and reduced birth weight. Our findings suggest a role of interacting essential and contaminant elements on birth weight that may be mediated by changes in the growth and function of the placenta.
Collapse
Affiliation(s)
- Tracy Punshon
- Dartmouth College, Department of Biology, 78 College Street, Hanover, NH 03755, USA.
| | - Zhigang Li
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Brian P Jackson
- Dartmouth College, Department of Earth Sciences, 6105 Sherman Fairchild Hall, Hanover, NH 03755, USA
| | - W Tony Parks
- Dartmouth College, Department of Biology, 78 College Street, Hanover, NH 03755, USA; Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH, USA
| | - Megan Romano
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | | | - Emily R Baker
- Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH, USA
| | | |
Collapse
|
35
|
Zhu Y, Li T, Huang S, Wang W, Dai Z, Feng C, Wu G, Wang J. Maternal L-glutamine supplementation during late gestation alleviates intrauterine growth restriction-induced intestinal dysfunction in piglets. Amino Acids 2018; 50:1289-1299. [PMID: 29961143 DOI: 10.1007/s00726-018-2608-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/22/2018] [Indexed: 12/11/2022]
Abstract
Maternal dietary supplementation with L-glutamine (Gln) has been considered as an option to improve fetal growth and to prevent the occurrence of intrauterine growth restriction (IUGR). This study investigated whether maternal Gln supplementation could improve fetal growth as well as the intestinal development during late pregnancy. Sixty pregnant Landrace × Large White multiparous sows were assigned to two groups, either the group fed the control diet or the group with the diet supplemented with 1% Gln from d 85 of gestation until farrowing. One normal body weight piglet and one IUGR piglet were obtained from six litters in each group. Reproductive performance, plasma concentrations of free amino acids and related metabolites as well as piglet growth and tissue indexes were determined. Maternal Gln supplementation during late gestation increased the average birth weight, while decreasing the within-litter variation of newborn piglets. The concentrations of Gln in plasma were lower in IUGR piglets than in normal piglets. Glutamine supplementation enhanced Gln concentrations in maternal and piglet plasma and the piglet jejunum, compared with the Control group. Supplementing Gln suppressed intestinal miR-29a levels, and increased the abundance of extracellular matrix (ECM) and tight junction (TJ) proteins, resulting in increased intestinal weight and improved morphologies of the piglets. Collectively, Gln supplementation to the sow's diet increased fetal growth, decreased the within-litter variation of newborn piglets, and alleviated the IUGR-induced intestinal impairment. These findings suggest the possibility of maternal glutamine supplementation in the prevention and treatment of IUGR in animal production and human medicine.
Collapse
Affiliation(s)
- Yuhua Zhu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Research Institute of Shenzhen Jinxinnong Technology CO., LTD., Shenzhen, 518106, China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Cuiping Feng
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
36
|
Effects of different levels of feed intake during four short periods of gestation and housing systems on sows and litter performance. Anim Reprod Sci 2017; 188:21-34. [PMID: 29169981 DOI: 10.1016/j.anireprosci.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 10/27/2017] [Accepted: 11/01/2017] [Indexed: 11/23/2022]
Abstract
The current study investigated the effects of different levels of feed intake during 4 short periods of gestation and of housing systems on sow and litter performance. A total of 255 multiparous sows were allotted to 1-4 dietary treatments using a randomized complete block design blocking by initial body weight (BW), backfat (BF) and parity. Sows were housed either in individual stalls (n=129) or group pens (n=126) with 55 sows in each pen with electronic sow feeder during gestation. All sows were fed one common corn-soybean meal-based diet with the amount of 1.0×maintenance energy level of feed intake (106×BW0.75) throughout gestation except 4 periods of 7 d when dietary treatments were imposed on day 27, 55, 83 and 97 of gestation. During the 4 periods, sows were fed 1 of 4 different levels of feed intake: 0.5, 1.0, 1.5 and 2.0×maintenance energy level (0.5M, 1.0M, 1.5M and 2.0M, respectively). Results showed that both BW gain and BF change during gestation for sows on 1.5M (49.7kg and 3.1mm, respectively) and 2.0M (52.5kg and 3.7mm, respectively) levels of feed intake were significantly (P<0.01) greater than sows on 0.5M (26.1kg and -0.1mm, respectively) and 1.0M (35.6kg and 0.1, respectively) levels of feed intake. In contrast, lactation weight gain for sows on 1.5M (3.3kg) and 2.0M (3.4kg) levels of feed intake during 4 short periods of gestation were significantly (P<0.01) less than sows on 0.5M (18.4kg) and 1.0M (11.4kg) levels of feed intake during 4 short periods of gestation, whereas BF loss during lactation for sows on 1.5M (-3.6mm) level of feed intake during 4 short periods of gestation were significantly (P=0.03) higher than sows on 1.0M (-2.1mm) level of feed intake during 4 short periods of gestation. Additionally, average daily feed intake during lactation for sows on 0.5M (6.6kg/d) level of feed intake during gestation tended (P=0.06) to be greater than sows on 2.0M (5.9kg/d) level of feed intake. There were no differences (P>0.1) among 4 levels of feed intake in terms of numbers of total born and weaning piglets. However, both piglet weight at birth (1.46, 1.52, 1.53 and 1.51kg for piglets from sows on 0.5M, 1.0M, 1.5M and 2.0M levels of feed intake during gestation, respectively) and at weaning (6.37, 6.55, 6.64 and 6.38kg for piglets from sows on 0.5M, 1.0M, 1.5M and 2.0M levels of feed intake during gestation, respectively) were maximized at 1.5M level of feed intake. Sows housed in group pens had greater (P<0.01) net BW gain (24.7 vs. 19.2kg) from day 27 of gestation to weaning compared with sows housed in individual stalls. However, there were no differences (P>0.1) between the 2 housing systems in terms of litter size and piglet weight at birth and at weaning. In conclusion, increasing levels of feed intake during 4 short periods of gestation increased BW and BF gain during gestation and led to less BW gain and more BF loss during lactation. Piglet weight at birth and at weaning was maximized at 1.5M level of feed intake. However, housing systems did not affect reproductive performance. Group pen housing system may be beneficial in terms of increased overall BW gain during gestation and lactation.
Collapse
|
37
|
Assaf-Balut C, García de la Torre N, Durán A, Fuentes M, Bordiú E, del Valle L, Familiar C, Ortolá A, Jiménez I, Herraiz MA, Izquierdo N, Perez N, Torrejon MJ, Ortega MI, Illana FJ, Runkle I, de Miguel MP, Montañez C, Barabash A, Cuesta M, Rubio MA, Calle-Pascual AL. A Mediterranean diet with additional extra virgin olive oil and pistachios reduces the incidence of gestational diabetes mellitus (GDM): A randomized controlled trial: The St. Carlos GDM prevention study. PLoS One 2017; 12:e0185873. [PMID: 29049303 PMCID: PMC5648128 DOI: 10.1371/journal.pone.0185873] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/20/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) prevalence is increasing and becoming a major public health concern. Whether a Mediterranean diet can help prevent GDM in unselected pregnant women has yet to be studied. METHODS We conducted a prospective, randomized controlled trial to evaluate the incidence of GDM with two different dietary models. All consecutive normoglycemic (<92 mg/dL) pregnant women at 8-12 gestational weeks (GW) were assigned to Intervention Group (IG, n = 500): MedDiet supplemented with extra virgin olive oil (EVOO) and pistachios; or Control Group (CG, n = 500): standard diet with limited fat intake. Primary outcome was to assess the effect of the intervention on GDM incidence at 24-28 GW. Gestational weight gain (GWG), pregnancy-induced hypertension, caesarean section (CS), preterm delivery, perineal trauma, small and large for gestational age (SGA and LGA) and admissions to neonatal intensive care unit were also assessed. Analysis was by intention-to-treat. RESULTS A total of 874 women completed the study (440/434, CG/IG). According to nutritional questionnaires and biomarker analysis, women in the IG had a good adherence to the intervention. 177/874 women were diagnosed with GDM, 103/440 (23.4%) in CG and 74/434(17.1%) in IG, p = 0.012. The crude relative risk (RR) for GDM was 0.73 (95% CI: 0.56-0.95; p = 0.020) IG vs CG and persisted after adjusted multivariable analysis, 0.75(95% CI: 0.57-0.98; p = 0.039). IG had also significantly reduced rates of insulin-treated GDM, prematurity, GWG at 24-28 and 36-38 GW, emergency CS, perineal trauma, and SGA and LGA newborns (all p<0.05). CONCLUSIONS An early nutritional intervention with a supplemented MedDiet reduces the incidence of GDM and improves several maternal and neonatal outcomes.
Collapse
Affiliation(s)
- Carla Assaf-Balut
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Nuria García de la Torre
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Alejandra Durán
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Fuentes
- Preventive Medicine Department Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Elena Bordiú
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura del Valle
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Cristina Familiar
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Ana Ortolá
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Inés Jiménez
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Miguel A. Herraiz
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Gynecology and Obstetrics Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Nuria Izquierdo
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Gynecology and Obstetrics Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Noelia Perez
- Gynecology and Obstetrics Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - María J. Torrejon
- Clinical Laboratory Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - María I. Ortega
- Clinical Laboratory Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Francisco J. Illana
- Clinical Laboratory Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Isabelle Runkle
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria P. de Miguel
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen Montañez
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Ana Barabash
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Martín Cuesta
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Miguel A. Rubio
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Alfonso L. Calle-Pascual
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
38
|
Cadmium effects on DNA and protein metabolism in oyster (Crassostrea gigas) revealed by proteomic analyses. Sci Rep 2017; 7:11716. [PMID: 28916745 PMCID: PMC5601910 DOI: 10.1038/s41598-017-11894-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/31/2017] [Indexed: 12/15/2022] Open
Abstract
Marine molluscs, including oysters, can concentrate high levels of cadmium (Cd) in their soft tissues, but the molecular mechanisms of Cd toxicity remain speculative. In this study, Pacific oysters (Crassostrea gigas) were exposed to Cd for 9 days and their gills were subjected to proteomic analysis, which were further confirmed with transcriptomic analysis. A total of 4,964 proteins was quantified and 515 differentially expressed proteins were identified in response to Cd exposure. Gene Ontology enrichment analysis revealed that excess Cd affected the DNA and protein metabolism. Specifically, Cd toxicity resulted in the inhibition of DNA glycosylase and gap-filling and ligation enzymes expressions in base excision repair pathway, which may have decreased DNA repair capacity. At the protein level, Cd induced the heat shock protein response, initiation of protein refolding as well as degradation by ubiquitin proteasome pathway, among other effects. Excess Cd also induced antioxidant responses, particularly glutathione metabolism, which play important roles in Cd chelation and anti-oxidation. This study provided the first molecular mechanisms of Cd toxicity on DNA and protein metabolism at protein levels, and identified molecular biomarkers for Cd toxicity in oysters.
Collapse
|
39
|
Wang J, Feng C, Liu T, Shi M, Wu G, Bazer FW. Physiological alterations associated with intrauterine growth restriction in fetal pigs: Causes and insights for nutritional optimization. Mol Reprod Dev 2017; 84:897-904. [PMID: 28661576 DOI: 10.1002/mrd.22842] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/30/2017] [Indexed: 01/01/2023]
Abstract
Intrauterine growth restriction (IUGR) remains a major problem in swine production since the associated low birth weight leads to high rates of pre-weaning morbidity and mortality plus permanent retardation of growth and development. Complex biological events-including genetics, epigenetics, maternal maturity, maternal nutrition, placenta efficiency, uterine capacity, and other environmental factors-can affect fetal growth and development during late gestation, as well as maturity of oocytes, duration of estrus, and both implantation and placentation of conceptuses in uteri of sows. Understanding the physiological changes related to initiation and progress of IUGR are, therefore, of great importance to formulate nutritional strategies that can mitigate IUGR in gilts and sows. Altering the nutritional status of sows prior to mating and during early-, mid-, and late-gestation may be effective at increasing the uniformity of oocytes and conceptuses, decreasing variation among conceptuses during elongation and implantation, and preventing increases in within-litter variation in fetal weights during late gestation. This review summarizes current progress on physiological alterations responsible for IUGR fetuses, as well as possible nutritional interventions to prevent the initiation and continuation of IUGR in gilts and sows.
Collapse
Affiliation(s)
- Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Cuiping Feng
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Ting Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Meng Shi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Department of Animal Science, Texas A&M University, College Station, Texas
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas
| |
Collapse
|