1
|
Beyoğlu D, Popov YV, Idle JR. Metabolomic Hallmarks of Obesity and Metabolic Dysfunction-Associated Steatotic Liver Disease. Int J Mol Sci 2024; 25:12809. [PMID: 39684520 DOI: 10.3390/ijms252312809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
From a detailed review of 90 experimental and clinical metabolomic investigations of obesity and metabolic dysfunction-associated steatotic liver disease (MASLD), we have developed metabolomic hallmarks for both obesity and MASLD. Obesity studies were conducted in mice, rats, and humans, with consensus biomarker groups in plasma/serum being essential and nonessential amino acids, energy metabolites, gut microbiota metabolites, acylcarnitines and lysophosphatidylcholines (LPC), which formed the basis of the six metabolomic hallmarks of obesity. Additionally, mice and rats shared elevated cholesterol, humans and rats shared elevated fatty acids, and humans and mice shared elevated VLDL/LDL, bile acids and phosphatidylcholines (PC). MASLD metabolomic studies had been performed in mice, rats, hamsters, cows, geese, blunt snout breams, zebrafish, and humans, with the biomarker groups in agreement between experimental and clinical investigations being energy metabolites, essential and nonessential amino acids, fatty acids, and bile acids, which lay the foundation of the five metabolomic hallmarks of MASLD. Furthermore, the experimental group had higher LPC/PC and cholesteryl esters, and the clinical group had elevated acylcarnitines, lysophosphatidylethanolamines/phosphatidylethanolamines (LPE/PE), triglycerides/diglycerides, and gut microbiota metabolites. These metabolomic hallmarks aid in the understanding of the metabolic role played by obesity in MASLD development, inform mechanistic studies into underlying disease pathogenesis, and are critical for new metabolite-inspired therapies.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| | - Yury V Popov
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jeffrey R Idle
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| |
Collapse
|
2
|
Liu X, Liu H, Wang K, Qin C, He Y, Luo L, Lin S, Chen Y. Transcriptome Profiling Unveils the Mechanisms of Inflammation, Apoptosis, and Fibrosis in the Liver of Juvenile Largemouth Bass Micropterus salmoides Fed High-Starch Diets. Animals (Basel) 2024; 14:3394. [PMID: 39682360 DOI: 10.3390/ani14233394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The aim of this study was to explain the mechanism underlying the liver injury of juvenile largemouth bass Micropterus salmoides in response to high-starch diet intake. Three diets were formulated with different starch levels, being abbreviated as treatment LS (low starch, 8.13% starch), MS (medium starch, 14.1% starch), and HS (high starch, 20.1% starch), respectively. Fish were fed with their respective diets to apparent satiation for 56 days. The results showed that growth retardation of the HS fish was associated with the reduction in feed intake rather than feed utilization. Histological evaluation of the livers showed that vacuolization was the most prevalent characteristic in the MS fish, while ballooning degeneration, apoptosis, fibrosis, and inflammation were observed in the HS fish. Transcriptome profiling suggested that liver inflammation was mediated by Tlr signal transduction, which activated the Pi3k/Akt/Nfκb signaling axis to promote the release of proinflammatory factors including Il-8 and Ip-10. Hepatocyte apoptosis was mediated by the extrinsic pathway through death receptors including Fas and Tnfr, which coordinately activated the Fadd/caspase-8 death signaling axis. An autonomous inhibition program was identified to counteract the apoptosis signal, and the PI3K/Akt signaling pathway might play an important role in this process through regulating the expression of iap and diablo. Liver fibrosis was mediated through the Tgf-β and Hh signaling pathways. Upon secretion, Tgf-β1/3 bound to TgfβrI/II complex on the liver cell membrane, which induced the phosphorylation of downstream Smad2/3. When Hh interacted with the membrane receptor Ptc, Smo was activated to initiate signaling, driving the activation of Gli. The activation of both Smad2/3 and Gli promoted their nuclear translocation thereby regulating the transcription of target genes, which resulted in the activation and proliferation of HSCs. The activated HSCs constantly expressed colla1 and ctgf, which facilitated substantial accumulation of ECM. It should be noted that the molecular mechanism of liver injury in this study was speculated from the transcriptome data thus further experimental verification is warranted for this speculation.
Collapse
Affiliation(s)
- Xifeng Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing 400715, China
| | - Hongkang Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing 400715, China
| | - Kangwei Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing 400715, China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641100, China
| | - Yuanfa He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing 400715, China
| | - Li Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing 400715, China
| | - Shimei Lin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yongjun Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Pan W, Wang F, Xu J, Li J, Gao J, Zhao Y, Wang Q. Betaine Supplementation Into High-Carbohydrate Diets Improves Feed Efficiency and Liver Health of Megalobrama amblycephala by Increasing Taurine Synthesis. AQUACULTURE NUTRITION 2024; 2024:9632883. [PMID: 39555516 PMCID: PMC11469934 DOI: 10.1155/2024/9632883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 11/19/2024]
Abstract
Dietary betaine supplementation has been reported to alleviate the adverse effects of high-carbohydrate diets on Megalobrama amblycephala, while the regulatory mechanism remains largely unknown. In the present study, a 79-day feeding trial was conducted with 450 juvenile Megalobrama amblycephala (average weight 6.75 ± 0.10 g), which were fed with five high-carbohydrate diets (43%) supplementing betaine at 0% (CD group), 0.2% (0.2Bet group), 0.4% (0.4Bet group), 0.8% (0.8Bet group), and 1.6% (1.6Bet group), respectively. Results showed M. amblycephala in 0.8Bet group exhibited the best growth performance, indicated by the largest weight gain ratio (142.88%) and least feed conversion ratio (1.63). Moreover, liver health was promoted in 0.8Bet group, with decreased number of non-nucleated cells and less lipid accumulation, which was accompanied by the lowest hepatosomatic index (1.38%). In order to further illustrate the regulatory mechanism, metabolites assay indicated that dietary betaine supplementation significantly increased plasma contents of methionine, serine, hypotaurine, and taurine, but did not affect plasma contents of cystathionine, cystine, or cysteic acid. Accordingly, the mRNA expressions of cysteine sulfinate decarboxylase in cysteine sulfinic acid pathway and cysteamine dioxygenase (ADO) in sulfinic acid (CS) pathway, which were both involved in taurine synthesis, were also upregulated in the liver. Meanwhile, the microbial communities in M. amblycephala intestine were more stable and uniform with betaine supplementation. Therefore, dietary betaine supplementation may exert its protective roles in improving feed efficiency and liver health of M. amblycephala via promoting de novo taurine synthesis and stabilizing intestinal microbial communities.
Collapse
Affiliation(s)
- Wenbo Pan
- College of FisheriesKey Lab of Freshwater Animal BreedingMinistry of AgricultureHuazhong Agricultural University, Wuhan 430070, China
| | - Fan Wang
- Guangxi Key Laboratory of Marine Environmental ScienceGuangxi Academy of Marine SciencesGuangxi Academy of Sciences, Nanning 530012, China
| | - Jia Xu
- Guangxi Key Laboratory of Marine Environmental ScienceGuangxi Academy of Marine SciencesGuangxi Academy of Sciences, Nanning 530012, China
| | - Juntao Li
- Institute of Tropical Bioscience and BiotechnologyHainan Institute for Tropical Agricultural ResourcesChinese Academy of Tropical Agricultural Sciences, Haikou 570102, China
| | - Jian Gao
- College of FisheriesKey Lab of Freshwater Animal BreedingMinistry of AgricultureHuazhong Agricultural University, Wuhan 430070, China
| | - Yuhua Zhao
- College of FisheriesKey Lab of Freshwater Animal BreedingMinistry of AgricultureHuazhong Agricultural University, Wuhan 430070, China
| | - Qingchao Wang
- College of FisheriesKey Lab of Freshwater Animal BreedingMinistry of AgricultureHuazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Li L, Pan L, Lin Z, Wen J, Tan B, Liu H, Hu Y. Metformin improves insulin resistance, liver healthy and abnormal hepatic glucolipid metabolism via IR/PI 3K/AKT pathway in Ctenopharyngodon idella fed a high-carbohydrate diet. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109976. [PMID: 38987002 DOI: 10.1016/j.cbpc.2024.109976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/13/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
The effects and underlying mechanisms of metformin which can improve glucose homeostasis of fish have rarely been explored. This experiment aimed to explore the influence of metformin on growth performance, body composition, liver health, hepatic glucolipid metabolic capacity and IR/PI3K/AKT pathway in grass carp (Ctenopharyngodon idella) fed high-carbohydrate diets. A normal diet (Control) and high carbohydrate diets with metformin supplementation (0.00 %, 0.20 %, 0.40 %, 0.60 % and 0.80 %) were configured. Six groups of healthy fish were fed with the experimental diet for eight weeks. The results showed that the growth performance of grass carp was impaired in high carbohydrate diet. Impairment of IR/PI3K/AKT signalling pathway reduced insulin sensitivity, while hepatic oxidative stress damage and decreased immunity affected liver metabolic function. The glycolysis and lipolysis decrease while the gluconeogenesis and fat synthesis increase, which triggers hyperglycaemia and lipid deposition in the body. Metformin supplementation restored the growth performance of grass carp. Metformin improved IR/PI3K/AKT pathway signalling and alleviated insulin resistance, while liver antioxidant capacity and immunity were enhanced resulting in the restoration of liver health. The elevation of glycolysis and lipolysis maintains glycaemic homeostasis and reduces lipid deposition, respectively. These results suggest that metformin supplementation restores liver health and activates the IR/PI3K/AKT signalling pathway, ameliorating insulin resistance and glucose-lipid metabolism disorders caused by a high-carbohydrate diet. As judged by HOMA-IR, the optimum supplementation level of metformin in grass carp (C. idella) fed a high-carbohydrate diet is 0.67 %.
Collapse
Affiliation(s)
- Lixian Li
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, PR China
| | - Ling Pan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, PR China; Zhanjiang Experimental Station, CATAS. Zhanjiang 524013, PR China
| | - Zhixuan Lin
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, PR China
| | - Jiasheng Wen
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, PR China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, PR China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, PR China.
| | - Yi Hu
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha 410128, PR China
| |
Collapse
|
5
|
Cao M, Xie N, Zhang J, Jiang M, Huang F, Dong L, Lu X, Wen H, Tian J. Dietary supplementation with succinic acid improves growth performance and flesh quality of adult Nile tilapia ( Oreochromis niloticus) fed a high-carbohydrate diet. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:390-407. [PMID: 39309970 PMCID: PMC11413691 DOI: 10.1016/j.aninu.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/20/2024] [Accepted: 04/29/2024] [Indexed: 09/25/2024]
Abstract
To evaluate the effects of dietary supplementation with succinic acid on growth performance, flesh quality, glucose, and lipid metabolism of Nile tilapia (Oreochromis niloticus) fed a high-carbohydrate diet (HCD), five iso-nitrogenous and iso-lipidic diets were prepared as follows: HCD (control group) consisting of 55% corn starch and HCD supplemented with 0.5%, 1.0%, 2.0%, and 4.0% succinic acid, respectively. Tilapia with an initial body weight of 204.90 ± 1.23 g randomly assigned to 15 tanks with 3 replicates per group and 10 fish per tank fed for 8 weeks. Increasing dietary succinic acid supplementation resulted in significant second-order polynomial relationship in the weight gain rate (WGR), specific growth rate (SGR), feed conversion ratio (FCR), protein efficiency rate (PER), viscerosomatic index, condition factor, and contents of muscular crude lipid and glycogen (P < 0.05). The hepatosomatic index, mesenteric fat index, liver glycogen content and crude lipid contents of the whole-body and liver demonstrated significantly linear and second-order polynomial relationship (P < 0.05). Quadratic curve model analysis based on WGR, SGR, PER, and FCR demonstrated that optimal supplementation with succinic acid in the HCD of Nile tilapia ranged from 1.83% to 2.43%. Fish fed with 1.0% succinic acid had higher muscular hardness, increased the contents of alkali-soluble hydroxyproline in collagen, docosahexaenoic acid (DHA) and n-3 polyunsaturated fatty acid (n-3PUFA) in muscle, and lower total fatty acid content in muscle (P < 0.05) compared with the control group. Compared to the control group, dietary supplementation with 1.0% succinic acid significantly increased the contents of total bounding amino acid (arginine, histidine, isoleucine, lysine, methionine, alanine, proline), total flavor amino acid (free aspartic acid), the catalase (CAT) activity and total antioxidant capacity, and the mRNA relative expression levels of CAT, superoxide dismutase (SOD), and nuclearfactor erythroidderived 2-like 2 (Nrf2) in muscle (P < 0.05). Furthermore, succinic acid supplementation significantly up-regulated mRNA relative expression levels of glycolysis genes (hexokinase 2 [HK2], phosphofructokinase, muscle-A [PFKMA], and phosphofructokinase, muscle-B [PFKMB]), a key glycogen synthesis gene (glycogen synthase [GYS]), and lipid catabolism genes (carnitine palmitoyltransferase-1B [CPT1B], hormone sensitive lipase [HSL], and lipoprotein lipase [LPL]), while down-regulating the mRNA relative expression level of fatty acid synthase (FASN) in muscle (P < 0.05). In conclusion, dietary supplementation with 1.83% to 2.43% succinic acid improved muscle quality by increasing muscle antioxidant capacity and hardness, changing muscle amino acid and fatty acid composition, and regulating muscle glucose and lipid metabolism.
Collapse
Affiliation(s)
- Manxia Cao
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ningning Xie
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Jianmin Zhang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ming Jiang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Feng Huang
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lixue Dong
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xing Lu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Hua Wen
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Juan Tian
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
6
|
Liu Q, Cheng L, Wang M, Shen L, Zhang C, Mu J, Hu Y, Yang Y, He K, Yan H, Zhao L, Yang S. Dietary sodium acetate and sodium butyrate improve high-carbohydrate diet utilization by regulating gut microbiota, liver lipid metabolism, oxidative stress, and inflammation in largemouth bass (Micropterus salmoides). J Anim Sci Biotechnol 2024; 15:50. [PMID: 38566217 PMCID: PMC10988814 DOI: 10.1186/s40104-024-01009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/03/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate (HC) diet disrupt the homeostasis of the gut-liver axis in largemouth bass, resulting in decreased intestinal acetate and butyrate level. METHOD Herein, we had concepted a set of feeding experiment to assess the effects of dietary sodium acetate (SA) and sodium butyrate (SB) on liver health and the intestinal microbiota in largemouth bass fed an HC diet. The experimental design comprised 5 isonitrogenous and isolipidic diets, including LC (9% starch), HC (18% starch), HCSA (18% starch; 2 g/kg SA), HCSB (18% starch; 2 g/kg SB), and HCSASB (18% starch; 1 g/kg SA + 1 g/kg SB). Juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were fed on these diets for 56 d. RESULTS We found that dietary SA and SB reduced hepatic triglyceride accumulation by activating autophagy (ATG101, LC3B and TFEB), promoting lipolysis (CPT1α, HSL and AMPKα), and inhibiting adipogenesis (FAS, ACCA, SCD1 and PPARγ). In addition, SA and SB decreased oxidative stress in the liver (CAT, GPX1α and SOD1) by activating the Keap1-Nrf2 pathway. Meanwhile, SA and SB alleviated HC-induced inflammation by downregulating the expression of pro-inflammatory factors (IL-1β, COX2 and Hepcidin1) through the NF-κB pathway. Importantly, SA and SB increased the abundance of bacteria that produced acetic acid and butyrate (Clostridium_sensu_stricto_1). Combined with the KEGG analysis, the results showed that SA and SB enriched carbohydrate metabolism and amino acid metabolism pathways, thereby improving the utilization of carbohydrates. Pearson correlation analysis indicated that growth performance was closely related to hepatic lipid deposition, autophagy, antioxidant capacity, inflammation, and intestinal microbial composition. CONCLUSIONS In conclusion, dietary SA and SB can reduce hepatic lipid deposition; and alleviate oxidative stress and inflammation in largemouth bass fed on HC diet. These beneficial effects may be due to the altered composition of the gut microbiota caused by SA and SB. The improvement effects of SB were stronger than those associated with SA.
Collapse
Affiliation(s)
- Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liangshun Cheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Maozhu Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lianfeng Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chengxian Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jin Mu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yifan Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yihui Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
7
|
Dong Y, Wang X, Wei L, Liu Z, Chu X, Xiong W, Liu W, Li X. The Effectiveness of Four Nicotinamide Adenine Dinucleotide (NAD +) Precursors in Alleviating the High-Glucose-Induced Damage to Hepatocytes in Megalobrama amblycephala: Evidence in NAD + Homeostasis, Sirt1/3 Activation, Redox Defense, Inflammatory Response, Apoptosis, and Glucose Metabolism. Antioxidants (Basel) 2024; 13:385. [PMID: 38671834 PMCID: PMC11047577 DOI: 10.3390/antiox13040385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
The administration of NAD+ precursors is a potential approach to protect against liver damage and metabolic dysfunction. However, the effectiveness of different NAD+ precursors in alleviating metabolic disorders is still poorly elucidated. The current study was performed to compare the effectiveness of four different NAD+ precursors, including nicotinic acid (NA), niacinamide (NAM), nicotinamide riboside (NR), and nicotinamide mononucleotide (NMN) in alleviating high-glucose-induced injury to hepatocytes in a fish model, Megalobrama amblycephala. An in vitro high-glucose model was successfully established to mimic hyperglycemia-induced damage to the liver, which was evidenced by the reduced cell viability, the increased transaminase activity, and the depletion of cellular NAD+ concentration. The NAD+ precursors all improved cell viability, with the maximal effect observed in NR, which also had the most potent NAD+ boosting capacity and a significant Sirt1/3 activation effect. Meanwhile, NR presented distinct and superior effects in terms of anti-oxidative stress, inflammation inhibition, and anti-apoptosis compared with NA, NAM, and NMN. Furthermore, NR could effectively benefit glucose metabolism by activating glucose transportation, glycolysis, glycogen synthesis and the pentose phosphate pathway, as well as inhibiting gluconeogenesis. Moreover, an oral gavage test confirmed that NR presented the most potent effect in increasing hepatic NAD+ content and the NAD+/NADH ratio among four NAD+ precursors. Together, the present study results demonstrated that NR is most effective in attenuating the high-glucose-induced injury to hepatocytes in fish compared to other NAD+ precursors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| |
Collapse
|
8
|
Huang W, Hua Y, Wang F, Xu J, Yuan L, Jing Z, Wang W, Zhao Y. Dietary betaine and/or TMAO affect hepatic lipid accumulation and glycometabolism of Megalobrama amblycephala exposed to a high-carbohydrate diet. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:59-75. [PMID: 36580207 DOI: 10.1007/s10695-022-01160-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
A 12-week experiment was conducted to explore the effects of betaine and/or TMAO on growth, hepatic health, gut microbiota, and serum metabolites in Megalobrama amblycephala fed with high-carbohydrate diets. The diets were as follows: CD group (control diet, 28.5% carbohydrate), HCD group (high-carbohydrate diet, 38.2% carbohydrate), HBD group (betaine-added diet, 38.3% carbohydrate + 1.2% betaine), HTD group (TMAO-added diet, 38.2% carbohydrate + 0.2% TMAO), and HBT group (diet added with both betaine and TMAO, 38.2% carbohydrate + 1.2% betaine + 0.2% TMAO). The results showed that the hepatosomatic index (HSI); whole-body crude fat; hepatic lipid accumulation; messenger RNA expression levels of gk, fpbase, g6pase, ahas, and bcat; serum branched-chain amino acids (BCAAs); ratio of Firmicutes-to-Bacteroidetes; and abundance of the genus Aeromonas were all significantly increased, while the abundance levels of the genus Lactobacillus and phyla Tenericutes and Bacteroidetes were drastically decreased in the HCD group. Compared with the HCD group, the HSI; whole-body crude fat; hepatic lipid accumulation; expression levels of fbpase, g6pase, pepck, ahas, and bcat; circulating BCAA; ratio of Firmicutes-to-Bacteroidetes; and abundance levels of the genus Aeromonas and phyla Tenericutes and Bacteroidetes were significantly downregulated in the HBD, HTD, and HBT groups. Meanwhile, the expression levels of pk were drastically upregulated in the HBD, HTD, and HBT groups as well as the abundance of Lactobacillus in the HBT group. These results indicated that the supplementation of betaine and/or TMAO in high-carbohydrate diets could affect the hepatic lipid accumulation and glycometabolism of M. amblycephala by promoting glycolysis, inhibiting gluconeogenesis and biosynthesis of BCAA, and mitigating the negative alteration of gut microbiota. Among them, the combination of betaine and TMAO had the best effect.
Collapse
Affiliation(s)
- Wangwang Huang
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Yizhuo Hua
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Fan Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Jia Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Lv Yuan
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Zhao Jing
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Weimin Wang
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Yuhua Zhao
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
9
|
Xi L, Lu Q, Liu Y, Gong Y, Liu H, Jin J, Zhang Z, Yang Y, Zhu X, Han D, Xie S. Study on Carbohydrate Metabolism in Adult Zebrafish ( Danio rerio). AQUACULTURE NUTRITION 2023; 2023:1397508. [PMID: 37901279 PMCID: PMC10611541 DOI: 10.1155/2023/1397508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023]
Abstract
Excessive carbohydrate intake leads to metabolic disorders in fish. However, few literatures have reported the appropriate carbohydrate level for zebrafish, and the metabolic response to dietary carbohydrate remains largely unknown in zebrafish. This study assessed the responses of zebrafish and zebrafish liver cell line (ZFL) to different carbohydrate levels. In vivo results showed that ≥30% dietary dextrin levels significantly increased the plasma glucose content, activated the expression of hepatic glycolysis-related genes, and inhibited the expression of hepatic gluconeogenesis-related genes in zebrafish. Oil red O staining, triglyceride content, and Hematoxylin-Eosin staining results showed that dietary dextrin levels of ≥30% significantly increased lipid accumulation and liver damage, as well as processes related to glycolipid metabolism and inflammation in zebrafish. In ZFL, the transcription factor sterol regulatory element binding protein-1c signal intensity, 4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY 493/503) signal intensity, and triglyceride content were also significantly increased when incubated in high glucose, along with abnormal glycolipid metabolism and increased inflammation-related genes. In conclusion, we demonstrated that the maximum dietary carbohydrate level in adult zebrafish should be less than 30%. Excess dietary carbohydrates (30%-50%) caused hepatic steatosis and damage to zebrafish, similar to that seen in aquaculture species. Thus, this study assessed responses to different carbohydrate levels in zebrafish and illustrated that zebrafish is an optimal model for investigating glucose metabolism in some aquatic animals.
Collapse
Affiliation(s)
- Longwei Xi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qisheng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhimin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
10
|
Elbadawy M, Tanabe K, Yamamoto H, Ishihara Y, Mochizuki M, Abugomaa A, Yamawaki H, Kaneda M, Usui T, Sasaki K. Evaluation of the efficacy of mitochondrial fission inhibitor (Mdivi-1) using non-alcoholic steatohepatitis (NASH) liver organoids. Front Pharmacol 2023; 14:1243258. [PMID: 37900170 PMCID: PMC10600465 DOI: 10.3389/fphar.2023.1243258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is known to progress to cirrhosis and hepatocellular carcinoma in some patients. Although NASH is associated with abnormal mitochondrial function related to lipid metabolism, mechanisms for the development and effective treatments are still unclear. Therefore, new approaches to elucidate the pathophysiology are needed. In the previous study, we generated liver organoids from different stages of NASH model mice that could recapitulate the part of NASH pathology. In the present study, we investigated the relationship between mitochondrial function and NASH disease by comparing NASH liver organoids (NLO) and control liver organoids (CLO). Compared with CLO, mitochondrial and organoid morphology was abnormal in NLO, with increased expression of mitochondrial mitogen protein, DRP1, and mitochondria-derived reactive oxygen species (ROS) production. Treatment of NLO with a DPR1 inhibitor, Mdivi-1 resulted in the improvement of morphology and the decreased expression of fibrosis-related markers, Col1a1 and Acta2. In addition, treatment of NASH model mice with Mdivi-1 showed a decrease in fatty liver. Mdivi-1 treatment also prevented fibrosis and ROS production in the liver. These results indicate that NLO undergoes enhanced metabolism and abnormal mitochondrial morphology compared with CLO. It was also suggested that Mdivi-1 may be useful as a therapeutic agent to ameliorate NASH pathology.
Collapse
Affiliation(s)
- Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kiwamu Tanabe
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Haru Yamamoto
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yusuke Ishihara
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Maria Mochizuki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
11
|
Jin AH, Qian YF, Ren J, Wang JG, Qiao F, Zhang ML, Du ZY, Luo Y. PDK inhibition promotes glucose utilization, reduces hepatic lipid deposition, and improves oxidative stress in largemouth bass (Micropterus salmoides) by increasing pyruvate oxidative phosphorylation. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108969. [PMID: 37488039 DOI: 10.1016/j.fsi.2023.108969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
In omnivorous fish, the pyruvate dehydrogenase kinases (PDKs)-pyruvate dehydrogenase E1α subunit (PDHE1α) axis is essential in the regulation of carbohydrate oxidative catabolism. Among the existing research, the role of the PDKs-PDHE1α axis in carnivorous fish with poor glucose utilization is unclear. In the present study, we determined the effects of PDK inhibition on the liver glycolipid metabolism of largemouth bass (Micropterus salmoides). DCA is a PDK-specific inhibitor that inhibits PDK by binding the allosteric sites. A total of 160 juvenile largemouth bass were randomly divided into two groups, with four replicates of 20 fish each, fed a control diet and a control diet supplemented with dichloroacetate (DCA) for 8 weeks. The present results showed that DCA supplementation significantly decreased the hepatosomatic index, triglycerides in liver and serum, and total liver lipids of largemouth bass compared with the control group. In addition, compared with the control group, DCA treatment significantly down-regulated gene expression associated with lipogenesis. Furthermore, DCA supplementation significantly decreased the mRNA expression of pdk3a and increased PDHE1α activity. In addition, DCA supplementation improved glucose oxidative catabolism and pyruvate oxidative phosphorylation (OXPHOS) in the liver, as evidenced by low pyruvate content in the liver and up-regulated expressions of glycolysis-related and TCA cycle/OXPHOS-related genes. Moreover, DCA consumption decreased hepatic malondialdehyde (MDA) content, enhanced the activities of superoxide dismutase (SOD), and increased transforming growth factor beta (tgf-β), glutathione S-transferase (gst), and superoxide dismutase 1 (sod1) gene expression compared with the control diet. This study demonstrated that inhibition of PDKs by DCA promoted glucose utilization, reduced hepatic lipid deposition, and improved oxidative stress in largemouth bass by increasing pyruvate OXPHOS. Our findings contribute to the understanding of the underlying mechanism of the PDKs-PDHE1α axis in glucose metabolism and improve the utilization of dietary carbohydrates in farmed carnivorous fish.
Collapse
Affiliation(s)
- An-Hui Jin
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi-Fan Qian
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiong Ren
- HANOVE Research Center, Wuxi, PR China
| | - Jin-Gang Wang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Fang Qiao
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan Luo
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
12
|
Wang S, Zuo Z, Ye B, Zhang L, Cheng Y, Xie S, Zou J, Xu G. Microbiome-Metabolomic Analysis Reveals Beneficial Effects of Dietary Kelp Resistant Starch on Intestinal Functions of Hybrid Snakeheads ( Channa maculata ♀ × Channa argus ♂). Antioxidants (Basel) 2023; 12:1631. [PMID: 37627626 PMCID: PMC10451247 DOI: 10.3390/antiox12081631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The benefits of resistant starch on hypoglycemia, obesity prevention, antioxidant status and the alleviation of metabolic syndrome have received considerable attention. In this study, we explored how dietary kelp resistant starch (KRS) enhances intestinal morphology and function through a microbiome-metabolomic analysis. Hybrid snakeheads (initial weight: 11.4 ± 0.15 g) were fed experimental diets for 60 days. Fish were fed a basic wheat starch diet and the KRS diet. Dietary KRS improved intestinal morphology and enhanced intestinal antioxidant and digestive capabilities, as evidenced by decreased intestinal damage and upregulated intestinal biochemical markers. The microbiome analysis showed that KRS administration elevated the proportion of butyrate-producing bacteria and the abundance of beneficial bacteria that increases insulin sensitivity. Furthermore, significant alterations in metabolic profiles were observed to mainly associate with the amino acid metabolism (particularly arginine production), the metabolism of cofactors and vitamins, fat metabolism, glutathione metabolism, and the biosynthesis of other secondary metabolites. Additionally, alterations in intestinal microbiota composition were significantly associated with metabolites. Collectively, changes in intestinal microbiota and metabolite profiles produced by the replacement of common starch with dietary KRS appears to play an important role in the development of intestinal metabolism, thus leading to improved intestinal function and homeostasis.
Collapse
Affiliation(s)
- Shaodan Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| | - Zhiheng Zuo
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Bin Ye
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Li Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| | - Yanbo Cheng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| |
Collapse
|
13
|
Shen HC, Chen ZQ, Chen F, Chen S, Ning LJ, Tian HY, Xu C. DHA alleviates high glucose-induced mitochondrial dysfunction in Oreochromis niloticus by inhibiting DRP1-mediated mitochondrial fission. Int J Biol Macromol 2023; 244:125409. [PMID: 37327936 DOI: 10.1016/j.ijbiomac.2023.125409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Dynamin-related protein 1 (DRP1) is a key regulator in the maintenance of mammalian glucose homeostasis, but the relevant information remains poorly understood on aquatic animals. In the study, DRP1 is formally described for the first time in Oreochromis niloticus. DRP1 encodes a peptide of 673 amino acid residues that contained three conserved domains: a GTPase domain, a dynamin middle domain and a dynamin GTPase effector domain. DRP1 transcripts are widely distributed in all of the detected seven organs/tissues, and the highest mRNA levels in brain. High-carbohydrate (45 %) fed fish showed a significant upregulation of liver DRP1 expression than that of control (30 %) group. Glucose administration upregulated liver DRP1 expression, with peak values observed at 1 h; then its expression returned to the basal value at 12 h. In the in vitro study, DRP1 over-expression significantly decreased mitochondrial abundance in hepatocytes. DHA significantly increased mitochondrial abundance, transcriptions of mitochondrial transcription factor A (TFAM) and mitofusin 1 and 2 (MFN1 and MFN2) and complex II and III activities of high glucose-treated hepatocyte, whereas the opposite was true for DRP1, mitochondrial fission factor (MFF) and fission (FIS) expression. Together, these findings illustrated that O. niloticus DRP1 is highly conserved, and it participated in glucose control of fish. DHA could alleviate high glucose-induced mitochondrial dysfunction of fish by inhibiting DRP1-mediated mitochondrial fission.
Collapse
Affiliation(s)
- Hui-Chao Shen
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou 510642, China
| | - Zhi-Qiang Chen
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou 510642, China
| | - Fang Chen
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou 510642, China
| | - Sen Chen
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou 510642, China
| | - Li-Jun Ning
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou 510642, China
| | - Hong-Yan Tian
- Yancheng Institute of Technology, School of Marine and Bioengineering, No 211 Jianjun east road, 224000, Jiangsu Province, China
| | - Chao Xu
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou 510642, China; Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China.
| |
Collapse
|
14
|
Xi L, Zhai G, Liu Y, Gong Y, Lu Q, Zhang Z, Liu H, Jin J, Zhu X, Yin Z, Xie S, Han D. Attenuated glucose uptake promotes catabolic metabolism through activated AMPK signaling and impaired insulin signaling in zebrafish. Front Nutr 2023; 10:1187283. [PMID: 37305084 PMCID: PMC10250679 DOI: 10.3389/fnut.2023.1187283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
Glucose metabolism in fish remains a controversial area of research as many fish species are traditionally considered glucose-intolerant. Although energy homeostasis remodeling has been observed in fish with inhibited fatty acid β-oxidation (FAO), the effects and mechanism of the remodeling caused by blocked glucose uptake remain poorly understood. In this study, we blocked glucose uptake by knocking out glut2 in zebrafish. Intriguingly, the complete lethality, found in Glut2-null mice, was not observed in glut2-/- zebrafish. Approxiamately 30% of glut2-/- fish survived to adulthood and could reproduce. The maternal zygotic mutant glut2 (MZglut2) fish exhibited growth retardation, decreased blood and tissue glucose levels, and low locomotion activity. The decreased pancreatic β-cell numbers and insulin expression, as well as liver insulin receptor a (insra), fatty acid synthesis (chrebp, srebf1, fasn, fads2, and scd), triglyceride synthesis (dgat1a), and muscle mechanistic target of rapamycin kinase (mtor) of MZglut2 zebrafish, suggest impaired insulin-dependent anabolic metabolism. Upregulated expression of lipolysis (atgl and lpl) and FAO genes (cpt1aa and cpt1ab) in the liver and proteolysis genes (bckdk, glud1b, and murf1a) in muscle were observed in the MZglut2 zebrafish, as well as elevated levels of P-AMPK proteins in both the liver and muscle, indicating enhanced catabolic metabolism associated with AMPK signaling. In addition, decreased amino acids and elevated carnitines of the MZglut2 zebrafish supported the decreased protein and lipid content of the whole fish. In summary, we found that blocked glucose uptake impaired insulin signaling-mediated anabolism via β-cell loss, while AMPK signaling-mediated catabolism was enhanced. These findings reveal the mechanism of energy homeostasis remodeling caused by blocked glucose uptake, which may be a potential strategy for adapting to low glucose levels.
Collapse
Affiliation(s)
- Longwei Xi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qisheng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhimin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hubei Hongshan Laboratory, Huazhong Agriculture University, Wuhan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hubei Hongshan Laboratory, Huazhong Agriculture University, Wuhan, China
| |
Collapse
|
15
|
Hua Y, Huang W, Wang F, Jing Z, Li J, Wang Q, Zhao Y. Metabolites, gene expression, and gut microbiota profiles suggest the putative mechanisms via which dietary creatine increases the serum taurine and g-ABA contents in Megalobrama amblycephala. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:253-274. [PMID: 36897433 DOI: 10.1007/s10695-023-01177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/01/2023] [Indexed: 05/04/2023]
Abstract
A 90-day experiment was conducted to explore the effects of creatine on growth performance, liver health status, metabolites, and gut microbiota in Megalobrama amblycephala. There were 6 treatments as follows: control (CD, 29.41% carbohydrates), high carbohydrate (HCD, 38.14% carbohydrates), betaine (BET, 1.2% betaine + 39.76% carbohydrates), creatine 1 (CRE1, 0.5% creatine + 1.2% betaine + 39.29% carbohydrates), creatine 2 (CRE2, 1% creatine + 1.2% betaine + 39.50% carbohydrates), and creatine 3 (CRE3, 2% creatine + 1.2% betaine + 39.44% carbohydrates). The results showed that supplementing creatine and betaine together reduced the feed conversion ratio significantly (P < 0.05, compared to CD and HCD) and improved liver health (compared to HCD). Compared with the BET group, dietary creatine significantly increased the abundances of Firmicutes, Bacteroidota, ZOR0006, and Bacteroides and decreased the abundances of Proteobacteria, Fusobacteriota, Vibrio, Crenobacter, and Shewanella in the CRE1 group. Dietary creatine increased the content of taurine, arginine, ornithine, γ-aminobutyric acid (g-ABA), and creatine (CRE1 vs. BET group) and the expression of creatine kinase (ck), sulfinoalanine decarboxylase (csad), guanidinoacetate N-methyltransferase (gamt), glycine amidinotransferase (gatm), agmatinase (agmat), diamine oxidase1 (aoc1), and glutamate decarboxylase (gad) in the CRE1 group. Overall, these results suggested that dietary supplementation of creatine (0.5-2%) did not affect the growth performance, but it altered the gut microbial composition at the phylum and genus levels, which might be beneficial to the gut health of M. amblycephala; dietary creatine also increased the serum content of taurine by enhancing the expressions of ck and csad and increased the serum content of g-ABA by enhancing the arginine content and the expressions of gatm, agmat, gad, and aoc1.
Collapse
Affiliation(s)
- Yizhuo Hua
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Wangwang Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Fan Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Zhao Jing
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Juntao Li
- Institute of Tropical Bioscience and Biotechnology, Haikou, 570102, China
| | - Qingchao Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Yuhua Zhao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
16
|
Yang L, Zhao M, Liu M, Zhang W, Zhi S, Qu L, Xiong J, Wang L, Qin C, Nie G. Effects of Genistein on Lipid Metabolism, Antioxidant Activity, and Immunity of Common Carp ( Cyprinus carpio L.) Fed with High-Carbohydrate and High-Fat Diets. AQUACULTURE NUTRITION 2023; 2023:9555855. [PMID: 37034827 PMCID: PMC10081910 DOI: 10.1155/2023/9555855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/19/2022] [Accepted: 12/05/2022] [Indexed: 06/03/2023]
Abstract
A 56-day feeding trial was conducted to investigate the effects of genistein on growth, lipid metabolism, antioxidant capacity, and immunity of common carp fed with high-carbohydrate or high-fat diets. Five diets were used to feed fish: control diet (5% fat; CO), high-fat diet (11% fat; HF), high-carbohydrate diet (45% carbohydrate; HC), and HF or HC diet with 500 mg/kg genistein (FG or CG). Results showed that final body weight (FW) and specific growth rate (SGR) were significantly reduced, but the supplementation with genistein resulted in higher values of FW and SGR than the HF or HC group. Both high carbohydrate and high fat belong to high-energy diets, which may promote lipid deposition. Genistein obviously decreased liver triglyceride (TG) content and alleviated hepatic fat vacuolation in the HF and HC groups. The expression of lipid metabolism genes (cpt-1 and atgl) was markedly higher in the FG group than in the HF group. The lipid synthesis-related genes (fas, acc, and pparγ) were elevated in high-energy diets but recovered to the control level or reduced after genistein treatments. With respect to fatty acid transporter genes, fatp increased in the FG group, and cd36 increased in the CG group. Furthermore, the antioxidant and immune indexes, such as total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), acid phosphatase (ACP), and lysozyme (LZM) activities, were decreased, while malonate aldehyde (MDA) content, activities of alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were enhanced in the HF and HC groups. The antioxidant and immunity values could be ameliorated by treatment with genistein. Moreover, the transcript levels of antioxidant-related genes (cat, gr, and nrf2) in the liver and anti-inflammatory factors (tgf-β and il-10) and lyz in the head kidney tissue were promoted, although the expression levels of proinflammatory factors (tnf-α and il-6) declined in the genistein supplementation group, which confirmed the antioxidant and immune-enhancing effects of genistein. Therefore, 500 mg/kg genistein could ameliorate the negative effects of high-energy diets on immunity.
Collapse
Affiliation(s)
- Liping Yang
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Mengjuan Zhao
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Mingyu Liu
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Wenlei Zhang
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Shaoyang Zhi
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Leya Qu
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Jinrui Xiong
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Luming Wang
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Chaobin Qin
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| |
Collapse
|
17
|
Zhu Y, Hu J, Zeng S, Gao M, Guo S, Wang M, Hong Y, Zhao G. L-selenomethionine affects liver development and glucolipid metabolism by inhibiting autophagy in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114589. [PMID: 36724712 DOI: 10.1016/j.ecoenv.2023.114589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Selenium plays a vital role in cancer prevention, antioxidation, and the growth of humans and other vertebrates. Excessive selenium can cause liver injury and metabolic disorders, which can lead to hepatic disease, but few studies have shown the effects of excessive selenium on liver development and its mechanism in zebrafish embryos. In this study, liver development and glucolipid metabolism were investigated in selenium-stressed zebrafish embryos. Under selenium treatment, transgenic fabp10a-eGFP zebrafish embryos showed reduced liver size, and wild-type zebrafish embryos exhibited steatosis and altered lipid metabolism-related indexes and glucose metabolism-related enzyme activities. In addition, selenium-stressed embryos exhibited damaged mitochondria and inhibited autophagy in the liver. An autophagy inducer (rapamycin) alleviated selenium-induced liver injury and restored the expression of some genes related to liver development and glucolipid metabolism. In summary, our research evaluated liver developmental toxicity and metabolic disorders under selenium stress, and confirmed that autophagy and oxidative stress might involve in the selenium-induced hepatic defects.
Collapse
Affiliation(s)
- Yuejie Zhu
- Nanchang University Modern Agriculture Research Institute, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, School of Life Science, Nanchang University, Nanchang, China
| | - Jun Hu
- Nanchang University Modern Agriculture Research Institute, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, School of Life Science, Nanchang University, Nanchang, China
| | - Shumin Zeng
- Nanchang University Modern Agriculture Research Institute, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, School of Life Science, Nanchang University, Nanchang, China
| | - Meng Gao
- Nanchang University Modern Agriculture Research Institute, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, School of Life Science, Nanchang University, Nanchang, China
| | - Shujie Guo
- Nanchang University Modern Agriculture Research Institute, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, School of Life Science, Nanchang University, Nanchang, China
| | - Mengnan Wang
- Nanchang University Modern Agriculture Research Institute, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, School of Life Science, Nanchang University, Nanchang, China
| | - Yijiang Hong
- Nanchang University Modern Agriculture Research Institute, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, School of Life Science, Nanchang University, Nanchang, China.
| | - Guang Zhao
- Nanchang University Modern Agriculture Research Institute, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, School of Life Science, Nanchang University, Nanchang, China.
| |
Collapse
|
18
|
Lu K, Wu J, Zhang Y, Zhuang W, Liang XF. Role of phosphoenolpyruvate carboxykinase 1 (pck1) in mediating nutrient metabolism in zebrafish. Funct Integr Genomics 2023; 23:67. [PMID: 36840800 DOI: 10.1007/s10142-023-00993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023]
Abstract
Carbohydrates are the most economical source of energy in fish feeds, but most fish have limited ability to utilize carbohydrates. It has been reported that phosphoenolpyruvate carboxykinase 1 (pck1) is involved in carbohydrate metabolism, lipid metabolism, and other metabolic processes. However, direct evidence is lacking to fully understand the relationship between pck1 and glucose and lipid metabolism. Here, we generated a pck1 knockout zebrafish by CRISPR/cas9 system, and a high-carbohydrate diet was provided to 60 days post-fertilization (dpf) for 8 weeks. We found that pck1-deficient zebrafish displayed decreased plasma glucose, elevated mRNA levels of glycolysis-related genes (gck, pfk, pk), and reduced the transcriptional levels of gluconeogenic genes (pck1, fbp1a) in liver. We also found decreased triglyceride, total cholesterol, and lipid accumulation and in pck1-/- zebrafish, along with downregulation of genes for lipolysis (acaca) and lipogenesis (cpt1). In addition, the observation of HE staining revealed that the total muscle area of pck1-/- was substantially less than that of WT zebrafish and real-time PCR suggested that GH/IGF-1 signaling (ulk2, stat1b) may be suppressed in pck1-deficient fish. Taken together, these findings suggested that pck1 may play an important role in the high-carbohydrate diet utilization of fish and significantly affected lipid metabolism and protein synthesis in zebrafish. pck1 knockout mutant line could facilitate a further mechanism study of pck1-associated metabolic regulation and provide new information for improving carbohydrate utilization traits.
Collapse
Affiliation(s)
- Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan, 430070, Hubei Province, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jiaqi Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan, 430070, Hubei Province, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Yanpeng Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan, 430070, Hubei Province, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Wuyuan Zhuang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan, 430070, Hubei Province, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan, 430070, Hubei Province, China. .,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
19
|
Comparative Research on Intestinal Functions of Wild and Cultured Hemibarbus maculatus in Jialing River. Animals (Basel) 2023; 13:ani13020189. [PMID: 36670729 PMCID: PMC9854878 DOI: 10.3390/ani13020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Hemibarbus maculatus is a common economic fish in the midstream and downstream of the Jialing River. In order to resolve the difficulties in aquacultural cultivation, we tested the intestinal and liver digestive function of wild and cultured Hemibarbus maculatus. Histological methods and special biochemical staining methods were used to compare the differences of morphological structure, goblet cells, argyrophil cells, lymphocytes and Na+/K+ATPase in the intestine, and the morphological structure, glycogen and lipid in the liver between the two kinds of Hemibarbus maculatus. The results showed that higher amount of fat was found to attached to the gut, lower Na+/K+ATPase vitality in the foregut and hidgut (p < 0.01) and lower number of goblet cells in the hindgut (p < 0.01) of the cultured Hemibarbus maculatus when compared to the wild ones. The number of the argyrophilic cells did not show significant differences between the two kinds, but the number of lymphocytes was significantly lower in the segments of gut in cultured. This suggests the absorptive function and intestinal immunity are weaker in the cultured Hemibarbus maculatus. In addition, more glycogen and lipid were found in the liver of cultured fishes, which indicates the decreased digestive function of the cultured Hemibarbus maculatus. In conclusion, the intestinal digestion, absorption and lymphocytes level of the wild are generally better than those of the cultured, and more hepatic lipopexia and glycogen are present in the cultured ones. Future aquacultural activities should consider these changes when facing pragmatic problems.
Collapse
|
20
|
Luo Y, Zhou W, Li R, Limbu SM, Qiao F, Chen L, Zhang M, Du ZY. Inhibition of pyruvate dehydrogenase kinase improves carbohydrate utilization in Nile tilapia by regulating PDK2/4-PDHE1α axis and insulin sensitivity. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 11:25-37. [PMID: 36016966 PMCID: PMC9382415 DOI: 10.1016/j.aninu.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/05/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Pyruvate dehydrogenase kinases (PDKs)-pyruvate dehydrogenase E1α subunit (PDHE1α) axis plays an important role in regulating glucose metabolism in mammals. However, the regulatory function of PDKs-PDHE1α axis in the glucose metabolism of fish is not well known. This study determined whether PDKs inhibition could enhance PDHE1α activity, and improve glucose catabolism in fish. Nile tilapia fingerlings (1.90 ± 0.11 g) were randomly divided into 4 treatments in triplicate (30 fish each) and fed control diet without dichloroacetate (DCA) (38% protein, 7% lipid and 45% corn starch) and the control diet supplemented with DCA, which inhibits PDKs through binding the allosteric sites, at 3.75 (DCA3.75), 7.50 (DCA7.50) and 11.25 g/kg (DCA11.25), for 6 wk. The results showed that DCA3.75, DCA7.50 and DCA11.25 significantly increased weight gain, carcass ratio and protein efficiency ratio (P < 0.05) and reduced feed efficiency (P < 0.05) of Nile tilapia. To investigate the effects of DCA on growth performance of Nile tilapia, we selected the lowest dose DCA3.75 for subsequent analysis. Nile tilapia fed on DCA3.75 significantly reduced the mesenteric fat index, serum and liver triglyceride concentration and total lipid content in whole fish, and down-regulated the expressions of genes related to lipogenesis (P < 0.05) compared to the control. The DCA3.75 treatment significantly improved glucose oxidative catabolism and glycogen synthesis in the liver, but significantly reduced the conversion of glucose to lipid (P < 0.05). Furthermore, the DCA3.75 treatment significantly decreased the PDK2/4 gene and protein expressions (P < 0.05), accordingly stimulated PDHE1α activity by decreasing the phosphorylated PDHE1α protein level. In addition, DCA3.75 treatment significantly increased the phosphorylated levels of key proteins involved in insulin signaling pathway and glycogen synthase kinase 3β (P < 0.05). Taken together, the present study demonstrates that PDK2/4 inhibition by using DCA promotes glucose utilization in Nile tilapia by activating PDHE1α and improving insulin sensitivity. Our study helps to understand the regulatory mechanism of glucose metabolism for improving dietary carbohydrate utilization in farmed fish.
Collapse
Affiliation(s)
- Yuan Luo
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenhao Zhou
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ruixin Li
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Samwel M. Limbu
- University of Dar Es Salaam, Department of Aquaculture Technology, Dar Es Salaam 60091, Tanzania
- UDSM-ECNU Joint Research Center for Aquaculture and Fish Biology (JRCAFB), Dar Es Salaam 60091, Tanzania
| | - Fang Qiao
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liqiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Meiling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
- ECNU-UDSM Joint Research Center for Aquaculture and Fish Biology (JRCAFB), Shanghai 200241, China
| |
Collapse
|
21
|
Pan M, Liu D, Liu J, Li X, Huang D, Luo K, Liu Y, Wu Z, Zhang W, Mai K. Biotin alleviates hepatic and intestinal inflammation and apoptosis induced by high dietary carbohydrate in juvenile turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2022; 130:560-571. [PMID: 35944760 DOI: 10.1016/j.fsi.2022.07.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/21/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Excessive dietary carbohydrate commonly impairs the functions of liver and intestine in carnivorous fish. In the present study, a 10-week feeding trial was carried out to explore the regulation of biotin on the hepatic and intestinal inflammation and apoptosis in turbot (Scophthalmus maximus L.) fed with high carbohydrate diets. Three isonitrogenous and isolipidic experimental diets were designed as follows: the CC diet with 18.6% of carbohydrate and 0.04 mg/kg of biotin, the HC diet with 26.9% of carbohydrate and 0.05 mg/kg of biotin, and the HCB diet with 26.9% of carbohydrate and 1.62 mg/kg of biotin. Results showed that high dietary carbohydrate (HC diet) impaired the morphology of liver and intestine, however, inclusion of dietary biotin (HCB diet) normalized their morphology. Inflammation-related gene expression of nuclear factor κB p65 (nf-κb p65), tumor necrosis factor α (tnf-α), interleukin-1β (il-1β), il-6 and il-8, and the protein expression of NF-κB p65 in the liver and intestine were significantly up-regulated in the HC group compared to those in the CC group (P < 0.05), the HCB diet decreased their expression compared to the HC group (P < 0.05). The gene expression of il-10 and transforming growth factor-β (tgf-β) in the liver and intestine were significantly decreased in the HC group compared to the CC group (P < 0.05), and inclusion of dietary biotin increased the il-10 and tgf-β expression in the liver and intestine (P < 0.05). Moreover, compared to the CC group, the HC group had a stronger degree of DNA fragmentation and more TUNEL-positive cells in the liver and intestine, and the HCB group had a slighter degree of DNA fragmentation and fewer TUNEL-positive cells compared to the HC group. Meanwhile, the gene expression of B-cell lymphoma protein-2-associated X protein (bax) and executor apoptosis-related cysteine peptidase 3 (caspase-3) were significantly up-regulated and the gene expression of B-cell lymphoma-2 (bcl-2) was significantly down-regulated both in the liver and intestine in the HC group compared with those in the CC group (P < 0.05). Inclusion of dietary biotin significantly decreased the bax and caspase-3 mRNA levels and increased bcl-2 mRNA level in the liver and intestine (P < 0.05). In conclusion, high dietary carbohydrate (26.9% vs 18.6%) induced inflammation and apoptosis in liver and intestine. Supplementation of biotin (1.62 mg/kg vs 0.05 mg/kg) in diet can alleviate the high-dietary-carbohydrate-induced hepatic and intestinal inflammation as well as inhibit apoptosis in turbot. The present study provides basic data for the application of biotin into feed, especially the high-carbohydrate feed for turbot.
Collapse
Affiliation(s)
- Mingzhu Pan
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Danni Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Jiahuan Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xinxin Li
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Dong Huang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Kai Luo
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Yue Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Zhenhua Wu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Wen Hai Road, Qingdao, 266237, China.
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Wen Hai Road, Qingdao, 266237, China
| |
Collapse
|
22
|
Ni J, Zhu P, Mo Q, Luo W, Du Z, Jiang J, Yang S, Zhao L, Gong Q, Wang Y. Dynamic Transcriptomic Profiling During Liver Development in Schizothorax Prenanti. Front Physiol 2022; 13:928858. [PMID: 35899028 PMCID: PMC9309550 DOI: 10.3389/fphys.2022.928858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
Liver is an important organ for glucose and lipid metabolism, immunity, and detoxification in fish. However, the gene regulatory network of postnatal liver development still remains unknown in teleost fish. In this study, we performed transcriptome analysis on the liver of S. prenanti at three stages. A total of 1692 differentially expressed genes (DGEs) were identified across three liver developmental stages. The oil red O staining and PAS staining revealed that the lipid content of liver was increased and the glycogen content of liver was decreased during liver development. The fatty acids biosynthesis related genes were upregulated in adult and young stages compared with juvenile stage, while lipid degradation related genes were downregulated. The genes related to glycolysis, gluconeogenesis and glycogenolysis were upregulated in juvenile or young stages compared with adult stage. Further pathway analysis indicated that the CYP450 pathway, cell cycle and amino acid metabolic pathway were induced in the process of liver maturation. Our study presents the gene expression pattern in different liver development stages of S. prenanti and may guide future studies on metabolism of S. prenanti liver.
Collapse
Affiliation(s)
- Jiahui Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Peng Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qilang Mo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Quan Gong
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yan Wang,
| |
Collapse
|
23
|
Xu R, Wang T, Ding FF, Zhou NN, Qiao F, Chen LQ, Du ZY, Zhang ML. Lactobacillus plantarum Ameliorates High-Carbohydrate Diet-Induced Hepatic Lipid Accumulation and Oxidative Stress by Upregulating Uridine Synthesis. Antioxidants (Basel) 2022; 11:antiox11071238. [PMID: 35883730 PMCID: PMC9312134 DOI: 10.3390/antiox11071238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/12/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
The overconsumption of carbohydrates induces oxidative stress and lipid accumulation in the liver, which can be alleviated by modulation of intestinal microbiota; however, the underlying mechanism remains unclear. Here, we demonstrated that a strain affiliated with Lactobacillus plantarum (designed as MR1) efficiently attenuated lipid deposition, oxidative stress, as well as inflammatory response, which are caused by high-carbohydrate diet (HC) in fish with poor utilization ability of carbohydrates. Serum untargeted metabolome analysis indicated that pyrimidine metabolism was the significantly changed pathway among the groups. In addition, the content of serum uridine was significantly decreased in the HC group compared with the control group, while it increased by supplementation with L. plantarum MR1. Further analysis showed that addition of L. plantarum MR1 reshaped the composition of gut microbiota and increased the content of intestinal acetate. In vitro experiment showed that sodium acetate could induce the synthesis of uridine in hepatocytes. Furthermore, we proved that uridine could directly ameliorate oxidative stress and decrease liver lipid accumulation in the hepatocytes. In conclusion, this study indicated that probiotic L. plantarum MR1 ameliorated high-carbohydrate diet-induced hepatic lipid accumulation and oxidative stress by increasing the circulating uridine, suggesting that intestinal microbiota can regulate the metabolism of nucleotides to maintain host physiological homeostasis.
Collapse
|
24
|
Yu C, Wang L, Cai W, Zhang W, Hu Z, Wang Z, Yang Z, Peng M, Huo H, Zhang Y, Zhou Q. Dietary Macroalgae Saccharina japonica Ameliorates Liver Injury Induced by a High-Carbohydrate Diet in Swamp Eel (Monopterus albus). Front Vet Sci 2022; 9:869369. [PMID: 35774985 PMCID: PMC9237522 DOI: 10.3389/fvets.2022.869369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
A high-carbohydrate diet lowers the rearing cost and decreases the ammonia emission into the environment, whereas it can induce liver injury, which can reduce harvest yields and generate economic losses in reared fish species. Macroalgae Saccharina japonica (SJ) has been reported to improve anti-diabetic, but the protective mechanism of dietary SJ against liver injury in fish fed a high-carbohydrate diet has not been studied. Therefore, a 56-day nutritional trial was designed for swamp eel Monopterus albus, which was fed with the normal diet [20% carbohydrate, normal carbohydrate (NC)], a high carbohydrate diet (32% carbohydrate, HC), and a HC diet supplemented with 2.5% SJ (HC-S). The HC diet promoted growth and lowered feed coefficient (FC), whereas it increased hepatosomatic index (HSI) when compared with the NC diet in this study. However, SJ supplementation increased iodine contents in muscle, reduced HSI, and improved liver injury, such as the decrease of glucose (GLU), total bile acid (TBA), and alanine aminotransferase (ALT) in serum, and glycogen and TBA in the liver. Consistently, histological analysis showed that SJ reduced the area of lipid droplet, glycogen, and collagen fiber in the liver (p < 0.05). Thoroughly, the underlying protective mechanisms of SJ supplementation against HC-induced liver injury were studied by liver transcriptome sequencing coupled with pathway analysis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the differentially expressed genes (DEGs), such as the acetyl-coenzyme A synthetase (acss1), alcohol dehydrogenase (adh), interferon-induced protein with tetratricopeptide repeats 1 (ifit1), aldo-keto reductase family 1 member D1 (akr1d1), cholesterol 7-alpha-monooxygenase (cyp7a1), and UDP-glucuronosyltransferase (ugt), indicated that the pathway of glycolysis/gluconeogenesis was the main metabolic pathway altered in the HC group compared with the NC group. Meanwhile, hepatitis C, primary BA biosynthesis, and drug metabolism-cytochrome P450 were the three main metabolic pathways altered by SJ supplementation when compared with the HC group. Moreover, the BA-targeted metabolomic analysis of the serum BA found that SJ supplementation decreased the contents of taurohyocholic acid (THCA), taurochenodeoxycholic acid (TCDCA), taurolithocholic acid (TLCA), nordeoxycholic acid (NorDCA), and increased the contents of ursocholic acid (UCA), allocholic acid (ACA), and chenodeoxycholic acid (CDCA). In particular, the higher contents of UCA, ACA, and CDCA regulated by SJ were associated with lower liver injury. Overall, these results indicate that the 2.5% supplementation of SJ can be recommended as a functional feed additive for the alleviation of liver injury in swamp eel-fed high-carbohydrate diets.
Collapse
Affiliation(s)
- Chuanqi Yu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
- *Correspondence: Chuanqi Yu
| | - Lu Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Wanghe Cai
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Wenping Zhang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Zhonghua Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Zirui Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Zhuqing Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Mo Peng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Huanhuan Huo
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Yazhou Zhang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Qiubai Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
- Qiubai Zhou
| |
Collapse
|
25
|
Zhong L, Liu H, Zhang H, Zhang W, Li M, Huang Y, Yao J, Huang X, Geng Y, Chen D, Ouyang P, Yang S, Luo W, Yin L. High Starch in Diet Leads to Disruption of Hepatic Glycogen Metabolism and Liver Fibrosis in Largemouth Bass (Micropterus salmoides), Which is Mediated by the PI3K/Akt Signaling Pathway. Front Physiol 2022; 13:880513. [PMID: 35677086 PMCID: PMC9168315 DOI: 10.3389/fphys.2022.880513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022] Open
Abstract
Due to its special flavour and cheapness, starch is a source of nutrition for humans and most animals, some of whom even prefer to consume large amounts of starchy foods. However, the use of starch by carnivorous fish is limited and excessive starch intake can lead to liver damage, but the mechanism of damage is not clear. Therefore, in this study, two isonitrogenous and isolipid semi-pure diets, Z diet (0% starch) and G diet (22% starch), were formulated, respectively. The largemouth bass (M. salmoides) cultured in fiberglass tanks were randomly divided into two groups and fed the two diets for 45 days. Blood and liver were collected on day 30 and 45 for enzymology, histopathology, ultramicropathology, flow cytometry, and transcriptomics to investigate the damage of high starch on the liver of largemouth bass and its damage mechanism. The results showed that the high starch not affect the growth performance of largemouth bass. However, high starch caused a whitening of the liver and an increase in hepatopancreas index (HSI), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in the serum. Histopathological observations showed that high starch led to severe vacuolisation, congestion, and moderate to severe necrotizing hepatitis in the liver. The high starch intake led to a significant increase in postprandial blood glucose and insulin in serum of largemouth bass, promoting the synthesis and accumulation of large amounts of hepatic glycogen in the liver, leading to the loss of hepatocyte organelles and inducing liver fibrosis. Meanwhile, high starch induced the production of oxidative stress and promoted apoptosis and necrosis of hepatocytes. Transcriptome analysis revealed that there were 10,927 and 2,656 unique genes in the G and Z groups, respectively. KEGG enrichment analysis showed that 19 pathways were significantly enriched, including those related to glucose metabolism and cell survival. Network mapping based on enrichment pathways and differential expressing genes showed the emergence of a regulatory network dominated by PI3K/Akt signaling pathway. This indicated that the PI3K/Akt signalling pathway plays a very important role in this process, regulating the liver injury caused by high starch. Our results provide a reference for the mechanism of liver injury caused by high starch, and the PI3K/Akt signalling pathway could be a potential therapeutic target for liver injury caused by high starch.
Collapse
Affiliation(s)
- Liang Zhong
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hongli Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Haiqi Zhang
- Zhejiang Institute of Freshwater Fisheries, Hangzhou, China
| | - Weidong Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Minghao Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ya Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiayun Yao
- Zhejiang Institute of Freshwater Fisheries, Hangzhou, China
- *Correspondence: Jiayun Yao, ; Xiaoli Huang,
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Jiayun Yao, ; Xiaoli Huang,
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, China
| | - Shiyong Yang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wei Luo
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lizi Yin
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, China
| |
Collapse
|
26
|
Alshawsh MA, Alsalahi A, Alshehade SA, Saghir SAM, Ahmeda AF, Al Zarzour RH, Mahmoud AM. A Comparison of the Gene Expression Profiles of Non-Alcoholic Fatty Liver Disease between Animal Models of a High-Fat Diet and Methionine-Choline-Deficient Diet. Molecules 2022; 27:molecules27030858. [PMID: 35164140 PMCID: PMC8839835 DOI: 10.3390/molecules27030858] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) embraces several forms of liver disorders involving fat disposition in hepatocytes ranging from simple steatosis to the severe stage, namely, non-alcoholic steatohepatitis (NASH). Recently, several experimental in vivo animal models for NAFLD/NASH have been established. However, no reproducible experimental animal model displays the full spectrum of pathophysiological, histological, molecular, and clinical features associated with human NAFLD/NASH progression. Although methionine-choline-deficient (MCD) diet and high-fat diet (HFD) models can mimic histological and metabolic abnormalities of human disease, respectively, the molecular signaling pathways are extremely important for understanding the pathogenesis of the disease. This review aimed to assess the differences in gene expression patterns and NAFLD/NASH progression pathways among the most common dietary animal models, i.e., HFD- and MCD diet-fed animals. Studies showed that the HFD and MCD diet could induce either up- or downregulation of the expression of genes and proteins that are involved in lipid metabolism, inflammation, oxidative stress, and fibrogenesis pathways. Interestingly, the MCD diet model could spontaneously develop liver fibrosis within two to four weeks and has significant effects on the expression of genes that encode proteins and enzymes involved in the liver fibrogenesis pathway. However, such effects in the HFD model were found to occur after 24 weeks with insulin resistance but appear to cause less severe fibrosis. In conclusion, assessing the abnormal gene expression patterns caused by different diet types provides valuable information regarding the molecular mechanisms of NAFLD/NASH and predicts the clinical progression of the disease. However, expression profiling studies concerning genetic variants involved in the development and progression of NAFLD/NASH should be conducted.
Collapse
Affiliation(s)
- Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Correspondence:
| | - Abdulsamad Alsalahi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Salah Abdalrazak Alshehade
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia (USM), Gelugor 11800, Malaysia; (S.A.A.); (R.H.A.Z.)
| | - Sultan Ayesh Mohammed Saghir
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, Al-Hussein Bin Talal University, Ma’an 71111, Jordan;
| | - Ahmad Faheem Ahmeda
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Raghdaa Hamdan Al Zarzour
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia (USM), Gelugor 11800, Malaysia; (S.A.A.); (R.H.A.Z.)
| | - Ayman Moawad Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt;
| |
Collapse
|
27
|
Zhang D, Niu S, Ma Y, Chen H, Wen Y, Li M, Zhou B, Deng Y, Shi C, Pu G, Yang M, Wang X, Zou C, Chen Y, Ma L. Fenofibrate Improves Insulin Resistance and Hepatic Steatosis and Regulates the Let-7/SERCA2b Axis in High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease Mice. Front Pharmacol 2022; 12:770652. [PMID: 35126113 PMCID: PMC8807641 DOI: 10.3389/fphar.2021.770652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022] Open
Abstract
Fenofibrate is widely used in clinical therapy to effectively ameliorate the development of non-alcoholic fatty liver disease (NAFLD); however, its specific molecular mechanism of action remains largely unknown. MicroRNAs (miRNAs) are key mediators in regulating endoplasmic reticulum (ER) stress during NAFLD, and the deregulation of miRNAs has been demonstrated in NAFLD pathophysiology. The present study aimed to identify whether fenofibrate could influence miRNA expression in NAFLD and investigate the specific mechanism of action of fenofibrate in lipid metabolism disorder-associated diseases. We found that fenofibrate alleviated ER stress and increased the levels of SERCA2b, which serves as a regulator of ER stress. Additionally, the levels of let-7 miRNA were regulated by fenofibrate; let-7 was found to target the 3′ untranslated region of SERCA2b. The present data suggest that the protective effects of fenofibrate against insulin resistance and its suppressive activity against excessive hepatic lipid accumulation may be related to the alteration of the let-7/SERCA2b axis and alleviation of ER stress.
Collapse
Affiliation(s)
- Dan Zhang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Shanzhuang Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Yicheng Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Hang Chen
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Yu Wen
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Mingke Li
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Bo Zhou
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Yi Deng
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Chunjing Shi
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Guangyu Pu
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Meng Yang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Xianmei Wang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Chenggang Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Yuanli Chen
- Faculty of Basic Medicine, Kunming Medical University, Kunming, China
- *Correspondence: Yuanli Chen, ; Lanqing Ma,
| | - Lanqing Ma
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
- *Correspondence: Yuanli Chen, ; Lanqing Ma,
| |
Collapse
|
28
|
Juárez OE, Lafarga-De la Cruz F, Lazo JP, Delgado-Vega R, Chávez-García D, López-Landavery E, Tovar-Ramírez D, Galindo-Sánchez CE. Transcriptomic assessment of dietary fishmeal partial replacement by soybean meal and prebiotics inclusion in the liver of juvenile Pacific yellowtail (Seriola lalandi). Mol Biol Rep 2021; 48:7127-7140. [PMID: 34515920 DOI: 10.1007/s11033-021-06703-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Seriola lalandi is an important species for aquaculture, due to its rapid growth, adaptation to captivity and formulated diets, and high commercial value. Due to the rise in fishmeal (FM) price, efforts have been and still are made to replace it partially or entirely with vegetable meals in diets for carnivorous fish. The use of prebiotics when feeding vegetable meals has improved fish health. METHODS Four experimental diets were assessed in juveniles, the control diet consisted of FM as the main protein source, the second diet included 2% of GroBiotic®-A (FM-P), in the third diet FM was partially replaced (25%) by soybean meal (SM25), and the fourth consisted of SM25 with 2% of GroBiotic®-A (SM25-P). Growth was evaluated and RNA-seq of the liver tissue was performed, including differential expression analysis and functional annotation to identify genes affected by the diets. RESULTS Growth was not affected by this level of FM replacement, but it was improved by prebiotics. Annotation was achieved for 59,027 transcripts. Gene expression was affected by the factors: 225 transcripts due to FM replacement, 242 due to prebiotics inclusion, and 62 due to the interaction of factors. The SM25-P diet showed the least amount of differentially expressed genes against the control diet. CONCLUSION The replacement of FM (25%) by soybean meal combined with prebiotics (2%) represents a good cost-benefit balance for S. lalandi juveniles since the fish growth increased and important metabolic and immune system genes in the liver were upregulated with this diet.
Collapse
Affiliation(s)
- Oscar E Juárez
- Department of Marine Biotechnology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana #3918, Zona Playitas, 22860, Ensenada, Baja California, México
| | - Fabiola Lafarga-De la Cruz
- Department of Aquaculture, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana #3918, Zona Playitas, 22860, Ensenada, Baja California, México
| | - Juan Pablo Lazo
- Department of Aquaculture, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana #3918, Zona Playitas, 22860, Ensenada, Baja California, México
| | - Rigoberto Delgado-Vega
- Department of Aquaculture, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana #3918, Zona Playitas, 22860, Ensenada, Baja California, México
| | - Denisse Chávez-García
- Department of Aquaculture, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana #3918, Zona Playitas, 22860, Ensenada, Baja California, México
| | - Edgar López-Landavery
- Department of Marine Biotechnology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana #3918, Zona Playitas, 22860, Ensenada, Baja California, México
| | - Dariel Tovar-Ramírez
- Aquaculture Program, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional #195, Playa Palo de Santa Rita Sur, 23096, La Paz, Baja California Sur, México
| | - Clara Elizabeth Galindo-Sánchez
- Department of Marine Biotechnology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana #3918, Zona Playitas, 22860, Ensenada, Baja California, México.
| |
Collapse
|
29
|
Zhang Y, Liang XF, He S, Wang J, Li L, Zhang Z, Li J, Chen X, Li L, Alam MS. Metabolic responses of Chinese perch (Siniperca chuatsi) to different levels of dietary carbohydrate. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1449-1465. [PMID: 34324096 DOI: 10.1007/s10695-021-00965-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/11/2021] [Indexed: 06/13/2023]
Abstract
There are great differences in metabolic responses to different levels of carbohydrate among different carnivorous fish species. To explore metabolic responses of Chinese perch to moderate and high level of dietary carbohydrates, three diets containing 7.3% (LC), 17.5% (MC), and 27.5% (HC) of carbohydrates were provided to Chinese perch for 56 days. The results showed that MC and HC groups exhibited an increase in weight gain (WG) and hepatic glycogen content, and a decrease in feed conversion efficiency, compared with the LC group. The MC and HC groups also showed the increase in mRNA levels of phosphofructokinase and citrate synthase related to the aerobic oxidation pathway, which might be responsible for the increase in WG. Moreover, compared with the LC group, the HC group exhibited high levels of plasma indices (glucose, pyruvic acid, lactic acid, total triglyceride, total cholesterol, and low-density lipoprotein) and liver lipid resulting from the increased mRNA levels of fatty acid synthesis-related genes (ATP citrate lyase, acetyl-CoA carboxylase α, and fatty acid synthase), low level of crude protein caused by inhibition of TOR pathway, and liver damage induced by low antioxidant capacity and infiltration of inflammatory cells, but the MC group did not. The above results indicated that 17.5% dietary carbohydrate might be utilized effectively in Chinese perch and part carbohydrates were converted into glycogen to maintain glucose homeostasis; 27.5% dietary carbohydrate could not be fully utilized. The 27.5% carbohydrate diet induced the up-regulation of aerobic oxidation, glycogen synthesis, and fat synthesis pathways which might not be sufficient to maintain glucose homeostasis.
Collapse
Affiliation(s)
- Yanpeng Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China.
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Jie Wang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Ling Li
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Zhen Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Jiao Li
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Xu Chen
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Lu Li
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Muhammad Shoaib Alam
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| |
Collapse
|
30
|
Yu K, Huang K, Tang Z, Huang X, Sun L, Pang L, Mo C. Metabolism and antioxidation regulation of total flavanones from Sedum sarmentosum Bunge against high-fat diet-induced fatty liver disease in Nile tilapia (Oreochromis niloticus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1149-1164. [PMID: 34142329 DOI: 10.1007/s10695-021-00964-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Diet-induced fatty liver is a considerable threaten to fish aquaculture due to the popularity of the high-fat diet (HFD) feeding. Our study aims to investigate the effects of flavanones from Sedum sarmentosum Bunge (FSSB) on the liver function to identify a potential treatment for HFD-induced fatty liver disease. Physiological and pathological indicators were tested in the liver of Nile tilapia (Oreochromis niloticus) and results showed parameters including lipid metabolites, redox parameters, and inflammatory factors could be adequately restored to normal level by addition of 150 mg/kg FSSB to HFD. Proteomics analysis was performed in liver tissues from tilapia with normal diet (ND), HFD, and HFD+FSSB. Totally, 51 upregulated proteins and 77 downregulated proteins were identified in HFD groups and 67 proteins of them were restored after treated with FSSB. Bioinformatics analysis showed that differentially expressed proteins (DEPs) in HFD+FSSB150 group compared with HFD group are mainly enriched in acety-CoA metabolic process, adenosine-triphosphate (ATP) biosynthetic process, lipid metabolic process, and phospholipid metabolic process. The dysregulated proteins were involved in peroxidosome proliferators-activated receptor (PPAR) signaling pathway, fat digestion and absorption, and immune system. The quantitative real-time PCR (qRT-PCR) assay further revealed that the expression of GST, PPARα, PPARγ, and multiple-inflammatory cytokines could be also reversed in HFD group under the treatment of 150 mg/kg FSSB. Our findings demonstrated FSSB is efficient for the treatment of fatty liver disease through regulation of lipid metabolism and antioxidation in Nile tilapia, providing a new treatment of non-alcoholic fatty liver disease (NAFLD) in fish aquaculture.
Collapse
Affiliation(s)
- Kai Yu
- College of Animal Science and Technology, Guangxi University, No. 100 East Daxue Road, Nanning, 530004, China
| | - Kai Huang
- College of Animal Science and Technology, Guangxi University, No. 100 East Daxue Road, Nanning, 530004, China.
| | - Zhanyang Tang
- College of Animal Science and Technology, Guangxi University, No. 100 East Daxue Road, Nanning, 530004, China.
- Guangxi Academy of Fishery Science, Nanning, 530021, China.
| | - Xiuyun Huang
- College of Animal Science and Technology, Guangxi University, No. 100 East Daxue Road, Nanning, 530004, China
| | - Linlin Sun
- College of Animal Science and Technology, Guangxi University, No. 100 East Daxue Road, Nanning, 530004, China
| | - Linxing Pang
- College of Animal Science and Technology, Guangxi University, No. 100 East Daxue Road, Nanning, 530004, China
| | - Cuiqin Mo
- College of Animal Science and Technology, Guangxi University, No. 100 East Daxue Road, Nanning, 530004, China
| |
Collapse
|
31
|
Li W, Wang S, Hu J, Tang C, Wu C, Liu J, Ren L, Sun C, Dong J, Liu S, Ye X. Asymmetric expression of homoeologous genes contributes to dietary adaption of an allodiploid hybrid fish derived from Megalobrama amblycephala (♀) × Culter alburnus (♂). BMC Genomics 2021; 22:362. [PMID: 34011285 PMCID: PMC8132401 DOI: 10.1186/s12864-021-07639-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/21/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Hybridization, which can quickly merge two or more divergent genomes and form new allopolyploids, is an important technique in fish genetic breeding. However, the merged subgenomes must adjust and coexist with one another in a single nucleus, which may cause subgenome interaction and dominance at the gene expression level and has been observed in some allopolyploid plants. In our previous studies, newly formed allodiploid hybrid fish derived from herbivorous Megalobrama amblycephala (♀) × carnivorous Culter alburnus (♂) had herbivorous characteristic. It is thus interesting to further characterize whether the subgenome interaction and dominance derive dietary adaptation of this hybrid fish. RESULTS Differential expression, homoeolog expression silencing and bias were investigated in the hybrid fish after 70 days of adaptation to carnivorous and herbivorous diets. A total of 2.65 × 108 clean reads (74.06 Gb) from the liver and intestinal transcriptomes were mapped to the two parent genomes based on specific SNPs. A total of 2538 and 4385 differentially expressed homoeologous genes (DEHs) were identified in the liver and intestinal tissues between the two groups of fish, respectively, and these DEHs were highly enriched in fat digestion and carbon metabolism, amino acid metabolism and steroid biosynthesis. Furthermore, subgenome dominance were observed in tissues, with paternal subgenome was more dominant than maternal subgenome. Moreover, subgenome expression dominance controlled functional pathways in metabolism, disease, cellular processes, environment and genetic information processing during the two dietary adaptation processes. In addition, few but sturdy villi in the intestine, significant fat accumulation and a higher concentration of malondialdehyde in the liver were observed in fish fed carnivorous diet compared with fish fed herbivorous diet. CONCLUSIONS Our results indicated that diet drives phenotypic and genetic variation, and the asymmetric expression of homoeologous genes (including differential expression, expression silencing and bias) may play key roles in dietary adaptation of hybrid fish. Subgenome expression dominance may contribute to uncovering the mechanistic basis of heterosis and also provide perspectives for fish genetic breeding and application.
Collapse
Affiliation(s)
- Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081 Hunan China
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380 Guangdong China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081 Hunan China
| | - Jie Hu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380 Guangdong China
| | - Chenchen Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081 Hunan China
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081 Hunan China
| | - Junmei Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081 Hunan China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081 Hunan China
| | - Chengfei Sun
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380 Guangdong China
| | - Junjian Dong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380 Guangdong China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081 Hunan China
| | - Xing Ye
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380 Guangdong China
| |
Collapse
|
32
|
Bacillus amyloliquefaciens ameliorates high-carbohydrate diet-induced metabolic phenotypes by restoration of intestinal acetate-producing bacteria in Nile Tilapia. Br J Nutr 2021; 127:653-665. [PMID: 33858522 DOI: 10.1017/s0007114521001318] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Poor utilisation efficiency of carbohydrate always leads to metabolic phenotypes in fish. The intestinal microbiota plays an important role in carbohydrate degradation. Whether the intestinal bacteria could alleviate high-carbohydrate diet (HCD)-induced metabolic phenotypes in fish remains unknown. Here, a strain affiliated to Bacillus amyloliquefaciens was isolated from the intestine of Nile tilapia. A basal diet (CON), HCD or HCD supplemented with B. amy SS1 (HCB) was used to feed fish for 10 weeks. The beneficial effects of B. amy SS1 on weight gain and protein accumulation were observed. Fasting glucose and lipid deposition were decreased in the HCB group compared with the HCD group. High-throughput sequencing showed that the abundance of acetate-producing bacteria was increased in the HCB group relative to the HCD group. Gas chromatographic analysis indicated that the concentration of intestinal acetate was increased dramatically in the HCB group compared with that in the HCD group. Glucagon-like peptide-1 was also increased in the intestine and serum of the HCB group. Thus, fish were fed with HCD, HCD supplemented with sodium acetate at 900 mg/kg (HLA), 1800 mg/kg (HMA) or 3600 mg/kg (HHA) diet for 8 weeks, and the HMA and HHA groups mirrored the effects of B. amy SS1. This study revealed that B. amy SS1 could alleviate the metabolic phenotypes caused by HCD by enriching acetate-producing bacteria in fish intestines. Regulating the intestinal microbiota and their metabolites might represent a powerful strategy for fish nutrition modulation and health maintenance in future.
Collapse
|
33
|
He C, Jia X, Zhang L, Gao F, Jiang W, Wen C, Chi C, Li X, Jiang G, Mi H, Liu W, Zhang D. Dietary berberine can ameliorate glucose metabolism disorder of Megalobrama amblycephala exposed to a high-carbohydrate diet. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:499-513. [PMID: 33501601 DOI: 10.1007/s10695-021-00927-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Blunt snout bream (Megalobrama amblycephala) were randomly assigned into three diets: normal-carbohydrate diet (NCD, 30% carbohydrate, w/w), high-carbohydrate diet (HCD, 43% carbohydrate), and HCB (HCD supplemented with 50 mg/kg berberine (BBR)). After 10 weeks' feeding trial, the results showed that higher levels of plasma glucose, triglyceride, and total cholesterol were observed in HCD-fed fish than in NCD-fed fish, while HCB feeding significantly ameliorated this effect. Moreover, HCB feeding remarkably reversed HCD-induced hepatic glycogen and lipid contents. In insulin signaling, BBR inclusion restored HCD-induced suppression of insulin receptor substrate mRNA expression and elevation of forkhead transcription factor 1 mRNA expression. In glucose metabolism, upregulated glucose transporter 2 and glycogen synthase mRNA expressions in the HCD group were observed compared to the NCD group. However, BBR adding reduced the mRNA expressions of glycogen synthase, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase and increased the transcriptional levels of glucose transporter 2 and pyruvate kinase. In lipid metabolism, BBR supplementation could reverse downregulated hepatic carnitine palmitoyl transferase I mRNA expression and upregulated hepatic acetyl-CoA carboxylase and fatty acid synthetase mRNA expressions in the HCD group. Taken together, it demonstrates that BBR could improve glucose metabolism of this species via enhancing liver's glycolysis and insulin signaling, while inhibiting liver's glycogen synthesis and gluconeogenesis. It also indicates that BBR could reduce the metabolic burden of the liver by inhibiting fat synthesis and promoting lipid decomposition, and then enhance fat uptake in peripheral tissues.
Collapse
Affiliation(s)
- Chang He
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyan Jia
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fan Gao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weibo Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuang Wen
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cheng Chi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haifeng Mi
- Tongwei Company Limited, No. 588 Middle Section of Tianfu Avenue, Chengdu Hi-Tech Zone, Chengdu, 610041, China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
34
|
Rasal KD, Iquebal MA, Dixit S, Vasam M, Raza M, Sahoo L, Jaiswal S, Nandi S, Mahapatra KD, Rasal A, Udit UK, Meher PK, Murmu K, Angadi UB, Rai A, Kumar D, Sundaray JK. Revealing Alteration in the Hepatic Glucose Metabolism of Genetically Improved Carp, Jayanti Rohu Labeo rohita Fed a High Carbohydrate Diet Using Transcriptome Sequencing. Int J Mol Sci 2020; 21:E8180. [PMID: 33142948 PMCID: PMC7662834 DOI: 10.3390/ijms21218180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/25/2023] Open
Abstract
Although feed cost is the greatest concern in aquaculture, the inclusion of carbohydrates in the fish diet, and their assimilation, are still not well understood in aquaculture species. We identified molecular events that occur due to the inclusion of high carbohydrate levels in the diets of genetically improved 'Jayanti rohu' Labeo rohita. To reveal transcriptional changes in the liver of rohu, a feeding experiment was conducted with three doses of gelatinized starch (20% (control), 40%, and 60%). Transcriptome sequencing revealed totals of 15,232 (4464 up- and 4343 down-regulated) and 15,360 (4478 up- and 4171 down-regulated) differentially expressed genes. Up-regulated transcripts associated with glucose metabolisms, such as hexokinase, PHK, glycogen synthase and PGK, were found in fish fed diets with high starch levels. Interestingly, a de novo lipogenesis mechanism was found to be enriched in the livers of treated fish due to up-regulated transcripts such as FAS, ACCα, and PPARγ. The insulin signaling pathways with enriched PPAR and mTOR were identified by Kyoto Encyclopedia of Genes and Genome (KEGG) as a result of high carbohydrates. This work revealed for the first time the atypical regulation transcripts associated with glucose metabolism and lipogenesis in the livers of Jayanti rohu due to the inclusion of high carbohydrate levels in the diet. This study also encourages the exploration of early nutritional programming for enhancing glucose efficiency in carp species, for sustainable and cost-effective aquaculture production.
Collapse
Affiliation(s)
- Kiran D. Rasal
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India; (M.A.I.); (M.R.); (S.J.); (U.A.); (A.R.); (D.K.)
| | - Sangita Dixit
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Manohar Vasam
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Mustafa Raza
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India; (M.A.I.); (M.R.); (S.J.); (U.A.); (A.R.); (D.K.)
| | - Lakshman Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India; (M.A.I.); (M.R.); (S.J.); (U.A.); (A.R.); (D.K.)
| | - Samiran Nandi
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Kanta Das Mahapatra
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Avinash Rasal
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Uday Kumar Udit
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Prem Kumar Meher
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Khuntia Murmu
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - UB Angadi
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India; (M.A.I.); (M.R.); (S.J.); (U.A.); (A.R.); (D.K.)
| | - Anil Rai
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India; (M.A.I.); (M.R.); (S.J.); (U.A.); (A.R.); (D.K.)
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India; (M.A.I.); (M.R.); (S.J.); (U.A.); (A.R.); (D.K.)
| | - Jitendra Kumar Sundaray
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| |
Collapse
|
35
|
Luo Y, Hu CT, Qiao F, Wang XD, Qin JG, Du ZY, Chen LQ. Gemfibrozil improves lipid metabolism in Nile tilapia Oreochromis niloticus fed a high-carbohydrate diet through peroxisome proliferator activated receptor-α activation. Gen Comp Endocrinol 2020; 296:113537. [PMID: 32540489 DOI: 10.1016/j.ygcen.2020.113537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
High carbohydrate diet (HCD) can induce lipid metabolism disorder, characterized by excessive lipid in farmed fish. Peroxisome proliferator activated receptor-α (PPARα) plays an important role in lipid homeostasis. In this study, we hypothesize that PPARα can improve lipid metabolism in fish fed HCD. Fish (3.03 ± 0.11 g) were fed with three diets: control (30% carbohydrate), HCD (45% carbohydrate) and HCG (HCD supplemented with 200 mg/kg gemfibrozil, an agonist of PPARα) for eight weeks. The fish fed HCG had higher growth rate and protein effiency than those fed the HCD diet, whereas the opposite trend was observed in feed conversion ratio, hepatosomatic index and mesenteric fat index. Additionally, fish fed HCG significantly decreased lipid accumulation in the whole body, liver and adipose tissues compared to those fed the HCD diet. Furthermore, fish in the HCG group significantly increased the mRNA and protein expression and protein dephosphorylation of PPARα. The HCG group also significantly increased the mRNA level of the downstream target genes of PPARα, whereas the opposite trend occured in the mRNA level of lipolysis-related genes compared to the HCD group. Besides, fish in the HCG group remarkably decreased the contents of alanine aminotransferase, aspartate aminotransferase and malondialdehyde, whereas the opposite occured in the activities of antioxidative enzymes and anti-inflammatory cytokine genes compared to the HCD group. This study indicates that gemfibrozil can improve lipid metabolism and maintain high antioxidant and anti-inflammatory capacity through activating PPARα in Nile tilapia fed a high carbohydrate diet.
Collapse
Affiliation(s)
- Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, China
| | - Chun-Ting Hu
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, China
| | - Xiao-Dan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, China
| | - Jian G Qin
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, China.
| | - Li-Qiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, China.
| |
Collapse
|
36
|
Li LY, Li JM, Ning LJ, Lu DL, Luo Y, Ma Q, Limbu SM, Li DL, Chen LQ, Lodhi IJ, Degrace P, Zhang ML, Du ZY. Mitochondrial Fatty Acid β-Oxidation Inhibition Promotes Glucose Utilization and Protein Deposition through Energy Homeostasis Remodeling in Fish. J Nutr 2020; 150:2322-2335. [PMID: 32720689 PMCID: PMC7690763 DOI: 10.1093/jn/nxaa187] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/02/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Fish cannot use carbohydrate efficiently and instead utilize protein for energy supply, thus limiting dietary protein storage. Protein deposition is dependent on protein turnover balance, which correlates tightly with cellular energy homeostasis. Mitochondrial fatty acid β-oxidation (FAO) plays a crucial role in energy metabolism. However, the effect of remodeled energy homeostasis caused by inhibited mitochondrial FAO on protein deposition in fish has not been intensively studied. OBJECTIVES This study aimed to identify the regulatory role of mitochondrial FAO in energy homeostasis maintenance and protein deposition by studying lipid, glucose, and protein metabolism in fish. METHODS Carnitine-depleted male Nile tilapia (initial weight: 4.29 ± 0.12 g; 3 mo old) were established by feeding them with mildronate diets (1000 mg/kg/d) for 6 wk. Zebrafish deficient in the carnitine palmitoyltransferase 1b gene (cpt1b) were produced by using CRISPR/Cas9 gene-editing technology, and their males (154 ± 3.52 mg; 3 mo old) were used for experiments. Normal Nile tilapia and wildtype zebrafish were used as controls. We assessed nutrient metabolism and energy homeostasis-related biochemical and molecular parameters, and performed 14C-labeled nutrient tracking and transcriptomic analyses. RESULTS The mitochondrial FAO decreased by 33.1-88.9% (liver) and 55.6-68.8% (muscle) in carnitine-depleted Nile tilapia and cpt1b-deficient zebrafish compared with their controls (P < 0.05). Notably, glucose oxidation and muscle protein deposition increased by 20.5-24.4% and 6.40-8.54%, respectively, in the 2 fish models compared with their corresponding controls (P < 0.05). Accordingly, the adenosine 5'-monophosphate-activated protein kinase/protein kinase B-mechanistic target of rapamycin (AMPK/AKT-mTOR) signaling was significantly activated in the 2 fish models with inhibited mitochondrial FAO (P < 0.05). CONCLUSIONS These data show that inhibited mitochondrial FAO in fish induces energy homeostasis remodeling and enhances glucose utilization and protein deposition. Therefore, fish with inhibited mitochondrial FAO could have high potential to utilize carbohydrate. Our results demonstrate a potentially new approach for increasing protein deposition through energy homeostasis regulation in cultured animals.
Collapse
Affiliation(s)
- Ling-Yu Li
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jia-Min Li
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Li-Jun Ning
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Dong-Liang Lu
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan Luo
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Qiang Ma
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Samwel Mchele Limbu
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
- Department of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Dong-Liang Li
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Li-Qiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, Saint Louis, MO, USA
| | - Pascal Degrace
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231 Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
37
|
Yi S, Liu LF, Zhou LF, Zhao BW, Wang WM, Gao ZX. Screening of Biomarkers Related to Ovarian Maturation and Spawning in Blunt Snout Bream (Megalobrama amblycephala) Based on Metabolomics and Transcriptomics. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:180-193. [PMID: 32006128 DOI: 10.1007/s10126-019-09943-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
In fish breeding practices, gamete maturity of females is vital to reproductive success. For some species, it is possible to estimate the female maturation status based on abdomen observation, but quite difficult for some species which mature at big size. To screen out the potential biomarker in fish blood relating to female maturation, we employed the approach integrating the UPLC-MS/MS and RNA-seq techniques to investigate the metabolites and genes reflecting the sexual maturation and spawning of female blunt snout bream Megalobrama amblycephala. The study included four groups, 1-year-old immature female individuals, 2-year-old immature female individuals, 2-year-old sexually mature female individuals, and 2-year-old sexually mature female individuals after 24 h of successful spawning. The upregulated metabolites in mature females were involved in "steroid hormone biosynthesis," "metabolic pathways," "glycerophospholipid metabolism," etc. compared with those of immature individuals. As the key intermediate of steroid hormone biosynthesis, 17α-hydroxypregnenolone exhibited the highest level in 2-year-old mature females than in the immature females. Meanwhile, the metabolites (i.e., dodecanoic acid and myristic acid) participating in fatty acid synthesis exhibited much lower levels in the females after spawning than those before spawning. In addition to the metabolites, the genes involved in ovarian steroidogenesis were significantly upregulated in the 2-year-old immature females compared to the 1-year-old immature females, indicating that the ovarian steroidogenesis plays important roles in ovarian development of M. amblycephala at the early stages. The significant upregulation of genes (i.e., itpr1, camk2, and mekk2) involved in the "GnRH signaling pathway" was observed in the mature females compared with the immature females, which indicated that the estrogen levels increased after female maturation in M. amblycephala. Moreover, many genes (e.g., gck, creb1, tf2-9, ryr2, asgr1, and creb1) regulating insulin secretion and thyroid hormone synthesis were significantly downregulated after female spawning. The dynamics of gene expression and metabolites observed in this study provide novel cues for guiding fish practical artificial reproduction.
Collapse
Affiliation(s)
- Shaokui Yi
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
- Engineering Research Center of Green development for conventional aquatic biological industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Li-Fang Liu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
- Engineering Research Center of Green development for conventional aquatic biological industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Lai-Fang Zhou
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
- Engineering Research Center of Green development for conventional aquatic biological industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Bo-Wen Zhao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
- Engineering Research Center of Green development for conventional aquatic biological industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Wei-Min Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
- Engineering Research Center of Green development for conventional aquatic biological industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Ze-Xia Gao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China.
- Engineering Research Center of Green development for conventional aquatic biological industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
- Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
38
|
Han SL, Wang J, Zhang YX, Qiao F, Chen LQ, Zhang ML, Du ZY. Inhibited autophagy impairs systemic nutrient metabolism in Nile tilapia. Comp Biochem Physiol A Mol Integr Physiol 2019; 236:110521. [DOI: 10.1016/j.cbpa.2019.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
|
39
|
Rasal KD, Iquebal MA, Jaiswal S, Dixit S, Vasam M, Nandi S, Raza M, Sahoo L, Angadi UB, Rai A, Kumar D, Sundaray JK. Liver-Specific microRNA Identification in Farmed Carp, Labeo bata (Hamilton, 1822), Fed with Starch Diet Using High-Throughput Sequencing. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:589-595. [PMID: 31346855 DOI: 10.1007/s10126-019-09912-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
The liver is an important central organ, which controls carbohydrate metabolism through maintaining glucose homeostasis by a tightly regulated system of genes or enzymes. The microRNAs are small non-coding RNAs playing an important role in the regulation of genes associated with developmental biology, physiology, metabolism, etc. Thus, in this study, we have intended to detect liver-specific microRNAs in farmed carp, Labeo bata, upon being fed a diet with different levels of carbohydrates. Here, we have conducted the experiment for 45 days using fingerlings of farmed carp fed with 20% (control), 40%, and 60% gelatinized starch levels. The liver tissues were collected from each treatment and processed for RNA isolation, small RNA library preparation, and high-throughput sequencing using Illumina NexSeq500. Through sequencing, 15,779,417 reads in 20% CHO, 13,959,039 in 40% CHO, and 13,661,950 in 60% CHO reads were generated for control and treated fishes using three small RNA libraries. We have investigated 445 novel and 231 conserved microRNAs in 20%, 40%, and 60% carbohydrate (CHO), respectively, through computational analysis. The differential expression analysis of miRNAs was carried out between different treatments compared with control and this study depicted 117 known and 114 novel miRNA genes involved in carbohydrate metabolic pathways. Further, target prediction and gene ontology analysis revealed that miRNAs were involved in several pathways such as signaling pathway, G protein pathway, complement receptor-mediated pathway, dopamine receptor signaling pathway, epidermal growth factor pathway, and notch signaling pathway. The predicted miRNA sites in targeted genes were associated with cellular activities, developmental biology, DNA binding, Golgi apparatus, extracellular region, catalytic activity, MAPK cascade, etc. Overall, we have generated a vital resource of liver-specific miRNAs involved in metabolic gene regulation. These studies further will help develop miRNA inhibitors to study their role during carbohydrate metabolism in farmed carp.
Collapse
Affiliation(s)
- Kiran D Rasal
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Sangita Dixit
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India
| | - Manohar Vasam
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India
| | - Samiran Nandi
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India
| | - Mustafa Raza
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Lakshman Sahoo
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India
| | - U B Angadi
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Jitendra Kumar Sundaray
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India.
| |
Collapse
|
40
|
Prisingkorn W, Jakovlić I, Yi SK, Deng FY, Zhao YH, Wang WM. Gene expression patterns indicate that a high-fat-high-carbohydrate diet causes mitochondrial dysfunction in fish. Genome 2019; 62:53-67. [PMID: 30830800 DOI: 10.1139/gen-2018-0159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Expensive and unsustainable fishmeal is increasingly being replaced with cheaper lipids and carbohydrates as sources of energy in aquaculture. Although it is known that the excess of lipids and carbohydrates has negative effects on nutrient utilization, growth, metabolic homeostasis, and health of fish, our current understanding of mechanisms behind these effects is limited. To improve the understanding of diet-induced metabolic disorders (both in fish and other vertebrates), we conducted an eight-week high-fat-high-carbohydrate diet feeding trial on blunt snout bream (Megalobrama amblycephala), and studied gene expression changes (transcriptome and qPCR) in the liver. Disproportionately large numbers of differentially expressed genes were associated with mitochondrial metabolism, neurodegenerative diseases (Alzheimer's, Huntington's, and Parkinson's), and functional categories indicative of liver dysfunction. A high-fat-high-carbohydrate diet may have caused mitochondrial dysfunction, and possibly downregulated the mitochondrial biogenesis in the liver. While the relationship between diet and neurodegenerative disorders is well-established in mammals, this is the first report of this connection in fish. We propose that fishes should be further explored as a potentially promising model to study the mechanisms of diet-associated neurodegenerative disorders in humans.
Collapse
Affiliation(s)
- Wassana Prisingkorn
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Ivan Jakovlić
- b Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan 430075, P.R. China
| | - Shao-Kui Yi
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Fang-Yu Deng
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Yu-Hua Zhao
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Wei-Min Wang
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| |
Collapse
|
41
|
Wang F, Xu J, Jakovlić I, Wang WM, Zhao YH. Dietary betaine reduces liver lipid accumulationviaimprovement of bile acid and trimethylamine-N-oxide metabolism in blunt-snout bream. Food Funct 2019; 10:6675-6689. [DOI: 10.1039/c9fo01853k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dietary betaine decreased liver lipid accumulation caused by dietary carbohydrate through changes of TMA formation and TMAO and bile acid metabolism.
Collapse
Affiliation(s)
- Fan Wang
- College of Fisheries Huazhong Agricultural University
- Key Lab of Freshwater Animal Breeding
- Ministry of Agriculture
- Key Lab of Agricultural Animal Genetics
- Breeding and Reproduction of Ministry of Education
| | - Jia Xu
- College of Fisheries Huazhong Agricultural University
- Key Lab of Freshwater Animal Breeding
- Ministry of Agriculture
- Key Lab of Agricultural Animal Genetics
- Breeding and Reproduction of Ministry of Education
| | | | - Wei-Min Wang
- College of Fisheries Huazhong Agricultural University
- Key Lab of Freshwater Animal Breeding
- Ministry of Agriculture
- Key Lab of Agricultural Animal Genetics
- Breeding and Reproduction of Ministry of Education
| | - Yu-Hua Zhao
- College of Fisheries Huazhong Agricultural University
- Key Lab of Freshwater Animal Breeding
- Ministry of Agriculture
- Key Lab of Agricultural Animal Genetics
- Breeding and Reproduction of Ministry of Education
| |
Collapse
|
42
|
Zhang C, Su S, Li X, Li B, Yang B, Zhu J, Wang W. Comparative transcriptomics identifies genes differentially expressed in the intestine of a new fast-growing strain of common carp with higher unsaturated fatty acid content in muscle. PLoS One 2018; 13:e0206615. [PMID: 30395585 PMCID: PMC6218049 DOI: 10.1371/journal.pone.0206615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/16/2018] [Indexed: 01/01/2023] Open
Abstract
We have created a new, fast-growing strain of common carp with higher unsaturated fatty acid content in muscle. To better understand the impacts of gene regulation in intestinal tissue on growth and unsaturated fatty acid content, we conducted a comparative RNA-Seq transcriptome analysis between intestine samples of Selected and Control groups (and corroborated selected results by PCR). After eight weeks of cage culture, weight gain of the Selected group was 20.84% higher. In muscles of the control group, monounsaturated fatty acids (FAs) were more abundant, whereas polyunsaturated FAs were more abundant in muscles of the Selected group. In total, we found 106 differentially expressed genes (DEGs) between the two groups. Only the endocytosis pathway was significantly enriched in DEGs, with two upregulated genes: il2rb and ehd1. The latter is involved in the growth hormone/insulin-like growth factor (Gh/Igf) axis, which plays a key role in the regulation of growth in animals. tll2, which is known to be associated with intestinal regeneration, was extremely highly upregulated in both transcriptomic (infinite) and qPCR (610.70) analyses. Two of the upregulated genes are associated with the fatty acid metabolism, several genes are likely to be indicators of heightened transcription levels, several are associated with metabolic and developmental roles, several with neuronal functions (including two with vision), several with the immune system, and two downregulated genes with the development of vasculature. The higher growth rate of the Selected group is likely to be at least partially attributed to increased endocytosis efficiency and genetically-driven behavioural differences (higher aggression levels). There are some indications that this new strain might have slightly impaired immune responses, and a higher propensity for inherited diseases leading to sight impairment, as well for neurodegenerative diseases in general, but these indications still need to be confirmed.
Collapse
Affiliation(s)
- Chengfeng Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Shengyan Su
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, PR China
| | - Xinyuan Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, PR China
| | - Bing Li
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Baojuan Yang
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Jian Zhu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
- * E-mail: (JZ); (WW)
| | - Weimin Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, PR China
- * E-mail: (JZ); (WW)
| |
Collapse
|
43
|
Shi HJ, Xu C, Liu MY, Wang BK, Liu WB, Chen DH, Zhang L, Xu CY, Li XF. Resveratrol Improves the Energy Sensing and Glycolipid Metabolism of Blunt Snout Bream Megalobrama amblycephala Fed High-Carbohydrate Diets by Activating the AMPK-SIRT1-PGC-1α Network. Front Physiol 2018; 9:1258. [PMID: 30254587 PMCID: PMC6141669 DOI: 10.3389/fphys.2018.01258] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/20/2018] [Indexed: 01/06/2023] Open
Abstract
This study investigated the effects of resveratrol on the growth performance, energy sensing, glycolipid metabolism and glucose and insulin load of blunt snout bream Megalobrama amblycephala fed high-carbohydrate diets. Fish (39.44 ± 0.06 g) were randomly fed three diets: a control diet (30% carbohydrate), a high-carbohydrate diet (HC, 41% carbohydrate), and the HC diet supplemented with 0.04% resveratrol (HCR) for 12 weeks. Fish fed the HC diet had significantly high values of nitrogen and energy retention efficiency, hepatosomatic index, intraperitoneal fat ratio, whole-body lipid content and intraperitoneal fat glycogen and lipid contents compared to the control group, but showed little difference with the HCR treatment. Liver and muscle lipid contents and plasma levels of glucose, glycated serum protein, advanced glycation end products and total cholesterol of fish fed the HC diet were significantly higher than those of the control group, whereas the opposite was found with resveratrol supplementation. Fish fed the HC diet obtained significantly low values of plasma insulin levels and hepatic adenosine monophosphate (AMP) contents and NAD+/NADH ratio compared to HCR treatment, but showed little difference with the control group. The opposite was found for hepatic adenosine triphosphate (ATP) contents and the ATP/AMP ratio. In addition, fish fed the HC diet showed significantly high transcriptions of glucose transporter 2 (GLUT2), glucose-6-phosphate dehydrogenase, glycogen synthase, fatty acid synthetase (FAS), acetyl-CoA carboxylase α (ACCα), peroxisome proliferator-activated receptor γ and PPARα compared to the control group, whereas the opposite was found for protein levels of AMP-activated protein kinase α (t-AMPKα), phosphorylated AMP-activated protein kinase α (p-AMPKα), sirtuin-1 (SIRT1), and p-AMPKα/t-AMPKα ratio as well as the transcriptions of AMPKα1, AMPKα2, SIRT1, PPARγ coactivator-1α (PGC-1α), phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase (FBPase), glucose-6-phosphatase, carnitine palmitoyl transferase I (CPT I) and acyl-CoA oxidase. Resveratrol supplementation significantly up-regulated the protein levels of t-AMPK, p-AMPK, and SIRT1, p-AMPK/t-AMPK ratio as well as the transcriptions of AMPKα1, AMPKα2, SIRT1, PGC-1α, GLUT2, FBPase, and CPT I compared to HC group, while the opposite was found for sterol regulatory element-binding protein-1, FAS and ACCα. Furthermore, resveratrol improved glucose and insulin tolerance of fish fed the HC diet after glucose and insulin load.
Collapse
Affiliation(s)
- Hua-Juan Shi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chao Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming-Yang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Bing-Ke Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Dan-Hong Chen
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Li Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chen-Yuan Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
44
|
Regulation of mitochondrial biosynthesis and function by dietary carbohydrate levels and lipid sources in juvenile blunt snout bream Megalobrama amblycephala. Comp Biochem Physiol A Mol Integr Physiol 2018; 227:14-24. [PMID: 30201543 DOI: 10.1016/j.cbpa.2018.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/04/2018] [Accepted: 08/13/2018] [Indexed: 11/20/2022]
Abstract
This study aimed to investigate the effects of dietary non-protein energy adjustments on the mitochondrial biosynthesis and function of juvenile Megalobrama amblycephala. Fish (average weight: 37.98 ± 0.07 g) were fed eight diets containing two dietary carbohydrate levels (30% and 43%) and four lipid sources (fish oil, soybean oil, palm oil and the mixed oil) for 11 weeks. Liver mitochondrial respiratory chain complex V activity and ATP (adenosine triphosphate) content both increased significantly with increasing dietary carbohydrate levels, whereas the opposite was true for the AMP (adenosine 5'-monophosphate)/ATP ratio, hepatic transcripts of AMP-activated protein kinase α1 (AMPKα1), AMPKα2, peroxisome proliferators γ-activated receptor coativator-1α (PGC-1α), NADH dehydrogenase 1 and cytochrome c oxidase 1 (COX1) as well as the activities of Na+-K+-ATPase, succinate dehydrogenase (SDH), citrate synthase (CS) and mitochondrial respiratory chain complex I, III and IV. Additionally, hepatic ATP content, the transcripts of AMPKα, COX1 and ATP6 and the activities of Na+-K+-ATPase, SDH, CS and mitochondrial respiratory chain complex III were all significantly affected by lipid sources. Furthermore, an interaction between dietary carbohydrate levels and lipid sources was also observed in the activities of liver mitochondrial Na+-K+-ATPase and respiratory chain complex III as well as the transcripts of ATP6 and PGC-1α. Overall, these findings suggested that dietary carbohydrate levels and lipid sources remarkably affected the mitochondrial biosynthesis and function of M. amblycephala. A diet containing 30% carbohydrate and FO could boost its mitochondrial biosynthesis, while that of 30% carbohydrate and SO could enhance the mitochondrial function.
Collapse
|
45
|
Xu C, Liu WB, Zhang DD, Shi HJ, Zhang L, Li XF. Benfotiamine, a Lipid-Soluble Analog of Vitamin B 1, Improves the Mitochondrial Biogenesis and Function in Blunt Snout Bream ( Megalobrama amblycephala) Fed High-Carbohydrate Diets by Promoting the AMPK/PGC-1β/NRF-1 Axis. Front Physiol 2018; 9:1079. [PMID: 30233383 PMCID: PMC6129842 DOI: 10.3389/fphys.2018.01079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/19/2018] [Indexed: 01/03/2023] Open
Abstract
This study evaluated the effects of benfotiamine on the growth performance and mitochondrial biogenesis and function in Megalobrama amblycephala fed high-carbohydrate (HC) diets. The fish (45.25 ± 0.34 g) were randomly fed six diets: the control diet (30% carbohydrate, C), the HC diet (43% carbohydrate), and the HC diet supplemented with different benfotiamine levels (0.7125 (HCB1), 1.425 (HCB2), 2.85 (HCB3), and 5.7 (HCB4) mg/kg) for 12 weeks. High-carbohydrate levels remarkably decreased the weight gain rate (WGR), specific growth rate (SGR), relative feed intake (RFI), feed conversion ratio (FCR), p-adenosine monophosphate (AMP)-activated protein kinase (AMPK)α/t-AMPKα ratio, peroxisome proliferator-activated receptor-γ coactivator-1β (PGC-1β) and nuclear respiratory factor-1 (NRF-1) protein expression, complexes I, III, and IV activities, and hepatic transcriptions of cytochrome b (CYT-b) and cytochrome c oxidase-2 (COX-2), whereas the opposite was true for plasma glucose, glycated serum protein, advanced glycation end product and insulin levels, tissue glycogen and lipid contents, hepatic adenosine triphosphate (ATP) and AMP contents and ATP/AMP ratio, complexes V activities, and the expressions of AMPKα-2, PGC-1β, NRF-1, mitochondrial transcription factor A (TFAM), mitofusin-1 (Mfn-1), optic atrophy-1 (Opa-1), dynamin-related protein-1 (Drp-1), fission-1 (Fis-1), mitochondrial fission factor (Mff), and ATP synthase-6 (ATP-6). As with benfotiamine supplementation, the HCB2 diet remarkably increased WGR, SGR, tissue glycogen and lipid contents, AMP content, p-AMPKα/t-AMPKα ratio, PGC-1β and NRF-1 levels, complexes I, III, IV, and V activities, and hepatic transcriptions of AMPKα-2, PGC-1β, NRF-1, TFAM, Mfn-1, Opa-1, CYT-b, COX-2, and ATP-6, while the opposite was true for the remaining indicators. Overall, 1.425 mg/kg benfotiamine improved the growth performance and mitochondrial biogenesis and function in fish fed HC diets by the activation of the AMPK/PGC-1β/NRF-1 axis and the upregulation of the activities and transcriptions of mitochondrial complexes as well as the enhancement of mitochondrial fusion coupled with the depression of mitochondrial fission.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
46
|
Xu J, Wang F, Jakovlić I, Prisingkorn W, Li JT, Wang WM, Zhao YH. Metabolite and gene expression profiles suggest a putative mechanism through which high dietary carbohydrates reduce the content of hepatic betaine in Megalobrama amblycephala. Metabolomics 2018; 14:94. [PMID: 30830423 DOI: 10.1007/s11306-018-1389-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/23/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND High-carbohydrate diets (HCD) are favoured by the aquaculture industry for economic reasons, but they can produce negative impacts on growth and induce hepatic steatosis. We hypothesised that the mechanism behind this is the reduction of hepatic betaine content. OBJECTIVE We further explored this mechanism by supplementing betaine (1%) to the diet of a farmed fish Megalobrama amblycephala. METHODS Four diet groups were designed: control (CD, 27.11% carbohydrates), high-carbohydrate (HCD, 36.75% carbohydrates), long-term betaine (LBD, 35.64% carbohydrates) and short-term betaine diet (SBD; 12 weeks HCD + 4 weeks LBD). We analysed growth performance, body composition, liver condition, and expression of genes and profiles of metabolites associated with betaine metabolism. RESULTS HCD resulted in poorer growth and liver health (compared to CD), whereas LBD improved these parameters (compared to HCD). HCD induced the expression of genes associated with glucose, serine and cystathionine metabolisms, and (non-significantly, p = .20) a betaine-catabolizing enzyme betaine-homocysteine-methyltransferase; and decreased the content of betaine, methionine, S-adenosylhomocysteine and carnitine. Betaine supplementation (LBD) reversed these patterns, and elevated betaine-homocysteine-methyltransferase, S-adenosylmethionine and S-adenosylhomocysteine (all p ≤ .05). CONCLUSION We hypothesise that HCD reduced the content of hepatic betaine by enhancing the activity of metabolic pathways from glucose to homocysteine, reflected in increased glycolysis, serine metabolism, cystathionine metabolism and homocysteine remethylation. Long-term dietary betaine supplementation improved the negative impacts of HCD, inculding growth parameters, body composition, liver condition, and betaine metabolism. However, betaine supplementation may have caused a temporary disruption in the metabolic homeostasis.
Collapse
Affiliation(s)
- Jia Xu
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Fan Wang
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan, 430075, People's Republic of China
| | - Wassana Prisingkorn
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Jun-Tao Li
- Institute of Tropical Bioscience and Biotechnology, Haikou, 570102, People's Republic of China
| | - Wei-Min Wang
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Yu-Hua Zhao
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
47
|
Shi HJ, Liu WB, Xu C, Zhang DD, Wang BK, Zhang L, Li XF. Molecular Characterization of the RNA-Binding Protein Quaking-a in Megalobrama amblycephala: Response to High-Carbohydrate Feeding and Glucose/Insulin/Glucagon Treatment. Front Physiol 2018; 9:434. [PMID: 29740344 PMCID: PMC5928497 DOI: 10.3389/fphys.2018.00434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/06/2018] [Indexed: 11/13/2022] Open
Abstract
The RNA-binding protein quaking-a (Qkia) was cloned from the liver of blunt snout bream Megalobrama amblycephala through the rapid amplification of cDNA ends method, with its potential role in glucose metabolism investigated. The full-length cDNA of qkia covered 1,718 bp, with an open reading frame of 1,572 bp, which encodes 383 AA. Sequence alignment and phylogenetic analysis revealed a high degree of conservation (97–99%) among most fish and other higher vertebrates. The mRNA of qkia was detected in all examined organs/tissues. Then, the plasma glucose levels and tissue qkia expressions were determined in fish intraperitoneally injected with glucose [1.67 g per kg body weight (BW)], insulin (0.052 mg/kg BW), and glucagon (0.075 mg/kg BW) respectively, as well as in fish fed two dietary carbohydrate levels (31 and 41%) for 12 weeks. Glucose administration induced a remarkable increase of plasma glucose with the highest value being recorded at 1 h. Thereafter, it reduced to the basal value. After glucose administration, qkia expressions significantly decreased with the lowest value being recorded at 1 h in liver and muscle and 8 h in brain, respectively. Then they gradually returned to the basal value. The insulin injection induced a significant decrease of plasma glucose with the lowest value being recorded at 1 h, whereas the opposite was true after glucagon load (the highest value was gained at 4 h). Subsequently, glucose levels gradually returned to the basal value. After insulin administration, the qkia expressions significantly decreased with the lowest value being attained at 2 h in brain and muscle and 1 h in liver, respectively. However, glucagon significantly stimulated the expressions of qkia in tissues with the highest value being gained at 6 h. Moreover, high dietary carbohydrate levels remarkably increased plasma glucose levels, but down-regulated the transcriptions of qkia in tissues. These results indicated that the gene of blunt snout bream shared a high similarity with that of the other vertebrates. Glucose and insulin administration, as well as high-carbohydrate feeding, remarkably down-regulated its transcriptions in brain, muscle and liver, whereas the opposite was true after the glucagon load.
Collapse
Affiliation(s)
- Hua-Juan Shi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chao Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ding-Dong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bing-Ke Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Li Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|